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SPACE-TIME DISCONTINUOUS GALERKIN METHODS FOR WEAK SOLUTIONS
OF HYPERBOLIC LINEAR SYMMETRIC FRIEDRICHS SYSTEMS
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Abstract. We study weak solutions and its approximation of hyperbolic linear symmetric Friedrichs systems
describing acoustic, elastic, or electro-magnetic waves. For the corresponding first-order systems we construct
discontinuous Galerkin discretizations in space and time with full upwind, and we show primal and dual con-
sistency. Stability and convergence estimates are provided with respect to a mesh-dependent DG norm which
includes the L2 norm at final time. Numerical experiments confirm that the a piori results are of optimal order
also for solutions with low regularity, and we show that the error in the DG norm can be closely approximated
with a residual-type error indicator.
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1. Introduction

Linear wave equations are hyperbolic, and the formulation as first-order symmetric Friedrichs system provides a well
established setting for analyzing and approximating solutions. A specific feature of hyperbolic systems is the transport
of discontinuities along characteristics. Our goal is to provide a numerical scheme which is efficient for smooth solutions
as well as for weak solutions with discontinuities.

For smooth solutions of linear symmetric Friedrichs systems O(hs−1/2) convergence can be established for discontinuous
Galerkin approximations in space with respect to suitable mesh-dependent DG norm [Ern and Guermond, 2021, Chap. 57],
[Di Pietro and Ern, 2011, Chap. 7]. For acoustics, the convergence analysis of a space-time approximation in a DG semi-
norm provides estimates for all discrete time steps [Bansal et al., 2021, Prop. 6.5].

Finite volume convergence O(h1/2) for hyperbolic linear symmetric Friedrichs systems is established in [Jovanović and
Rohde, 2005] combined with first-order time-stepping. Discontinuous Galerkin methods in time are analyzed in [Falk
and Richter, 1999] for tent-type space-time meshes. This is adapted to space-time discontinuous Galerkin methods on
general space-time meshes with upwind flux for acoustics in [Bansal et al., 2021], where the convergence is established
for sufficiently smooth solutions based on estimates in a suitable DG semi-norm. In particular, the analysis includes the
adaptive approximation of corner singularities.

Here, we consider a DG method in space and time for linear symmetric Friedrichs systems, and we show inf-sup stability
and convergence in the DG norm. Therefore we transfer our results for space-time Petrov–Galerkin methods in [Dörfler
et al., 2016,Dörfler et al., 2019] with continuous approximations in time and for the DPG method in [Ernesti and Wieners,
2019a, Ernesti and Wieners, 2019b], where convergence in a stronger graph norm is considered. Our analysis includes
bounds for the consistency error in the case that piecewise discontinuous material parameters are not aligned with the
mesh. Convergence in the limit for piecewise discontinuous solutions of Riemann problems is established only in L2.

The space-time method is realized in the parallel finite element system M++ [Baumgarten and Wieners, 2021]. In our
numerical examples we confirm the a priori estimates for weak as well as for smooth solutions, and we demonstrate the
efficiency of the p-adaptive scheme.

The paper is organized as follows. In Sect. 2 we introduce the notation and the formulation of wave equations as first-
order systems, in Sect. 3 we introduce the DG discretization in time and in space. In Sect. 4 we consider well-posedness
and stability, in Sect. 5 we prove existence of weak solutions and convergence estimates, in Sect. 5.3 we introduce an a
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estimators for first-order systems
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posteriori error indicator, and in Sect. 6 we present numerical results. In Sect. 7 we conclude with a discussion of possible
extensions and open problems.
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2. Symmetric Friedrichs systems

We consider weak solutions of linear hyperbolic first-order systems in the form of symmetric Friedrichs systems. Let
Ω ⊂ Rd be a bounded domain in space with Lipschitz boundary ∂Ω, I = (0, T ) a time interval, and we denote the
space-time cylinder by Q = (0, T )× Ω. Boundary conditions will be imposed on Γk ⊂ ∂Ω for k = 1, . . . ,m depending on
the model, where m is the dimension of the first-order system.

For S ⊂ Q the L2 norm and inner product are denoted by ‖ · ‖S and (·, ·)S .

Let L = M∂t + A be a linear differential operator in space and time, where (Mv)(t,x) = M(x)v(t,x) defines the
operatorM with a uniformly positive definite matrix-valued functionM ∈ L∞(Ω;Rm×msym ), and where Av =

∑d
j=1Aj∂jv is

a differential operator in space with matrices Aj ∈ Rm×msym . SinceM is uniformly positive definite, constants CM ≥ cM > 0
exists such that

cM y>y ≤ y>M(x)y ≤ CM y>y , y ∈ Rm and a.a. x ∈ Ω .

We observe(
Lv,w

)
Q

=
(
M∂tv,w

)
Q

+
(
Av,w

)
Q

= −
(
v,M∂tw

)
Q
−
(
v, Aw

)
Q

= −
(
v, Lw

)
Q
, v,w ∈ C1

c(Q;Rm) ,

so that L∗ = −L is the adjoint differential operator. This is now complemented by initial and boundary conditions.

For the unit normal vector n ∈ L∞(∂Ω;Rd) we define the matrix An =
∑d
j=1 njAj ∈ Rm×msym , so that(

Av,w
)

Ω
+
(
v, Aw

)
Ω

=
(
Anv,w

)
∂Ω

=
(
v, Anw

)
∂Ω
, v,w ∈ C1(Ω;Rm) .

Correspondingly, we get for the operator L in space and time(
Lv,w

)
Q

+
(
v, Lw

)
Q

=
(
Mv(T ),w(T )

)
Ω
−
(
Mv(0),w(0)

)
Ω

+
(
Anv,w

)
(0,T )×∂Ω

, v,w ∈ C1(Q;Rm) ,

i.e., inserting L∗ = −L,(
v, L∗w

)
Q

=
(
Lv,w

)
Q
−
(
Mv(T ),w(T )

)
Ω

+
(
Mv(0),w(0)

)
Ω
−
(
Anv,w

)
(0,T )×∂Ω

, v,w ∈ C1(Q;Rm) .

In order to define weak solutions, we include initial values for t = 0 and boundary conditions on Γk for k = 1, . . . ,m in
the right-hand side. Therefore, we use a test space V∗ ⊂ C1(Q;Rm) such that(

v, L∗w
)
Q

=
(
Lv,w

)
Q

+
(
Mv(0),w(0)

)
Ω
−
(
Anv,w

)
(0,T )×∂Ω

, v ∈ C1(Q;Rm) , w ∈ V∗

with

(
Anv,w

)
(0,T )×∂Ω

=

m∑
k=1

(
(Anv)k, wk

)
(0,T )×Γk

, v ∈ C1(Q;Rm) , w = (w1, . . . , wm) ∈ V∗ . (1)

The property (1) characterizes adjoint boundaries Γ∗k ⊂ ∂Ω for k = 1, . . . ,m, so that the test space is defined by

V∗ =
{
w ∈ C1(Q;Rm) : w(T ) = 0 in Ω , w(t) ∈ S∗ for t ∈ [0, T )

}
with S∗ =

{
w ∈ C1(Ω;Rm) : (Anw)k = 0 on Γ∗k , k = 1, . . . ,m

}
with homogeneous final values at t = T and homogenous values at the adjoint boundaries.

Our aim is to find a weak solution u ∈ L2(Q;Rm) solving(
u, L∗w

)
Q

=
〈
`,w

〉
with

〈
`,w

〉
=
(
f ,w

)
Q

+
(
Mu0,w(0)

)
Ω
−
(
g,w

)
(0,T )×∂Ω

, w ∈ V∗ (2)

for given volume data f ∈ L2(Q;Rm), initial data u0 ∈ L2(Ω;Rm), and boundary data g ∈ L2((0, T ) × ∂Ω;Rm), where
the boundary data g = (gk)k=1,...,m are extended to ∂Ω by gk = 0 on ∂Ω \ Γk for k = 1, . . . ,m.

Testing the weak solution u ∈ L2(Q;Rm) in (2) with functions in v ∈ C1
c(Q;Rm) defines the weak derivative Lu = f in

L2(Q;Rm). If in addition u(0) ∈ L2(Ω;Rm) and Anu|(0,T )×Γk
∈ L2((0, T ) × Γk) for k = 1, . . . ,m, the weak solution is

also a strong solution characterized by

Lu = f in L2(Q;Rm) , u(0) = u0 in L2(Ω;Rm) , (Anu)k = gk on L2((0, T )× Γk) , k = 1, . . . ,m . (3)



4 Space-time DG methods for linear Friedrichs systems

This is now specified for acoustic, elastic and electro-magnetic waves.

Acoustic waves. The second-order wave equation

%∂2
t φ−∇ · (κ∇φ) = b

is considered as first-order system with p = ∂tφ and q = −κ∇φ, i.e.,

%∂tp+∇ · q = b and ∂tq + κ∇p = 0 in (0, T )× Ω ,

p(0) = p0 and q(0) = q0 in Ω at t = 0 ,

p(t) = pD(t) on ΓD and n · q(t) = gN(t) on ΓN on ∂Ω for t ∈ (0, T )

for volume data b, boundary data gN, pD, initial data q0, p0, positive parameters %, κ, and the disjoint decomposition of
the boundary ∂Ω = ΓD ∪ ΓN into Dirichlet and Neumann part. The corresponding Friedrichs system with m = 1 + d
components is given by

u =

(
p
q

)
, Mu =

(
%p
κ−1q

)
, Au =

(
∇ · q
∇p

)
, Anu =

(
n · q
pn

)
, f =

(
b
0

)
, g =

(
gN

pDn

)
, (5)

so that for smooth functions ϕ,ψ with ϕ = 0 on (0, T )× ΓD and n ·ψ = 0 on (0, T )× ΓN(
An(p,q), (ϕ,ψ)

)
(0,T )×∂Ω

=
(
n · q, ϕ

)
(0,T )×ΓN

+
(
p,n ·ψ

)
(0,T )×ΓD

.

In two space dimensions, this corresponds to the boundary parts Γ1 = Γ∗1 = ΓD and Γ2 = Γ∗2 = Γ3 = Γ∗3 = ΓN, and

M =

% 0 0
0 κ−1 0
0 0 κ−1

 ∈ L∞(Ω;R3×3
sym) , A1 =

0 1 0
1 0 0
0 0 0

 ∈ R3×3
sym , A2 =

0 0 1
0 0 0
1 0 0

 ∈ R3×3
sym .

Elastic waves. Linear elastic waves are described by the first-order system for velocity v and stress σ

%∂tv −∇ · σ = b and ∂tσ −Cε(v) = 0 in (0, T )× Ω ,

v(0) = v0 and σ(0) = σ0 in Ω at t = 0 ,

v(t) = vD(t) on ΓD and σn = gN(t) on ΓN on ∂Ω for t ∈ (0, T )

with mass density % and, in isotropic media, with Cε = 2µε+ λ trace(ε)I3 depending on the Lamé parameters µ, λ > 0.
This corresponds to the Friedrichs system with

u =

(
v
σ

)
, Mu =

(
%v

C−1σ

)
, Au =

(
−∇ · σ
−ε(v)

)
, Anu =

(
−σn

−nv> − vn>

)
, f =

(
b
0

)
, g =

(
−gN

−nv>D − vDn
>

)
. (6)

For d = 3 we have m = 9 and Γk = Γ∗k = ΓD for k = 1, 2, 3, and Γk = Γ∗k = ΓN for k = 4, . . . , 9.

Electro-magnetic waves. The first-order system for the electric field E and the magnetic field intensity H

ε∂tE−∇×H = −J and µ∂tH +∇×E = 0 in (0, T )× Ω ,

E(0) = E0 and H(0) = H0 in Ω at t = 0 ,

n×E(t) = 0 on ΓE and n×H(t) = gM on ΓM on ∂Ω for t ∈ (0, T )

with permittivity ε, permeability µ, and boundary decomposition ∂Ω = ΓE ∪ΓM corresponds to a Friedrichs system with

u =

(
E
H

)
, Mu =

(
εE
µH

)
, Au =

(
−∇×H
∇×E

)
, Anu =

(
−n×H
n×E

)
, f =

(
−J
0

)
, g =

(
−gM

0

)
. (7)

For d = 3 we have m = 6 and Γk = Γ∗k = ΓE for k = 1, 2, 3, and Γk = Γ∗k = ΓM for k = 4, 5, 6.
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Remark 1. We only consider the case that the symmetric matrices Aj, j = 1, . . . , d, are constant in Ω. In general,
Aj may depend on x ∈ Ω, e.g., for the linear transport equation Lu = ∂tu + a · ∇u with m = 1 and transport vector
a(x) ∈ Rd. Then, Γ1 is the inflow boundary, and for the adjoint equation we obtain L∗v = −∂tv − a · ∇v − (∇ · a)v with
Γ∗1 = ∂Ω \ Γ1. For the DG analysis of this case we refer to [Di Pietro and Ern, 2011, Chap. 2] in the steady case and
to [Dörfler et al., 2016] for a Petrov–Galerkin space-time method.

The suitable choice of the subsets Γk ⊂ ∂Ω for k = 1, . . . ,m for the boundary conditions in general Friedrichs systems is
discussed in [Di Pietro and Ern, 2011, Chap. 7.2]. Here we consider the special case for wave systems. The property (1)
characterizes the adjoint boundaries Γ∗k ⊂ ∂Ω for k = 1, . . . ,m, and we observe

m∑
k=1

(
(Anv)k, wk

)
(0,T )×Γk

=
(
Anv,w

)
(0,T )×∂Ω

=
(
v, Anw

)
(0,T )×∂Ω

=

m∑
k=1

(
vk, (Anw)k

)
(0,T )×∂Ω\Γ∗k

for v = (v1 . . . , vm) ∈ C1(Q;Rm) and w = (w1, . . . , wm) ∈ V∗ and thus, defining

V =
{
v ∈ C1(Q;Rm) : v(0) = 0 in Ω , (Anv)k = 0 on (0, T ]× Γk , k = 1, . . . ,m

}
with homogeneous initial value at t = 0 and homogeneous boundary values on Γk, we obtain(

Anv,w
)

(0,T )×∂Ω
=
(
v, Anw

)
(0,T )×∂Ω

= 0 , v ∈ V , w ∈ V∗ .

Boundary conditions are required in order to obtain uniqueness and well-posedness of the solution. Therefore, we require
for the subsets Γk ⊂ ∂Ω, for k = 1, . . . ,m, that the operators L and L∗ are injective on V and V∗, respectively, i.e.,{

v ∈ V : Lv = 0
}

= {0} ,
{
w ∈ V∗ : L∗w = 0

}
= {0} , (8)

where the relatively open adjoint boundaries Γ∗k ⊂ ∂Ω for k = 1, . . . ,m are determined by property (1).

Now we show that both conditions in (8) are necessary. The first condition for Γk is required for uniqueness for strong
solutions: if v ∈ V \ {0} exists with Lv = 0, then this is a non-trivial homogeneous strong solution, i.e., v solves (3)
with u0 = 0, f = 0, and g = 0. On the other hand, if the second condition is violated, weak solutions do not exist for
all volume data: if w ∈ V∗ \ {0} and f ∈ L2(Q;Rm) exists with L∗w = 0 and (f ,w)Q 6= 0, no weak solution of (2) with
homogeneous initial and boundary data u0 = 0 and g = 0 exists.

Remark 2. The formulation of wave equations in our examples as Friedrichs systems yields symmetric matrices of the

form Aj =

(
0 Ãj

Ã
>
j 0

)
with Ãj ∈ Rm1×m2 and m = m1 + m2. For the boundary conditions we can select a relatively

open set Γ1 ⊂ ∂Ω. Then, defining Γk = Γ1 for k = 2, . . . ,m1, Γk = ∂Ω \ Γ1 for k = m1 + 1, . . . ,m, and Γ∗k = Γk for
k = 1, . . . ,m, we observe that property (1) and conditions (8) are satisfied.

Remark 3. For smooth domains and data, the solution is also smooth, e.g., for acoustics φ(t) ∈ Hs(Ω) for all t ∈ [0, T ]
with s ≥ 2. This allows for improved approximation orders O(hs) for φ. On the other hand, the necessary regularity
requirements are quite restrictive [Rauch, 1985], and the second-order formulation does not allow for the convergence
analysis of piece-wise discontinuous solutions.

Remark 4. Waves in real media are dissipative and dispersive; e.g., modeling electro-magnetic waves in matter needs
to include conductivity and impedance. The DG analysis can be extended to this case; see, e.g., [Di Pietro and Ern,
2011, Chap. 7] for the steady case and [Dörfler et al., 2020] for visco-elastic waves with impedance boundary conditions.
In the elastic model for Rayleigh damping or for the Kelvin–Voigt model, the linear operator takes the form L = M∂t+D+A
with (Dv)(t,x) = D(x)v(t,x) and D ∈ L∞(Ω;Rd×dsym) symmetric positive semi-definite; then, L∗ = −M∂t +D −A.
All our subsequent results extend to this case, but for simplicity we only consider the case D = 0.
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3. The full-upwind discontinuous Galerkin discretization

In this section we introduce an upwind DG discretization for the first-order system.

3.1. The DG finite element space in the space-time cylinder

For the discretization, we use tensor product space-time cells combining the mesh in space with a decomposition in time.
For 0 = t0 < t1 < · · · < tN = T , we define time intervals In,h = (tn−1, tn), time-step sizes Mtn = tn − tn−1, and

Ih = (t0, t1) ∪ · · · ∪ (tN−1, tN ) ⊂ I = (0, T ) , ∂Ih = {t0, t1, . . . , tN−1, tN} .

We set Mt = maxMtn, and we assume quasi-uniformity, i.e., Mtn ∈ [CsrMt,Mt] with Csr ∈ (0, 1] independent of N .

Let Kh be a mesh so that Ωh =
⋃
K∈Kh

K is a decomposition in space into open cells K ⊂ Ω ⊂ Rd. Then, we obtain a
tensor-product decomposition into space-time cells R = In,h ×K

Qh = Ih × Ωh =

N⋃
n=1

Qn,h =
⋃

R∈Rh

R ⊂ Q = I × Ω ⊂ R1+d , Qn,h =
⋃

K∈Kh

In,h ×K ⊂ In,h × Ω

of the space-time cylinder Q. Let F ∈ FK be the faces of the elementK, and we set Fh =
⋃
K FK , so that ∂Ωh =

⋃
F∈Fh

F

is the skeleton in space; ∂Qh =
⋃N
n=0{tn} × ∂Ωh is the corresponding space-time skeleton. For inner faces F ∈ Fh ∩ Ω

and K ∈ Kh, let KF be the neighboring cell such that F = ∂K ∩ ∂KF . On boundary faces F ∈ Fh ∩ ∂Ω we set KF = K.
Let nK be the outer unit normal vector on ∂K. We assume that Ω = Ωh ∪ ∂Ωh and that the boundary decomposition is
compatible with the mesh, i.e., Γk =

⋃
F∈FK∩Γk

F for k = 1, . . . ,m.

We set hK = diamK, hF = diamF , and h = maxhK . We assume quasi-uniform meshes and shape-regularity, i.e.,
hF ≥ CsrhK for F ∈ FK with Csr > 0 independent of hK . In the following, we use the mesh-dependent norms

∥∥hα/2vh∥∥Q =
( N∑
n=1

∑
K∈Kh

hαK‖vh‖2In,h×K

)1/2

, α ∈ R . (9)

In order to calibrate the accuracy in space and time, we assume, depending on a reference velocity cref > 0, that the mesh
size in time and space are well balanced satisfying

crefMt ≤ h . (10)

Remark 5. For simplicity we use only tensor-product space-time meshes. For the extension to more general meshes in
the space-time cylinder we refer to [Gopalakrishnan et al., 2017], see also the analysis in [Bansal et al., 2021]. General
meshes in R1+d are considered in [Schafelner, 2022]. Then, the condition (10) can be relaxed to a local condition.

The DG discretization is defined for a finite dimensional subspace Vh ⊂ Vh ⊂ C1(Ih;Sh), where

Vh =
{
vh ∈ C1(Qh;Rm) : vn,h,K = vh|In,h×K extends continuously to vn,h,K ∈ C0(In,h ×K;Rm)

}
,

Sh =
{
vh ∈ C1(Ωh;Rm) : vh,K = vh|K extends continuously to vh,K ∈ C0(K;Rm)

}
.

For the positive definite matrix function M ∈ L∞(Ω;Rm×msym ) let Mh ∈ L∞(Ωh;Rm×msym ) be a piecewise constant approxi-
mation, and for K ∈ Kh let Mh,K ∈ Rm×msym be the continuous extension of Mh|K to K; in case of material jumps this
can result to different values on the left and right side of a face, i.e., MK |F 6= MKF

|F .

Let Lh = Mh∂t + A be the corresponding linear differential operator, where the approximated operator Mh is given by
(Mhv)(t,x) = Mh(x)v(t,x). Note that then Lh(Vh) ⊂ Vh.
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For our applications, we use a tensor-product construction of the finite element space.

For every space-time cell R = In,h ×K we select polynomial degrees pR = pn,K ≥ 0 in time and qR = qn,K ≥ 0 in space.
With this we define the discontinuous finite element spaces

Sn,h =
∏
K∈Kh

Pqn,K
(K;Rm) ⊂ Sh , Sh = S1,h + · · ·+ SN,h ⊂ Sh , (11a)

Vn,h =
∏
K∈Kh

Ppn,K
⊗ Pqn,K

(K;Rm) ⊂ Vn,h , Vh = V1,h + · · ·+ VN,h ⊂ Vh , (11b)

where Pp denotes the set of polynomials up to order p. For the following, we fix p = max pR and q = max qR, so that

Sn,h ⊂ Sh ⊂ Pq(Ωh;Rm) ⊂ Sh , Vh ⊂ Pp(Ih)⊗ Sh ⊂ Pp(Ih)⊗ Pq(Ωh;Rm) ⊂ Vh .

On the space-time skeleton ∂Qh =
⋃N
n=0{tn} × Ω ∪ Ih × ∂Ωh, the inverse inequality and the discrete trace inequality

[Di Pietro and Ern, 2011, Lem. 1.44 and Lem. 1.46] yield∥∥h1/2M
−1/2
h Lhvh

∥∥
Qh
≤ Cinv

∥∥h−1/2M
1/2
h vh

∥∥
Q
, (12a)∥∥M1/2

h vh
∥∥
∂Qh
≤ Ctr

∥∥h−1/2M
1/2
h vh

∥∥
Q
, vh ∈ Vh , (12b)

with Cinv, Ctr > 0 depending on the space-time mesh regularity (and thus also on cref), the polynomial degrees in Vh, and
the material parameters.

Let Πh : L2(Q;Rm) −→ Vh be the space-time L2 projection defined by(
MhΠhv,vh

)
Q

=
(
Mhv,vh

)
Q
, vh ∈ Vh . (13)

For vh ∈ Vh, let vn,h ∈ C0
(
[tn−1, tn]; L2(Ω, h;Rm)

)
be the extension of vh|Qn,h

∈ L2(Qn,h;Rm) to [tn−1, tn].

In every time interval In,h we use the projection Πn,h : L2(Ω;Rm) −→ Sn,h ⊂ Sh defined by(
MhΠn,hw,wn,h

)
Ω

=
(
Mhwn,wn,h

)
Ω
, wn,h ∈ Sn,h .
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3.2. A discontinuous Galerkin method in time

For vh,wh ∈ Vh we obtain after integration by parts in all intervals In,h ⊂ Ih

(
Mh∂tvh,wh

)
Qh

=

N∑
n=1

(
−
(
Mhvn,h, ∂twn,h

)
Qn,h

+
(
Mhvn,h(tn),wn,h(tn)

)
Ω
−
(
Mhvn,h(tn−1),wn,h(tn−1)

)
Ω

)
.

Introducing the jump terms [wh]n = wn+1,h(tn)−wn,h(tn) for n = 1, . . . , N − 1 and [wh]N = −wN,h(tN ), we define the
dual representation of the full upwind DG method in time

mh(vh,wh) = −
(
Mhvn,h, ∂twn,h

)
Qh
−

N∑
n=1

(
Mhvn,h(tn), [wh]n

)
Ω
, vh,wh ∈ Vh . (14)

We have dual consistency by construction, i.e.,

mh(vh,w) = −
(
Mhvh, ∂tw

)
Qh

, w ∈ V∗ . (15)

Again integrating by parts and defining [vh]0 = v1,h(0) yields the primal representation

mh(vh,wh) =
(
Mh∂tvh,wh

)
Qh

+

N∑
n=1

(
Mh[vh]n−1,wn,h(tn−1)

)
Ω
. (16)

Together, we obtain

2mh(vh,vh) = mh(vh,vh) +mh(vh,vh)

=

N∑
n=1

((
Mh[vh]n−1,vn,h(tn−1)

)
Ω
−
(
Mhvn,h(tn), [vh]n

)
Ω

)
=
(
Mhvh(0),vh(0)

)
Ω

+

N−1∑
n=1

((
Mh[vh]n,vn+1,h(tn)

)
Ω
−
(
Mhvn,h(tn), [vh]n

)
Ω

)
+
(
Mhvh(T ),vh(T )

)
Ω
,

which yields

mh(vh,vh) =
1

2

N∑
n=0

(
Mh[vh]n, [vh]n

)
Ω
≥ 0 , vh ∈ Vh , (17)

so that

mh

(
vh,vh

)
= 0 =⇒ mh

(
vh,wh

)
= −

(
Mhvh, ∂tw

)
Qh

=
(
Mh∂tvh,w

)
Qh

, vh,wh ∈ Vh . (18)
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For mh(vh,vh) = 0 we observe vh ∈ H1
0(0, T ;Sh). This yields with dT (t) = T − t

(
Mhvh,vh

)
Q

=

∫ T

0

(
Mhvh(t),vh(t)

)
Ω

dt = −
∫ T

0

(
Mhvh(t),vh(t)

)
Ω
∂tdT (t) dt

= 2

∫ T

0

(
Mh∂tvh(t),vh(t)

)
Ω
dT (t) dt ≤ 2T

∥∥M−1/2
h ∂tvh

∥∥
Qh

∥∥M1/2
h vh

∥∥
Q
,

i.e., we have
∥∥M1/2

h vh
∥∥
Q
≤ 2T

∥∥M−1/2
h ∂tvh

∥∥
Qh

. This extends to discontinuous functions in Vh as follows.

Lemma 6. We have

(
Mhvh,vh

)
Q

+

N−1∑
n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
Ω
≤ 2mh(vh, dTvh) , vh ∈ Vh .

Proof. The assertion follows from

(
Mhvh,vh

)
Q

= −
N∑
n=1

∫ tn

tn−1

(
Mhvh(t),vh(t)

)
Ω
∂tdT (t) dt

= 2

∫ T

0

(
Mh∂tvh(t),vh(t)

)
Ω
dT (t) dt

−
N∑
n=1

(
dT (tn)

(
Mhvn,h(tn),vn,h(tn)

)
Ω
− dT (tn−1)

(
Mhvn,h(tn−1),vn,h(tn−1)

)
Ω

)
= 2
(
Mh∂tvh, dTvh

)
Qh

+

N−1∑
n=1

dT (tn)
((
Mhvn+1,h(tn),vn+1,h(tn)

)
Ω
−
(
Mhvn,h(tn),vn,h(tn)

)
Ω

)
− T ‖M1/2

h v1,h(0)‖2Ω

≤ 2
(
Mh∂tvh, dTvh

)
Qh

+ 2

N−1∑
n=1

dT (tn)
(
Mh[vh]n,vn+1,h(tn)

)
Ω

−
N−1∑
n=1

dT (tn)
(
Mh[vh]n, [vh]n

)
Ω
− T ‖M1/2

h v1,h(0)‖2Ω

≤ 2mh

(
vh, dTvh

)
−
N−1∑
n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
Ω

using(
Mhvn+1,h(tn),vn+1,h(tn)

)
Ω
−
(
Mhvn,h(tn),vn,h(tn)

)
Ω

=
(
Mh(vn+1,h(tn)− vn,h(tn)),vn+1,h(tn) + vn,h(tn)

)
Ω

=
(
Mh[vh]n,vn+1,h(tn)

)
Ω

+
(
Mh[vh]n,vn,h(tn)

)
Ω

= 2
(
Mh[vh]n,vn+1,h(tn)

)
Ω
−
(
Mh[vh]n, [vh]n

)
Ω
.

�
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3.3. A discontinuous Galerkin method in space

For vh,wh ∈ Sh we observe, integrating by parts for all elements K ∈ Kh,

(
Avh,wh

)
Ωh

=
∑
K∈Kh

(
−
(
vh,K , Awh,K

)
K

+
∑
F∈FK

(
AnK

vh,K ,wh,K

)
F

)
.

For conforming functions v, we have for the flux AnK
v = −AnKF

v on inner faces F ⊂ Ω, and for discontinuous functions
we define the jump term [wh]K,F = wh,KF

−wh,K . On boundary faces F ⊂ ∂Ω this depends on the boundary conditions,
and we set (An[vh])k = −2(Anvh)k on Γk ⊂ ∂Ω and (An[vh])k = 0 on ∂Ω \ Γk for k = 1, . . . ,m.
We use the discontinuous Galerkin with full upwind discretization in space which is of the form

ah(vh,wh) = −
(
vh, Awh

)
Ωh

+
∑
K∈Kh

∑
F∈FK

(
vh,K , A

up
nK

[wh]K,F
)
F
,

where the upwind flux Aup
nK
∈ Rm×m is obtained by solving local Riemann problems.

For the DG method we require dual consistency for the bilinear form and the right hand side for the boundary values

ah
(
vh,w

)
= −

(
vh, Aw

)
Ωh

and
〈
`∂Ω,h(t),w

〉
=
(
g(t),w

)
∂Ω
, vh ∈ Sh , w ∈ S∗ , (19)

and for the inconsistency complement we require that C1 ≥ c1 > 0 exists such that

c1
∥∥An[vh]

∥∥2

∂Ωh
≤ ah

(
vh,vh

)
≤ C1

∥∥An[vh]
∥∥2

∂Ωh
, vh ∈ Sh , (20)

so that

ah
(
vh,vh

)
= 0 =⇒ ah

(
vh,wh

)
= −

(
vh, Awh

)
Ωh

=
(
Avh,wh

)
Ωh
, vh,wh ∈ Sh . (21)

We assume that C1 > 0 only depends on the material parameters, and that∣∣ah(vh,wh

)
+
(
vh, Awh

)
Ωh

∣∣ ≤ C1

∥∥M1/2
h vh

∥∥
∂Ωh

∥∥An[wh]
∥∥
∂Ωh

, vh,wh ∈ Sh , (22a)∣∣ah(vh,wh

)
+
(
Avh,wh

)
Ωh

∣∣ ≤ C1

∥∥An[vh]
∥∥
∂Ωh

∥∥M1/2
h wh

∥∥
∂Ωh

, vh,wh ∈ Sh , (22b)∣∣〈`∂Ω,h(t),wh

〉
−
(
g(t),wh

)
∂Ω

∣∣ ≤ C1

∥∥g(t)
∥∥
∂Ωh

∥∥M1/2
h wh

∥∥
∂Ωh

, wh ∈ Sh . (22c)

For acoustic, elastic and electro-magnetic waves the upwind flux is explicitly evaluated, e.g., in [Hochbruck et al., 2015,
Sect. 4.3]. Here, we only consider the dual representation; integration by parts yields the primal representation.

Acoustic waves. The full upwind DG approximation for the acoustic wave equation (5) is given by

ah
(
(ph,qh), (ϕh,ψh)

)
=
∑
K∈Kh

(
−
(
qh,K ,∇ϕh,K

)
K
−
(
ph,K ,∇ ·ψh,K

)
K

(23)

−
∑
F∈FK

1

ZK + ZKF

(
pK,h + ZKF

nK · qK,h, [ϕh]K,F + ZKnK · [ψh]K,F
)
F

)

for (ph,qh), (ϕh,ψh) ∈ Sh with impedance ZK =
√
κh,K%h,K depending on the piecewise constant approximations for the

material parameters κ, % > 0. On inner boundaries material discontinuities can result in ZK 6= ZKF
, on boundary faces

we define Zh = ZK on ∂Ω ∩ ∂K. On Dirichlet boundary faces F ∈ Fh ∩ ΓD, we set [ph]K,F = −2ph and n · [qh]K,F = 0.
On Neumann boundary faces F ∈ Fh ∩ ΓN, we set [ph]K,F = 0 and n · [qh]K,F = −2n · qh. The right-hand side is
complemented by the stabilization, so that〈

`∂Ω,h(t), (ϕh,ψh)
〉

= −
(
pD(t),n ·ψh

)
ΓD
−
(
gN(t), ϕh

)
ΓN

+
(
pD(t), Z−1

h ϕh
)

ΓD
+
(
gN(t), Zhn ·ψh

)
ΓN
. (24)

Integration by parts gives

ah
(
(ph,qh), (ph,qh)

)
=

1

2

∑
K∈Kh

∑
F∈FK

1

ZK + ZKF

(∥∥[ph]K,F
∥∥2

F
+ ZKZKF

∥∥nK · [qh]K,F
∥∥2

F

)
.
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Elastic waves. The full upwind DG approximation for the elastic wave equation (6) is given by

ah
(
(vh,σh), (wh,ηh)

)
=
∑
K∈Kh

((
σh.K , ε(wh,K)

)
K

+
(
vh,K ,∇ · ηh,K

)
K

(25)

−
∑
F∈FK

1

Zp
K + Zp

KF

(
nK ·

(
σh,KnK − Zp

KF
vh,K

)
,nK ·

(
[ηh]K,FnK − Zp

K [wh]K,F
))
F

−
∑
F∈FK

1

Zs
K + Zs

KF

(
nK ×

(
σh,KnK − Zs

KF
vh,K

)
,nK ×

(
[ηh]K,FnK − Zs

K [wh]K,F
))
F

)

for (vh,σh), (wh,ηh) ∈ Sh. The coefficients Zp
K =

√
(2µh,K + λh,K)%h,K and Zs

K =
√
µh,K%h,K are the impedance of

compressional waves and shear waves, respectively. On Dirichlet boundary faces F ∈ Fh ∩ ΓD, we set [vh]K,F = −2vh
and [σh]K,FnK = 0, and on Neumann faces F ∈ Fh∩ΓN we set [vh]K,F = 0 and [σh]K,FnK = −2σhnK . The right-hand
side is given by 〈

`∂Ω,h(t), (wh,ηh)
〉

=
(
vD(t),ηhn

)
ΓD

+
(
gN(t),wh

)
ΓN

+
(
n · vD(t), (Zp

h)−1n ·wh

)
ΓD

+
(
n · gN(t), Zp

hn · ηhn
)

ΓN

+
(
n× vD(t), (Zs

h)−1n×wh

)
ΓD

+
(
n× gN(t), Zs

hn× ηhn
)

ΓN

with Zp
h = Zp

K and Zs
h = Zs

K on ∂K ∩ ∂Ω. Integrating by parts yields

ah
(
(vh,σh), (vh,σh)

)
=

1

2

∑
K∈Kh

∑
F∈FK

(∥∥nK · ([σh]K,FnK
)∥∥2

F
+ Zp

KZ
p
KF

∥∥nK · [vh]K,F
∥∥2

F

Zp
K + Zp

KF

(26)

+

∥∥nK × ([σh]K,FnK
)∥∥2

F
+ Zs

KZ
s
KF

∥∥nK × [vh]K,F
∥∥2

F

Zs
K + Zs

KF

)
.

Electro-magnetic waves. The full upwind DG approximation for the electro-magnetic wave equation (7) is given by

ah
(
(Eh,Hh), (ϕh,ψh)

)
=
∑
K∈Kh

((
Eh,K ,∇×ψh,K

)
K
−
(
Hh,K ,∇×ϕh,K

)
K

(27)

+
∑
F∈FK

1

ZK + ZKF

((
ZKEh,K − nK ×Hh,K ,nK × [ψh]K,F

)
F

−
(
ZKnK ×Eh,K + Hh,K , ZKF

nK × [ϕh]K,F
)
F

))

for (Eh,Hh), (ϕh,ψh) ∈ Sh with coefficient ZK =
√
εK/µK . On the boundary faces, we set nK× [E]K,F = −2nK×Eh,K

and nK × [Hh]K,F = 0 on F ∈ Fh ∩ ΓE, and on impedance boundary faces F ∈ Fh ∩ ΓM, we set nK × [E]K,F = 0 and
nK × [H]K,F = −2nK ×Hh,K . The right-hand side is given by〈

`∂Ω,h(t), (ϕh,ψh)
〉

=
(
gM(t),ϕh − Z−1

h n×ψh
)

ΓM

with Zh = ZK on ∂K ∩ ΓM. Again, integration by parts yields

ah
(
(Eh,Hh), (Eh,Hh)

)
=

1

2

∑
K∈Kh

∑
F∈FK

1

ZK + ZKF

(
ZKZKF

∥∥nK × [Eh]K,F
∥∥2

F
+ ‖nK × [Hh]K,F

∥∥2

F

)
.
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3.4. A discontinuous Galerkin method in time and space

Combining the two semi-discretizations, we obtain the full DG discretization

bh(vh,wh) = mh(vh,wh) +

∫ T

0

ah
(
vh(t),wh(t)

)
dt , vh , wh ∈ Vh (28)

with right-hand side in the space-time cylinder

〈
`h,wh

〉
=
(
f ,wh

)
Q

+
(
Mhu0,wh(0)

)
Ω

+

∫ T

0

〈
`∂Ω,h(t),wh(t)

〉
dt , vh ∈ Vh . (29)

For the space-time DG method we have by construction dual consistency for the bilinear form and the right hand side

bh
(
vh,w

)
=
(
vh, L

∗
hw
)
Qh

and
〈
`h,w

〉
=
(
f ,w

)
Q

+
(
Mhu0,w(0)

)
∂Ω

+
(
g,w

)
(0,T )×∂Ω

, vh ∈ Vh , w ∈ V∗ , (30)

and positivity for the inconsistency complement

bh
(
vh,vh

)
≥ 1

2

N∑
n=0

∥∥M1/2
h [vh]n

∥∥2

Ω
+ c1

∥∥An[vh]
∥∥2

∂Ωh
, vh ∈ Vh (31)

by combining (17) and (20). Together with (18) and (21) we obtain

bh
(
vh,vh

)
= 0 =⇒ bh

(
vh,wh

)
=
(
vh, L

∗
hwh

)
Qh

=
(
Lhvh,wh

)
Qh

, vh,wh ∈ Vh , (32)

and (22) yields with C1 > 0

∣∣bh(vh,wh

)
−
(
vh, L

∗
hwh

)
Ωh

∣∣ ≤ ∥∥M1/2
h vh

∥∥
∂Qh

√∥∥M1/2
h [wh]

∥∥2

∂Ih×Ω
+ C1

∥∥An[wh]
∥∥2

∂Ωh
, vh,wh ∈ Vh , (33a)∣∣bh(vh,wh

)
−
(
Lhvh,wh

)
Ωh

∣∣ ≤√∥∥M1/2
h [vh]

∥∥2

∂Ih×Ω
+ C1

∥∥An[vh]
∥∥2

∂Ωh

∥∥M1/2
h wh

∥∥
∂Qh

, vh,wh ∈ Vh , (33b)∣∣〈`,wh

〉
−
〈
`h,wh

〉∣∣ ≤ ∥∥M1/2
h u0

∥∥
Ω

∥∥M1/2
h wh

∥∥
Ω

+ C1

∥∥g∥∥
Ih×∂Ω

∥∥M1/2
h wh

∥∥
Ih×∂Ω

, wh ∈ Vh . (33c)

For sufficiently smooth functions v ∈ L2(Q;Rm) with Lhv ∈ L2(Q;Rm), v(0) ∈ L2(Ω;Rm), [v]n = 0 for n = 1, . . . , N −1,
An[v] = 0 on Ih × F for inner faces F ∈ Fh \ ∂Ω, and An[v] ∈ L2(I × ∂Ω;Rm), we obtain consistency of the form

∣∣bh(v,wh

)
−
〈
`h,wh

〉
−
(
Lhv − f ,wh

)
Q
−
(
Mh(v(0)− u0),wh

)
Ω

∣∣ ≤ C1

m∑
k=1

∥∥(Anv)k − gk
∥∥
Ih×Γk

∥∥wh,k∥∥Ih×Γk
. (34)

Lemma 7. We have, depending on c1 > 0 in (20),

∥∥M1/2
h vh

∥∥2

Q
+

N−1∑
n=0

dT (tn)
∥∥M1/2

h [vh]n
∥∥2

Ω
+ 2c1

∫ T

0

dT (t)
∥∥An[vh(t)]

∥∥2

∂Ωh
dt ≤ 2 bh(vh, dTvh) , vh ∈ Vh .

Proof. By inserting vh(t) into (20) and integrating over time we find

c1

∫ T

0

dT (t)
∥∥An[vh(t)]

∥∥2

∂Ωh
dt ≤

∫ T

0

dT (t)ah(vh(t),vh(t)) dt ,

and thus with Lem. 6 we get for all vh ∈ Vh

(
Mhvh,vh

)
Q

+

N−1∑
n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
Ω
≤ 2mh(vh, dTvh)

≤ 2mh(vh, dTvh) + 2

∫ T

0

dT (t) ah
(
vh(t),vh(t)

)
dt− 2c1

∫ T

0

dT (t)
∥∥An[vh(t)]

∥∥2

∂Ωh
dt

= 2 bh(vh, dTvh)− 2c1

∫ T

0

dT (t)
∥∥An[vh(t)]

∥∥2

∂Ωh
dt .

�
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4. Well-posedness and stability

We show that the discrete problem has a unique solution and is stable with respect to different norms.

4.1. Well-posedness of the space-time DG discretization

The well-posedness of the discrete equation is now established as in [Bansal et al., 2021, Prop. 5.1].

Lemma 8. A unique discrete approximation uh ∈ Vh exists solving

bh(uh,vh) =
〈
`h,vh

〉
, vh ∈ Vh . (35)

Proof. Since dimVh <∞, it is sufficient to show that uh = 0 is the unique solution of the homogeneous problem

bh(uh,vh) = 0 , vh ∈ Vh . (36)

Since (36) implies bh(uh,uh) = 0, we obtain by (31) for the jump terms
∥∥M1/2

h [uh]
∥∥
∂Ih×Ωh

=
∥∥An[uh]

∥∥
Ih×∂Ωh

= 0, so
that bh(uh,vh) =

(
Lhuh,vh

)
Qh

= 0. Since Mh is piecewise constant in K ∈ Kh, we observe Lhuh ∈ Vh, so that we can
test with vh = Lhuh; thus, also

(
Lhuh, Lhuh

)
Qh

= 0, i.e., Lhuh = 0. Now the assertion follows from Lem. 7 and (32) by

∥∥M1/2
h uh

∥∥2

Q
=
(
Mhuh,uh

)
Q
≤ 2 bh(uh, dTuh) = 2

(
Lhuh, dTuh

)
Q

= 0 . �

Remark 9. The previous lemma shows that the discrete graph norm defined by

‖vh‖Vh
= sup

wh∈Vh\{0}

bh(vh,wh)∥∥M1/2
h wh

∥∥
Q

, vh ∈ Vh , (37)

is well defined and a norm in Vh.
Since the discrete graph norm is only a semi-norm in Vh, we have to use stronger norms for the convergence analysis.

4.2. Stability in space and time

Let 0 = cp,0 < cp,1 < · · · < cp,p < 1 be the Radau Ia collocation points, so that∫ 1

0

φ(s) ds =

p∑
k=0

ωp,kφ(cp,k) , φ ∈ P2p

(with quadrature weights ωp,k > 0 for k = 0, . . . , p), and let λp,k ∈ Pp be the corresponding Lagrange polynomials

λp,k(s) =

p∏
j=0, j 6=k

s− cp,j
cp,k − cp,j

, s ∈ [0, 1] .

This defines λn,h,k ∈ Ppn(In,h) by λn,h,k(tn−1 + sMtn) = λpn,k(s) for s ∈ [0, 1] and tn,k = tn−1 + cpn,kMtn.

Together this is combined to the corresponding interpolation Ih : Vh −→ Vh by

(In,hvn,h)(t,x) =

pn∑
k=0

λn,h,k(t)vn,h(tn,k,x) , (t,x) ∈ In,h × Ωh, vn,h ∈ C0([tn−1, tn];Sh), n = 1, . . . , N .

For the interpolation we will use in the following the estimate

∥∥M1/2
h Ih(dTvh)

∥∥2

Q
=

N∑
n=1

pn∑
k=0

ωpn,k
∥∥M1/2

h Ih(dTvh)(tn,k)
∥∥2

Ω
=

N∑
n=1

pn∑
k=0

dT (tn,k)2ωpn,k
∥∥M1/2

h vh(tn,k)
∥∥2

Ω

≤ T 2
N∑
n=1

pn∑
k=0

ωpn,k
∥∥M1/2

h vh(tn,k)
∥∥2

Ω
= T 2

∥∥M1/2
h vh

∥∥2

Q
. (38)
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Lemma 10. If pn,K = pn for all K ∈ Kh and n = 1, . . . , N , we have for vh ∈ Vh

∥∥M1/2
h vh

∥∥2

Q
+

N∑
n=1

(
dT (tn−1)

∥∥M1/2
h [vh]n−1

∥∥2

Ω
+ 2c1

pn∑
k=0

dT (tn,k)ωpn,k
∥∥An[vh(tn,k)]

∥∥2

∂Ωh

)
≤ 2 bh

(
vh, Ih(dTvh)

)
.

Proof. We observe

(
Mh∂tvh, dTvh

)
Qh

=

N∑
n=1

(
Mh∂tvn,h, dTvn,h

)
In,h×Ω

=

N∑
n=1

pn∑
k=0

ωpn,k
(
Mh(∂tvn,h)(tn,k), dT (tn,k)vn,h(tn,k)

)
Ω

=

N∑
n=1

pn∑
k=0

ωpn,k
(
Mh(∂tvn,h)(tn,k), In,h(dTvn,h)(tn,k)

)
Ω

=
(
Mh∂tvh, Ih(dTvh)

)
Qh

.

Using Ih(dTvh)(tn−1) = dT (tn−1)vn,h(tn−1) for n = 1, . . . , N , we have

mh(vh, dTvh) =
(
Mh∂tvh, dTvh

)
Qh

+

N∑
n=1

(
Mh[vh]n, dT (tn−1)vn,h(tn−1)

)
Ω

=
(
Mh∂tvh, Ih(dTvh)

)
Qh

+

N∑
n=1

(
Mh[vh]n, Ih(dTvh)(tn−1)

)
Ω

= mh

(
vh, Ih(dTvh)

)
,

and together with Lem. 6 we obtain

∥∥M1/2
h vh

∥∥2

Q
+

N∑
n=1

dT (tn−1)
∥∥M1/2

h [vh]n−1

∥∥2

Ω
≤ 2mh(vh, dTvh) = 2mh

(
vh, Ih(dTvh)

)
.

For the upwind DG discretization in space we obtain by (20)

0 ≤ c1
N∑
n=1

pn∑
k=0

dT (tn,k)ωpn,k
∥∥An[vh(tn,k)]

∥∥2

∂Ωh

≤
N∑
n=1

pn∑
k=0

dT (tn,k)ωpn,k ah
(
vh(tn,k),vh(tn,k)

)
=

N∑
n=1

pn∑
k=0

ωpn,k ah
(
vh(tn,k), In,h(dTvn,h)(tn,k)

)
=

N∑
n=1

∫ tn

tn−1

ah
(
vh(t), In,h(dTvn,h)(t)

)
dt =

∫ T

0

ah
(
vh(t), Ih(dTvh)(t)

)
dt ,

so that together we obtain the assertion by

∥∥M1/2
h vh

∥∥2

Q
+

N∑
n=1

(
dT (tn−1)

∥∥M1/2
h [vh]n−1

∥∥2

Ω
+ 2c1

pn∑
k=0

dT (tn,k)ωpn,k
∥∥An[vh(tn,k)]

∥∥2

∂Ωh

)

≤ 2mh

(
vh, Ih(dTvh)

)
+

∫ T

0

ah
(
vh(t), Ih(dTvh)(t)

)
dt = 2 bh

(
vh, Ih(dTvh)

)
.

�

Remark 11. Together with (38) we obtain L2 stability with respect to the discrete graph norm by

∥∥M1/2
h vh

∥∥
Q
≤ 2

bh
(
vh, Ih(dTvh)

)∥∥Ih(dTvh)
∥∥
Q

∥∥Ih(dTvh)
∥∥
Q∥∥M1/2

h vh
∥∥
Q

≤ 2T ‖vh‖Vh

for vh ∈ Vh \ {0}, i.e., ‖M1/2
h vh‖Q ≤ 2T ‖vh‖Vh

.
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Corollary 12. Let uh ∈ Vh be the discrete solution (35), and assume homogeneous boundary data g = 0.
If pn,K = pn for all K ∈ Kh and n = 1, . . . , N , the solution is bounded by

∥∥M1/2
h uh

∥∥2

Q
+

N∑
n=1

dT (tn−1)
(∥∥M1/2

h [uh]n−1

∥∥2

Ω
+ 2c1

∥∥An[uh]
∥∥2

In,h×∂Ωh

)
≤ 4

∥∥dTM−1/2
h f

∥∥2

Q
+ 4T

∥∥M1/2
h u0

∥∥2

Ω
.

Proof. We have Ih(dTuh)(0) = uh(0) and for n = 1, . . . , N

dT (tn−1)
∥∥An[uh]

∥∥2

In,h×∂Ωh
= dT (tn−1)

pn∑
k=0

ωpn,k
∥∥An[uh(tn,k)]

∥∥2

∂Ωh
≤

pn∑
k=0

dT (tn,k)ωpn,k
∥∥An[uh(tn,k)]

∥∥2

∂Ωh
,

so that together with Lem. 10 we get the assertion by

1

2

∥∥M1/2
h uh

∥∥2

Q
+

1

2

N∑
n=1

dT (tn−1)
(∥∥M1/2

h [uh]n−1

∥∥2

Ω
+ 2c1

∥∥An[uh]
∥∥2

In,h×∂Ωh

)
≤ bh

(
uh, Ih(dTuh)

)
= 〈`h, Ih(dTuh)〉 =

(
f , dTuh

)
Q

+
(
Mhu0, Tuh(0)

)
Ω

≤
∥∥dTM−1/2

h f
∥∥2

Q
+

1

4

∥∥M1/2
h uh

∥∥2

Q
+ T

∥∥M1/2
h u0

∥∥2

Ω
+
T

4

∥∥M1/2
h uh(0)

∥∥2

Ω
.

�

Remark 13. The estimate in Lem. 7 directly implies that the Petrov–Galerkin method with test space V ∗h = dTVh is
well-defined and L2 stable: the Petrov–Galerkin solution uPG

h ∈ Vh given by

bh(uPG
h , dTvh) = 〈`h, dTvh〉 , vh ∈ Vh (39)

is bounded by

1

2

∥∥M1/2
h uPG

h

∥∥2

Q
+
T

2

∥∥M1/2
h uPG

h (0)
∥∥2

Ω
≤ bh(uPG

h , dTu
PG
h ) = 〈`h, dTuPG

h 〉 ,

and thus, in case of homogeneous boundary data g = 0 we obtain∥∥M1/2
h uPG

h

∥∥2

Q
+ T

∥∥M1/2
h uPG

h (0)
∥∥2

Ω
≤ 4

∥∥dTM−1/2
h f

∥∥2

Q
+ 4T

∥∥M1/2
h u0

∥∥2

Ω
.

This is proposed and analyzed in [Babuška et al., 2001] for the semi-discrete case. Our numerical tests indicate, that the
Petrov–Galerkin modification does not improve the approximation quality, and in the next section we show, that stability
and convergence in the DG norm can be established also for the Galerkin method with ansatz and test space Vh and with
adaptively chosen pn,K .
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4.3. Inf-sup stability in the DG norm

Suitable mesh-dependent DG semi-norms and norms can be defined for vh ∈ Vh by

∣∣vh∣∣h,DG
=
√
bh(vh,vh) ,

∣∣vh∣∣h,DG+ =

√√√√ N∑
n=1

(∥∥M1/2
h vn,h(tn−1)

∥∥2

Ω
+
∥∥M1/2

h vn,h(tn)
∥∥2

Ω

)
+ C1

∥∥M1/2
h vh

∥∥2

Ih×∂Ωh
,

∥∥vh∥∥h,DG
=
√∣∣vh∣∣2h,DG

+
∥∥h1/2M

−1/2
h Lhvh

∥∥2

Qh
,
∥∥vh∥∥h,DG+ =

√∣∣vh∣∣2h,DG+ +
∥∥h−1/2M

1/2
h vh

∥∥2

Q
, (40)

see [Ern and Guermond, 2021, Chap. 57], [Di Pietro and Ern, 2011, Chap. 2 and 7]. Analogously to the proof of Lem. 8
we observe that

∥∥vh∥∥h,DG
= 0 implies vh = 0, so that

∥∥ · ∥∥
h,DG

indeed is a norm. Using (33), we obtain for vh,wh ∈ Vh∣∣bh(vh,wh) +
(
vh, Lhwh

)
Qh

∣∣ ≤ ∣∣vh∣∣h,DG+

∣∣wh

∣∣
h,DG

and
∣∣bh(vh,wh)−

(
Lhvh,wh

)
Qh

∣∣ ≤ ∣∣vh∣∣h,DG

∣∣wh

∣∣
h,DG+ . (41)

We have 2
∣∣vh∣∣2h,DG

= 2 bh(vh,vh) +
(
Lhvh,vh

)
Qh
−
(
vh, Lhvh

)
Qh
≤ 2

∣∣vh∣∣h,DG+

∣∣vh∣∣h,DG
, i.e.,

∣∣vh∣∣h,DG
≤
∣∣vh∣∣h,DG+ ,

and continuity of the bilinear form bh(vh,wh) ≤
∥∥vh∥∥h,DG

∥∥wh

∥∥
h,DG+ and bh(vh,wh) ≤

∥∥vh∥∥h,DG+

∥∥wh

∥∥
h,DG

.

The inf-sup stability for the advection equation [Di Pietro and Ern, 2011, Lem. 2.35] can be transferred to our setting.

Theorem 14. A constant cinf-sup > 0 exists such that

sup
wh∈Vh\{0}

bh(vh,wh)∥∥wh

∥∥
h,DG

≥ cinf-sup
∥∥vh∥∥h,DG

, vh ∈ Vh .

Proof. For given vh ∈ Vh \ {0} we define zh = hM−1
h Lhvh ∈ Vh, and we obtain by the discrete trace inequality (12b)∣∣zh∣∣h,DG+ ≤ Ctr

∥∥h−1/2M
1/2
h zh

∥∥
Qh

= Ctr
∥∥h1/2M

−1/2
h Lhvh

∥∥
Qh
≤ Ctr

∥∥vh∥∥h,DG
, (42)

and together with the inverse inequality (12a) this yields∥∥zh∥∥2

h,DG
=
∣∣zh∣∣2h,DG

+
∥∥h1/2M

−1/2
h Lhzh

∥∥2

Qh
≤
∣∣zh∣∣2h,DG+ + C2

inv
∥∥h−1/2M

1/2
h zh

∥∥2

Qh
≤
(
C2
tr + C2

inv
)∥∥vh∥∥2

h,DG
. (43)

We observe, using (41),

(
Lhvh, zh

)
Qh
− bh(vh, zh) ≤

∣∣vh∣∣h,DG

∣∣zh∣∣h,DG+ ≤
C2
tr

2

∣∣vh∣∣2h,DG
+

1

2C2
tr

∣∣zh∣∣2h,DG+ ≤
C2
tr

2

∣∣vh∣∣2h,DG
+

1

2

∥∥vh∥∥2

h,DG
.

This yields, inserting
∥∥h1/2M

−1/2
h Lhvh

∥∥2

Qh
=
(
Lhvh, zh

)
Qh

,

∥∥vh∥∥2

h,DG
=
∣∣vh∣∣2h,DG

+
(
Lhvh, zh

)
Qh
≤
∣∣vh∣∣2h,DG

+
C2
tr

2

∣∣vh∣∣2h,DG
+

1

2

∥∥vh∥∥2

h,DG
+ bh(vh, zh) ,

so that with C2 = 2 + C2
tr ∥∥vh∥∥2

h,DG
≤ C2

∣∣vh∣∣2h,DG
+ 2 bh(vh, zh) = bh(vh, C2vh + 2zh) . (44)

Using (43), we obtain the assertion with cinf-sup =
(
C2 + 2

√
C2
tr + C2

inv
)−1 by

∥∥vh∥∥2

h,DG
≤
∥∥C2vh + 2zh

∥∥
h,DG

bh(vh, C2vh + 2zh)∥∥C2vh + 2zh
∥∥
h,DG

≤ c−1
inf-sup

∥∥vh∥∥h,DG
sup

wh∈Vh\{0}

bh(vh,wh)∥∥wh

∥∥
h,DG

.

�
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5. Convergence of the DG space-time approximation

In the first step, we show that stability in L2 implies convergence in the limit of the DG approximation. Then, by
assuming some regularity of the solution, qualitative convergence results are obtained in the DG norm.

5.1. Convergence in the limit

Let
(
Qh
)
h∈H be a shape-regular family of space-time meshes with H = {h0, h1, h2, · · · } ⊂ (0,∞) and 0 ∈ H.

Let
(
Vh
)
h∈H be corresponding DG finite element spaces, so that

lim
h∈H

inf
vh∈Vh

∥∥v − vh
∥∥
Q

= 0 , v ∈ V∗ . (45)

For h ∈ H, let uh ∈ Vh be the solution of the discrete problem (35).

The proof of existence of a unique discrete solution in Lem. 8 only relies on the properties (31) and (32) of the DG bilinear
form and thus only implicitly on the boundary parts Γk ⊂ ∂Ω. In order to obtain a unique weak solution of (2) in the
limit, constraints for the selection of Γk ⊂ ∂Ω, k = 1, . . . ,m, are necessary, cf. (8). This is used in the following.

Theorem 15. Assume that pn,K = pn ≥ 1 and qn,K ≥ 1. In case of homogeneous boundary data g = 0 and convergent
approximations of the material parameters Mh −→M , M−1

h −→M−1 in L∞(Ω;Rm×msym ), the discrete solutions
(
uh
)
h∈H

are converging to a weak solution u ∈ L2(Q;Rm) of (2). Moreover, u is a strong solution satisfying (3), and the strong
solution is unique.

Proof. By the assumption pn,K = pn we can apply Lem. 10 with the construction of the interpolation Ih and Cor. 12, so
that (uh)h∈H is uniformly bounded by∥∥M1/2

h uh
∥∥2

Q
+ T

∥∥M1/2
h uh(0)

∥∥2

Ω
≤ 4T

(∥∥M−1/2
h f

∥∥2

Q
+
∥∥M1/2

h u0

∥∥2

Ω

)
.

By (31) and the definition of `h (with g = 0), this also implies that

c1

m∑
k=1

∥∥(Anuh)k
∥∥2

(0,T )×Γk
= c1

∥∥An[uh]
∥∥2

(0,T )×∂Ωh
≤ b(uh,uh) =

〈
`h,uh

〉
=
(
f ,uh

)
Q

+
(
Mhu0,uh(0)

)
Ω

≤ 1

2

∥∥M−1/2
h f

∥∥2

Q
+

1

2

∥∥M1/2
h uh

∥∥2

Q
+

1

2T

∥∥M1/2
h u0

∥∥2

Ω
+
T

2

∥∥M1/2
h uh(0)

∥∥2

Ω

≤
(1

2
+ 2T

)∥∥M−1/2
h f

∥∥2

Q
+
( 1

2T
+ 2T

)∥∥M1/2
h u0

∥∥2

Ω

is uniformly bounded for h ∈ H, so that together with the asymptotic consistency of the material parameters Mh −→M ,
M−1
h −→M−1 in L∞(Ω;Rm×msym ) we obtain with a constant Cf ,u0 > 0 depending on the data

∥∥M1/2uh
∥∥2

Q
+ T

∥∥M1/2uh(0)
∥∥2

Ω
+ c1

m∑
k=1

∥∥(Anuh)k
∥∥2

(0,T )×Γk
≤ Cf ,u0

, h ∈ H .

The uniform stability in L2(Q;Rm) implies, that a subsequence H0 ⊂ H with 0 ∈ H0 and a weak limit u ∈ L2(Q;Rm)
with u(0) ∈ L2(Ω;Rm) and (Anu)k|(0,T )×Γk

∈ L2((0, T )× Γk) for k = 1, . . . ,m exists, i.e.,(
Mu,v

)
Q

= lim
h∈H0

(
Mhuh,v

)
Q
, v ∈ L2(Q;Rm)(

Mu(0),v0

)
Ω

= lim
h∈H0

(
Mhuh(0),v0

)
Ω
, v0 ∈ L2(Ω;Rm)(

(Anu)k, v
)

(0,T )×Γk
= lim
h∈H0

(
(Anuh)k, v

)
(0,T )×Γk

, v ∈ L2((0, T )× Γk), k = 1, . . . ,m .

Then we obtain (
u, L∗v

)
Q

= lim
h∈H0

(
uh, L

∗v
)
Qh

= lim
h∈H0

(
uh, L

∗
hv
)
Qh

= lim
h∈H0

bh(uh,v) , v ∈ Vh ,

using dual consistency (30) for the last step. This extends to H1
0(Q;Rm), and by the assumption pn,K , qn,K ≥ 1, for all

v ∈ H1
0(Q;Rm) a sequence (vh)h∈H0

exists with vh ∈ Vh ∩H1
0(Q;Rm) and lim

h∈H0

vh = v, so that by (30)

(
u, L∗v

)
Q

= lim
h∈H0

bh(uh,v) = lim
h∈H0

bh(uh,vh) = lim
h∈H0

(
f ,vh

)
Q

=
(
f ,v
)
Q
,
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i.e., for the limit u the weak derivative Lu = f in L2(Q;Rm) exists. This extends to initial and boundary data. Therefore,
let V∗ ⊂ H1(Q;Rm) be the closure of V∗ in H1(Q;Rm); then, for all v ∈ V∗ a sequence (vh)h∈H0

with vh ∈ Vh ∩ V
∗
and

lim
h∈H0

vh = v exists, and we get again by (30)

(
u, L∗v

)
Q

= lim
h∈H0

bh(uh,v) = lim
h∈H0

bh(uh,vh) = lim
h∈H0

〈
`h,vh

〉
=
(
f ,v
)
Q

+
(
Mu0,v(0)

)
Ω
.

Thus, using v(T ) = 0 for v = (v1 . . . , vm) ∈ V∗ yields

0 =
(
u, L∗v

)
Q
−
(
f ,v
)
Q
−
(
Mu0,v(0)

)
Ω

=
(
u, L∗v

)
Q
−
(
Lu,v

)
Q
−
(
Mu0,v(0)

)
Ω

=
(
Mu(0),v(0)

)
Ω
−
(
Anu,v

)
(0,T )×∂Ω

−
(
Mu0,v(0)

)
Ω

=
(
M(u(0)− u0),v(0)

)
Ω

+

m∑
k=1

(
(Anu)k, vk

)
(0,T )×Γk

,

so that u(0) = u0 in Ω and (Anu)k = 0 on (0, T ) × Γk for k = 1, . . . ,m, and thus u is indeed a strong solution with
homogeneous boundary conditions at (0, T )× ∂Ω.

Next, we show that the weak limit is unique. Therefore, select another subsequence H1 ⊂ H with 0 ∈ H1 and with a
weak limit ũ ∈ L2(Q;Rm) with ũ(0) ∈ L2(Ω;Rm) and (Anũ)k|(0,T )×Γk

∈ L2((0, T )× Γk) for k = 1, . . . ,m. Then, we also
obtain ũ(0) = u0 and (Anũ)k = 0 for k = 1, . . . ,m. A sequence (eh)h∈H with eh ∈ Vh exists such that limh∈H eh = u− ũ,
and we get

1

2

∥∥M1/2(u− ũ)
∥∥2

Q
=

1

2
lim
h∈H

∥∥M1/2eh
∥∥2

Q
≤ lim
h∈H

bh
(
eh, Ih(dTeh)

)
= lim
h∈H0

bh
(
uh, Ih(dTeh)

)
− lim
h∈H1

bh
(
ũ, Ih(dTeh)

)
= lim
h∈H0

〈
`h, Ih(dTeh)

〉
− lim
h∈H1

〈
`h, Ih(dTeh)

〉
=
〈
`, dT (u− ũ)

〉
−
〈
`, dT (u− ũ)

〉
= 0 ,

so that u = ũ. This shows that the weak limit is unique, so that the full sequence is converging, i.e., limh∈H uh = u.
The same argument applies to all strong solutions, i.e., u is the unique strong solution of (3). �

Remark 16. The result extends to inhomogeneous boundary data g 6= 0, if an extension ug ∈ L2(Q;Rm) exists with
Lug ∈ L2(Q;Rm) and (Anug)k ∈ L2(I × Γk) satisfying (Anug)k = gk, k = 1, . . . ,m. In particular, the regularity result
that the limit of the DG approximations is a strong solution requires sufficient regularity of the boundary data.
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5.2. Convergence in the DG norm

We adapt the convergence result for the DG norm (40) in [Di Pietro and Ern, 2011, Thm. 2.37] to our setting.

Theorem 17. Assume that the strong solution of (3) is sufficiently smooth satisfying u ∈ Hs(Q;Rm) with s ≥ 1.
Then, the error for the discrete solution uh ∈ Vh of (35) is bounded by∥∥u− uh

∥∥
h,DG

≤ Chs−1/2
∥∥Dsu

∥∥
Q

+ CTh−1/2
∥∥M−1/2

h (Mh −M)∂tu
∥∥
Q

with C > 0 depending on the mesh regularity, the polynomial degree, and the material parameters.

Proof. Since we assume for the solution u ∈ H1(Q;Rm), we have Lu, Lhu ∈ L2(Q;Rm), for all traces u|∂Qh
∈ L2(∂Qh;Rm),

[u]n = 0 for n = 1, . . . , N − 1, and An[v] = 0 on Ih × F for inner faces F ∈ Fh \ ∂Ω, and (Anu)k = gk on I × Γk for
k = 1, . . . ,m, so that bh(u,vh) is well defined with

bh(u,wh) =
(
Lhu,wh

)
Q

+ (Mhu(0),wh)Q +

∫ T

0

〈
`∂Ω,h(t),wh

〉
dt =

〈
`h,wh

〉
+
(
(Mh −M)∂tu,wh

)
Q
, wh ∈ Vh . (46)

Thus we obtain for the discrete solution uh ∈ Vh Galerkin orthogonality up to data error

bh(uh,wh) = bh(u,wh) +
(
(M −Mh)∂tu,wh

)
Q
, wh ∈ Vh .

By the trace estimate (12) we obtain
∥∥wh

∥∥2

h,DG+ ≤ (C2
tr + 1)h−1

∥∥M1/2
h wh

∥∥2

Q
, so that by Lem. 7

∥∥M1/2
h wh

∥∥2

Q
≤ 2 bh(wh, dTwh) ≤ 2

∥∥wh

∥∥
h,DG

∥∥dTwh

∥∥
h,DG+ ≤ 2T

∥∥wh

∥∥
h,DG

∥∥wh

∥∥
h,DG+

≤ 2T 2(C2
tr + 1)h−1

∥∥wh

∥∥2

h,DG
+

1

2(C2
tr + 1)

h
∥∥wh

∥∥2

h,DG+

≤ 2T 2(C2
tr + 1)h−1

∥∥wh

∥∥2

h,DG
+

1

2

∥∥M1/2
h wh

∥∥2

Q
,

so that the consistency term can by bounded by(
(M −Mh)∂tu,wh

)
Q
≤ ‖
(
M
−1/2
h (Mh −M)∂tu

∥∥
Q

∥∥M1/2
h wh

∥∥
Q

≤ 2T
√
C2
tr + 1h−1/2‖

(
M
−1/2
h (Mh −M)∂tu

∥∥
Q

∥∥wh

∥∥
h,DG

.

For all vh ∈ Vh this yields the estimate, using Thm. 14 and continuity of the bilinear form bh(·, ·) in the DG norms

cinf-sup
∥∥uh − vh

∥∥
h,DG

≤ sup
wh∈V \{0}

bh(uh − vh,wh)∥∥wh

∥∥
h,DG

= sup
wh∈V \{0}

bh(u− vh,wh) +
(
(M −Mh)∂tu,wh

)
Q∥∥wh

∥∥
h,DG

≤
∥∥u− vh

∥∥
h,DG+ + 2T

√
C2
tr + 1h−1/2‖

(
M
−1/2
h (Mh −M)∂tu

∥∥
Q
.

Now select an H1-stable quasi-interpolation vh = ΠCl
h u of Clement-type [Bartels, 2016, Sect. 4.4.2] with∥∥M1/2(u−ΠCl

h u)
∥∥
Q
≤ C4h

∥∥Du
∥∥
Q
,

∥∥M−1/2Lh(u−ΠCl
h u)

∥∥
Q
≤ C5

∥∥Du
∥∥
Q

and ∥∥M1/2(u−ΠCl
h u)

∥∥
∂Qh

+ h−1/2
∥∥M1/2(u−ΠCl

h u)
∥∥
Q

+ h1/2
∥∥M−1/2Lh(u−ΠCl

h u)
∥∥
Q
≤ C6h

s−1/2
∥∥Dsu

∥∥
Q
.

Then, the result follows from interpolation estimates using [Di Pietro and Ern, 2011, Lem. 1.59] and∥∥u− uh
∥∥
h,DG

≤
∥∥u−ΠCl

h u
∥∥
h,DG

+
∥∥uh −ΠCl

h u
∥∥
h,DG

≤
∥∥u−ΠCl

h u
∥∥
h,DG

+ c−1
inf-sup

∥∥u−ΠCl
h u
∥∥
h,DG+ + 2T

√
C2
tr + 1 c−1

inf-suph
−1/2

∥∥M−1/2
h (Mh −M)∂tu

∥∥
Q

≤ C6h
s−1/2

∥∥Dsu
∥∥
Q

+ C7Th
−1/2

∥∥M−1/2
h (Mh −M)∂tu

∥∥
Q
.

�
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This recovers the convergence result [Bansal et al., 2021, Prop. 6.5] for the DG semi-norm (40).

Corollary 18. Assume that the strong solution of (3) is sufficiently smooth satisfying u ∈ Hs(Q;Rm) with s ≥ 1.
Then, the error for the discrete solution uh ∈ Vh of (35) is bounded in every time step by∥∥M1/2

h

(
u(tn)− uh(tn)

)∥∥
Ω
≤ Chs−1/2

∥∥Dsu
∥∥

(0,tn)×Ω
+ CTh−1/2

∥∥M−1/2
h (Mh −M)∂tu

∥∥
(0,tn)×Ω

with C > 0 depending on the mesh regularity, the polynomial degree, and the material parameters.

For the proof Thm. 17 is applied with T = tn; then, the assertion directly follows from 1
2

∥∥M1/2
h v(T )

∥∥
Ω
≤
∥∥v∥∥

h,DG
.

Remark 19. If M ∈ L∞(Ω;Rm×msym ) is smooth, the consistency term can be estimated by

‖
(
M
−1/2
h (Mh −M)∂tu

∥∥
Q
≤
∥∥M−1/2

h (M −Mh)M−1/2
∥∥
∞

∥∥M1/2∂tu
∥∥
Q
.

If M is discontinuous and if the jumps of the material parameters are not resolved by the mesh, the consistency error can
be estimated in case of higher regularity of the solution: if ∂tu ∈ L2(0, T ; Lq(Ω;Rm)) with q > 2, we obtain∥∥M−1/2

h (Mh −M)∂tu
∥∥
Q
≤
∥∥M−1/2

h (M −Mh)M−1/2
∥∥

L2q/(2−q)(Ω;Rm×m
sym )

∥∥M1/2∂tu
∥∥

L2(0,T ;Lq(Ω;Rm))
. (47)

5.3. Error control

For the error u− uh in the DG semi-norm we obtain from (18) and (20)

∣∣u− uh
∣∣2
h,DG

≤ 1

2

(∥∥M1/2
h (uh(0)− u0)

∥∥2

Ω
+

N−1∑
n=1

∥∥M1/2
h [uh]n

∥∥2

Ω
+
∥∥M1/2

h (uh(T )− u(T ))
∥∥2

Ω

)
(48)

+

m∑
k=1

∥∥(Anuh)k − gk
∥∥2

Ih×Γk
+ C1

∥∥An[uh]
∥∥2

Ih×(∂Ωh∩Ω)

and in the DG norm∥∥u− uh
∥∥2

h,DG
=
∣∣u− uh

∣∣2
h,DG

+
∥∥h1/2M

−1/2
h Lh(u− uh)

∥∥2

Qh

≤
∣∣u− uh

∣∣2
h,DG

+ 2
∥∥h1/2M

−1/2
h (Lhuh − f)

∥∥2

Qh
+ 2

∥∥h1/2M
−1/2
h (M −Mh)∂tu

∥∥2

Qh
. (49)

Up to the error uh − u at final time T in (48) and the parameter approximation error M −Mh in (49), this can be

evaluated explicitly by the residual error indicator ηres,h =
( ∑
R∈Rh

η2
res,R

)1/2

given by the local contributions

η2
res,R = η2

res,n,K + 2hK
∥∥M−1/2

h (Lhuh − f)
∥∥2

R
+

m∑
k=1

∥∥(Anuh)k − gk
∥∥2

(tn−1,tn)×(Γk∩∂K)
+ C1

∥∥An[uh]
∥∥2

(tn−1,tn)×(Ω∩∂K)

for R = (tn−1, tn)×K, n = 1, . . . , N , with

η2
res,1,K =

1

2

∥∥M1/2
h (uh(0)− u0)

∥∥2

K
+

1

2

∥∥M1/2
h [uh]1

∥∥2

K
, R = (0, t1)×K ,

η2
res,n,K =

1

2

∥∥M1/2
h [uh]n−1

∥∥2

K
+

1

2

∥∥M1/2
h [uh]n

∥∥2

K
, R = (tn−1, tn)×K , 1 < n < N ,

η2
res,N,K =

1

2

∥∥M1/2
h [uh]N−1

∥∥2

K
, R = (tN−1, T )×K .

Lemma 20. Let u ∈ L2(Q;Rm) be the weak solution of (2) and uh ∈ Vh the discrete solution of (35).
Then, if u is a strong solution, the error in the DG norm is bounded by

∥∥u− uh
∥∥
h,DG

≤
(
η2
res,h +

∥∥M1/2
h (uh(T )− u(T ))

∥∥2

Ω
+ 2

∥∥h1/2M
−1/2
h (M −Mh)∂tu

∥∥2

Qh

)1/2

.
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6. Numerical experiments

The convergence estimates are illustrated by numerical experiments for acoustics (5) with Dirichlet boundary conditions.
Experiment 1. We test the convergence of the solution with smooth initial value and piecewise constant material

%(x) =

{
1 x ·m ≤ γ ,
2 x ·m > γ ,

κ(x) = 1/%(x) , f = 0 , Q = (0, 1)× (0, 1)2 , γ ∈ (0, 1) , m ∈ R2 , m ·m = 1 ,

so that the impedance is constant across the interface. We start with

u0(x) = a0(x ·m)

(
1
m

)
with a0(x) =

{
sin(3πx)2 x ∈ [0, 1/3]

0 else.

Then, the solution is given by u(t,x) =

{
u0(x− tm) x ·m ≤ γ ,
u0(2x− (t+ 2/3)m) x ·m > γ .

Case a). If the material interface is resolved by the mesh (M = Mh), we observe for linear approximations in space and
time on uniformly refined meshes the expected convergence rate in the DG norm (Fig. 1). For this configuration also the
dual problem is smooth which results in better convergence rates for the L2 error, in particular in the adaptive case.

`
∥∥u− uh

∥∥
DG,h

∥∥M1/2
h

(
u− uh

)
‖Q

3 0.744239 0.244213
4 0.569868 0.135738
5 0.328281 0.047846
6 0.143545 0.011040
7 0.054274 0.002494
8 0.019645 0.000615

3 4 5 6 7 8

10−3

10−2

10−1

100

mesh level ` with mesh size h = 2−`h0

ηres,h uniform refinement∥∥u− uh
∥∥
DG,h uniform refinement∥∥M1/2

h

(
u(T )− uh(T )

)
‖Ω uniform refinement∥∥M1/2

h

(
u− uh

)
‖Q uniform refinement∥∥u− uh

∥∥
DG,h adaptive refinement∥∥M1/2

h

(
u− uh

)∥∥
Q

adaptive refinement

Figure 1. Convergence test for the first experiment with γ = 0.5 and m =

(
0
1

)
.

.

Case b). If the material interface cannot be resolved by the mesh (M 6= Mh), the consistency error gets relevant, which
is observed by the results in Fig. 2.

`
∥∥u− uh

∥∥
DG,h

∥∥M1/2
h

(
u− uh

)
‖Q

3 0.803100 0.222789
4 0.566667 0.111046
5 0.298943 0.035623
6 0.126032 0.012112
7 0.051102 0.006775
8 0.022482 0.004264

3 4 5 6 7 8

10−3

10−2

10−1

100

mesh level ` with mesh size h = 2−`h0

ηres,h uniform refinement∥∥u− uh
∥∥
DG,h uniform refinement∥∥M1/2

h

(
u(T )− uh(T )

)
‖Ω uniform refinement∥∥M1/2

h

(
u− uh

)
‖Q uniform refinement∥∥u− uh

∥∥
DG,h adaptive refinement∥∥M1/2

h

(
u− uh

)∥∥
Q

adaptive refinement

Figure 2. Convergence test for the first experiment with γ = 4/7 and m =

(
0.8
0.6

)
.

.

Although the material interface cannot be resolved by the mesh, the solution is sufficiently smooth so that the approxi-
mation error of the material data Mh −M can be estimated by Rem. 19. We observe nearly optimal convergence in the
DG norm, but now the L2 convergence gets worse in comparison with the first case.
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In both cases, the convergence of u(T ) − uh(T ) in L2 is faster than the convergence in the DG norm, and the residual
error indicator yield results close to the error in the DG norm; this confirms the estimate in Lem. 20 . We observe that
adaptivity provides better solutions with a substantial reduction of the required problem size dimVh to achieve a certain
accuracy. Therefore a single adaptive step is sufficient, where the polynomial degree in space and time is increased for
ηres,R ≥ ϑ1 maxR′∈Rh

ηres,R′ and decreased for ηres,R ≤ ϑ0 maxR′∈Rh
ηres,R′ , depending on ϑ1 > ϑ0 > 0. Note that this

results in a different refinement pattern in every time interval, and a simple refinement in space is not sufficient for a
strong reduction of the required degrees of unknowns. Here, we select ϑ1 = 0.3 and ϑ0 = 0.02, and in the figures for the
adaptive results the mesh size is logarithmically interpolated depending on the degrees of freedom.

Experiment 2. Finally we test the convergence of a Riemann problem, where the solution is given by

u(t,x) =



(
0

0

)
x ·m < −t ,(

1

m

)
−t < x ·m < t ,(

1

0

)
t < x ·m ,

m =

(
0.8
0.6

)
, κ = 1 , % = 1 , f = 0 , Q = (0, 1/2)× (−1, 1)× (0, 1) .

Then, Lu = 0, so that u is a strong solution, and since the condition in Rem. 16 applies, we obtain convergence in the
limit by Thm. 15. On the other hand, the solution is piecewise discontinuous, so that the smoothness assumption in
Thm. 17 is not satisfied. We also observe convergence, cf. Fig. 3, but with a reduced rate O(h1/3). In particular, the rate
is not improved for the L2 error, and simple adaptivity is not sufficient to increase the efficiency.

`
∥∥u− uh

∥∥
DG,h

∥∥M1/2
h

(
u− uh

)
‖Q

3 0.965539 0.201996
4 0.769326 0.152608
5 0.605518 0.116801
6 0.474996 0.089880
7 0.371885 0.069248
8 0.290613 0.053403

3 4 5 6 7 8

10−1

100

mesh level ` with mesh size h = 2−`h0

ηres,h uniform refinement∥∥u− uh
∥∥
DG,h uniform refinement∥∥M1/2

h

(
u(T )− uh(T )

)
‖Ω uniform refinement∥∥M1/2

h

(
u− uh

)
‖Q uniform refinement∥∥u− uh

∥∥
DG,h adaptive refinement∥∥M1/2

h

(
u− uh

)∥∥
Q

adaptive refinement

Figure 3. Convergence test for the Riemann Problem.
.

Here, the solution is not smooth, and the results do not improve if the material parameters are aligned with the mesh.
Moreover, further tests show that the convergence rate O(h1/3) in the DG norm cannot be improved by adaptivity, which
indicates that without sufficient regularity and jumps along the characteristics the DG norm is not appropriate for a
qualitative convergence analysis, as it is possible for point singularities, see [Bansal et al., 2021]. Then, the convergence
analysis requires high regularity in weighted Sobolev spaces.

7. Conclusion and Outlook

The convergence analysis in the DG norm only assumes regularity of the space-time solution u in H1(Q;Rm); this implies
regularity of the solution u(tn) at all time steps in H1/2(Ω;Rm). This clearly extends convergence results with respect
to the graph norm, where the analysis requires higher regularity. Moreover, the simple residual error indicator yields
estimates very close to the error in the DG norm. On the other hand, for discontinuous Riemann problems we can prove
only convergence in the limit, and the numerical experiments demonstrate that we obtain convergence in L2 but with a
reduced rate, which can be improved by adaptivity in L2 but not in the DG norm.

All our estimates rely on a Hilbert space setting. This may be not appropriate for hyperbolic systems, and numerical
tests demonstrate better convergence rates in L1(Q;Rm), but a corresponding analysis remains an open problem.
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