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Abstract: Cardiovascular diseases are the main cause of
death worldwide. State-of-the-art treatment often includes the
process of navigating endovascular instruments through the
vasculature. Automation of the procedure receives much at-
tention lately and may increase treatment quality and unburden
clinicians. However, in order to ensure the patient’s safety the
endovascular device needs to be steered carefully through the
body. In this work, we present a collection of medical criteria
that are considered by physicians during an intervention and
that can be evaluated automatically enabling a highly objective
assessment. Additionally, we trained an autonomous controller
with deep reinforcement learning to gently navigate within a
2D simulation of an aortic arch. Among others, the controller
reduced the maximum and mean contact force applied to the
vessel walls by 43% and 29%, respectively.
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1 Introduction

One third of all deaths worldwide are caused by cardiovascular
diseases. These include in particular the common maladies of
heart attack and stroke, which are often treated with endovas-
cular therapy. During an endovascular intervention, a catheter
and a guidewire are inserted into an access vessel and steered
through the vasculature until the target is reached. In order to
navigate the endovascular device it is rotated and translated at
the proximal end. During the procedure the surgeons are visu-
ally guided by 2D fluoroscopy images that show the position
of the guidewire within the human vasculature.
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Fig. 1: Aortic arch model with centerlines showing the target,
insertion point, the guidewire, and the sensitive tissue that leads to
the heart valve.

Automation of this intervention has attracted much atten-
tion recently as it might improve patient safety and operation
efficiency, reduce complications for the patients, and decrease
fatigue and radiation of the clinicians. [1–3]

In order to assess the quality of a minimally invasive
endovascular procedure experienced surgeons use structured
grading scales such as the global rating scale (GRS) to ensure
objective evaluation. The GRS rates the four main aspects of a
procedure on a scale from one to five, i.e. the flow of operation,
instrument handling, time and motion, and respect for tissue
[4]. If the procedure is executed on a simulator, automatically
measured metrics such as procedure time or the contrast vol-
ume can be used to evaluate the quality [5]. Rafii-Tari et al. [6]
developed a framework to measure the catheter-tissue contact
forces as well as operator motion patterns. Additionally, they
indicate that a low standard deviation of the translation speed
suggests smooth and controlled navigation behavior. In com-
parison to novices, experienced surgeons achieve a reduced
number of translational guidewire movements, smoother mo-
tion in general, a shorter total path length of the device tip, and
apply less torque and force to the device, which suggests that
those criteria are an indicator for higher quality [7], [8].

In research regarding autonomous control of endovascu-
lar guidewires navigation quality is considered to a limited ex-
tend. Zhao et al. [1] train a CNN based controller with image
and force measurements as input. The force data is used to
detect a collision between the device tip and obstacles such
as plague on the vessel wall. As a result, the controller then
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executes an avoiding action, i.e. pulling back the guidewire
and rotating it by an angle. The system is trained on three dif-
ferent rigid models and tested on a separate one. The evalua-
tion metrics comprise the target reached, the operating force,
and the navigation time. Chi et al. [2] navigate a guidewire
through a flexible aortic arch model by training a neural net-
work with imitation and reinforcement learning. Electromag-
netic tracking data of the device tip serve as input. The per-
formance is evaluated on two different models and compared
to the navigation of an experienced surgeon. The evaluation
criteria comprise the path length, the mean and maximal force
applied to the vessel walls, and whether the target was reached.
Karstensen et al. [3] propose a controller that is trained in a
simulation environment and evaluated in an ex-vivo specimen.
The coordinates of the guidewire tip are used as input to train
the neural network with deep reinforcement learning. Naviga-
tion quality is not considered, instead the controller is evalu-
ated on the number of randomly distributed targets that can be
reached within a fixed time span.

The aforementioned works mostly focus on whether the
desired target point was reached and do not optimize for safe
navigation. However, in order to keep the risk of damage as
low as possible additional criteria need to be taken into con-
sideration. In this work, we propose a collection of criteria
that ensures the patient’s safety during endovascular guidewire
navigation. They can be measured automatically in a simula-
tion environment resulting in a highly objective assessment of
the quality. Additionally, we train an autonomous reinforce-
ment learning controller that is able to reach arbitrary target
points within a fixed aortic arch geometry and adheres to our
criteria.

2 Methods

2.1 Gentle Navigation

The quality of the navigation process is evaluated with respect
to the following criteria:

∘ Mean contact force applied to surrounding tissue.
∘ Maximum contact force applied to surrounding tissue.
∘ Total path length covered by device tip.
∘ Standard deviation of translation velocities.
∘ Number and distance of withdrawals.
∘ Total navigation time.
∘ Forward motion of device tip.
∘ Distance between tip and vessel centerlines.

Forward motion is defined as

𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑚𝑜𝑡𝑖𝑜𝑛 =
Δ𝑝𝑜𝑠𝑡𝑖𝑝

𝑣𝑡𝑟𝑎𝑛𝑠 ·Δ𝑡
(1)

where Δ𝑡 denotes the duration of one control step, 𝑣𝑡𝑟𝑎𝑛𝑠 rep-
resents the translation velocity, and Δ𝑝𝑜𝑠𝑡𝑖𝑝 defines the dis-
tance between the position of the device tip in the current and
the previous control step. If the device tip moves freely it per-
forms the same translation movement as the manipulation at
its base and the value is close to one. Larger values are an in-
dication that forces and torques are built up in the instrument,
since the movement at the base is converted into deformation
of the instrument instead of a movement of the tip. If the force
and torque are released the instrument snaps back into its rest
shape which increases the risk of perforation.

In order to avoid inaccuracies when computing the dis-
tance between the tip and the centerline we assume that the
centerline points are densely sampled. For each control step
the distance between the device tip and the closest point on
the centerline is computed.

Adhering to the defined criteria ensures a high quality
navigation process that minimizes the risk for complications
for the patient. Furthermore, all criteria can be evaluated auto-
matically, which makes the evaluation of the procedure highly
objective and efficient.

2.2 Aortic Arch Environment

Training and evaluation of the controller are carried out in a
2D simulation environment. The shape of the aortic arch envi-
ronment and the guidewire are shown in Fig. 1. The guidewire
is modeled as a multibody system, in which the elements are
connected by damped linear and damped rotational springs.
The number of elements varies according to the total length of
the guidewire. It is navigated through the aortic arch by trans-
lation and rotation at its base. The simulation itself is based on
pymunk, a 2D rigid body physics library [9].

2.3 Autonomous Controller

The design of the neural network controller is based on the
work of Karstensen et al. [3]. However, we enhance the feed-
forward architecture using the deep reinforcement learning al-
gorithm soft actor critic (SAC), which is less sensitive to the
correct choice of hyperparameters [10]. The output of the ac-
tor network consists of the mean and the standard deviation of
a normal distribution for every dimension in the action space.
The actions, i.e. translation and rotation velocities, are sam-
pled from the corresponding distribution. The observations
that serve as input to the neural network controller are defined
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as the current and last position of the guidewire tip, the ac-
tion between them, as well as the target position. The targets
are randomly distributed within the aortic arch excluding the
aorta.

During training the navigation task of steering the
guidewire from a starting point to a target is executed for 2·106

steps. One navigation task is called episode. An episode is
completed either if the target point is reached within a thresh-
old radius of 5 mm or 200 simulation steps have been per-
formed, which corresponds to 27 seconds in a similar real
world scenario.

Two different controllers were trained. The baseline con-
troller is trained with an extended version of the sparse reward
proposed in [3], where additionally the pathlength difference
between two steps is taken into account. Pathlength is the dis-
tance between device tip and target along the centerlines. The
reward extension provides the controller with further informa-
tion about the environment that speeds up the training process
when using SAC. The reward that is used to train the baseline
controller is denoted as

𝑅𝑏𝑎𝑠𝑒 = −0.005−0.001·Δ𝑝𝑎𝑡ℎ𝑙𝑒𝑛𝑔𝑡ℎ+

{︃
1.0 target reached

0.0 else

In order to train a controller that adheres to the criteria
stated in Section 2.1 the reward 𝑅𝑓𝑜𝑟𝑐𝑒 and 𝑅𝑣𝑎𝑙𝑣𝑒 are added
to 𝑅𝑏𝑎𝑠𝑒. Note that since the criteria depend on each other it is
sufficient to consider a subset for the reward function.

𝑅𝑓𝑜𝑟𝑐𝑒 = −4.93 · 10−7 · 𝑓𝑜𝑟𝑐𝑒

𝑅𝑣𝑎𝑙𝑣𝑒 =

{︃
−0.1 device touches heart valve

0.0 else

Here, the reward 𝑅𝑓𝑜𝑟𝑐𝑒 punishes contact forces applied to
the vessel wall. Note that its value is zero if no contact force
is executed. 𝑅𝑣𝑎𝑙𝑣𝑒 penalizes any contact of the device with
the part of the aortic arch that leads to the heart valve, which
consists of particularly sensitive tissue. The area that models
the sensitive tissue leading to the heart valve is highlighted in
red in Fig. 1. The overall reward per step is denoted as 𝑅𝑞𝑢𝑎𝑙𝑖𝑡𝑦

and combines the rewards described above.

𝑅𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑅𝑏𝑎𝑠𝑒 +𝑅𝑓𝑜𝑟𝑐𝑒 +𝑅𝑣𝑎𝑙𝑣𝑒

2.4 Evaluation

Every 5·104 steps the success rate of the controller is evaluated
for 1000 consecutive episodes. During evaluation, the mean of
each distribution is used as an action, thus rendering it deter-
ministic. Especially in medical applications the decision of an
autonomous system needs to be traceable in order to prevent

the controller from executing unforeseen behavior. The suc-
cess rate is defined as the percentage of evaluation episodes
where the controller is able to reach the target.

For each reward set-up the state of the trained controller
that reaches the highest success rate is additionally evaluated
on the criteria from Section 2.1 for 1000 episodes. Per episode
the total path length is divided by the length of the optimal
path along the centerlines in order to allow for comparison.
The metric is denoted by the path length ratio. Its value should
ideally be close to 1.0. The distance of withdrawals, the for-
ward motion of the device tip, and the distance between the tip
and the centerlines are averaged over all obtained values. For
all other criteria the final value of the episode is used. Note that
the simulation focuses on optimizing realistic behavior rather
than realistic forces.

3 Results

The learning curve for the two controllers is depicted in Fig.
2. After 1.25 · 106 steps the quality controller reaches 85%
of the targets. It continues to slowly improve until it reaches
a maximum of 95.6% after 1.90 · 106 steps. The success of
the baseline controller raises at a faster rate and reaches 89%
after 0.35 · 106 steps and a maximum of 96.3% after 1.95 · 106

exploration steps.
The evaluation of the criteria from Section 2.1 is summa-

rized in Tab. 1. The quality controller outperforms the baseline
for most of the criteria. However, the baseline controller nav-
igates closer to the centerlines, withdraws the guidewire less
often and navigates quicker. Fig. 3 shows the trajectories of
the two controllers in the aortic arch model aiming to reach
the same target. The trajectory of both controllers have a sim-
ilar length, while the baseline controller applies more contact
force overall.

Fig. 2: Success rate of the baseline and quality controller during
the training process.
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Tab. 1: Evaluation of the controllers on the collection of criteria.

Metric Baseline Quality

Success rate 96.3% 95.6%
Mean contact force [mN] 6.81 4.83
Max. contact force [mN] 27.84 15.83
Path length ratio 1.09 0.98
Std translation [mm/s] 2.10 1.58
Number withdrawals 5.20 13.59
Withdrawal distance [mm] 16.47 8.50
Total navigation time [s] 6.76 7.07
Forward motion 1.20 1.01
Distance centerlines [mm] 4.49 4.76

(a) Baseline controller (b) Quality controller

Fig. 3: Navigation trajectories from the insertion point to the same
target. Higher contact forces are indicated by a larger radius of the
corresponding circle.

4 Discussion & Conclusion

The quality controller navigates the guidewire with a lower
mean and maximum contact force, which decreases the risk
for vessel damage for the patient. Fig. 3 shows the different
behaviors when navigating the same target. The reduced con-
tact force can be explained by the low standard deviation of
the translation velocity resulting in a smoother and more con-
trolled behavior. Additionally, when touching the wall and thus
applying contact force the quality controller withdraws the de-
vice, rotates it and advances it rather than rotating the device
while it pushes against the wall. Hence, the guidewire applies
less force overall, but requires an increased amount of with-
drawals and more time to reach the target. Consequently, the
forward motion of the quality controller is closer to 1.0 cor-
responding to less build up of torque and force, and therefore
less snapping.

Despite the good results for the simplified 2D simulation
environment, the controller is yet to be transferred to a more
realistic 3D environment and the real world, which will in-
crease the complexity of the task and require hyperparameter

adjustment. Using our approach the controller learns to navi-
gate the unique aortic arch it is trained on. However, it needs to
be able to generalize to unseen aortic arch geometries in order
to make real world application possible. Future work should
address this problem, e.g., by incorporating recurrent neural
networks.

In conclusion, we derived criteria for the quality of
guidewire navigation and successfully trained a deep-learning-
based controller in a 2D simulation to improve these criteria
compared to the state of the art.
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