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Figure 1: A) Functional Scheme, B) Prototype Device, C) Device worn on a person. ACM=Air-Conduction Mic., TM=Throat Mic.

ABSTRACT
A prerequisite for field-research on audio data are privacy preserv-
ing recordings that exclusively contain the target speaker who gave
consent. For this purpose, we investigated the potential of a simple
but robust wearable technology consisting of three parts: first, a
standard air-conduction microphone provides the necessary audio
quality for speech analysis; second, a throat microphone is used as a
speech activity filter; third, a custom ESP32 based recording device
enables on-device real-time processing. The system was evaluated
in two challenging free discussion settings with two and four par-
ticipants each (total N=16). Results from manual annotations show
an Equal Error Rate of M=23.4-29.69 %. Based on simple instruc-
tions, our participants managed to maintain a False Acceptance
Rate below 5 % while recording more than half of their utterances.
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1 INTRODUCTION
Speech is a major data source for understanding human behavior.
Vocal features relate to psychiatric disorders, such as depression,
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schizophrenia, and bipolar disorder [16]. Everyday word use relates
to personality traits [18] and cognitive ageing processes [9]. Wear-
able sensors help researchers to access such data [17, 25]. Aside of
collecting data, speech is used for providing user-adaptive feedback,
for example in voice assistants [11, 14].

A prerequisite for everyday audio recordings is to separate target
speakers who actively agreed to data collection from non-target
speakers who did not agree. Recording latter is legally prohibited
in the EU [4, 5, 26]. Typically, an everyday life audio stream con-
tains social situations with a mix of both of these groups. Mehl
et al. [17, 19, 20] achieved approval from ethic committees for the
US only. Their system collects random speech samples from 5 %
of the participant’s daytime, which suffices for examining certain
research questions, such as social interactions [9, 18].

Throat microphones (TMs) offer a computationally efficient way
for detecting the target speaker. TMs use a piezoelectric sensor to
record speech via vibrations in the human body. This mechanism
decrements any external sound from non-target speakers. This is
not possible with air-conduction microphones (ACMs) even if they
are placed near the user. ACM signals can be filtered using Speaker
Recognition and Diarization systems [8, 24, 27, 29], which in prac-
tice often require cloud computing and raise additional privacy
issues. Compared to earbuds with active noise cancelling [2], TMs
allow ear-free interactions. However, TMs do not meet the data
quality requirements for extensive speech analysis (but see [21, 22]).

Our contributions are of two kind: First, we propose a wearable
system for privacy preserving and continuous audio recordings.
For that purpose, we combine the filtering capability of TMs with
the high audio quality of ACMs. Previous TM-ACM combinations
had the purpose of reducing random background noise but not
speech from non-target speakers [6, 28, 30]. Second, we evaluated
our filtering principle in a group study in two challenging free
discussion settings. While not recording any non-target speakers,
we aim to collect more data from the target speaker than current
sampling methods (e.g., 5 % [17]).
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2 PROTOTYPE
We propose a combination of off-the-shelf ACM and TM that are
processed in real-time using an ESP board (Figure 1). The user (tar-
get speaker) chooses a decibel-value for the TM signal that works
as a threshold value passing or muting the synchronous ACM sig-
nal (Figure 1). For the calibration, the user is instructed to move
their head, speak with a moderate volume, watch an LED that in-
dicates the recording state, and set their personal threshold. Both
microphones were plugged into an ESP32 LyraT v4.3 board, which
integrates several audio processing components (e.g., Audio Codec
Chip, control buttons). We replaced the built-in stereo microphones
with 4-pin audio ports each in order to connect the ACM (left chan-
nel) and TM (right channel). We implemented additional software
features to improve performance: a Schmitt-Trigger model for the
threshold to prevent unstable trigger behaviour; an exponential
smooth volume control for the mute/unmute function to remove
crackling in the recordings; and a time based unique file name
auto-save file writer for stable data storage.

3 EVALUATION
Procedure. We recorded audio data from four groups of four
German-speaking participants each (N=16; n=4 female) from a sam-
ple of convenience. Most participants (n=14) were 18-25 years old
(n=2 were 25-30 years) and had an alto voice (n=8; n=3 bariton/bass,
n=4 tenor, n=1 sopran). In a balanced Within-Subject-Design they
sat on a table and played a collaborative game (www.keeptalking-
game.com) in two conditions à 20 min: (i) in the entire group and (ii)
in a dialogue. A ground truth audio was established by passing the
unfiltered ACM signal through the ESP32 board to a smartphone.
The study was preregistered on aspredicted.org (#89869). Prior to
data collection, a data protection officer was consulted.

Preprocessing. Speaker segments and identification were man-
ually annotated. The annotations were framed into non-overlapping
windows of 25 ms each. Because human raters annotate with differ-
ent levels of precision, labels within 0.25 s after a label change were
excluded (15.9 %). Relabeling 13 files (20.3 %) showed an average
Inter-Rater-Agreement (IRR) of Kappa=82.2 % (SD=15.5 %) [3], after
removing one outlier file. Due to high annotation effort, only the
first three minutes of each participant and condition were analyzed.
Across participants, this results in 72 min of filtered and 72 min
of ground truth annotated audio material. The users spoke for
M=1.97 s (SD=0.78 s) in the filtered and M=2.23 s (SD=0.95 s) in the
ground truth stream. User and other speakers spoke simultaneously
for M=4.73 s (2.62 %) (SD=7.44 s; 4.12 %).

Metrics. Three standard performance metrics were calculated
[15, 23]: The (i) False Acceptance Rate (FAR) is the error rate of
recording a non-target speaker. We consider the FAR as the privacy
level. The (ii) False Rejection Rate (FRR) is the error rate of rejecting
a target speaker, i.e., the user. The (iii) Equal Error Rate is the
minimum error rate when FAR and FRR are equal. These metrics
were analyzed for the real-time filtered audio stream (RT) based on
the participant’s calibration and a post-hoc analysis (PH) for a range
of threshold values based on the ground truth audio. Table 1 shows
the FAR and FRR for the self-calibrated threshold values (M=51.8 db,
SD=4.2 db) based on RT and PH analysis (also see Figure 2). On
average, the participants managed to set a FAR of ca. 5 % or lower.

Results. Overall, the system showed better performance scores
in the dialogue than the group condition. Figure 2 shows FAR and
FRR for the Post-Hoc analysis and also the tradeoff between security
for non-target speakers in speech recordings and coverage of the
target speakers utterances.
Table 1: FAR and FRR [ %] based on participant calibration.

Group Dialogue
M SD Range M SD Range

FARRT 4.03 4.56 [0-17.4] 1.8 3.12 [0-12.7]
FARPH 7.0 7.19 [0.7-25.5] 6.85 9.35 [0-33.8]
FRRRT 46.76 38.16 [0.8-100] 33.42 30.18 [2.8-97.0]
FRRPH 79.54 18.51 [42.7-100] 74.38 18.95 [41.9-99.7]

Figure 2: Mean and Standard Deviations for FAR and FRR
across thresholds. Vertical lines highlight thresholds with
FAR values of 2.5 %, 5 %, and 10 %.

EERwasM=29.69 % (SD=17.23 %; group) andM=23.4 % (SD=13.2 %;
dialogue). As a benchmark, wemodified an i-vector and PLDA based
Speech Recognizer [7, 12] to analyze 400 ms frames (approx. two
English syllables [1]) in real-time, which performed on EER=22.19 %
(dialogue) to 34.57 % (group). By combining both systems where
i-Vectors are applied to pre-filtered audio from the TM, we could
improve the EER to 20.70 % (dialogue) and 26.37 % (group).

The users showed a moderate comfort score on an adapted ver-
sion of the comfort rating scale (M=1.9, SD=0.5, range=1.1-2.9) [13].

4 CONCLUSION
We introduced a wearable speech recording system that provides
high quality data from the user while protecting the data privacy of
non-target speakers. Based on simple instructions, our participants
calibrated a small FAR<5 % while recording more than half of their
speech. Although our system has a high FRR, it captures more
data than current sampling methods [17]. Our study limitations
leave room for further evaluation on (i) a larger sample with (ii)
freely moving participants and (iii) other conversation scenarios
with longer utterances. What remains a challenge is that non-target
speakers can be recorded if they speak at the same time as the target
speaker. We plan to address this by further augmenting the audio
signals with embedded machine learning (e.g., [10]). Moreover,
we plan to improve the user comfort of the TM. Finally, a perfect
speaker filtering system does not guarantee perfect privacy if the
target speaker’s data contain personal details of their conversational
partners. Future research should examine whether and to what
extent non-target speakers can be identified in such a scenario.
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