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Abstract

Among renewable resources, geothermal energy occupies a unique position due to its
base-load capability. When mining geothermal energy resources, one of the crucial
parameters is the formation temperature, which determines the thermal potential
of the geothermal system and the installed capacity of the generated power. To
reach high-temperature zones, deep boreholes are drilled using advanced technologies
such as the Enhanced Geothermal System. In particular, the high productivity and
efficiency of power generation from supercritical geothermal resources have motivated
initiatives to drill into ultra-hot magma roof zones in recent years. Since the formation
temperature is usually highly disturbed during drilling, it is necessary to interpret
the temperature data from boreholes to determine the actual formation temperature
at thermal equilibrium, also known as the static formation temperature (SFT). The
conventional approach to determining the SFT is to apply corrections to temperature
data measured during a sufficient period after drilling is stopped (also called the
shut-in phase). However, using such a method can face several challenges in high-
enthalpy boreholes, including economic and technical constraints on conducting
high-temperature measurements during long thermal recovery periods and safety
issues when casings and instruments are exposed to high temperatures. In such
a context, it can be necessary to employ other techniques to interpret temperature
data measured under a different flow condition, such as injection, to overcome these
limitations in data acquisition.

This work addresses the determination of the SFT from high-temperature boreholes
by applying numerical modeling and inversion techniques to temperature data ob-
tained under cooling (or sub-critical) conditions. It is motivated by the Iceland Deep
Drilling Project, which involves deepening an old production well, RN-15, into a new
exploration well called RN-15/IDDP-2. During the drilling, a severe problem that
occurred is the high circulation loss at several loss zones. Measured temperature data
show that the fluid at the well bottom has reached a super-critical state even when
the thermal field is non-equilibrium. Since these data are obtained while cold water
is still being injected into the well, the question arises as to whether it is possible to
determine the SFT and unknown flow losses from the injection temperature logs. With
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this in mind, I first performed simulation studies in this dissertation to improve our
understanding of the thermal processes during drilling and logging. I then developed
inversion workflows that allow both rigorous quantification of the uncertainties in the
estimates and calculation of the posterior probability density function for the SFT
estimates.

The first study examines the factors and processes that influence the temperature
evolution in the borehole during fluid injection and shut-in periods. Thermal modeling
of temperature logs considers various drilling scenarios for high-enthalpy boreholes,
such as injection and shut-in conditions in multiple casing strings and the presence of
circulation losses. In the early transient stage of the shut-in, the borehole temperature
exhibits high sensitivity to the heat transfer rate between the borehole fluid and the
solid wall. On the other hand, during fluid injection, the borehole temperature is highly
dependent on the flow rate. Such a dependence enables the analysis of temperature
log to identify and quantify the downhole flow losses. Finally, the SFT is derived
from temperature logs by applying the Horner plot method. The results highlight two
aspects: interpretation of temperature logs recorded during shut-in would require data
measured after a long shut-in period; downhole cooling can lead to large errors in the
SFT estimation. These aspects make it clear that the application of the Horner-plot
type of method to high-enthalpy boreholes can be very challenging.

Subsequently, temperature data measured during standard injections are inverted
to determine the SFT. An inverse modeling study incorporating machine learning
techniques is conducted to quantify the uncertainty in the interpretation of these
logs. The advantage of the applied approach is that it iteratively proposes new
sample points located in the most informative model space based on results from
the previous simulation runs. Solutions are searched for the model parameters that
lead to temperature predictions with the same quality of fit as the actual temperature
values. A contour map is then created for straightforward uncertainty quantification.
Several aspects are examined for their impact on the accuracy of the SFT prediction,
such as injection conditions (i.e., injection rate and duration) prior to the acquisition
of temperature measurements, the presence of flow loss zones, the quality of the
temperature data, and the constraints applied in the inversion (e.g., misfit function
and prior information). The study shows that temperature data measured under higher
flow rates or after longer injection times could lead to less reliable results for the SFT
prediction. Moreover, efforts should be made to collect high-quality temperature data
and, if possible, integrate more information such as the magnitude of flow losses and
the variation of the thermal gradient with depth.

In the third study, the SFT is estimated following the Bayesian framework, where the
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posterior probability density function can be calculated. To overcome the problem
of high computational cost due to a large number of forward evaluations, surrogate
models are constructed using artificial neural networks to increase the computational
speed at each forward run. The inversion workflow is first tested on synthetic scenarios
to verify its validity and examine the effects of measurement noise and the presence
of drilling losses on the quality of the estimates. The SFT can be predicted with high
accuracy if accurate measurements are used. However, in the presence of flow losses,
the uncertainty in SFT estimates would increase, especially at depths below the loss
zones. In addition, noise in the data is a strong source of error for SFT determination.
For the real example of the high-temperature well in the Reykjanes geothermal field
- RN-15/IDDP-2, an injection temperature log is inverted to determine the drilling
losses in three loss zones and the SFT. It is found that drilling losses can be well
quantified from temperature log for this well. But the SFT estimates at different
depths are subjected to great uncertainties due to the lack of prior information on the
change in geothermal gradient with depth. Nevertheless, the probable values for the
SFT at 4500 m predicted by this study are comparable with the published results of
other relevant work.
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Kurzfassung

Unter den erneuerbaren Ressourcen nimmt die Geothermie aufgrund ihrer Grund-
lastfähigkeit eine einzigartige Stellung ein. Bei der Gewinnung von geothermischen
Energiequellen ist einer der entscheidenden Parameter die Formationstemperatur, die
das thermische Potenzial des geothermischen Systems und die installierte Leistung
der erzeugten Energie bestimmt. Um Hochtemperaturzonen zu erreichen, werden Tief-
bohrungen mit fortschrittlichen Technologien wie dem Enhanced Geothermal System
durchgeführt. Insbesondere die hohe Produktivität und Effizienz der Stromerzeu-
gung aus superkritischen geothermischen Ressourcen haben in den letzten Jahren
Initiativen motiviert, in ultraheiße Magmakammern zu bohren. Da die Formation-
stemperatur während der Bohrung jedoch in der Regel stark gestört wird, müssen
die Temperaturdaten aus Bohrlöchern interpretiert werden, um die wahre Forma-
tionstemperatur im thermischen Gleichgewicht zu bestimmen, die auch als statische
Formationstemperatur (SFT) bezeichnet wird. Der herkömmliche Ansatz zur Bes-
timmung der SFT besteht darin, Korrekturen an den Temperaturdaten vorzu-nehmen,
die während eines ausreichenden Zeitraums nach Beendigung der Bohrung (auch
Shut-in genannt) gemessen wurden. Die Anwendung einer solchen Methode kann
jedoch in Hochenthalpie-Bohrlöchern auf mehrere Herausforderungen stoßen, ein-
schließlich wirtschaftlicher und technischer Beschränkungen bei der Durchführung
von Hochtemperaturmessungen während langer thermischer Erholungsphasen und
Sicherheitsfragen, wenn Verrohrung und Instrumente hohen Temperaturen ausgesetzt
sind. In einem solchen Zusammenhang kann es notwendig sein, andere Techniken zur
Interpretation von Temperaturdaten zu verwenden, die unter einer anderen Strömungs-
bedingung, wie z.B. der Injektion, gemessen wurden, um diese Einschränkungen bei
der Datenerfassung zu überwinden.

Diese Arbeit befasst sich mit der Bestimmung der SFT von Hochtemperaturbohrun-
gen durch Anwendung numerischer Modellierungs- und Inversionstechniken auf
Temperaturdaten, die unter Kühlbedingungen (oder unterkritischen Bedingungen)
gewonnen wurden. Hintergrund ist das Island Deep Drilling Project, bei dem eine alte
Produktionsbohrung (RN-15) zu einer neuen Explorationsbohrung (RN-15/IDDP-2)
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vertieft wird. Während der Bohrung trat ein ernstes Problem auf: der hohe Zirkula-
tionsverlust in mehreren Verlustzonen. Die Messdaten zeigen, dass die Flüssigkeit am
Boden des Bohrlochs einen überkritischen Zustand erreicht hat, auch wenn sich das
thermische Feld nicht im Gleichgewicht befindet. Da diese Daten gemessen werden,
während noch kaltes Wasser in das Bohrloch injiziert wird, stellt sich die Frage, ob
es möglich ist, die SFT und unbekannte Strömungsverluste aus den Temperaturlogs
der Injektion zu bestimmen. Vor diesem Hintergrund habe ich in dieser Dissertation
zunächst Simulationsstudien durchgeführt, um unser Verständnis der thermischen
Prozesse beim Bohren und Loggen zu verbessern. Anschließend habe ich Inversionsar-
beitsabläufe entwickelt, die sowohl eine strenge Quantifizierung der Unsicherheiten
in den Schätzungen als auch die Berechnung der posterioren Wahrscheinlichkeits-
dichtefunktion für die SFT-Schätzungen ermöglichen.

In der ersten Studie werden zunächst die Faktoren und Prozesse untersucht, die die
Temperaturentwicklung im Bohrloch während der Injektions- und Shut-in-Perioden
beeinflussen. Bei der thermischen Modellierung von Temperaturlogs werden ver-
schiedene Bohrszenarien für Bohrungen mit hoher Enthalpie berücksichtigt, z.B.
Injektions- und Shut-in-Bedingungen in mehreren Verrohrungssträngen und das Vor-
handensein von Strömungsverlusten. In der frühen Übergangsphase des Shut-in ist die
Bohrlochtemperatur sehr empfindlich gegenüber der Wärmeübertragungsrate zwis-
chen der Bohrlochflüssigkeit und der festen Wand. Insbesondere wird die Rolle der
freien Konvektion hervorgehoben, indem gezeigt wird, dass die richtige Parametri-
sierung der Wärmeübertragungsrate durch freie Konvektion den Wert der vorherge-
sagten Bohrlochtemperatur erheblich beeinflusst. Andererseits ist die Bohrlochtem-
peratur bei der Flüssigkeitsinjektion stark von der Durchflussrat abhängig. Diese
Abhängigkeit ermöglicht die Verwendung eines Injektions-Temperaturprotokolls zur
Identifizierung und Quantifizierung von Strömungsverlusten im Bohrloch. Schließlich
wird die SFT aus den Temperaturlogs mit Hilfe der Horner-Plot-Methode abgeleitet.
Die Ergebnisse weisen auf zwei Probleme hin: die Interpretation von Temperaturlogs,
die während des Shut-in aufgezeichnet wurden, würde Daten erfordern, die nach
einer langen Shut-in-Periode gemessen wurden; die Kühlung des Bohrlochs kann
große Fehler bei der Schätzung der SFT verursachen. Diese Aspekte machen deutlich,
dass die Anwendung der Horner-Plot-Methode in Hochtemperaturbohrlöchern sehr
schwierig sein kann.

Anschließend werden die während der Standardinjektionen gemessenen Temperatur-
daten invertiert, um die SFT zu bestimmen. Eine Studie zur inversen Modellierung mit
Techniken des maschinellen Lernens wird durchgeführt, um die Unsicherheit bei der
Interpretation dieser Temperaturlogs zu quantifizieren. Der Vorteil des angewandten
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Ansatzes besteht darin, dass er auf der Grundlage der Ergebnisse der vorangegangenen
Simulationsläufe iterativ neue Stichprobenpunkte vorschlägt, die sich im informa-
tivsten Modellraum befinden. Es werden Lösungen für die Modellparameter gesucht,
die zu Temperaturvorhersagen mit der gleichen Anpassungsqualität führen wie die
tatsächlichen Temperaturwerte. Auf diese Weise wird eine Konturenkarte zur ein-
fachen Quantifizierung der Unsicherheit erstellt. Es werden mehrere Aspekte auf
ihre Auswirkungen auf die Genauigkeit der SFT-Vorhersage untersucht, wie z.B. die
Injektionsbedingungen (d.h. Injektionsrate und -dauer) vor der Erfassung der Tem-
peraturmessungen, das Vorhandensein von Strömungsverlustzonen, die Qualität der
Temperaturdaten und die bei der Inversion angewandten Einschränkungen (z.B. Misfit-
Funktion und vorherige Informationen). Die Studie zeigt, dass Temperaturdaten, die
bei höheren Flussraten oder nach längeren Injektionszeiten gemessen werden, zu
weniger zuverlässigen Ergebnissen für die SFT-Vorhersage führen könnten. Darüber
hinaus sollten Anstrengungen unternommen werden, um qualitativ hochwertige Tem-
peraturdaten zu sammeln und, wenn möglich, andere Informationen wie die Größe
der Strömungsverluste und die Variation des thermischen Gradienten mit der Tiefe zu
integrieren.

In der dritten Studie wird die SFT mit Hilfe des Bayes’schen Ansatzes geschätzt,
wobei die posteriore Wahrscheinlichkeitsdichtefunktion berechnet werden kann. Um
das Problem der hohen Rechenkosten aufgrund der großen Anzahl von Vorwärt-
sauswertungen zu überwinden, werden Ersatzmodelle unter Verwendung künstlicher
neuronaler Netze erstellt, um die Rechengeschwindigkeit bei jedem Vorwärtslauf zu
erhöhen. Der Arbeitsablauf der Inversion wird zunächst an synthetischen Szenarien
getestet, um seine Gültigkeit zu überprüfen und die Auswirkungen von Messrauschen
und Strömungsverlusten auf die Qualität der Schätzungen zu untersuchen. Die SFT
kann mit hoher Genauigkeit vorhergesagt werden, wenn genaue Messungen vorgenom-
men werden. Bei Vorhandensein von Strömungsverlusten würde die Unsicherheit der
SFT-Schätzungen jedoch zunehmen, insbesondere in Tiefen unterhalb der Verlustzone.
Darüber hinaus ist das Rauschen in den Daten eine starke Fehlerquelle bei der Bestim-
mung der SFT. Für das reale Beispiel der Hochtemperaturbohrung im geothermischen
Feld von Reykjanes - RN-15/IDDP-2 - wird ein Injektionstemperaturlog invertiert,
um die Strömungsverluste in drei Verlustzonen und die SFT zu bestimmen. Es zeigt
sich, dass die Bohrverluste mit Hilfe von Temperaturmessungen für dieses Bohrloch
gut quantifiziert werden können. Allerdings sind die SFT-Schätzungen in der Tiefe
mit großen Unsicherheiten behaftet, da es keine vorherigen Informationen über die
Veränderung des geothermischen Gradienten in der Tiefe gibt. Dennoch sind die in
dieser Studie vorhergesagten wahrscheinlichen Werte der SFT auf 4500 m mit den
veröffentlichten Ergebnissen anderer einschlägiger Studien vergleichbar.
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Chapter 1

Introduction

The global energy consumption has increased nearly every year for more than half
a century, with an averaging growth rate at around 1% to 2% (Vaclav 2017). The
existing energy supply and demand situation is such that very soon all the energy
from available sources would need to be harnessed. Continuation of the use of
conventional resources is set to face multiple challenges such as depletion of fossil
fuel reserves, continued and substantial price rise for oil and gas, global warming
and other environmental concerns, etc. Therefore, there is a compelling demand
for transitions toward renewable energy resources. Among these green energies,
geothermal has its special position due to its availability everywhere and at any time
of the day and thus also its significant potential to provide base-load electric power.
The theoretical calculation indicates that the energy reserves in the upper 10 km of
the earth’s crust are approximately 1.3 x 1027 J (Lund et al. 2008). Such an amount of
energy can support a global assumption for about 217 million years, considering the
average annual energy consumption rate of 6.0 x 1020 J in the past ten years (Looney
2020).

1.1 Deep and high-enthalpy geothermal energy

The utilization of geothermal energy covers a wide range of applications at various
temperature and depth levels or based on different technologies to extract geothermal
heat. For example, a notional criteria at reservoir depth of 400 m and temperature of
20 ◦C has been used to differentiate between shallow and deep geothermal energy
systems (Breede et al. 2015). The shallow geothermal systems, which are not in
the scope of this dissertation, extract energy from the uppermost layer of the earth’s
crust and usually require energy conversion with e.g. heat pumps. On the other hand,
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deep geothermal systems exploit energy by means of deep boreholes. The harvested
thermal energy can be used directly and does not require further conversion (Stober
and Bucher 2013). Based on the method of exploration, deep geothermal systems
are commonly categorized into two types: the hydrothermal geothermal system and
the enhanced geothermal system (EGS) (Figure 1.1). A hydrothermal system uses
existing aquifers to directly produce hot geothermal fluid stored in the pore space
of rocks. Three components are considered indispensable, namely, adequate water
storage and permeability, and sufficiently high temperature, so the implementation
of such systems is somewhat limited by their locations and ultimate potential. In
contrast, an EGS extracts heat from deep rock formation by circulating fluids such
as water, brine or CO2 across fractures and permeable hot rocks between injection
and production boreholes (Tomac and Sauter 2018). EGSs do not require a reservoir
with high permeability and high-yield aquifers and can access more abundant heat by
creating artificial fractures in the hot rocks in areas without adequate hydrothermal
resources (Lu 2018). Therefore, in theory, they can be developed anywhere by drilling
deep enough into high-temperature reservoirs. Driven by the goal of mining more
energy, EGS technology continues to progress at deeper levels, providing the ability to
extract heat stored in deep underground at 2–5 km depths with temperatures between
150 ◦C and 400 ◦C. Given the enormous energy potential, EGS is considered the most
important future use of geothermal resources (Kubik 2006).

Based on different forms of utilization (e.g., heating and electricity), deep geothermal
energy is also distinguished between high-enthalpy and low-enthalpy systems. Here,
the enthalpy (unit: Joule J) is a thermodynamic quantity that reflects the heat content of
the liquid. Although the distinction between these two systems varies among different
authors, it is generally accepted that reservoirs are able to provide high enthalpy fluids
with temperatures above 150–225 ◦C (Lee 1996). At such high temperatures, these
systems are usually primarily considered for producing electrical power. The presence
of these fields is typically linked to tectonic and volcanic activities at plate boundaries.
Some high enthalpy regions are also related to hydrothermal convection associated
with magma chambers and igneous intrusions that act as deep heat sources (Arnórsson
1995; White 1957). There, aqueous fluids present can develop convective flow because
of the strong density contrast caused by a very high temperature gradient. If they are
sufficiently hot, these rising hydrothermal fluids will depressurize at a depth where
the fluid pressure equals the vapor saturation pressure and start to boil. Studies have
shown that permeability of the host rock above the intrusion has a primary control
on the temperature distribution and extent of boiling zones (Cathles 1977; Scott et al.
2016; Andersen and Weis 2020). According to a numerical study of Scott et al. (2016),
high permeability of the host rock (larger than 10−14 m2) allows a higher rate of
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heat transfer from the intrusion to geothermal fluids but also leads to moderate fluid
temperatures and enthalpies with boiling zones confined to a shallow depth (less than
1 km). Moderate permeability (about 10−15 m2) reduces the overall heat transfer but
results in systems with higher fluid temperatures and enthalpies, where boiling zones
may extend vertically from the ground surface to the intrusion.

Figure 1.1: Principle of hydrothermal and enhanced geothermal system (EGS). For the EGS
(left), cold water is injected through injection well into an artificially created fracture network.
The heated water is extracted by a production well and fed to the binary power plant system on
the surface to produce electrical power. Later, the cooled water is re-injected into the reservoir
and the loop begins. In the hydrothermal system (right), thermal water is produced from a
natural aquifer and injected back into the aquifer.

The yield of geothermal power from high-enthalpy geothermal fields is strongly
linked to the liquid-vapor transition of water. It is common that high-enthalpy systems
produce electricity directly from dry steam or liquid-dominant flash steam (Chamorro
et al. 2012). Due to the high temperatures at great depths in magmatic environments,
the fluids can also exist under supercritical conditions (i.e., 374 ◦C and 221 bars for
pure water, and 405 ◦C and 302 bars for seawater). Producing supercritical fluids
can both improve the productivity and efficiency of power generation. According
to Fridleifsson and Elders (2005), the electrical power produced by a conventional
dry-steam well with a downhole temperature of 235 ◦C, pressure of 30 bar, and a flow
rate of 0.67 m3 s−1 is around 5 MWe, whereas a supercritical well with a downhole
temperature of 430–550 ◦C and pressure greater than 200 bar could generate around
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50 MWe with the same flow rate. This is due to, on the one hand, the high specific
enthalpy of the supercritical fluid and, on the other hand, the low viscosity of the
fluid which significantly improves hydraulic conductivity (i.e., the increased ratio
between buoyancy forces to viscous forces) and leads to high mass transfer rates.
These positive prospects have motivated attempts to develop supercritical geothermal
fields in a number of countries, such as the HADES project in New Zealand (Bignall
2010), DEEPEGS project in Iceland (Fridleifsson et al. 2016), JBBP project in
Japan (Asanuma et al. 2012), and DESCRAMBLE project in Italy (Bertani et al.
2018).

From a physical perspective, the biggest challenge for extracting heat from very deep,
hot rocks is the drastically reduced permeability at supercritical conditions that occur
near the brittle-ductile transition (BDT) zone, where the higher temperature plastic
zone closer to the magma chamber discharges fluids into the overlying cooler brittle
rock (Fournier 1999). As the temperature increases, the mechanical behavior of the
rock changes at BDT, leading to a change in deformation mode from brittle fracturing
to plastic flow, closing connected fluid flow paths. Studies show that heat transport
would be conduction-dominated if permeabilities are below 10−16 m2 (Norton and
Knight 1977; Cathles 1977), and drilling into such conditions would encounter un-
economic rates of fluid production. Previous experimental results suggested that
permeability may still be sufficiently high to extract fluids at BDT under certain stress
and temperature conditions (Watanabe, Numakura, Sakaguchi, Saishu, Okamoto,
Ingebritsen and Tsuchiya 2017). In case of insufficient fracture density, enhancement
strategies such as hydraulic fracturing are likely to be successful (Watanabe, Egawa,
Sakaguchi, Ishibashi and Tsuchiya 2017), proving that applying EGS techniques in
reservoirs with low permeabilities close to the ductile crust is possible.

At present, the functional exploitation of supercritical geothermal resources for indus-
trial use is still not possible due to unresolved technical difficulties. One is that, the
high content of dissolved gases and solids in the aqueous fluids due to high temperature
and pressure conditions makes the geothermal brine much more acidic and metal-rich
than dilute geothermal water, resulting in corrosion and scaling of the borehole of
surface equipment (Hardardóttir et al. 2010). As such, the handling of fluid and the
development of corrosion-resistant material can be elaborate and expensive. Drilling
wells to supercritical fluid reservoirs is also an enormous challenge. At extremely
high temperatures of 400 ◦C and more, the temperature resistance of casing materials,
drilling mud, geophysical logging instruments, as well as the strength of the materials
still pose great limitations. For example, even those robust drills made of special steel
alloys can withstand harsh conditions only thanks to the massive injection of cooling
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water. Cooling may also be required during well logging as mostly accessible tools
can only operate under 300 ◦C for temperature logging and 150–260 ◦C for geophysi-
cal logging such as seismic, acoustic, resistivity, etc (Lee 2019). Another common
problem in geothermal wells is circulation losses, usually due to typical fracturing
of the formations in a geothermal field, or damaged strings and casings caused by
thermal fatigue or acid corrosion. The performance of the cement job in the loss zones
can be severely affected due to the impact of the high temperature environment on the
kinetics of cement setting. For further detailed descriptions of the challenges/failures
encountered during the drilling some high-enthalpy exploration wells, reference can
be made to the reviews by Reinsch et al. (2017), Kruszewski and Wittig (2018) and
Tomac and Sauter (2018). To meet the current requirements in the development of
supercritical geothermal systems, innovative exploration, measurement and logging
technologies are needed. In parallel, advanced methods for evaluating and interpreting
the sparse and valuable data are in great demand to overcome the current limitations
in data acquisition.

1.2 Motivation: the drilling of the RN-15/IDDP-2 well
aimed for supercritical geothermal resources

The RN-15/IDDP-2 well is drilled as part of the Iceland Deep Drilling Project (IDDP)
operated by HS Orka, which aims to increase power production at the Reykjanes
geothermal site from 100 Mwe to 150 MWe by exploiting supercritical geothermal
resources (Friðleifsson et al. 2011). To achieve this goal, it is expected that a reservoir
temperature of 450–600 ◦C will be reached and supercritical fluids can be produced
from a depth of 3.5 km to 5 km. The entire drilling phase consisted of deepening the
existing RN-15 well from the original depth of 2507 m to a slant depth of 4659 m (4.5
km vertical depth), with the deeper well referred to as IDDP-2. A major challenge
during the drilling operation was the total circulation loss below 2.5 km, which could
not be remedied by blocking materials or by multiple cement jobs. Accordingly,
drilling continued to total depth with no cuttings returned. Highly permeable zones
were encountered at multiple depth levels below 3 km depth to bottom, with the largest
loss occurring at about 3.4 km.

Since the main objective to drill the RN-15/IDDP-2 well is to reach supercritical
reservoir conditions and evaluate the energy potential of the geothermal site, it is of
great interest to obtain an estimate of the temperature distribution along the depth in
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the target region. Prior to the drilling, the formation temperature profile in the upper
2.5 km was derived from direct temperature measurements in the old RN-15 well
during a maintenance shut-in in 2010 (Jónsson et al. 2010). To determine the formation
temperature below 2.5 km, several conventional methods are expected to provide
some insight using different types of data, such as the geochemical composition of
fluids, retrieved drill cores, geophysical logs, and temperature measurements from the
well and other nearby wells. However, due to the total loss of circulation, some of the
measurement instruments, including the gas spectrophotometer and sampling device
on the flowline provided by the ICDP-OSG at GFZ, and the conductivity and pH
sensors set up by ISOR and HS Orka, could not provide useful data during the drilling
(Friðleifsson et al. 2017). In addition, few results have been published on the success
of deep formation fluid sampling and compositional analysis (Friðleifsson et al. 2020).
The first pressure and temperature logs showing that the well reached supercritical
conditions were obtained on January 3rd, 2017. The measured temperature is 426
◦C and the pressure is 34.0 MPa near the well bottom. Since around 40 L/s of cold
water was injected at the wellhead to cool the well at the time of logging, it could
be assumed that the well was far from thermal equilibrium and that the maximum
formation temperature was, therefore, certainly higher than 426 ◦C.

To the author’s knowledge, four studies have presented their work on the evaluation
of the formation temperature for the RN-15/IDDP-2 well at the time of this writing.
Based on pressure/temperature regimes at various depths derived from measurements
of other wells in the region, Fridriksson et al. (2015) considered three possible fluid
states in the well: subcritical single-phase fluid, superheated steam, and a mixture of
low salinity vapor and brine. They arrived at very different temperature values at 5 km
depth: 382 ◦C, 441 ◦C and 550 ◦C. Zierenberg et al. (2017) carried out preliminary
analyses of the drilled cores to identify the hydrothermal alteration minerals that
provide rough constraints on the maximum possible formation temperatures, which
range from 450 ◦C to 600 ◦C. Hokstad and Tanavasuu-Milkeviciene (2017) applied
a multi-geophysical inversion method to first predict the formation temperature for
the pre-drill condition. This was done by integrating electrical resistivity and density
models obtained from the inversion of magnetotelluric (MT) and gravity data, followed
by a joint Bayesian inversion procedure. The formation temperature at 5 km vertical
depth was estimated to be 513 ± 62 ◦C. In a second step, a resistivity log acquired
during drilling was used to update the temperature estimate. The result was 50-100
◦C higher than the prediction for the condition before drilling. This may be due to
the uncertainties introduced by the resistivity correction procedure due to the cooling
effect of the injected water. In addition, the assumed trend of porosity as a function of
depth is another source of uncertainty due to insufficient data, leading to an inherent
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ambiguity in the inversion since porosity has a similar effect on resistivity and density
as temperature, according to the rock physics model. The final study is based on direct
temperature measurements during a one-week warm-up experiment in late May 2017,
during which four consecutive temperature logs were measured. Therein, Tulinius
(2017) applied the so-called Horner-plot method which requires temperature values
recorded at different shut-in times (i.e., no fluid injection in the well) to calculate the
equilibrium formation temperature. The highest temperature estimate is 535 ◦C at
about 4.6 km slant depth. However, during the temperature logging, the well was not
in a strict shut-in condition as 5 L/s of cold water was still injected into the annulus
between the well and a 7" stimulation liner string to cool the well casing. Although
most of the flow was assumed to be lost to the formation after some depth, it is difficult
to confirm whether the shut-in condition exists in the measured deeper parts of the
well, so the effect of any residual flow on temperature predictions is unclear.

The extremely hot conditions and presence of loss zones in the well RN-15/IDDP-2
clearly complicate the interpretation of the drilling and logging data. Although the
above research shows promise in using different types of field data to determine
formation temperature, most of these approaches do not constrain the formation tem-
perature well and would still rely on further future investigations. In this context,
the obtained temperature data, especially those measured during drilling under injec-
tion conditions, are still very valuable for assessing the down-hole condition of the
borehole. In combination with advanced numerical simulations and interpretation
techniques, these data may overcome the lack of information. The RN-15/IDDP-2
well, located in the Icelandic geothermal system, provides a natural case study that
tests proposed research methods against real-world cases. Therefore, the results of
this dissertation will also inform ongoing efforts by existing deep drilling projects to
exploit high-enthalpy geothermal resources.

1.3 Access and evaluation of formation temperature
using temperature data

Exploration of geothermal resources often faces a significant amount of uncertainties
and risks due to the fact that geothermal energy is stored mostly deep underground.
It has been widely recognized that the exploration risk for a geothermal project can
be defined as: not achieving an economically acceptable production capacity with
minimum flow rates and formation temperatures (Schulz et al. 2007). This can be
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explained through a simple quantification for the potential of a geothermal reservoir
using the formula (Jha and Puppala 2017):

EP =
∫ te

ts
ṁ4 ḣ(Tin,Tp, t)dt, (1.1)

where EP is the geothermal energy potential, ṁ is the produced mass flow rate, ts and
te are the starting and ending time for the production,4ḣ is the difference between the
carried enthalpies of the injected and produced fluid which depends on the injection
(Tin) and production temperature (Tp) respectively. Theoretically, Tp depends on the
temperature of the rock formation (Ts), the flow rate Q and the production time te− ts.
For long periods of fluid production under high flow rates, the difference between Tp

and Ts becomes much less distinct, which further leads to a rough estimation for the
amount of geothermal energy extraction, P ∝ Q ·Ts. Therefore, formation temperature
is a crucial parameter both for assessing the heat reserve of a reservoir before the
drilling and later for determining the installed capacity of a geothermal plant.

1.3.1 Data acquisition

The temperature of the subsurface is normally directly accessed by conducting tem-
perature measurements in a borehole. These measurements are then interpolated or
extrapolated to get more extensive information about spatial variation of the tempera-
ture distribution (Agemar et al. 2012; Rühaak et al. 2014). Typically, temperature data
are available as single values recorded at the bottom-hole (bottom-hole temperatures,
BHTs) or as temperature-depth profiles (temperature logs). During a conventional
temperature logging process such as wire-line logging, temperatures are recorded
while the sensor or the probe is moving down inside the borehole or reaching the target
depth. In contrast, recent logging tools developed based on fiber-optic distributed
temperature sensing techniques (DTS) are more advanced by allowing instantaneous
temperature profile sampling with high spatial resolution (Fenta et al. 2021). Such
advancement will enable a much more efficient acquisition of temperature data as
nowadays they are still relatively sparse compared to other types of geophysical logs
(Maryadi and Mizunaga 2021).

Most temperature logging devices are rated for continuous operation limited to 175
◦C, and only a few tools can tolerate up to 300 ◦C (Lee 2019). As of today, the
development of logging technologies and instruments is highly demanded to follow
the needs for deep geothermal resource exploration. In several high-temperature
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drilling projects, temperature logging devices have been designed to withstand the
hostile down-hole conditions. Some of these tools are based on logging to an internal
memory system and powered by high-temperature resistant batteries. The measured
temperature is allowed to reach the critical point of water at around 374 ◦C (the
HiTI project) or even higher at 450 ◦C (the DESCRAMBLE project) (Ásmundsson
et al. 2014; Vedum et al. 2017). However, the short endurance time of these tools
(up to eight hours as reported) remains a limitation when obtaining temperature
measurements under certain borehole operating conditions such as the so-called shut-
in or thermal-recovery period, when the temperature rises after injection or production
have stopped or the flow rate is reduced to very low values (Reinsch et al. 2017).

1.3.2 Uncertainties in the data

Besides the temperature data acquisition tools, proper interpretations of these data
are also crucial. The interpretation of temperature measurements in mechanically
drilled deep boreholes filled with drilling fluids can be complicated for several reasons.
First, temperature data are usually recorded soon after drilling. Due to the thermal
disturbance from the drilling fluid caused by its temperature difference with the
surrounding formation and additional frictional heat introduced by the drilling bit,
the measured temperature often deviates from the true (i.e., static or undisturbed)
formation temperature and needs to be corrected. Second, since the temperature
is measured in the borehole fluid, not in the surrounding formation, an important
consideration is to account for the heat transfer mechanism between the borehole
fluids and the contacting wall. Usually, the thermal equilibrium condition needs to
be justified before the measurement. Third, convective mixing driven by density
difference in a static water-filled column in the borehole can establish due to the
vertical temperature gradient (Diment 1967; Gretener 1967; Pfister and Rybach 1995;
Klepikova et al. 2018). Fourth, the temperature measurements have an inherent
uncertainty due to the sensor response time, noise from built-in electronics, incorrect
recording depth due to cable elongation and slippage, etc (Clow 2008; Sharma et al.
2021). Thus, temperature logging inside deep boreholes should obey a proper protocol
in terms of the logging speed, the measurement direction, borehole settling time, and
so on to improve the quality of the data (Talalay et al. 2020).
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1.3.3 Data interpretation

Till now, a majority of the studies concerning the determination of the static formation
temperature from borehole temperature measurements have been relying on several
classical analytical models that were established between the 1940s and 1980s to
predict the thermal response of the borehole fluid during and after the drilling. These
methods require at least three or more BHT measurements carried out at the same
borehole depth but at different shut-in times. However, large discrepancies between
the predictions and the true (synthetic) SFT, as well as among the predictions using
different models, are very often found when applying those methods (Espinoza-Ojeda
et al. 2011). For instance, in a comparison study from Andaverde et al. (2005), the
prediction error from analytical models for the synthetic data sets can be around
10%. However, the deviation among the prediction results for the real-world data
can be over 100 ◦C. These discrepancies are typically associated with the underlying
oversimplification of the physical model compared to the real borehole drilling process
when assuming a constant cooling source (Bullard 1947), or an unrealistic thermal
transfer model between the borehole and the formation by considering the same
thermal properties of the formation and the borehole fluid (Leblanc et al. 1981), as
well as those uncertainties from the measured data mentioned previously.

On the other hand, modern numerical methods provide opportunities to resolve the
technical aspects of simulating all the principal heat flow mechanisms involved in
the thermal recovery of a borehole and surrounding formation from the drilling
disturbance (Kohl et al. 2002; Espinosa-Paredes and Garcia-Gutierrez 2003; Raymond
et al. 2011; Pan and Oldenburg 2014; Korzani et al. 2019). Moreover, insights into
the dominating physical processes and the interactions between them can be gained
by specifying the number of control parameters and performing uncertainty and
sensitivity analysis (Fernández et al. 2017; Fuchs and Balling 2016; Konrad et al.
2019). So far, only a limited number of studies have adopted numerical methods
in the procedure of formation temperature prediction (Espinosa-Paredes and Garcia-
Gutierrez 2003; Yang et al. 2015). However, the simulated scenarios are still relatively
simple (e.g., continuous mud injection with a constant injection rate and simplified
heat transfer model for the shut-in phase), and a general approach for quantifying the
uncertainties in the estimation procedure is still missing.
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1.4 Thesis overview

The focus of this cumulative dissertation is in the context of deep drilling and high-
temperature geothermal exploration, and aims at two major aspects: firstly, to gain
an improved understanding of the key factors that control the borehole thermal pro-
cess during drilling operations by performing numerical investigations. Secondly, to
develop reliable and efficient interpretation methods for borehole temperature data
to determine key parameters for geothermal exploration and to quantify the associ-
ated uncertainties rigorously. In particular, my study mainly focuses on interpreting
temperature logs obtained from high-temperature boreholes under injection (or cool-
ing) conditions. In other words, the present work is based on the use of thermal
information acquired from borehole under subcritical conditions to infer the initial
undisturbed thermal condition of the reservoir, which could be in the supercritical
state. Such a concept arises from the unique challenges of obtaining thermal recovery
data from wells in high-temperature environments, such as the RN-15/IDDP-2, due to
the limitations of logging instruments (section 1.3.1) and safety concerns regarding
borehole casing programs (Kruszewski and Wittig 2018).

The first part of this dissertation (chapter 2) provides the fundamentals of heat transfer
mechanisms that occur within the borehole, and between the borehole and its sur-
rounding formation. Therein, the governing equations for the thermal modeling and
the underlying assumptions, as well as the relevant empirical relationships controlling
the heat transfer process, are introduced. In addition, an overview of the classical
analytical models for deriving the SFT is given, and the limitations and validity of their
applications are presented. Thereafter, the manuscript consists of three progressive
studies that address the following questions:

• What are the key factors influencing the borehole temperature distribution under
different flow conditions? (Chapter 3)

• Which data and methods are suitable for predicting SFT for high-temperature
wells operated with intensive injections and which are not? (Chapter 3 and
Chapter 4)

• How much are the uncertainties in the SFT estimates when inverting injection
temperature logs? (Chapter 4)

• Can the SFT be solved together with unknown drilling losses from temperature
observations through inverse modeling? (Chapter 5)
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The answers to above questions are provided in the following outlined studies:

Temperature log simulations in high-enthalpy boreholes (chapter 3)

This study has been published in Geothermal Energy.

In the first study, various flow conditions (e.g., flowing and shut-in) are simulated
to mimic real-world drilling operations for high-temperature boreholes. The lack of
understanding of the critical processes controlling the temperature evolution in the
well under complex drilling conditions was the incentive for conducting this numerical
investigation. These drilling conditions involve drilling (or circulation) losses and
different flow conditions such as injection and shut-in in different well sections (e.g.,
drill pipe and annulus) due to the specific requirements of continuous cooling for
a high-enthalpy well. The results highlight the important role of free convection in
the thermal recovery during shut-in period and show that parameterization of the
contribution of free convection to the overall heat transfer rate may be required. The
injection temperature log can be used to identify and characterize the flow losses, as
the temperature distribution in the borehole along the depth is susceptible to the flow
rate. It can also be shown that conventional methods using thermal recovery data to
derive the SFT may not be applicable to high-temperature wells that are not in a fully
shut-in condition even when they are operated at very low flow rates. This synthetic
study serves as the basis for the selection of well data used to estimate formation
temperature and for the development of an inverse modelling scheme for the two
subsequent studies.

Uncertainty analysis of the numerical inversion of temperature logs from boreholes

under injection conditions (chapter 4)

This study has been published in Journal of Geophysics and Engineering.

Based on the results of the previous study, injection temperature logs are then investi-
gated for their applicability to derive SFT for high-temperature wells. The focus of this
study is to develop a rigorous method for evaluating various factors that influence the
accuracy of SFT estimates. These factors involve many aspects such as the injection
conditions (time and flow rate), the logging methods, the presence of circulation loss
zone, the quality of the temperature data, and the constraints applied in the inversion
procedure. The applied inversion scheme was based on a data-driven approach using
the machine learning algorithm (k-nearest neighbor) and proved to be very efficient in
finding the solution space of parameters leading to temperature logs having the same
quality of fit to the correct borehole temperature. One of a major findings of this study
is that SFT estimates derived from temperature logs measured after higher flow rate
injection or longer injection times are more reliable. Furthermore, the estimation error
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in SFT exhibits an almost linear dependency on the standard error of the temperature
measurement. The flow losses and the SFT show a strong positive correlation when
they are jointly estimated. Therefore, the combination of flow logs or prior knowledge
about the amount of flow loss may be necessary in order to correctly interpret the
temperature data.

Surrogate-based inversion of borehole logs for formation temperature determination

(chapter 5)

This study is prepared for publication in a scientific journal.

The final study is intended to fill up the gap between the work in chapter 4, where a
deterministic approach is used to quantify the uncertainty of estimation parameters
in the inversion of temperature data. In this study, the inverse problem is solved
in a statistical framework by constructing the posterior probability density function
(PPDF). The Bayesian inference approach–Markov Chain Monte Carlo is applied to
construct the PPDF for the estimation parameters, such as the SFT and flow losses. To
address the fundamental problem of the high computational cost of PPDF sampling,
the forward models are run using surrogate models trained with artificial neural
networks. The inversion method is first successfully verified with synthetic logs and
then applied to the temperature data of the RN-15/IDDP-2 well to jointly estimate the
SFT and unknown flow loss at three different depths. It is found that drilling losses
can be well constrained for this well using an injection temperature log regardless of
the assumed number of geothermal layers (e.g., layers that are divided according to
the change in geothermal gradient). In contrast, there can be significant differences in
SFT estimates when different numbers of geothermal layers are used. Nevertheless,
the estimate of the SFT at 4500 m from this study is in good agreement with other
relevant studies.
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Chapter 2

Fundamentals of heat transfer in the
borehole and formation

The thermal state of a geothermal system is not only affected by natural processes but
also human activities during geothermal energy exploration and exploitation, such as
the drilling of boreholes, flow testing, injection and production of fluids, etc. One of
the most important physical properties used to study a thermal process is temperature.
It is a parameter that varies both spatially and temporally on different time scales,
from the temperature variation within a few hours when monitoring a borehole to
the evolution of the whole Earth’s thermal field (as a large geothermal system) that
lasts billions of years. Temperature differences between different structures will be
equilibrated through heat transfer.

The focus of this chapter is on the heat transfer occurring in the borehole scale and in
the formation, and the thermal interaction between the borehole and the formation.
Understanding the physical processes that control the heat transfer within the borehole-
formation is essential for thermal modeling of the system, as well as identifying key
factors for a successful interpretation of the temperature data. This chapter presents
the fundamentals of heat transfer mechanisms and some of the most classical thermal
models for deriving the formation temperature in a thermal equilibrium state.

2.1 Heat transfer in the formation

Temperature, as a physical property that determines the direction of heat flow, is
considered to increase with depth, thereby causing geothermal heat to flow from
the earth’s interior to the surface. In general, there are three types of heat transfer
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mechanisms that can occur either separately or simultaneously when heat flows,
namely conduction, convection, and radiation. Heat conduction dominates primarily
in low-porous and impermeable rock types, such as plutonic and metamorphic rocks,
but also in sediments being low permeable to impermeable such as highly compacted
sandstones, mudstones and dense carbonates. Convective heat transport dominates
in permeable rock formations such as porous sediments or highly fractured rocks,
where fluids can circulate through the interconnected pores and fractures. Radiation is
another that mainly exists in the continental crust, which contributes to the heat flow.
The following discusses the basic concepts of these mechanisms and their respective
roles in deciding the heat flow and temperature distribution inside the earth.

2.1.1 Physical processes

Heat conduction

The conductive heat transfer is described by the Fourier’s law which has the following
differential form:

qcond =−λ ·∇T, (2.1)

where qcond is the heat flow per unit area per unit time (also known as heat flux, W
m−2), λ is the thermal conductivity (W m−1 K−1) and ∇T is the temperature gradient.
The negative sign indicates the heat flows in the direction of the negative temperature
gradient (i.e., from warm to cold body). When considering the heat flow of the Earth,
the heat flux is towards the surface (one-dimensional), i.e., λ∂T/∂ z where the z-axis
extends vertically downward.

For porous structures such as rocks, the value of λ is an averaged quantity that depends
on the porosity, water saturation, mineral composition (Schön 2015). Typical rocks
have λ values ranging from 1.5 to 10 W m−1 K−1, with most igneous rocks such as
basalt and granite having a narrower range between 1.8 W m−1 K−1 and 3.5 W m−1

K−1. From surface to deep underground, thermal conductivity can not be considered
as a constant due to great temperature and pressure differences. Experiments show that
λ and T have an inverse-proportional relationship up to about T = 700 ◦C. According
to Buntebarth (2012), the following empirical relation between λ and T can be applied:
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λ = 1/(a+bT ) (2.2)

where T is in ◦C. For the upper crust, a is 0.33 m K W−1 and b is 0.33 x 10−3 m
W−1, for the lower crust, a is 0.42 m K W−1 and b is 0.29 x 10−3 m W−1. The
impact of pressure on λ also depends on the magnitude of the pressure itself. Under
low pressures, rock porosity gradually decreases with increasing pressure, and the
closure of pores leads to increased λ . At pressures up to 100 MPa, the pressure
correction for crustal rocks is about 10%. Under greater pressures, there is only
slight increase of λ (about 2 x 10−3 W m−1 K−1 per 100 MPa) due to crystal lattice
deformation (Schloessin and Dvorak 1972). In a normal geothermal setting where
temperature and pressure increase with depth, the temperature and pressure would
therefore cause opposite trends in the change of λ . Due to lack of sufficient data
where λ was measured simultaneously as a function of temperature and pressure, most
current thermal models often ignore the corrections to in situ λ (Fuchs and Balling
2016; Freymark et al. 2017; Przybycin et al. 2015). A few studies in which both
temperature and pressure dependencies are taken into account for λ at depths relevant
for geothermal exploration (i.e., the uppermost crust) are published, for example, by
Schintgen et al. (2015), Förster et al. (2018) and Norden et al. (2020).

The temperature gradient in Eq 2.2, also called geothermal gradient, varies in different
regions from as low as 10 ◦C km −1 in stable continental region, to more than 200 ◦C
km −1 in volcanic zones (Kranz 2006). Assuming a typical gradient of 25 ◦C km−1,
the heat flux is estimated to be around 60 mW m−2. In practice, geothermal heat flow
in formations is determined by assuming conductive flow in a vertical direction (Eq
2.2). In some cases, the heat flux must be corrected to account for laterally varying
thermal conductivity (e.g., due to non-horizontal thermal contact between formations,
resulting in a distortion of the heat flow in the vertical direction) and inclination of
the borehole (when calculating the geothermal gradient). Moreover, there can be
other effects due to topographic relief, paleo-climatic change and groundwater motion
through fracture and permeable formations. These effects are discussed in Chapter
2.1.4.

Heat convection

The convective heat transfer occurs through a combination of molecular collision
and energy transportation during the movement of fluid particles. Fluid flow in the
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reservoir is commonly defined according to Darcy’s law by:

vD =−K
µ
(∇P+ρ f g), (2.3)

where vD is the Darcy’s velocity (m/s), K is the rock permeability (m2), µ is the fluid’s
dynamic viscosity (Pa· s), P is the pore pressure (Pa) and ρ f is the density of the fluid
(kg m−3).

According to Eq 2.3, the movement of geothermal fluid is controlled by both the
properties of both the fluid (µ and ρ f ) and the rock (K). µ and ρ f are determined using
the so-called equations of state (EOSs) that describe both bulk fluid properties and
the thermodynamic properties of the dissolved rock components (in case of fluid-rock
interaction) over wide ranges of temperature, pressure, and chemical composition.
EOSs are considered fundamental for modeling hydrothermal processes and accurate
formulations for water as the most relevant geothermal fluid have been available for
several decades (Wagner and Pruß 2002; Johnson et al. 1992; Driesner and Heinrich
2007). The biggest challenge for comprehensive geochemical modeling so far is the
missing of valid EOSs for aqueous solutes and chemical reactions over the whole
range of geothermal conditions in the Earth’s crust. This is especially relevant for
conditions that are difficult to handle experimentally, namely moderate pressures
between 10 MPa and 30 MPa and temperatures above 350 ◦C, as encountered in
geothermal systems such as mid-ocean ridge hydrothermal convection, magmatic-
hydrothermal systems, and deep root zone high-enthalpy systems (Stefánsson et al.
2018).

In a natural formation, permeability, K, is a key controlling physical parameter for
the exploitation of geothermal resources, as economic fluid production rates are only
possible when the formation is sufficiently permeable. When permeability is below
10−16 m2, the predominant heat transfer mechanism in the formation will change
from convection to conduction (Cathles 1977; Norton and Knight 1977). The primary
factors affecting K are pressure and temperature. It has been long established that
permeability will decrease as the effective stress increases due to compaction of the
rock structure, leading to a decrease in pore volume (McLatchie et al. 1958; Shmonov
et al. 1994). The temperature dependence of K can be more complex. Both increases
and decreases in K can occur with increasing temperature, and the reasons have been
linked to either the closure of intergranular channel way or the cracking of grains as a
result of anisotropic and inhomogeneous thermal expansion coefficients of mineral
grains in the rock (Potter 1978; Liu, Li, Tian and Wu 2018).

Depending on the cause of the fluid motion, convection is further distinguished by two
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mechanisms. One is free convection or natural convection that is driven by buoyancy
forces, which are induced by density differences due to the temperature gradient
existing in an aquifer. Free convection is taken into account in the calculation of the
velocity vector in the second constitute of Equation 2.3. The other is called forced
convection or very often advection, which is controlled by pressure gradients (∇P,
Equation 2.3) caused by variations in the groundwater level. The convective heat flux
is then given by:

qconv = ρ f cp f vDT, (2.4)

where cp f is the specific heat capacity of the fluid.

Radiogenic heat production

The radiogenic heat production of rock in the shallow crust is the largest internal
source of heat for the Earth and an important contribution to terrestrial heat flux,
apart from the mantel heat flow (Korenaga 2011). The radiogenic heat production
mainly comes from three unstable radioactive isotopes: uranium (CU ), thorium (CT h),
and potassium (CK). According to Haenel et al. (2012), the generated heat can be
estimated using the following formula:

R = 10−5 ·ρs · (9.52CU +2.56CT h +3.48CK) (2.5)

where R is the radiogenic heat production of rock (µW m−3), ρs is the rock density
(kg m−3). CU , CT h and CK are the concentrations of uranium and thorium in parts
per million (ppm) and potassium in weight percent (wt.%), respectively. These
concentrations can be directly measured from core samples (Liu, Giroux, Harris,
Quenette and Mansour 2018) or derived from geochemical models data (Murthy
2007). If such data are not available, the heat radiogenic production can also be
inferred from its correlation with the seismic velocity (Cermak et al. 1990) and by
conducting mineral physics and thermodynamic modeling (Mattern et al. 2005).
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2.1.2 Conservation governing equations

With the three heat flux component introduced previously, the energy conservation
equation in the formation can be written as:

ρmcpm
∂T
∂ t

+ρ f cp f ∇(v ·T )−λm∇
2T −R = 0. (2.6)

The subscript m indicates that the properties are averaged over the fluid-filled pores
and the solid matrix by their volume contributions which are characterized by the
porosity φ . For the scalar quantity, thermal capacity (rhocp), simple arithmetic mixing
rule can be applied (i.e., Kopp’s law). For instance:

ρmcpm = φρ f cp f +(1−φ)ρscps, (2.7)

Thermal conductivity depends on both λ f and λs and on the configuration of grains
and pores (Bear 2018). Different mixing laws for λm are discussed in Clauser (2006),
the following simple mixing law is still widely used:

λm = λ f +(1−φ)λs. (2.8)

The velocity component, v, in Equation 2.6 is the Darcy velocity as defined in Equation
2.3. To complete the formulation of the problem, the mass conservation equation is
required:

(φρ f )

t
+∇(ρ f v)+q = 0, (2.9)

where q (kg m−3 s−1) is the sink/source term for the mass flow.

2.1.3 Analytical solutions for classical thermal problems

Equation 2.6 can be solved for a defined thermal problem according to the thermal-
hydro properties of the fluid and rock materials and the prescribed boundary conditions.
Herein, solutions to selected classical heat transfer problems, taken from Turcotte
and Schubert (2002), are illustrated. Only 1-D steady-state problems are presented to
illustrate some of the key factors affecting the distribution of formation temperature.
Solutions for time-dependent problems with different boundary conditions can be
consulted from Jaeger and Carslaw (1959).
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1-D thermal conduction

Under a one-dimensional steady state condition, the temperature distribution in the
formation satisfies:

d
dz

[
λ

dT (z)
dz

]
+R = 0 (2.10)

The applied boundary condition at z = 0 is

T (z = 0) = T0, (2.11)

and at the bottom depth (z = H) of the formation is:(
dT
dz

)
z=H

=
q
λ

(2.12)

The solution for the temperature distribution of the formation T (z) is:

T (z) = T0 +
1
λ

qz+
RHz

λ
− R

2λ
z2 (2.13)

1-D thermal convection

Advection is an important heat transport mechanism in a hydrothermal system. The hot
intrusions heat the groundwater that becomes less dense and rises. During up-welling,
the water cools and its density increases. It then sinks and recharges the aquifers and
porous rock near the intrusion, which in turn starts the next cycle of the circulation
process. To illustrate the phenomenon of up-welling flow, a one-dimensional model is
described here. Assuming a steady, incompressible upward flow process, Equation
2.6 and Equation 2.9 can be simplified to:

dv
dz

= 0, (2.14)

ρ f cp f v
dT
dz
−λm

d2T
dz2 = 0. (2.15)
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Assuming a constant temperature T0 at the surface and uniform reservoir temperature
Tr at great depth, the boundary condition at y→ ∞ is:

dT
dz

= 0

T = Tr

(2.16)

The formation temperature as a function of depth z is given by:

T = Tr− (Tr−T0)exp(
ρ f cp f v

λm
z), (2.17)

By adopting some representative values for the parameters, e.g., subsurface temper-
ature T0: 20 ◦C, thermal conductivity λm: 3.0 W m−1 K−1, density of fluid: 1000
kg m−3, heat capacity of fluid: 4185 J kg K−1, groundwater flux v: –6 x10−8 m
s−1, surface heat flux q: 60 mW m−2, radiogenic heat production rate R: 1 µW m−3,
the formation temperature from surface to 5 km can be calculated for four different
scenarios using Equation 2.13 and Equation 2.17. Case (1): pure thermal conduction;
case (2): thermal conduction with radiogenic heat production; case (3): pure thermal
conduction in formation consisting of two layers having different thermal conductivity
(first layer: 3 W m−1 K−1, second layer: 2 W m−1 K−1); case (4): pure thermal
convection. The formation temperature profile for each case is plotted in Figure 2.1,
and discussions based on this figure is given in Chapter 2.1.4.
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Figure 2.1: Formation temperature profile for four different cases: (1) heat conduction (black
line), (2) heat conduction with radiogenic heat production (green line), (3) heat conduction in
formation with varying thermal conductivity (blue line), and (4) heat convection (red line).

2.1.4 Impact factors on the temperature distribution in the sub-
surface

The most effective method of gathering information about subsurface temperature is
to conduct temperature measurements in boreholes. Numerous studies have been con-
ducted to use these measurements to resolve some of the very important parameters for
geothermal developments, such as the heat-flux and groundwater flux, or rock proper-
ties, such as the thermal conductivity; or to assist the analysis of other geophysical
logs, such as flow log and resistivity logs. In many cases, these studies are undertaken
by fitting the measured data with the data predicted using developed models. However,
the underlying risk of such a process is the oversimplification of the thermal mod-
els (e.g., neglecting key processes, applying constant parameters, etc.), which may
create inconvenient misfits during the data calibration process. Therefore, it would
be necessary to understand the factors that would affect the subsurface temperature
distribution for more reliable interpretations of the temperature observations.
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Radiogenic heat production

Radiogenic heat production causes variation in heat flow along with the depth and thus
also thermal gradient. According to Equation 2.13, the thermal gradient is not linear
but a quadratic function of depth. The heat flow is higher at the surface than at depth.
According to the simple example calculated in Chapter 2.1.3, the uppermost few
hundred meters is relatively insensitive in heat production. But as depth increases, the
impact of the heat production also increases. The temperature increase caused by heat
production at 2500 m is only 5 ◦C, which is not significant compared to these impacts
from thermal conductivity and fluid convection, according to Figure 2.1. However,
as radiogenic heat production exists on a crustal-scale with can generally extend to
30–45 km deep (Mooney 2003), the radiogenic heat production can be an important
heat flow component to the terrestrial heat flow that accounts for 30–40% of the total
heat flux (Hokstad et al. 2017; Turcotte and Schubert 2002; Mareschal and Jaupart
2013). In some research studies, the locally anomalously high heat flow is found to be
related to radiogenic heat production. In a series of studies conducted on the Cooper
Basin (Australia), high heat production of 3.8–8.7 µW m−3 in basement granite and
thick sedimentary rocks with low thermal conductivity acting as a thermal barrier
resulted in high temperature of 240 ◦C at 3.5 km depth (Hillis et al. 2004; Meixner
and Holgate 2009; Meixner et al. 2014). In Zhang, Hu, Zhang, Li, Zhang, Kong, Zuo,
Song, Jiang and Wang (2020), the radiogenic heat production is found to be about
48.3 mW m−2, 47.3% of the high terrestrial heat flow and is therefore an important
source of hot dry rock geothermal resources in the studied area. Furthermore, as
pointed out from Zhou (2013), the exact value of radiogenic heat production may have
a fine-tuning effect on the results when calibrating formation temperature predictions
from numerical models using field temperature measurements.

Thermal conductivity

Unlike radiogenic heat production, variation in thermal conductivity only affects
the thermal gradient but not the heat flow. As shown in the previous example, the
impact of a change in the thermal conductivity on the temperature distribution can be
depth-dependent. Namely, the decrease of thermal gradient from 3 W m−1 K−1 to 2 W
m−1 K−1 within the second layer only causes a temperature increase of less than 1.0
◦C in the upper 100 m but results in 13 ◦C temperature increment at a depth of 1250



Chapter 2. Fundamentals of heat transfer in the borehole and formation 24

m in that layer. Another perspective related to thermal conductivity is the presence of
geological layers that consist of sand, clay, and moraine materials which can have far
lower thermal conductivity values compared to other rock types Midttoemme (1997).
These layers, sometimes also called overburden layers, can act as thermal blankets
that dramatically increase the formation temperature at depths. However, according to
the calculations from Slagstad et al. (2008), in shallower geothermal systems, thick
low-conductivity layers (from the surface at least 50 to 100 m) or with unrealistically
low thermal conductivity values are required to produce temperature anomalies of
only a few degrees (less than 2 ◦C). Drilling through the overburden layers would
often require the boreholes to be cased, which leads to higher drilling costs (Hossain
2015). The existence of such layers can discourage the extraction of ground source
heat despite their advantage for providing higher temperatures.

Groundwater convection

Groundwater convection can redistribute the conductive formation temperature profile
due to the movement of heat carrier fluid in the reservoir. As shown in Figure 2.1 (red
dash line), convection of high-temperature fluid upward can cause a very high thermal
anomaly at the shallower depth which significantly increases the geothermal potential
of the formation. In fact, studies show that convective fluid flow can leave a distinct
pattern on the local geothermal gradient indicated by borehole measurements. A well-
studied case is the Soultz-sous-Forêts geothermal project in the Upper Rhine Graben.
At the beginning of the project, borehole temperature data at 1000 m depth was found
to be above 110 ◦C and temperatures of 150–170 ◦C were expected at a depth around
2000 m (Guillou-Frottier et al. 2013). However, in reality, a temperature of 160 ◦C
is only found at 3600 m. The temperature gradient was found to decrease below
1000 m within a permeable sandstone formation and become very low in a permeable
granitic basement and then recovered to normal (30 ◦C km−1) below 3500 m in the
poorly permeable granitic basement (Genter et al. 2010). Numerical modeling has
been conducted to reproduce the observed temperature data and concluded that these
thermal features, i.e., both high and low thermal anomalies, can only be explained
by fluid circulation occurring in the fractured formation (Kohl et al. 2000; Guillou-
Frottier et al. 2013; Magnenet et al. 2014). Furthermore, the thermal effect is found to
be critically dependent on the pre-existing thermal gradient, the thickness, and the
permeability of the geological layers (Pasquale et al. 2013; Niederau et al. 2019). The
justification of the buoyancy force induced thermal convection (Chapter 2.1.1) can be
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carried out using Rayleigh number (Lipsey et al. 2016) which is defined as:

Ra =
Kβρ2cp f gH4T

µλ
, (2.18)

where Ra is the Rayleigh number, β is the volumetric thermal expansion coefficient
(◦C −1), H is the thickness of the aquifer (m),4T is the temperature difference across
layer (◦C).

Palaeoclimatic history

Long-term climatic change can affect the underground temperature field. Because
rock thermal diffusivity is very low (1x10−6 m2/s), any temperature perturbation on
the surface will slowly transmit downward (Kohl 1998). Such perturbations penetrate
into the underground depending on the frequency of the temperature signal: a few
meters for the annual cycle and about 80 m for a one-hundred-year cycle. In a typical
well of 600 m deep, the temperature record of the subsurface contains not only the
near-date warming event but also temperature history until to the last few hundred
years. As the subsurface temperature is commonly measured in boreholes, especially
in shallow boreholes (< 500 m), to determine geothermal gradient, which is later used
for constructing a heat flow map. The transient signals are found to cause thermal
anomalies in the determined heat fluxes (Hartmann and Rath 2005). Golovanova et al.
(2014) observed a clear reduction in geothermal flux over depths of around 1000 m or
more as a result of paleoclimate, notably due to the last glacial maximum and the little
ice age. Therefore, the flux map often requires to be corrected for the paleoclimatic
effect.

Topographic effect

The geothermal heat flux across the Earth’s surface is only spatially uniform at a large
scale. For smaller scales, the surface topography causes lateral variations in surface
heat flow by distorting the parallel isothermals. The most manifest topographic
effect on subsurface temperature distribution is the compressed isotherms within
valleys (e.g., thermal anomalies) and reduced gradient beneath topographic rises.
The magnitude of such effect depends primarily on the topographic relief (i.e., the
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difference between the highest and lowest elevations) (Colgan et al. 2021). van der
Veen et al. (2007) estimated that the local geothermal heat flux could double in deeply
incised valleys beneath the Greenland ice sheet by considering the topographic effect.
Similar to how it impacts the geothermal gradient distribution directly, the greater
relief such as mountainous terrain can cause an enhanced vertical component of
groundwater flow which in turn enhances the advective disturbance of the thermal
field. Furthermore, when the ridges and valleys are closely spaced, large-amplitude
and short-wavelength due to restrictions for development in lateral directions (Forster
and Smith 1989).

2.2 Heat transfer in the wellbore

In a general case, a geothermal wellbore consists of pipe flow (flow inside the drilling
or production string), the tubing wall, the annulus between the tubing and casing,
the casing wall, and cement. Although this thesis focuses on wellbores in a drilling
context, the heat transfer processes in most practical situations such as injection and
production wells, or multiple borehole systems such as ground heat exchangers are the
same. During the drilling phase (e.g., fluid injection and circulation), the governing
heat transfer mechanism can be different at different borehole regions. Namely, the
heat transfer in the wellbore includes the forced convection between the flow and inner
tubing, the thermal conduction in the tubing wall, the forced or natural convection and
radiation in the annulus, and the thermal conduction in the casing wall and cement.
As the thermal conduction process in the fluid and the solid structures is already
introduced in the previous part, only the heat transfer within the pipe flow and the
annulus is briefly discussed.

2.2.1 Physical processes

Convection

Similar to the convective heat transfer mechanisms in the formation, two types of
convective-flow induced heat transfer also exist at the borehole scale: forced convec-
tion and free convection (Figure 2.2).



Chapter 2. Fundamentals of heat transfer in the borehole and formation 27

Figure 2.2: Schematic illustration of forced convective flow due to a hydraulic gradient (left)
and free convective flow due to a temperature gradient (right) in boreholes (p: pressure, T:
Temperature). After Berthold (2010).

Convection in the borehole is referred to as forced when the fluid is driven by external
forces such as pumps. Such flow can be inside the string pipe and the annulus or
both at the same time. Convection is considered to be a much more efficient way of
heat exchange compared to heat conduction. It occurs as the result of the moving
fluid passing by the solid surface (e.g., tubing wall) and exchanging the carried heat
with the surface. Due to the lateral heat flow, the surrounding formation is eventually
cooled down or heated up which thereby fulfills the process of geothermal energy
extraction from underground. The heat flux can be calculated according to Newton’s
law of cooling, which is:

q = h(Ts−Tf ), (2.19)

where Ts and Tf are the temperature of the tubing wall and borehole fluid temperature,
respectively, h is the heat transfer coefficient which depends on the fluid physical
properties, flow regimes, and geometry of the solid surface and also the state of
the fluid (single phase or gas-liquid phase). Herein, only single-phase fluid flow is
investigated. The details for the determination of h can be found in Chapter 3.

Free convection in the borehole is generated by density differences in the fluid due to
temperature gradients. It can be evidenced by detecting oscillations on the temperature
log using a high-resolution logging tool (Diment 1967; Pfister and Rybach 1995). The
presence of convection cells adds noise to the temperature measurements, causing tem-
peratures to deviate from natural temperatures of the formation. Thus noise can be a
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limiting factor for an accurate determination of the geothermal gradient. Furthermore,
the significance of the noise is found to depend on the depths of the borehole. Diment
(1967) measured temperatures in a static water column as a function of time and depth
in a 340 m deep borehole. They found the amplitudes of temperature oscillations
won’t exceed 0.05 ◦C. Kutasov and Devyatkin (1973) applied a thermal modeling
approach to examine the possible temperature disturbance caused by free convection
in boreholes with typical diameters ranging from 8 to 10 cm. Their conclusion is
consistent with the finding of Diment (1967) that the thermal disturbances in deep
boreholes (>20 m) do not exceed 0.01-0.05 ◦C. Such disturbances are usually still
within the resolution of the temperature logging instruments. However, in shallower
boreholes (< 20 m), the effect of thermal convection is found to be more pronounced
(thermal disturbance up to 3-5 ◦C). In a later study, a method for the justification
of the occurrence of free convection in a borehole will be presented (see Chapter
3.2.3).

Radiation

Radiation usually occurs in the annulus when it is filled with gas, and it is the only heat
transfer mechanism that requires no medium. The influence of radiation is dependent
on the heat diffusion of the external tubing and the heat absorption of the inner casing.
A general engineering approach to quantify the radiation energy is by calculating an
equivalent radiative heat transfer coefficient, hra, according to the Stefan-Boltzmann
Law:

hra =
σ
(
T 2

to +T 2
ci
)
(Tto +Tci)

1
εto

+ rto
rci

(
1

εci−1

) , (2.20)

where T represents the absolute temperature (K), σ is the Stefan-Boltzmann constant
which is 5.67 x 10−8 W m−2 K−4, ε is the emissivity [-], r represents the radius, the
subscript to and ci denote the outer tubing and inner casing respectively.
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2.2.2 Analytical solutions for borehole temperature distribution

Ramey’s analytical solution

Most of the literature on wellbore heat transfer is based on the classical work by
Ramey Jr et al. (1962). A simple physical model that describes the wellbore heat
transmission consists of fluid flow in a straight, non-cased borehole that is embedded
in the two-dimensional formation. It is assumed that heat flux is only in the radial
direction, and heat transfer from borehole to the formation is rapid compared to that
in the formation, thus can be considered as in steady state. In addition, physical and
thermal properties of the formation and fluids are constant. The derivation of the
conservation equations can be found in Ramey Jr et al. (1962). Here, the solutions are
briefly introduced and discussed.

For the injection case, the solution of temperature distribution in the well is given
by:

T (z) = T0 +αz−αA+(Tin−T0 +αA)e−
z
A , (2.21)

where z is the depth, Tin is the injection temperature, T0 is the surface temperature, α

is the geothermal gradient, A is defined by:

A =
ṁcp f f (tD)

2πλs
, (2.22)

where ṁ is the mass flow, f (tD) is the so-called dimensionless time function which
represents the transient heat transfer from the borehole to the formation, tD is defined
as λst/(ρscpsrwb

2), where λs is the thermal conductivity of rock, ρs is the rock density,
cps is the specific heat capacity of rock, rwb is wellbore radius.

According to Ramey and Sanyal (1981), temperature in a production well is calculated
by:

T (z) = (Tbh−αz)+αA(1− e−
z
A )+(Ts−Tbh)e−

z
A (2.23)

The time function f (tD) in Eq 2.21 and Eq 2.23 can be derived from solutions for radial
heat conduction in the semi-infinite cylinder. Such solutions have been presented in
many texts (Jaeger and Carslaw 1959; Buntebarth 2012). Different types of boundary
conditions have been applied at the interface between borehole and formation, namely,
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constant heat-flux line source, cylindrical source losing heat at constant temperature
or radiation or convective flux. Solutions of all conditions have been presented both
graphically and analytically (Jaeger and Carslaw 1959; Fontanilla 1980; Hellstrom
1992). These solutions converge to the same line and the convergence time is on the
order of one week, at which temperature is controlled by formation conditions for
many reservoir problems. However, for the early-stage transient periods, the solutions
can be very different.

Ramey adopted an approximation for the constant heat-flux line source solution that
works for a time greater than one week. However, such a solution can produce
large errors for very early predictions. A number of studies have attempted to im-
prove Ramey’s solution and derive more efficient and stable approximations to small,
medium, and large-time solutions for wellbore heat transmission problems by giving
their specific expressions for f (tD) (Kutasov 1987, 2003; Wu and Pruess 1990; Kutun
et al. 2014, 2015). In this work, the temperature distribution of the wellbore-formation
is solved numerically using an in-house numerical tool (Korzani et al. 2019). To
validate the simulation code, the numerical simulation results are compared with the
analytical solutions given in Eq 2.21 and Eq 2.23. The simplified expression for f (tD)

given by Kutun et al. (2015), based on the best curve fit of Ramey’s dimensionless
time function data, is applied:

T (z) = ln(1+1.7
√

tD) (2.24)

The injection and production cases were modeled by considering three different
scenarios: (1) water being injected at the same temperature as the surface temperature;
(2) water being injected at a higher temperature than the surface temperature; (3) water
being extracted from the reservoir. The model is set up in the cylindrical coordinate,
the geometry and thermal properties data used in the simulations are the same as
defined in Table 3.2 (Chapter 3), except that the well with 0.15 m radius is simplified
as one-dimensional.

Figure 2.3 presents a comparison of temperatures obtained from analytical solutions
given by Ramey and the numerical model. Maximum temperature differences (errors)
for the three different simulations on day one, day five and day ten, respectively. Case
(1):|4T |max ≤ 1.9 ◦C, case (2):|4T |max ≤ 0.21 ◦C, and case (3):|4T |max ≤ 1.9
◦C. It can be seen that the analytical and the numerical solutions match well. The
difference between the solutions decreases as the simulation time increases. This
can be due to that the applied time-function is less accurate for a shorter simulation
time.
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Figure 2.3: Comparison of analytical and simulated solution of Ramey’s heat transmission
model: case (1) and case (2) are the injection scenarios, where injection temperatures at
well-head are 20 ◦C and 90 ◦C, respectively; case (3) is the production scenario: fluid is
produced from bottom-hole at 245 ◦C reservoir temperature. The analytical solution was
plotted in lines: solid lines (one day), dash-dot lines (5 days), and dot lines (20 days). The
simulated solution was marked in symbols: green crosses (one day), red circle (5 days),
diamonds with lower half black (20 days). Wang et al. (2019).

As seen in Figure 2.3, for the three cases, the temperature profile after the shortest
injection (production) time, which is one day, shows more curvature compared to
profiles of the later times. This is due to the stronger effect of heat gain or loss at
the earlier time since as the injected (or produced) gradually cools down or heats up
the formation, the thermal contrast between the borehole fluid and the surrounding
decreases with time. It can also be seen that the cooling or heating rate decreases
with time, and the temperatures at depths along the borehole will finally converge
to the injection temperature at the well-head (or the temperature at the bottom-hole
inlet).

Ramey’s model, also referred to as the line source model, has been adopted to
solve a wide range of heat transfer problems for geothermal applications, such as
calculation of thermal energy extraction from wells (Nian and Cheng 2018), prediction
of undisturbed formation temperature (Chapter 2.3), thermal response test of borehole
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heat exchanger (BHE) (Wagner and Clauser 2005). However, due to the intrinsic
assumptions of this model, its limitations in practical engineering applications have
also been reported. One is related to the steady-state heat transfer from the borehole to
the formation. Such an assumption is not realistic for early-stage borehole conditions
because the heat transport can be highly dynamic within some minutes to hours, and
the thermal storage effect of wellbore completions needs to be taken into account
(Bahonar et al. 2011). Sass and Lehr (2011) pointed out that exclusively radial
heat flux is not valid for most BHEs due to the disturbing axial heat flux and that a
cylindrical source boundary should be used instead. They concluded that an acceptable
level of error with the linear source model can only be achieved for a BHE with a
length-to-width ratio greater than 1000:1.

The coaxial flow model

Ramey’s model has only considered downward flow, however, during the drilling
process of a well, a coaxial contour flow can be more general as the mud is often
circulated to bring the drilling cuttings back to the surface. During circulation, the
drilling mud flows downwards (axial direction) in the drill pipe. The heat exchange
process of the system involves two mechanisms: convective heat transport and heat
transfer of the drilling mud with the pipe wall (forced convection heat transfer). At
the bottom, fluid exited through the drill bit into the annulus. The temperatures at the
outlet of the drill pipe and the inlet of the annulus are considered to be the same. The
fluid in the annulus moves upwards to the surface. The annulus fluid temperature is
controlled by the rate of convective heat transport and forced convection heat transfer
at two fluid-solid interfaces: annulus fluid/outer drill pipe wall, annulus fluid/wellbore
wall. Bobok and Szarka (2012) derived analytical solutions to predict the temperature
distribution of the fluid both in the drilling pipe and in the annulus for the circulation
scenario. In his model, drilling fluid is considered steady and incompressible and
conductive heat flux in the fluid is negligible in the axial direction. The forced
convective transfer at the pipe and casing wall is considered in the model. The fluid
temperature inside the drill pipe can be calculated according to:

T (D) =C1eN1z +C2eN2z +T0 +αz−Bα, (2.25)
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The annulus fluid temperature is given by:

TA =C1(1+BN1)eN1z +C2(1+BN2)eN2z +T0 +αz, (2.26)

A′ =
ṁ(λs + rCiUCi f (t))

2πrCiUCiλs
and B =

ṁ
2πrDiUDi

(2.27)

N1 =
1

2A′

(
1+

√
1+

A′

B

)
and N2 =

1
2A′

(
1−
√

1+
A′

B

)
, (2.28)

C1 =
D1

D
and C2 =

D2

D
(2.29)

D = N2eN2H−N1eN1H

D1 = N2 (Tin−T0 +Bα)eN2H +α

D2 =−N1 (Tin−T0 +Bα)eN2H−α

(2.30)

where Tin is the injection temperature in the drill pipe, H is the whole depth of the
borehole, U represents the overall heat transfer coefficient, the subscript Di and Ci

represents the inner surface of the drill pipe and the casing.

The above analytical solution is then also used for the numerical validation of the mud
circulation model. The model size was 4600 m in the axial direction and 50 m in the
radial direction. The mesh was discretized in 15 m steps in the axial direction and
mesh sizes in the radial direction ranged between 10−3 m and 6.5 m. The geometric
parameters of the wellbore and thermal properties data used in the modeling are given
in Table 2.1. The comparison of the analytical solution and the simulated solution
of the drill pipe fluid and annulus temperature is shown in Figure 2.4. Maximum
estimation differences for the temperature of drill pipe fluid and annulus fluid are
calculated, respectively: 0.72 ◦C, 1.06 ◦C after 4 days circulation; 0.32 ◦C, 0.51
◦C after 10 days circulation; 0.08 ◦C, 0.17 ◦C after 20 days circulation. Again, the
predictions from the numerical and the analytical models are minor.

According to Figure 2.4, the temperature of the downward flow in the drill pipe
increases with depth. As the flow exits the drill bit and turns upward, the temperature
continues to rise until it reaches a maximum. The depth at which the maximum
temperature occurs hardly seems to change over the course of 20 days. Above this
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depth, the temperature of the up-flow decreases and approaches the temperature of
the down-flow with increasing time.

Property Unit Value

Formation temperature at the surface ◦C 7

The geothermal gradient ◦C/m 0.1
Casing, Cement and Formation

thermal conductivity
W/(m◦C) 50, 1.2, 1.5

Formation rock density kg/(m−3) 3000

Formation specific heat capacity J/(kg◦C) 840

Well depth m 4600

Inside radius of the drill pipe m 0.0352

The outside radius of the drill pipe m 0.0445

Inside radius of the casing m 0.0797

The outside radius of the casing m 0.089
The radius of the wellbore/formation

interface
m 0.1

Mass flow rate (ṁ) kg/s 15

Water injection temperature (Tin j) ◦C 20

Water density kg/(m−3) 1000

Water specific heat capacity J/(kg◦C) 4194

Water viscosity Pa·s 1e-3

Water thermal conductivity W/(m◦C) 0.6

Table 2.1: Geometric parameters and material properties used in the simulation of the counter-
flow heat exchange model.
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Figure 2.4: Comparison of analytical solution and simulated solution for the counterflow heat
exchange model. The black color represents the temperature of the fluid inside the drill pipe,
and the red color represents the temperature of the annulus fluid. Solutions were calculated
and compared at three different circulation times: 5 days, 10 days, 20 days. The analytical
solution was plotted in lines: solid lines (5 days), dash-dot lines (10 days), and dot lines (20
days). The simulated solution was marked in symbols: circles (5 days), squares (10 days),
crosses (20 days) Wang et al. (2019).

2.3 Static formation temperature estimation using bore-
hole temperature data

As already mentioned in the previous chapter, the distribution of subsurface tem-
perature can be strongly influenced by several natural processes. Temperature mea-
surements from boreholes provide the opportunity to quantify these processes by
interpreting their characteristic thermal responses. However, the drilling of boreholes
(i.e., fluid circulation) introduces transient perturbation to the temperature field around
the wellbore region. This is primarily due to the temperature difference between the
rock and the drilling mud, which creates large thermal contrast and thereby significant
heat exchange between them. Other sources of thermal disturbances are related to
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the specific drilling methods, they can be related to the frictional heating caused by
the drilling bit for most drilling methods, the direct heat injection at the bottom-hole,
and the heat generated by motors, etc (Clow 2008). Since the formation rock has
low thermal diffusivity, the perturbations will take time to dissipate before the for-
mation temperature obtain its equilibrium or the initial state. This often requires a
long shut-in time of the borehole, which can be several weeks or months, which is
often not possible due to commercial and regulatory aspects of the drilling operation.
Instead, temperatures are often measured relatively short time after drilling stops and
therefore need to be corrected to infer the true SFT. Since the past half-century or
more, numerous research works have been engaged in reconstructing the SFT from
perturbed borehole temperature data.

2.3.1 The line-source model

The first class of methods is developed based on the classical line-source model
to represent the drilling and shut-in processes (Bullard 1947). These methods are
referred to as the Horner type due to their analogy to a method proposed by Horner
(1951) for analyzing pressure buildup data to obtain the well static pressure. Dowdle
et al. (1975) first justified the conditions for applying the Horner temperature plot
method. S̆tulc (1995) extended the method’s applicability to discontinuous drilling
situations, which are rather commonly encountered in real practice.

The physical model for the line-source method treats the well as an infinitely long heat
source with no cross-section. During drilling and shut-in time, the well extracts heat at
a constant rate, q, from the formation (a homogeneous, isotropic, and infinite medium).
Under radial conditions, the mathematical model has the following form:

∂ 2T
∂ r2 +

(
1
r

)
∂T
∂ r

=

(
ρscps

λs

)(
∂T
∂ t

)
, (2.31)

The solution of the model can be expressed as:

Tbh = Tls +mls ln
(

tc + ts
ts

)
(2.32)

where ts and tc are the shut-in time and the circulation time before circulation stop,
respectively. (tc + ts)/ts) is called the dimensionless Horner time. m is the slope.
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Tbh are the BHT measurements, Tls is the temperature when shut-in time approaches
infinity, which is essentially the SFT.

The validity of the line-source model for geothermal applications has been under
long debate due to its inherent assumptions, such as negligible radial geometry of
the borehole, and constant heat flow, which is only in the radial direction. It has
been found that the line-source model tends to yield underestimated SFT using early
shut-in temperature measurements (Roux et al. 1980; Kutasov and Eppelbaum 2005).
Furthermore, a consistent finding confirmed by Dowdle et al. (1975); Luheshi (1983);
Shen and Beck (1986) is that the solutions of the line-source type methods are more
accurate for long shut-in times when the thermal recovery process is insensitive to
the details of the drilling process, the size of the borehole, and the thermal property
differences between the formation and the borehole fluid.

The optimal duration of the shut-in is still controversial since the borehole size
and thermal contrast between the borehole and the formation are case-dependent.
Drury (1984) and Clow (2015) proposed shut-in times to be at least 2–5 times the
circulation period. However, it should be noted that longer shut-in times can cause
the drilling cost to increase significantly and thus become unfeasible for real practices.
Nevertheless, the line-source model is still a practical tool to evaluate the SFT due to
its simplicity and has been still extensively applied in both petroleum and geothermal
applications.

2.3.2 The spherical-radial heat-flow model

The spherical-radial heat-flow model was put forward by Ascencio et al. (1994) who
argued that during the drilling, heat flows more in a spherical-radial manner than in a
strictly horizontal radial form at the bottom-hole (BH). The model assumes a thermally
perturbed zone around the BH to be a sphere of radius R, and the formation is infinite,
homogeneous, and isotropic with constant thermo-physical properties. By neglecting
the convective heat flow, the governing equation of the model can be written as:

∂ 2T
∂ r2 +

(
2
r

)
∂T
∂ r

=

(
ρscps

λs

)(
∂T
∂ t

)
, (2.33)
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The solution at the center of the sphere (where the BHT is measured) is approximated
by:

Tbh = Tsr +msr ln
(

1√
ts

)
, (2.34)

It can be noticed that this method does not require the circulation time, the SFT, i.e.,
Tsr, is where the straight line that depicts BHTs against the time function 1/

√
ts)

intercepts with the vertical axis (i.e., ts→ ∞). In their another contribution, Ascencio
et al. (1997) discussed the criteria for a successful application of such a model, namely,

ts >
2πmsr

2

Tsr−Tf
, (2.35)

and
Tbh > Tsr−0.4(Tsr−Tf ), (2.36)

where Tf is the mud circulation temperature. In addition, it was emphasized that the
spherical-radial heat-flow model should only be applied at the BH. At other depths, a
cylindrical-radial heat-flow model is more suitable.

2.3.3 The cylindrical heat-source method

The cylindrical heat-source models were developed to improve the prediction of the
borehole temperatures for the short shut-in times. First models of this type, like the
other two types of models, don’t differentiate the thermal properties of the fluid inside
the borehole and the surrounding structures (e.g., casing program and formation)
(Middleton 1979; Leblanc et al. 1981). These models are later improved by several
other works by taking into account the property contrast between the drilling fluid
and the formation and different types of boundary conditions to approach the effects
of fluid circulation. For instance, Lee (1982) and Luheshi (1983) both considered
the constant temperature of the drilling fluid, which is an appropriate simplification
for a rapid mud circulation case. Shen and Beck (1986) additionally discussed
the constant heat-flux boundary condition for cases where flow in the borehole is
slow and incorporated the thermal diffusivity of the borehole fluid in the model.
Hasan and Kabir (1994) presented so far one of the most realistic analytical models
which simulates the transient heat transfer processes that occur during the drilling
operation by including the convective heat flux boundary condition at the borehole
wall following Newton’s law of cooling. The equation of the fluid temperature during



Chapter 2. Fundamentals of heat transfer in the borehole and formation 39

shut-in is given by,

dTf

dt
=−

(
2π

ṁcp f

)(
rwUλs

λs + rUTD

)
(Tf −Tchs), (2.37)

where Tf is the fluid temperature at the borehole center, U is the overall heat-transfer
coefficient that accounts for the convective heat transfer at the borehole wall, the
conductive transfer within the solid components of wellbore (casing and cement), r is
the radius of the borehole, ṁ is the mass flow rate of the drilling mud, Tchs represents
the SFT, and TD is the dimensionless temperature which is given by:

TD =

1.1282
√

tD(1−0.3
√

tD), if tD < 1.5

(0.4063+0.5lntD)
(

1+ 0.6
tD

)
, if tD > 1.5

, (2.38)

where tD is the dimensionless time for the circulation defined as λstc
ρscpsr2 . Hasan and

Kabir (1994) proposed the final equation for calculating the bottom-hole temperature
after dimensionless time (tD) elapsed after circulation stops is

Tbh = TCHS +mchsF(tD), (2.39)

Similar to the other methods, the SFT can be extrapolated using the plot of Tbh against
the time function F (Hasan and Kabir 1994, for details).
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Chapter 3

Temperature log simulations in
high-enthalpy boreholes

This part is reproduced from the manuscript that has been published in the journal of
Geothermal Energy.

Jia W., Fabian N., Maziar G. K., Thomas K. [2019]: Temperature log simulations in
high-enthalpy boreholes; Geothermal Energy (7), 1-21

Abstract

Temperature logs have important applications in the geothermal industry such as
the estimation of the static formation temperature (SFT) and the characterization of
fluid loss from a borehole. However, the temperature distribution of the wellbore
relies on various factors such as wellbore flow conditions, fluid losses, well layout,
heat transfer mechanics within the fluid as well as between the wellbore and the
surrounding rock formation, etc. In this context, a numerical simulation approach is
applied to investigate the influencing parameters/uncertainties in the interpretation of
borehole logging data. To this end, synthetic temperature logs representing different
well operation conditions were numerically using our in-house wellbore simulator.
Our models account for several complex operation scenarios resulting from the
requirements of high-enthalpy wells where different flow conditions, such as mud
injection with- and without fluid loss and shut-in, occur in the drill string and the
annulus. The simulation results reveal that free convective heat transfer plays an
important role in the earlier evolution of the shut-in-time temperature; high accuracy
SFT estimation is only possible when long-term shut-in measurements are used. Two
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other simulation scenarios for a well under injection conditions show that applying
simple temperature correction methods on the non-shut-in temperature data could lead
to large errors for SFT estimation even at very low injection flow rates. Furthermore,
the magnitude of the temperature gradient increase depends on the flow rate, the
percentage of fluid loss and the lateral heat transfer between the fluid and the rock
formation. As indicated by this study, under low fluid losses (< 30%) or relatively
higher flow rates (> 20 L/s), the impact of flow rate and the lateral heat transfer on
the temperature gradient increase can be ignored. These results provide insights on
the key factors influencing the well temperature distribution, which are important for
the choice of the drilling data to estimate SFT and the design of the inverse modeling
scheme in future studies to determine an accurate SFT profile for the high-enthalpy
geothermal environment.

3.1 Introduction

Geothermal explorations depend strongly on reservoir conditions which are evaluated
by increasingly sophisticated reservoir simulators (Cacace et al. 2010; O’Sullivan and
O’Sullivan 2016; Konrad et al. 2019). Also, data acquisition, mostly of seismic data,
has reached a high degree of complexity. This is however contrasted by little effort in
the evaluation of logging data, especially of temperature logs. Usually, the primary
objectives of running a temperature survey in a well are to obtain valuable information
on geothermal reservoirs such as the static formation temperatures (SFT) and the
location of fluid loss zones. This requires temperature logs measured at different
stages (mud circulation and shut-in) during the evolution of the temperature in the
borehole fluid-formation system as well as different interpretation techniques of these
temperature logs (Witterholt et al. 1972).

The SFT is usually inferred from the measurement of bottom-hole temperature (BHT)
when the drilling circulation has stopped and the borehole fluid temperature gradually
develops towards the initial or unperturbed formation temperature. Due to the thermal
disturbances caused by the drilling mud, the measured BHT is usually lower than
the true SFT and needs to be corrected to obtain a reliable estimate (Deming 1989;
Goutorbe et al. 2007). Various temperature correction methods based on different
simplified physical models have been developed, e.g., the Horner-plot method (or
constant line source method (Bullard 1947; Dowdle et al. 1975); the spherical and
radial heat flow method (Ascencio et al. 1994, 2006); the Hasan-Kabir method (or
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conductive-convective cylindrical heat source model (Hasan and Kabir 1994) and the
Kutasov-Eppelbaum method (or generalized Horner method (Kutasov and Eppelbaum
2005)).

These methods are based on linear or non-linear regression models that describe
the relationship between measured BHT and time functions (Verma et al. 2006a,b;
Wong-Loya et al. 2012) accounting for the transient effects of thermal recovery during
the shut-in phase of the borehole. The simplicities in these methods make them very
prevalent engineering tools for estimating SFT.

Another important application of temperature logs is the identification of fluid loss
or feed zones from temperature data obtained under hydraulic testing conditions.
Examples of using temperature measurements in boreholes are multifold. Pehme et al.
(2010) identified hydraulically active fractures in dolomite and sandstone aquifers;
Klepikova et al. (2011) estimated local transmissivities and hydraulic head differences;
Nian et al. (2015) predicted flow rates in oil and gas production wells. These authors
stressed the satisfactory accuracy of temperature-derived flow velocities compared to
direct flow measurement. In recent years, fiber-optic distributed temperate sensing
(DTS), which is a robust means of acquiring continuous temperature profiles instanta-
neously along the length of the cable (Großwig et al. 1996), has also been extensively
used to improve the accuracy of flow rate profiling and the detection of fracture zones
(Read et al. 2013, 2015; Coleman et al. 2015; Bense et al. 2016).

In a high-temperature environment, the acquisition of logging data from explo-
ration and drilling projects in geothermal fields is more challenging compared to
its petroleum counterparts. In recent years, high-temperature geothermal systems
have gained attention due to their large potential for energy extraction. In fact, a
number of wells drilled in geothermal fields such as The Geysers (USA), Los Humeros
(Mexico), Kakkonda (Japan), Larderello (Italy), and Reykjanes (Iceland) have been
reported (Reinsch et al. 2017; Kruszewski and Wittig 2018) to even reach supercritical
conditions for water (T > 374 ◦C, P > 221 bar). Reliable logging in such extreme
well conditions is currently very challenging using conventional tools, which are
normally rated up to 175 ◦C bottom-hole temperature (Baird et al. 1998). Although
high temperature and pressure logging tools are available (Ikeuchi et al. 1998; Sekine
et al. 2004; Reinsch et al. 2013), these tools are generally all restricted to specific
operating conditions in harsh environments. For example, the electronic Kuster K10,
a commonly used commercial tool in the industry, can operate at a maximum of 350
◦C only up to 4 hours (Danielsen 2008). This short period may be sufficient for the
tripping of the logging tools but not for collecting data to resolve the transient thermal
response under shut-in condition. DTS, which is considered better suited for use at
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elevated temperatures, gives erroneous temperature readings under high temperatures
(> 300 ◦C) due to the chemical and thermal degradation of the optical fiber (Reinsch
et al. 2013; Laarossi et al. 2019). To keep the temperature of the measuring device
below its maximum tolerance, cooling through continuous injection during logging is
necessary for extreme high-temperature boreholes (Friðleifsson et al. 2020).

The present study focuses on the analysis of temperature logging data from high-
temperature geothermal wells. It particularly addresses the specific conditions (e.g.
drill pipe-and-annulus geometry and continuous injection) which result from the
requirements of such an environment. Two sets of simulation examples are analyzed
to reflect possible logging conditions in a high-enthalpy well. In the first example, fluid
injection followed by shut-in is simulated. This example is used to examine the validity
of applying simple BHT correction methods on the shut-in temperature data to estimate
SFT, as well as to evaluate the impact of the free convection heat transfer in the build-
up of borehole fluid temperature and the SFT estimation results. To the authors’
knowledge, the later was hardly discussed in former wellbore simulation studies
(Espinosa-Paredes et al. 2009; Yang et al. 2015). The second example investigates two
new topics for high-temperature geothermal wells under-injection. One scope of the
investigation is whether simple BHT type correction methods are still applicable to
logging data from boreholes which are under continuous cooling due to the restriction
of the logging tool. Furthermore, a new method is discussed to quantify the fluid
loss percentage from temperature logs by computing the ratio of temperature gradient
below and above the fluid loss point.

3.2 Methodology

3.2.1 Analytical approach

Herein, the Horner-plot method (HM) for SFT estimation using shut-in temperature
logs is analyzed due to its wide application in the geothermal industry (Andaverde
et al. 2005; Kutasov and Eppelbaum 2018). The evaluation of other SFT estimation
methods falls outside the scope of this study but can be achieved following very
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similar procedure according to their respective analytical models (Chapter 2). Recall
the mathematical form of the HM:

Tsh = Thm +
q

4πλs
ln

tcl + tsh

tsh
, (3.1)

where Tsh is the borehole shut-in temperature, Thm is the SFT, tsh is the shut-in time,
tclis the circulation time, q is the heat extraction rate. Following the standard procedure
of HM method, the SFT is the yielded intercept of the line (shut-in temperatures
against (tcl + tsh)/tsh) with the vertical axis on the semi-logarithmic plot.

3.2.2 Numerical Approach

An in-house numerical simulation tool is used to model the thermal behavior of the
wellbore and its surrounding formation. The simulator is an application developed
based on the MOOSE framework which provides a multiphysics object-oriented
simulation environment (Gaston et al. 2009). MOOSE allows for efficient utilization of
a wide range of computational hardware by using both shared-memory and distributed-
memory parallelism (Gaston et al. 2013). The MOOSE based application consists
of different physics modules which can be easily added, removed and coupled for
solving variables in an implicit and fully coupled manner.

Figure 3.1 shows the schematic of typical wellbore flow and heat transfer scenarios.
The cold drill fluid is considered to be either injected both in through the drill pipe
and the annulus (coflow); or injected in the drill pipe and circulated back to the
surface (counterflow). The simulator assumes the wellbore to be treated either as
a one-dimensional or a two-dimensional structure depending on the problem being
studied. When a two-dimensional wellbore structure is considered, the wellbore
components, such as the fluid inside the drill pipe, the drill pipe wall, the annulus,
and the casings, are treated as different regions (region 1, 2, 3, 4, respectively)
in which the temperatures (T1, T2, T3, and T4) need to be solved as individual
variables (Figure 3.1). These variables are linked through the interfacial heat transfer
relationships between the fluid and the solid. The injection fluid was assumed to be
pure liquid water. Fluid properties such as density, viscosity, and heat capacity were
calculated according to the IAPWS-IF97 formulation (Cooper and Dooley 2007). The
fundamental assumptions of the models considered in this work are: the geometries
of the wellbore and formation are cylindrical, the fluid is incompressible, fluid flow
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Figure 3.1: Schematic of the heat exchange model between the wellbore and the formation.
Governing equations are solved in four regions: the fluid inside the drill pipe (Region 1), the
drill pipe wall (Region 2), the annulus (Region 3), casing-cement-formation (Region 4). The
solid arrow pointing downwards and the dashed arrow pointing upwards in the annulus refer
to coflow and counterflow scenarios in the wellbore, respectively.

is in the axial direction only, the rock formation is impermeable, there is no radial
temperature gradient within the fluid when the wellbore is considered to be a two-
dimensional structure, thermal dissipation and expansion effects are negligible.

Making these assumptions, the energy conservation equation for the fluid inside the
drill pipe and annulus is written in the following form:

ρ f cp f (
∂Tf

∂ t
+ vr f

∂Tf

∂ r
+ vz f

∂Tf

∂ z
)−

λ f

r
∂Tf

∂ r
−λ f

∂ 2Tf

∂ r2 −λ f
∂ 2Tf

∂ z2 = 0. (3.2)

The continuity equation for incompressible flow is given by:

1
r

∂ (rvr f )

∂ r
+

∂vz f

∂ z
= 0, (3.3)

where ρ f is the fluid density, cp f is the fluid specific heat capacity, vz and vr are the
axial and radial flow velocities, respectively, λ f is the thermal conductivity.
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The energy conservation equation for the pipe wall, casing and formation can be
expressed as:

ρscps
∂Ts

∂ t
− λs

r
∂Ts

∂ r
−λs

∂ 2Ts

∂ r2 −λs
∂ 2Ts

∂ z2 = 0, (3.4)

where ρs, cps, λs is the density, heat capacity and thermal conductivity of the pipe
wall, casing and formation, respectively.

The final forms of the above governing equations for regions 1,2,3,4 (Figure 1) are
simplified into:

∂vzi
∂ z

= 0, i = 1,3 (3.5)

ρ f cp(
∂Ti

∂ t
+ vzi

∂Ti

∂ z
)− λ

r
∂Ti

∂ r
−λ

∂ 2Ti

∂ r2 −λ
∂ 2Ti

∂ z2 = 0, i = 1,3 (3.6)

ρ f cp
∂Ti

∂ t
− λ

r
∂Ti

∂ r
−λ

∂ 2Ti

∂ r2 −λ
∂ 2Ti

∂ z2 = 0, i = 2,4 (3.7)

where i refers to the region number.

The initial and boundary conditions of the thermal-hydraulic models considered in
this work are given in Table 3.1.
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BC&IC Expression Description

IC
Ti(r,z, t = 0) = Tf (r,z), i =

1,2,3,4,∀r,0≤ z≤ H

The initial temperature is equal to
the formation temperature

BC1 vzi = ṁi
ρAi

, z = 0, i = 1,3

The velocity of the drill pipe fluid
and the annulus fluid are calcu-
lated according to the mass flow
rate at the wellhead

BC2
q = −λ (T

r )
∣∣
Γi j

= h(Ti − Tj),

on Γ12,Γ23,Γ34

Heat flux across the solid-fluid in-
terface is determined by the heat
transfer coefficient times the tem-
perature difference between fluid
and solid wall

BC3 −λ (∂T1
∂ r ) = 0 at z = H,z = 0

No thermal gradient at the surface
and bottom of the reservoir

BC4
T4(r = ∞,z, t) = Tf (r,z) at r =

∞

No thermal gradient at the surface
and bottom of the reservoir

BC5
T1(r,z = 0, t) = Tin j at 0 < r <

r1,z = 0
The temperature at the well-head
equals the injection temperature

BC6 T1(z = H, t) = T3(z = H, t)

The fluid temperature of the drill
pipe fluid and the annulus fluid at
the bottom hole are equal. This is
only validated for the counterflow
scenario (mud circulation)

Ai is the flow cross-section, Γi j is the interfacial area between the fluid and solid structures,

e.g., drill pipe, casing and formation, H is the well depth, Tf (r,z) is the formation temperature,

Tin j is the injection temperature of the fluid, h is the heat transfer coefficient.

Table 3.1: Boundary and initial conditions of the thermal-hydraulic models.
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3.2.3 Heat transfer coefficients

As mentioned above, the thermal exchange between different wellbore regions is
modeled via thermal transfer relations at their interfaces (Table 3.1, BC2). The heat
transfer coefficient, h, is the proportionality constant between the heat flux and the
thermodynamic driving force for the heat flow (i.e., the temperature difference between
adjacent wellbore components, ∆T ). In this work, the heat transfer coefficients under
forced convection and shut-in condition are correlated and calculated using different
approaches.

Forced convection

Under forced convection, the heat transfer coefficient is defined as (Yang et al.,
2015):

h =
Nu ·λ f

d
, (3.8)

where Nu is the Nusselt number, d is the hydraulic diameter of the drill pipe and
annulus.

For laminar flow inside the annulus, Nu is calculated using the Sieder-Tate correlation
(Kohl et al., 2002) :

Nu = 1.86(RePr)1/3(
d
L
)

1/3
(

µ

µw
)

0.14
, f or Re≤ 2300, (3.9)

where L is the length of the tube, Pr is the Prandtl number, Re is the Reynolds number,
µ is the dynamic viscosity of the bulk fluid, µw is the fluid viscosity at the temperature
of the tube wall.

In the laminar regime inside the drill string:

Nu = 4.364, f or Re≤ 2300. (3.10)

For highly turbulent flow, the Dittus-Boelter equation (Dittus and Boelter 1985) is
applied:

Nu = 0.023 ·Re0.8 ·Pr0.3, f or Re≥ 1e4. (3.11)
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For the transition between laminar and highly turbulent flow, the Nusselt number is
estimated by the following linear interpolation (Diersch et al. 2011; Gnielinski 2013):

Nu = (1− γ) ·4.364+ γ ·0.023 ·Re0.8 ·Pr0.3, f or 2300 < Re < 1e4, (3.12)

with γ = Re−2300
104−2300 .

Shut-in condition

So far in most theoretical and simulation studies, pure conductive heat flow in a static
water column is assumed when estimating temperature recovery during borehole
shut-in (Shen and Beck 1986; García et al. 1998; Espinosa-Paredes et al. 2001; Yang
et al. 2015). The heat transfer coefficient in the borehole fluid is then approximated
by:

hc =
λ f

rwb
, (3.13)

where rwb is the borehole radius.

However, several studies have reported the existence of another key factor in the
heat transfer, which is free convection caused by density differences arising from
vertical temperature gradients (Diment 1967; Gretener 1967; Pfister and Rybach 1995;
Berthold and Börner 2008; Klepikova et al. 2018). The critical parameters for the free
convection process can be indicated by the following equation (Diment and Urban
1983):

5Tcr =
g ·β ·Tabs

cp
+

C ·υ ·κ
g ·β · rwb

4 , (3.14)

where5Tcr is the critical thermal gradient to initiate free convection, g is the accel-
eration due to gravity, β is the thermal expansion coefficient, Tabs is the absolute
temperature (K), Cp is the specific heat capacity, C is a constant with a value of 216 for
tubes, υ is the fluid kinematic viscosity, κ is the fluid thermal diffusivity. Taking the
following values as typical for the borehole fluid: υ = 1e−6 m2/s, β = 2e−4 K−1,
κ = 1.4306e− 7m2/s, cp = 4149J/(kgK), absolute temperature range of 273.15-
573.15 K. This equation reveals that for a borehole with a radius of 35∼150 mm, the
average critical thermal gradient needed to initiate free convection is 2.36e-4∼1e-2
K/m.

Unlike forced convection, which normally acts only in the axial direction, free convec-
tion enhances the heat transfer in all directions through fluid circulation and mixing.
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However, a well-established quantitative description of the thermal effect of free con-
vection in boreholes is still missing, and a general modeling approach is not available.
Luheshi (1983) showed that free convection does not significantly enhance vertical
heat transfer. Since the radial temperature gradient is typically much larger, the contri-
bution to heat flux in the vertical direction by free convection is considered negligible.
However, he mentioned it might be necessary to account for the enhancement in radial
heat flux due to the mixing effect of fluid motion induced by buoyancy forces. In our
work, we have assumed the increase of the heat transfer rate due to free convection
only acts in the radial direction. The overall heat transfer coefficient can be written as:

h = hc +h f ree, (3.15)

which means that the heat transfer for the shut-in condition results from conduction
and free convection.

In our models, the heat transfer coefficient for forced convection was calculated
explicitly according to Equation (3.8-3.13). While for the shut-in condition, the heat
transfer due to free convection was either neglected (h f ree = 0) or was implicitly
evaluated (e.g. h f ree is a factor or fraction of hc ).

3.3 Simulation Scenarios

In the simulation studies, we began with the application of HM to the simulated shut-in
temperature logs. Then we simulated two logging scenarios in a high-temperature
environment. In one scenario, temperature logs obtained under continuous borehole
cooling were used to estimate SFT and the sensitivity of the estimation error to
different flow rates was investigated. In another scenario, temperature logs were used
to quantify the fluid loss in the well.

3.3.1 Shut-in temperature logs simulation

The evaluation of the HM was conducted by numerical simulation of both the cir-
culation and shut-in stage of well operation. In this model, fluid flow in a straight,
non-cased two-dimensional well embedded in the two-dimensional formation was con-
sidered. The modeling parameters can be found in Table 3.2. The model domain size
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of 2500 m in the axial direction and 50 m in the radial direction was chosen to reflect
the reservoir depth and to ensure that the lateral outer boundary represents far-field
conditions which were not affected by thermal perturbations from well operations.
The FE mesh was discretized with 150 layers in the axial direction (∆z = 16.7m). In
the radial direction, the mesh was refined near the well (∆rmin = 10−3m) and coars-
ened at a larger lateral distance (∆rmax = 4m). The final mesh size was determined
by performing a sensitivity analysis yielding asymptotic smaller variations for the
calculated temperatures (maximum temperature variations of less than 10−2 ◦C). The
procedure mentioned above for determining the model domain, mesh sizes, etc., has
been applied analogously to each of the models in this work.

Property Unit Value

Formation temperature at the surface ◦C 20

Bottom-hole temperature ◦C 245

Formation rock density kg/m3 2650

Formation thermal conductivity W/(m◦C) 2.92

Formation specific heat capacity J/(kg◦C) 1000

Well depth m 2500

Well radius m 0.15

Water injection rate (Qin j) kg/s
20 (first 10 days); 0 (af-
ter 10 days)

Water injection temperature (Tin j) ◦C 20

The geothermal gradient ◦C/m 0.09

Water specific heat capacity J/(kg◦C) 3160

Water thermal conductivity W/(m◦C) 0.6

Table 3.2: Geometry and material properties used in the modeling of circulation and shut-in.

The total simulation time was 150 days with 10 days being the cooling (injection)
period followed by the shut-in period. The numerically predicted temperatures of
borehole fluid during shut-in were used to estimate the SFT according to Equation 3.1.
The rate of heat transfer during the shut-in period was controlled by the magnitude of
the heat transfer coefficient in the model. In order to investigate the impact of free
convection on the temperature recovery during shut-in, we considered different values
of h f ree: 0, hc, 9hc, ∞. According to Equation 3.15, the heat transfer coefficients then
became: (1) h = hc; (2) h = 2hc; (3) h = 10hc; (4) h = ∞. Case (4) corresponds to
the condition where the fluid acts as a perfect conductor and thermal resistance in the
well does not exist.
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3.3.2 High-temperature environment simulation

In this section, we focus on the simulation of temperature logs in a high-temperature
environment. For this purpose, we have assumed the SFT to be in a temperature
range from 5 ◦C (surface) to 500 ◦C (bottom-hole). Two different SFT profiles were
analyzed. The profile was either linear-shaped which could be linked to a geothermal
system controlled by pure heat conduction, or S-shaped representing commonly
observed heat convection zones (Figure 3.2). The wellbore layout included the drill
pipe, annulus and several casings (Table 3.3). The above described SFT profiles and
wellbore layout were used in each of the following simulation cases.

Figure 3.2: Two different SFT profiles assumed in the high-temperature environment simula-
tions: linear SFT describes a pure heat conduction geothermal system, S-shaped SFT reflects
typically occurring convection zones in the geothermal system.
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Wellbore
completion

Inner radius
(m)

Outer radius
(m)

Cross-
sectional
area (m)

Depth(m)

Drill pipe 0.0352 0.0445 2.33x10−3 0-4589

Casing i 0.0797 0.0889 4.87x10−3 0-1304

Casing ii 0.11 0.122 8.75x10−3 0-2941

Casing iii 0.1577 0.1699 1.26x10−3 0-793

Annulus 0.0445 0.0797 1.37x10−2 0-1304

0.0445 0.11 3.18x10−2 1304-4589

Table 3.3: Geometrical extensions of the wellbore.

Continuous borehole cooling

The simulations assumed that cold water (7 ◦C) was injected for ten days both into
the drill pipe and into the annulus at a flow rate of 15 L/s and 45 L/s, respectively
(1st period). In the 2nd period (thermal recovery), injection into the drill pipe stopped
while annulus injection continued but the flow rate was reduced to Q (Q ranged
between 0-5 L/s). The borehole was under the full shut-in condition when Q was 0
L/s; otherwise, it was under partial shut-in condition. Temperatures of the fluid inside
the drill pipe at different warm-up times were measured and then used to estimate
SFT by applying the HM.

Fluid loss

The impact of fluid loss on the temperature response in a borehole is analyzed by
generating a series of dynamic temperature logs based on forward simulations where
different fluid loss amounts under different flow rates in the borehole were assumed.
These temperature logs were used as samples for the analysis of the temperature
response to the fluid loss in the borehole. Again cold water (7 ◦C) was injected
through the drill pipe and the annulus separately, and the temperature logs were only
’recorded’ in the drill pipe. For simplicity, the total amount of fluid being injected was
distributed such that the flow velocities in the string and the annulus were equal. The
fluid loss occurred at 3.35 km depth from the annulus through a hydraulic connection
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to the formation. The total amount of injected fluid was varied from 5 L/s to 50 L/s.
The percentage of fluid loss from the annulus was varied between 0% and 100%.

3.4 Results and Discussion

3.4.1 Estimating SFT using shut-in temperature logs

The evolutions of BHT with respect to time considering four different heat transfer
rates are given in Figure 3.3.a. It is shown that the recovery of BHT is influenced
by the heat transfer rate in the borehole during the early stage of shut-in. The higher
the heat transfer rate is, the faster the temperature builds up. A maximum difference
of 30 ◦C between the predicted BHTs is found. However, the four temperature
curves have approximately the same build-up rate after 20 days. Furthermore, the
sensitivity of temperature build-up on the heat transfer rate decreases when the heat
transfer rate reaches 10hc. Figure 3.3.b shows the plots of the BHT against the Horner
dimensionless time. For each curve, two different BHT data sets are used to estimate
the SFT. One contains the early shut-in-time temperature data measured within one
day (ts=12, 18, 24 hr); another one contains long-term shut-in measurements of several
days (ts= two, three, four days). The regression lines for the early and the long-term
shut-in BHT measurements are plotted in Figure 3.4.a and Figure 3.4.b, respectively.
Figure 3.4.c displays the comparison between the intercepts of these regression lines
(SFT estimates) and the true SFT value. In all cases, the SFT is underestimated with a
large error when early shut-in-time temperature data are used. The underestimation
errors range from -61.9 ◦C to -31.3 ◦C depending on the rate of heat transfer assumed
in the model. On the other hand, the accuracy for SFT estimation is improved when
using long-term shut-in temperature data, and again, the influence of the heat transfer
rate on SFT estimation is observed. The SFT tends to be overestimated under low
heat transfer rates (h = hc, 2hc) and underestimated under higher heat transfer rates
(h = 10hc, ∞).
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Figure 3.3: (a) The change of BHT within a shut-in period of 20 days under four different heat
transfer coefficients (h) in the borehole. (b) The Horner-plots of the four temperature curves
shown in (a) (the x-axis value is the opposite of the Horner dimensionless time (Equation 3.1),
the minimum x-axis value of the temperature data on the curves corresponds to when ts= 1 hr,
the maximum x-axis value corresponds to when ts = 140 days).
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Figure 3.4: The HM plots (lines) using BHT measurements (markers) at (a) early shut-in time
(ts= 12, 18 and 24 hours) and (b) long-term shut-in (ts = two, three, and four days) for each of
the four different heat transfer coefficients (h) considered. (c) Comparison of the results of
SFT estimation with the true SFT value: the black bars are the four SFT estimates using early
shut-in time BHT data; the dark grey bars represent the four SFT estimates using long-term
shut-in BHT data; the solid line stands for the referencing value which is the true SFT (257
◦C).

3.4.2 Estimating the SFT using temperature logs obtained under
borehole cooling

As shown earlier, both the heat transfer rate in the borehole and the measurement
time have an impact on the final result of the estimated SFT. In the following SFT
calculations, long-term shut-in temperature data measured after one day, two days and
three days since the start of the 2nd period were used. The heat transfer coefficient h

for the full shut-in conditions was then calibrated by trial and error until an accurate
SFT estimation was achieved (see Figure 3.5, shut-in case). The calibrated h was
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examined to be 1.4hc (the SFT estimation error at the bottom-hole was 0.15 ◦C for the
linear SFT profile scenario, and 0.24 ◦C for the S-shaped SFT profile scenario) and it
was used to account for the heat transfer rate within the drill pipe in the 2nd period. In
the annulus, forced convective heat transfer dominates the heat transfer process. The
SFT was estimated assuming different annulus flow rates and the estimation error at
bottom-hole was calculated (Figure 3.5). As expected, the SFT was underestimated
when temperature measurements under cooling conditions were used in all cases.
This is because with continuous cold injection in the annulus during the 2nd period,
the temperature was only partially recovered in the borehole compared to the shut-in
condition. The higher the flow rate in the annulus was, the less the heat would recover
and the larger the resulting underestimation error in the SFT (Figure 3.5.c, Figure
3.5.d). For small values of flow rate in the annulus up to 0.7 L/s (corresponding
fluid velocity of 0.05 m/s at the bottom-hole), the maximum estimation error at the
bottom-hole was around 74 ◦C (14.8%, error in percentage) when the linear SFT
profile was assumed and 24 ◦C (4.8%) for the S-shaped SFT profile. The reason for
the smaller estimation error for the S-shaped profile is the higher SFT value along
most parts of the well. Therefore, the fluid is less cooled, resulting in earlier thermal
recovery. However, it is noticed that the maximum SFT estimation error along the
well depth could be in some cases much greater than the error at the borehole bottom
(Figure 3.5.b, maximum underestimation error of 143 ◦C was found at 1800 m depth
for the flow rate of 0.5 L/s in the annulus).
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Figure 3.5: Estimated SFT profile under different flow rates (Q) in the annulus during the
2nd period versus depth when assuming (a) a linear SFT profile and (b) S-shaped SFT profile
(black dots represent the true SFTs, red lines represent the SFT estimates under real shut-in
conditions). (c) Errors in SFT estimates for the linear-shaped SFT profile case. (d) Errors in
SFT estimates for the S-shaped SFT profile case.

3.4.3 Characterization of the fluid loss in the well

Herein, we present exemplary simulated temperature logs under flow rates of 5 L/s
and 50 L/s for an S-shaped SFT profile (Figure 3.6). The results for the linear SFT
profile were omitted since it was observed that the shape of the SFT profile had a
negligible influence on the temperature response to fluid loss. An abrupt increase in
the vertical temperature gradient below the loss zone at 3.35 km depth is detected in
each temperature log. It is also noticed that the relationship between the increase of
the temperature gradient and the percentage of fluid loss is non-monotonic. On the one
hand, when the percentage of fluid loss is below 95%, a steeper temperature gradient
indicates a higher amount of fluid loss in the borehole. Such behavior can be explained
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by the fact that with more fluid being lost from the annulus, the fluid remaining in
the borehole has more residence time to gain heat from the hotter surroundings and
thereby the fluid temperature tends to increase. On the other hand, the increase in the
temperature gradient drops when the fluid is almost completely lost. This is due to the
fact that very high fluid losses cause very low remaining flow rates. As a result, the
heat transfer rate from the formation to the annulus fluid is also strongly impaired. The
reduced heat flux results in lower fluid temperatures both in the annulus and drill pipe.
We performed further analyses by calculating the increase of the vertical temperature
gradient due to the presence of fluid loss for each of the generated temperature logs.
This increase was quantified by computing the ratio of the slope of the temperature
profile above the loss zone to the slope below the loss zone. Since the borehole
temperature was considered to approach steady-state after ten days, the temperature
slope could be approximated using a linear gradient. The relationship between the
gradient ratio and the percentage of fluid loss under different flow rates is illustrated
in Figure 3.7. The non-monotonic relationship between the gradient ratio and the
fluid loss (with maximum temperature gradient ratios occurring when the fluid loss
exceeds 95%), which has already been discussed earlier, is observed for each flow
rate under consideration. Moreover, the dependence of the gradient ratio on the flow
rate seems to be more complex. The gradient ratio tends to be independent of the flow
rate if the percentage of fluid loss is low, e.g., < 30%. For fluid losses > 30%, smaller
temperature gradient ratios are observed for lower flow rates. However, for flow rates
greater than 20 L/s (flow velocity > 0.5 m/s), the gradient ratio is almost independent
to the flow rate except when the fluid loss is greater than 90%.
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Figure 3.6: The generated temperature logs for the S-shaped SFT profile case considering
different percentages of fluid loss at a depth of 3.35 km. (a) Results for the injection flow rate
of 5 L/s. (b) Results for the injection flow rate of 50 L/s.
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Figure 3.7: The ratio of temperature gradient below the fluid loss zone (3.35 km depth) to the
gradient above the fluid loss zone versus the percentage of fluid loss (S-shaped SFT profile is
assumed).

3.5 Conclusion

The assessment of geothermal reservoirs relies on the information supplied by logging
tools, with temperature logs among the most important ones. The in-house numerical
tool developed to simulate the thermal response of the wellbore and the formation
during fluid circulation and shut-in conditions is intended to fill the absence of a
quantitative interpretation of temperature logs and the associated uncertainties. It
accounts especially for the heat transfer process from the formation towards the
specific location of the measurement tools including the drill pipe, annulus or open
borehole. Particular care is given to the correct treatment of the transient heat transfer
through the multiple interfaces (casing – annulus – drill pipe - drill fluid) in such
a complex thermal system. The quality of the simulation tool was demonstrated
by comparison with borehole temperatures from analytical solutions. In this study,
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the simulator was applied to generate synthetic shut-in and dynamic temperature
logs. The temperature logs were interpreted for two purposes: SFT estimation and
characterization of loss zones. The major findings and the underlying messages
conveyed in this study are as follows:

(1) The shut-in temperature depends significantly on the magnitude of free convec-
tion, which enhances the heat transfer rate. In this study, a maximum difference
of 30 ◦C in BHT predictions between the two extreme scenarios of free convec-
tion is found. In this regard, a careful parameterization of the heat transfer rate
is especially important in the early transient stage of shut-in heat recovery.

(2) The Horner-plot method may strongly underestimate the SFT if early shut-in
(within 24 hours) temperature measurement data are used. However, it provides
high accuracy SFT estimates (percentage error < 3%) when using long-term
shut-in (two days up to four days) temperature measurement data.

(3) Using temperature logs obtained under borehole cooling conditions can become
inauspicious for the Horner-plot interpretation method even at small cooling
flow rates. This can yield significant errors (e.g. 24 ◦C and 74 ◦C at a flow rate
of 0.7 L/s for a linear- and S-shaped SFT, respectively) in the bottom-hole SFT
estimation.

(4) In the presence of fluid loss, the local temperature gradient change is affected
by the flow rate, the percentage of fluid loss as well as the overall rate of the
lateral heat transfer from the formation to the borehole fluid. It was found that
for fluid losses less than 30%, or under relatively high flow rates (>20 L/s), the
gradient change can be independent on the flow rates.

Under the specific conditions of high-temperature boreholes the temperature logging
data represents a complex response to the wellbore layout, the flow conditions, the
heat transfer mechanism, etc. Under these constraints, a simple interpretation of
temperature logs can be strongly misleading and more sophisticated techniques ac-
counting for key factors by numerical simulation are required. Herein, the impacts
of these factors were investigated by individual sensitivity analysis. However, in real
geothermal applications, these impacts may overlap. Therefore, simulations in this
context need to be joined by inverse procedures. In this way, the present contribution
represents an important step towards a more sophisticated interpretation of real project
data. It requires accounting, in a detailed manner, for the geometrical setting, on the
history of injection, drilling, logging (even the time lapse of logging start to logging
end) and on the appraisal of measurement errors. Work is now underway to interpret
dynamic temperature logs using inverse modeling techniques.
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Chapter 4

Uncertainty analysis of numerical
inversions of temperature logs from
boreholes under injection
conditions

This part is reproduced from the manuscript that has been published in the journal of
Journal of Geophysics and Engineering.

Jia W., Fabian N., Emmanuel G., Thomas K. [2021]: Uncertainty analysis of numerical
inversions of temperature logs from boreholes under injection conditions; Journal of

Geophysics and Engineering (18), 1022–1034

Abstract

Conventional methods to estimate the static formation temperature (SFT) require
borehole temperature data measured under thermal recovery periods. This can be both
economically and technically prohibitive in the real operational conditions, especially
for high-temperature boreholes. This study investigates the use of temperature logs
obtained under injection conditions for SFT determination through inverse modeling.
In particular, an adaptive sampling approach based on machine learning techniques is
adopted to explore the model space with efficiency by iteratively proposing samples
based on results from previous runs. Synthetic case studies are carried out with a rig-
orous assessment of the factors affecting the quality of the SFT estimates for deep hot
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wells. The results show that using temperature data measured under higher flow rates
or after longer injection times could lead to less reliable results. Moreover, the estima-
tion error exhibits an almost linear dependency on the standard error of the measured
borehole temperatures. Besides, potential flow loss zones in the borehole would lead
to increased uncertainties in the SFT estimates. Consequently, any prior knowledge
about the amount of flow loss could improve the estimation accuracy considerably.
For formations with thermal gradients varying with depth, prior information on the
location depths of the gradient change is necessary to prevent spurious results. The
presented inversion scheme is demonstrated an efficient tool assisting the uncertainty
quantification for borehole data interpretation. Although only temperature data is
considered in this work, other types of data such as flow and transport measurements
can be jointly used in this method for geophysical and rock physics studies.

4.1 Introduction

The undisturbed or static formation temperature (SFT) is a key objective of the
analysis of borehole measurements. It is a particularly crucial parameter during the
exploration and exploitation of geothermal and hydrocarbon resources, as it reveals the
thermal reserves (Prensky et al. 1992), affects the transport properties of hydrocarbons
(Kutasov and Eppelbaum 2010), and determines the drilling operation and production
parameters in geothermal and oil reservoirs (Bu et al. 2012). Over the past decades,
temperature surveys from geothermal and petroleum wells have been widely applied
to infer the SFT (Roux et al. 1980; Hasan et al. 1994; Espinosa-Paredes and Garcia-
Gutierrez 2003; Bassam et al. 2010). Most of these methods rely on different analytical
models that extrapolate borehole-temperature buildup data after a previous thermal
perturbation period (the drilling process) under shut-in conditions (i.e., in a static
water column). Advanced approaches have been developed, for instance, to apply
neural networks to synthetic and field thermal recovery data (Bassam et al. 2010;
Wong-Loya et al. 2012). To date, the challenges in these numerical approaches have
been hardly overcome due to unrealistic assumptions on the borehole drilling process,
neglecting measurement errors, etc (Aabø and Hermanrud 2019; Andaverde et al.
2005).

On the operational side, the acquisition of temperature data for a relatively long
thermal recovery period (hours up to several days) can become a difficult endeavor in
real situations, especially in high-temperature boreholes. Technical challenges may
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arise since conventional tools have an upper operating temperature limit (∼300 ◦C).
Recent developments are in high-temperature measuring instruments rated above 350
◦C (Ásmundsson et al. 2014; Bertani et al. 2018; Friðleifsson et al. 2018; Okamoto
et al. 2019). However, the endurance time of these logging tools to the harsh envi-
ronment is limited to only a few hours, which imposes limitations for applying the
aforementioned correction methods on the shut-in temperature data.

On the other hand, dynamic temperature logs acquired under flow conditions could
also provide valuable information about the borehole and its surrounding formation.
Barton et al. (1995) and Steingrimsson (2013) analyzed thermal logging data to
determine the feed/loss zone locations, their relative sizes, and associated flow rates
by detecting “kick” in the temperature profiles. Patterson et al. (2017) used snapshots
of the temperature profile at discrete times to indicate the rate of wellbore heat
gain/loss as well as the evolution of reservoir temperature under normal borehole
operating conditions. Drakeley et al. (2006) and Wang et al. (2010) applied optic fiber
Distributed Temperature Sensing (DTS) to monitor real-time downhole temperatures at
high frequency and spatial resolution. Following the pioneering work of Nowak (1953)
on the diagnosis of zonal-flow contributions in the borehole based on temperature
data, a few papers presented the use of temperature profiles to derive flow rate
measurement (Kabir et al. 2012; Reges et al. 2016; Silva et al. 2019). However, to the
authors’ knowledge, the assessment of SFT using temperature logs obtained under
dynamic situations (i.e., arising from the drilling process or flow injections) is still
missing.

In this study, we apply an inversion modeling approach to analyze the uncertainty in
the interpretation of dynamic temperature logs for SFT determination. Specifically,
the inversion scheme involves the reduced-order modeling which has proved to be a
promising method to solve non-linear inverse problems in recent years (Mirghani et al.
2012; Chen et al. 2017; Schulte et al. 2020). A reduced-order model (ROM), also
known as a surrogate model, can be considered as a regression for a set of input-output
data obtained from a high-fidelity code. It is often used to replace the complex original
physical model to accelerate the computational speed, and to improve the efficiency
in the search of model space of an inverse problem (Zhang, Zheng, Chen, Wu and
Zeng 2020). A variety of techniques have been tried to construct ROMs, such as
polynomials (Oladyshkin et al. 2011), kriging (Mo et al. 2019), while other studies
consider machine learning (also referred to as data-driven) methods, including support
vector machine (Jhong et al. 2017) and artificial neural networks (Sudakov et al. 2019)
to name a few.
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We adopt a simple, non-parametric, supervised machine learning model called K-
Nearest Neighbor (KNN, see Chapter 4.2.2 for more details) to build a ROM. The
ROM is then integrated within the inversion process to propose sampling points in
each iteration. A detailed description of the workflow is given in Chapter 4.2. In
Chapter 4.3 and Chapter 4.4, the inversion procedure is applied to different case
studies to investigate several points affecting the accuracy of the determined SFT
which are related to the injection conditions, accuracy of the data, as well as aspects
from the inverse modeling such as the prior information and the type of misfit function.
Our study aims to contribute to more understanding of these impacting factors and
present a method for quantifying the uncertainties associated with them. As such, the
capability of the data-driven surrogate modeling approach to solve inverse problems
using borehole logging data, which has been rarely investigated in this context before,
is also demonstrated.

4.2 Methodology

To determine the parameters of interest, namely the SFT and later the flow loss,
together with their uncertainties (deviations from the true values), a two-step approach
is applied. The first one consists in the forward modeling, which evaluates the
temperature profile along the borehole by simulating advective heat transport within
the borehole as well as heat transfer between the borehole and the formation, using an
in-house simulator developed on the MOOSE framework (Korzani et al. 2019; Wang
et al. 2019). The second step consists in the parameter inversion using an adaptive
sampling approach based on the ROM, which is driven by the RAVEN software
(Alfonsi et al. 2016). Specifically, RAVEN provides different machine learning
algorithms to train a ROM via an Application Programming Interface (API) from
the scikit-learn python library (Pedregosa et al. 2011). Besides, it couples natively
with a MOOSE-based application, allowing the above two steps to be performed
within one software tool. Such a framework also enables the distribution of a large
number of calculations on multicore workstations and high-performance computation
systems.
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4.2.1 Forward thermal modeling

The foward simulation simplifies the thermal modeling procedure by assuming that the
geometries of the borehole and formation are cylindrical, the fluid is incompressible
and its flowing direction in the borehole is only axial. Furthermore, the rock formation
is considered impermeable and the thermal dissipation and expansion effects of the
fluid are negligible.

Given above, the thermal transport mechanism in the borehole is governed by both
conduction and advection, which is typically expressed in cylindrical coordinates as
follows (Yang et al. 2013):
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∂ t
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Assuming incompressible flow, the continuity equation is given by:
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where ρ f is the fluid density, cp f is the fluid specific heat capacity, vz and vr are the
axial and radial flow velocities, respectively, λ f is the thermal conductivity.

Considering only heat conduction in the formation, the energy conservation equation
can be written as:
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where ρs, cps, λs is the density, heat capacity, and thermal conductivity of the forma-
tion, respectively.

The thermal exchange between the borehole and formation is modeled via thermal
transfer relations at their interface:

q =−λs(
∂Ts

∂ r
)
∣∣
Γs, f

= h(Ts−Tf ), (4.4)

q is the heat flux, Γs, f is the interfacial area between the fluid and the formation, h is
the heat transfer coefficient under forced convection. A detailed description for the
calculation of h can be found in Wang et al. (2019).
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4.2.2 Adaptive sampling based on the reduced order model

The inversion or estimation of the SFT and the flow rate is conducted using an adaptive
sampling approach. It is performed by building a surrogate model using the results
of previous simulations, predicting the system behavior, and proposing the most
informative region in the model space for the next sampling step. Thus, it reduces
the number of iterations to find solutions for the inverted parameters compared to
other classical sampling methods such as Monte-Carlo, Latin Hypercube Sampling,
etc (Mandelli et al. 2015).

In the following analysis, the ROM is built using perhaps the most simple and
transparent surrogate model - the K-Nearest Neighbor (KNN) (Runarsson 2004).
KNN is non-parametric and requires no prior knowledge about the mapping function
type. Thus, it is free to learn any functional form from the training data (Russell
and Norvig 2002). Furthermore, it is easy to implement since the learning consists
of simply storing points that are evaluated using the high-fidelity model, and each
time a point is added, the trained model is improved. KNN predicts a so-called label
(defined, in our case in Equation 4.7) of a sampling point based on the labels of its
k-nearest neighbors using the following formula:

C =
w1C1 + . . .+w jC j

∑
k
j=1 w j

, (4.5)

where C is the label associated with each nearest neighbor, k is the number of nearest
neighbors. The weight of the j-th nearest neighbor (p j) for the evaluated point (p) is
defined as w j = 1/dist(p, p j), where the distance dist(p, p j) is the Euclidian distance
between p and p j.

The ROM is then used as a “classifier” that predicts where further exploration of the
model space should be oriented to develop a Limit Surface (LS), which identifies the
boundary between the positive and negative Boolean labels established according
to a user-defined constraint criterion (Alfonsi et al. 2016). In our analysis, such
criterion is constructed using the root mean square error (RMSE), which describes
the discrepancy between the simulated and the measured borehole temperatures as
follows:

RMSE =

√
∑

m
i=1(Tsim−Tmeasure)

2

m
, (4.6)

where Tsim is the simulated temperature, Tmeasure is the measured temperature and m

is the number of the sampled borehole temperatures along the depth.
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A decision function C(RMSE) is defined to recast the response of the system into a
binary form:

C(RMSE) =

1 if RMSE < RMSEthres

−1 if RMSE > RMSEthres

, (4.7)

where RMSEthres is the RMSE threshold value.

In reality, the RMSE comes from two sources: the errors of (1) the measured tem-
peratures and (2) the calculated Tsim in the forward modeling, both are with respect
to the true borehole temperatures. The reason for choosing the RMSE as a criterion
is that the RMSE can be considered as an analogy to the standard deviation of the
measurement data due to their arithmetic similarity (i.e., assuming the data are not
biased) (Meyer 2012). Meanwhile, it is also the mostly used metric to measure the
model prediction quality, which makes it also suitable for presenting the second type
of error source. In all case studies of this work, only one error source is included
in the RMSE at a time to investigate separately their impacts on the temperature
log interpretation. We will first focus on the measurement errors and later include
aspects of the forward modeling by considering wrong model assumptions. Given that
temperature logging instruments typically have an accuracy of±1 ◦C (Cao et al. 1988;
Förster 2001) and the errors in the measurements can still rise at higher temperatures
(Sharma et al. 2021), we explicitly select different RMSEthres values ranging from 0.5
◦C to 2.0 ◦C as the possibly acceptable fitting qualities between the model predictions
and the measurements if allowing either data to have some errors..

In the context of our study, the adopted inversion scheme is intended to find the
boundary (LS) which delimitates the model space–SFT (one-dimensional) or SFT and
the flow loss (two-dimensional), depending on whether the RMSE values of the model
predictions are larger or smaller than the RMSEthres. In summary, the generalized
workflow applied for this work consists of the following steps:

1. Initial sampling points in the model space are generated using the Monte Carlo
forward sampling scheme for the model parameters, namely the SFT and flow
rate.

2. Borehole temperatures at those measured depths are computed using the bore-
hole simulator for each sampling point.

3. The decision function, Equation 4.7, is evaluated using the results from Step 2.
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4. The data pairs {model parameters, decision function value} are used to train
the ROM using the KNN classification model.

5. The ROM is used to predict the values of the decision function for all the
discretization nodes of the model space and then the LS is determined based on
the change of the values of the decision function (i.e., the transition from -1 to
1).

6. A score is assigned to each point on the LS according to its distance to the
sampling points already taken (the larger is the distance the higher is the score)
and the persistence of its predicted decision function value (the larger is the
number of time the prediction for that point have changed the higher is the
score). The point with the highest score is added to the training samples.

7. The procedure is repeated starting from Step 2 until convergence is achieved: a)
when the LS does not change after a certain number of consecutive iterations
(hereafter called persistence step) and b) when the “volume” fraction of each cell
in the whole discretized model space reaches a user-defined tolerance (referred
to as convergence confidence).

It is worth mentioning the first criterion above is required to prevent the searching
algorithm from focusing too much on a certain region of the LS while putting too few
points in other zones and thus completely hiding undiscovered regions of the LS. In
addition, the latter convergence criterion determines the accuracy of the predicted LS,
i.e., the smaller is the tolerance value, the finer is the discretization grid on the model
domain, the more accurate is in the computed LS.

4.3 Synthetic case studies

4.3.1 Uniform geothermal gradient

In this section, factors influencing the accuracy of the SFT estimation, namely, the
borehole operation parameters such as the injection flow rate and the injection duration,
the quality of the temperature measurements and the presence of a flow loss zone, are
examined. For simplicity, the formation is assumed to have a constant geothermal
gradient.
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4.3.1.1 Estimation of SFT alone

Herein, a 2-D domain, which consists of a borehole with a radius of 0.11 m and a
non-permeable formation with a vertical extension of 4500 m and a lateral of 50
m is simulated. The rock formation is assumed to have constant thermal properties
(ρs = 2700 kg m−3; cps = 800 J kg−1 K−1; λs = 2.5 W m−1 K−1). Figure 4.1a
shows the initial and boundary conditions of the model. The SFT is assumed to
increase linearly from 10 ◦C at the surface to 500 ◦C at 4500 m, and no flow loss
occurs along the borehole. Water is injected from the wellhead into the borehole at a
constant temperature (10 ◦C) and a constant flow rate. Borehole temperatures are then
simulated assuming constant water properties (ρ f = 998 kg m−3; cp f = 4182 J kg−1

K−1; λ f = 0.6 W m−1 K−1) using the forward modeling approach that was previously
described. Figure 4.1b depicts the synthetic temperature logs in the borehole for
different injection durations (3~12 hours) at a flow rate of 50 L/s, and Figure 4.1c for
different flow rates (25~100 L/s) after a six-hour injection.

Analysis of the sensitivities of SFT estimates to the dynamic injection conditions
(injection time and flow rate) and the chosen RMSEthres value is performed using the
aforementioned adaptive sampling approach. Note that in this case, the RMSEthres

only takes the measurement error into account. Since the SFT is a linear function
of depth, only the SFT at the bottom-hole needs to be solved. The number of the
realizations required for the adaptive sampling to converge typically depends on the
complexity of the inverse problem (e.g., the number of the predicted variables), and
the prior uncertainty (e.g., the RMSEthres value and model space of the variables). For
all the presented inversion scenarios in this section, the input bottom-hole SFT value is
set between 450–550 ◦C, the ROMs are trained with KNN using five-nearest neighbors
(see also Table 4.1 for a summary of the relevant parameters in this study). The total
number of the evaluated forward simulations for each model to reach convergence is
around 100–200.

Four temperature logs obtained after different injection durations (3, 6, 9 and 12
hours) of injection at 50 L/s are inverted to estimate separately the SFT value at the
bottom-hole. According to Figure 4.2a, the estimation errors in the SFT are ±11.5 ◦C
(±2.3%),±14.4 ◦C (±2.9%),±16.2 ◦C (±3.2%) and±17.5 ◦C (±3.5%) respectively.
Figure 4.2b shows the inversion results using temperatures measured at different
injection rates (25, 50, 75 and 100 L/s) after the same injection duration of 6 hours.
The estimation error is found to be the lowest (±7.2 ◦C/±1.4%) when the flow rate is
25 L/s and highest (±28.9 ◦C/±5.8%) when the flow rate is 100 L/s. These results
are obtained for an RMSEthres value of 1.0 ◦C. Figure 4.2c displays the results for the
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Figure 4.1: (a) Schematic of the simulation set-up with the boundary and initial conditions.
Injection temperature at the well-head is 10 ◦C, SFT is a linear function of vertical depth and
is applied as the initial condition and the Dirichlet boundary condition at the right edge of the
formation. (b) Synthetic temperature logs after different injection durations (3, 6, 9 and 12
hours) at an rate of 50 L/s. (b) Synthetic temperature logs obtained under different flow rates
(25, 50, 75, and 100 L/s) after 6 hours of injection.

formation temperature at the bottom-hole by inverting the temperature log obtained
after a six-hour injection at 50 L/s considering RMSEthres values varying between 0.5
◦C and 2 ◦C (with a step of 0.5 ◦C). As expected, the error of the estimate increases
(from ±7.2 ◦C to ±28.9 ◦C) as the RMSEthres value increases from 0.5 ◦C to 2.0
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Figure 4.2: Comparisons of the maximum and minimum values of the estimated SFT at the
bottom-hole (4500 m depth) considering: (a) different injection durations (3, 6, 9 and 12
hours), flow rate of 50 L/s and RSMEthres=1.0 ◦C; (b) different flow rates (25, 50, 75 and 100
L/s), injection duration of 6 hours and RSMEthre = 1.0 ◦C; (c) different RSMEthre values (0.5,
1.0, 1.5, and 2.0 ◦C), injection duration of 6 hours and flow rate = 50 L/s.

4.3.1.2 Estimation of SFT and flow loss

The loss of the circulated fluid is commonly encountered for drilled boreholes due to
the existence of faulted or fractured formations (Allahvirdizadeh 2020). To take such
a case into account, a loss zone at 3500 m is added to the same model explained in
Figure 4.1a. It is assumed the injection flow rate becomes 25 L/s below 3500 m due to
the loss. As shown in Figure 4.3, a significant temperature gradient increase after the
loss zone is observed on each temperature profile measured at a different time.

In the following, the bottom-hole SFT and the remaining flow below the loss zone are
inverted simultaneously, using the temperature log obtained six hours after injection
starts. The dependency of the results on the accuracy of the temperature measurement
is analyzed again by taking four different RMSEthres values in the inversion procedure.
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Figure 4.3: Synthetic temperature logs of the borehole fluid after different injection durations
(3, 6 and 12 hours) considering a flow rate of 50 L/s above 3500 m and 25 L/s below 3500 m
due to the loss.

The prior distributions of the bottom-hole SFT and the remaining flow rate are 400–
600 ◦C and 0–50 L/s respectively. The number of steps for the models to converge
is around 1000–1500. As can be seen from Figure 4.4, the errors of both SFT and
flow rate estimates arise as the RMSEthres value becomes larger. For instance, when
RMSEthres is 0.5 ◦C, the maximum estimation error is ∼10 ◦C (2%) for the bottom-
hole SFT and ∼1.5 L/s (3%) for the remaining flow rate below 3500 m. However,
when RMSEthres rises up to 2.0 ◦C, the maximum estimation error becomes ∼48 ◦C
(9.6%) for the SFT and ∼6.5 L/s (26%) for the flow rate. Also, the elliptical shape of
the contour lines indicates a positive correlation between the bottom-hole SFT value
and the remaining flow rate. Furthermore, it is found that the uncertainty of the SFT
estimation increases when a flow loss zone exists. For example, compared with the
inversion results from Chapter 4.3.1.1 where no loss occurs, the maximum error in the
SFT estimate is increased by 2.8 ◦C for RMSEthres =0.5 ◦C and 19.1 ◦C for RMSEthres

=2.0 ◦C.
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Figure 4.4: Contour plot of the RMSE as a function of the two estimated variables: SFT at
bottom-hole depth (horizontal axis) and the flow rates below 3500 m (vertical axis). The
black star marks the true values for bottom-hole SFT and flow rate below 3500 m (which
corresponds to an RMSE value of 0.0 ◦C).

4.3.2 Two-layer geothermal gradient

Herein, we extend the complexity of the above study by considering a formation (here-
after referred to as formation F1) consisting of two layers with different geothermal
gradients. The purpose of the new study is to investigate the influence of different
prior assumptions about the geothermal gradient (i.e., the second type of error source
contributing to the RMSE, as discussed in Chapter 4.2.2) on the prediction of the
SFT and the flow rate. We would like to mention that this study is inspired by the
RN-15/IDDP-2 deep well in Reykjanes, Iceland. The well was drilled by deepening
an existing well (RN-15) of 2500 m depth to 4500 m deep. During the drilling, a major
flow loss was reported at around 3500 m. High-temperature environments around
the well have been confirmed by measured temperatures up to 426 ◦C (Friðleifsson
et al. 2018). The SFT profile from the surface to 2500 m has been directly calculated
using the borehole thermal recovery temperature data. However, the determination of
the SFT below 2500 m has been an issue of much interest. Furthermore, cold fluid
has been continuously injected during the drilling to cool down the casing and the
formation (Peter-Borie et al. 2018), which makes only temperature measurements
from injection conditions available for assessing the formation temperature.

For F1, the true formation temperature is assumed to increase from the surface with a
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constant gradient of 0.096 ◦C/m to 298 ◦C at 3000 m and then continue to increase
with a gradient of 0.135 ◦C/m until it reaches 500 ◦C at 4500 m (Figure 4.5, SFT_F1).
Figure 4.5 (blue line) also illustrates the borehole temperature profile after six hours’
injection at a rate of 50 L/s. Noticeably, the local flow loss of 25 L/s at 3500 m causes
a dramatic increment in the borehole temperature gradient (Figure 4.5, red dashed
line), whereas the increase of the SFT gradient after 3000 m has no obvious impact
on the local fluid temperature gradient change.
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Figure 4.5: Predefined SFT profile of formation F1 (black line), borehole temperature profile
(blue line) calculated after 6 hours injection at 50 L/s and the derivative of temperature with
respect to depth (red dashed line).

In the following investigated scenarios, the SFT in the upper 2500 m is considered
already known. However, different assumptions about the geothermal gradient below
2500 m are made. One model, referred to as F1A1, hypothesizes a constant thermal
gradient from the surface until 3000 m (i.e., consistent with the truth) and another
possibly different gradient below 3000 m. Therefore, the SFT can be linearly extrapo-
lated from 2500 m until 3000 m but remains unknown for the second layer. In another
model (F1A2), however, a linear-shape SFT for the whole depth interval 2500–4500
m is assumed. By comparing F1A2 to F1A1, a question being addressed is: Without
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Figure 4.6: Contour plot of the RMSEthres =1.0 ◦C in the exploration space of SFT value at
the bottom hole and the flow rate below 3500 m for model F1A1 and F1A2. The blue star
marks the true values for the SFT and the flow rate (500 ◦C, 25 L/s).

knowing how the geothermal gradient varies within the intended depth interval, what
would be the impact of just assuming a uniform geothermal gradient–a commonly
adopted simplification in geothermal studies (Gholamrezaie et al. 2018; Al Saedi et al.
2019)–on the determination of SFT?

For both models, the flow rate below 3500 m is a prediction variable. Additional
inversion parameter for F1A1 is the SFT in the depth interval 3000–4500 m, and
for F1A2, the SFT in the depth interval 2500–4500 m. Again, assuming a constant
geothermal gradient within each layer, only the SFT value at the bottom depth (4500
m) to be solved in both cases. The thermal gradient is considered to possibly vary
between 0 and 0.3 ◦C/m (Bahlburg and Breitkreuz 2018). Accordingly, the explored
values for the SFT at 4500 m for F1A1 and F1A2 are 298–748 ◦C and 250–850 ◦C,
respectively. The flow rate below 3500 m is assumed to be uniformly distributed on
the interval [0,50] L/s. The total number of the performed forward simulations for
model F1A1 is ~3800 and for model F1A2 is ~2700.

Figure 4.6 shows the contour plots of RMSEthres =1.0 ◦C for model F1A1 and F1A2 in
the explored space of the bottom-hole SFT value and the flow rate below 3500 m. For
model F1A1, both the SFT and the flow rate are poorly estimated: the acceptable SFT
at 4500 m covers the entire domain allowed, 298–748 ◦C, and the flow rate can vary
between 16 L/s and 38 L/s. Nonetheless, there is still a strong correlation between the
flow rate value and the associated SFT value. On the other hand, both variables in
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F1A2 seem to be better constrained compared to F1A1, although the variability of the
inverted values is still quite high.

4.4 Discussion

4.4.1 Impact of the injection and logging conditions

As shown in Figure 4.2, when assessing the SFT alone through dynamic temperature
log interpretation, the accuracy of the results depends strongly on both the flow rate
and the duration of the injection before the logs are run. For the same injection
period prior to the logging, the errors of the estimates increase with the injection rate.
Similarly, for a constant injection rate, longer injection durations lead to decreasing
accuracies of the estimates. Therefore, the determination of SFT using dynamic
temperature logs requires a careful selection of these logs. As such, the inversion
scheme can also be applied to propose appropriate temperature logs to be used. For
example, for the investigated case in 4.3.1.1, the time at which the log is acquired
needs to be restricted according to the injection rate and the desired accuracy of the
SFT estimates. To achieve an accuracy of ±10 ◦C, temperatures measured within
12 hours of injection can be accepted for an injection rate of 25 L/s, whereas only
those logs conducted within the first two hours of injection can be used if the injection
rate is 50 L/s (Figure 4.7). However, it should be pointed out that our discussion
is only based on stable injection conditions (i.e., constant injection rates). In real
practices, where multiple temperature surveys are obtained for the same borehole,
the injection rates as well as their respective injection duration, before these logs are
obtained can be very different. For such situations, as both the flow rate and injection
duration will affect the accuracy of the SFT estimates, it might be necessary to use
several temperature logs to perform independent inversion procedures and make a
cross-comparison of the results.

Herein, the inversion study was only performed on the instantaneous depth-temperature
profiles in the borehole. In other words, we assumed that temperatures at all sam-
pling depths were recorded simultaneously. As already mentioned in the Introduction
section, the acquisition of this type of temperature logs can be achieved by using
DTS. In contrast, conventional logging methods such as wireline logging often in-
volve running a temperature sensor in or out along the borehole and recording the
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Figure 4.7: Maximum (circles) and minimum (squares) values of the estimated SFT at the
bottom-hole using temperature logs obtained under injection rate 25 L/s (blue line) and 50
L/s (red line) after different injection durations (1, 2, 3, 4, 6, 9 and 12 hrs) considering
RMSEthres=1.0 ◦C (for the described model in Chapter 4.3.1.1).

temperature at each specified depth. Since the temperature sensor requires some time
to reach thermal equilibrium with the measured fluid, the logging speed needs to be
limited to attain a high accuracy of the temperature data (Sharma et al. 2021). Given a
typical logging speed of 10–15 m/min (Prensky et al. 1992), the logging time for a
well with a depth of 4500 m would be 5–7.5 hours. The present study indicates that
such a time span can cause varying error in the SFT estimate for different locations
as they have inconsistent exposure time to the thermal disturbance at the time of
temperature sampling. Namely, the later the temperature is measured at a given depth,
the higher the uncertainty in the SFT estimate at that depth (for a constant injection
flow rate).

4.4.2 Impact of a flow loss zone

In the presence of flow loss along the borehole, results of the joint estimation of SFT
and flow rate below the loss zone show a clear increase in the uncertainty of the SFT
estimates as indicated both in Figure 4.4 and 4.6. The reason for this behavior can
be explained by the coupled effects of the formation temperature and the flow rate



Chapter 4. Uncertainty analysis of numerical inversions of temperature logs from
boreholes under injection conditions

82

on the borehole temperature. Namely, an elevated borehole temperature due to a
reduced flow rate (i.e., more sufficient time for the heat exchange with the surrounding
formation) could be compensated by a cooler formation temperature. Conversely, a
cooler borehole temperature caused by a higher injection rate can be compensated
by a hotter formation temperature. As a result, borehole temperature logs simulated
using different combinations of SFT and flow rate with a wide range of values may
give similar good fits to the temperature-depth data. For instance in Figure 4.8, two
temperature logs, referred to as L1 and L2, that lead to the same RMSE value of
1.0 ◦C in model F1A1 (Chapter 4.3.2) are presented. Each log corresponds to an
acceptable but extreme solution of this synthetic case (see Figure 4.6). Compared
with the real solutions of the SFT value at the bottom-hole (500 ◦C) and the remaining
flow rate (25 L/s) after the loss zone at 3500 m, the applied values for the bottom-hole
SFT (737.4 ◦C) and the flow rate (34.5 L/s) to simulate L1 are much higher. On the
contrary, the other valid log L2 is simulated with a significantly lower bottom-hole
SFT value (289 ◦C) and a smaller remaining flow rate (16.9 L/s). In fact, the issue
with the aforementioned thermal compensating effect can always hinder the accuracy
in the estimates as long as only the temperature data is used for the simultaneous
prediction of flow rate and SFT.
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Figure 4.8: Left: borehole temperature logs (L1,L2) that both satisfy RMSE equals 1.0 ◦C in
model F1A1, but are simulated with different values of SFT at the bottom-hole and flow rate
below 3500 m. L1 (filled cirles) is simulated with a bottom-hole SFT value of 298 ◦C and a
flow rate of 16.9 L/s below 3500 m, and L2 (filled triangles) with a bottom-hole SFT value
of 737.4 ◦C and a flow rate of 34.5 L/s below 3500 m. Right: temperature differences of L1
(hollow cirles) and L2 (hollow triangles) with respect to the synthetic temperature log.
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4.4.3 Impact of inversion constraints

4.4.3.1 The misfit function

So far, the decision function (Eq 4.7) has been defined based on the RMSE to take
the measurement error into account. However, as observed in Figure 4.8, for the joint
inversion of the SFT and the flow loss (model F1A1), the acceptable temperature logs
can locally diverge from the true temperature log by up to 3 ◦C (especially near the loss
zone and at the bottom depth), despite that RMSEthres equals 1 ◦C. Such an observation
may not appear satisfactory but is inherent to the initially selected misfit function
based on the L2-norm metric (hereafter referred to as M1). Given this, a different
evaluation metric (referred to as M2), which is the maximum absolute difference
between the predicted and the true borehole temperature (max(|Tsim−Tmeasure|1,2,...,n),
n is the total number of the sampled logging data) can be adopted in the decision
function. This new decision function is tested on model F1A1 to investigate its impact
on the inversion solutions for the SFT and flow loss. The contour lines depicting the
RMSE (F1A1-M1) and the max(|Tsim−Tmeasure|1,2,...,n) (F1A1-M2) both being equal
to 1.0 ◦C are plotted in the model space (Figure 4.9). It is shown that the solution
space of max(|Tsim−Tmeasure|1,2,...,n) being less than 1.0 ◦C is indeed more confined
compared to that of RMSE being less than 1.0 ◦C. Furthermore, the two extreme
solutions of model F1A1 when applying M1, as discussed in Figure 4.8, are removed
from the solution space after using M2. However, it should be stressed that applying
measurement-wise criterion would require a cautious evaluation of the data quality
for each measurement. If, for instance, the error of a single measurement is higher
than ±1 ◦C, imposing the same type of criterion like M2 in the misfit function can
lead to biased estimates.

4.4.3.2 Prior information for the model space

Prior information is another key factor that could contribute to uncertainty in the
inversion results since it will decide how appropriately the presumed inversion model
represents the unknown true model. In our context, knowledge about the variation of
the geothermal gradient along depth needs to be provided for meaningful temperature
log interpretations. In the present study, the possible change of the geothermal gradient
has been assumed to be directly related to the layout of the geological layers. As such,
the layer thickness, as well as the location of the layer boundaries, serve as constraints
in the estimation of the geothermal gradient (i.e., SFT). The result of model F1A2
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Figure 4.9: Contour lines in the parameter space (bottom-hole SFT and the flow rate below
3500 m) where the following criteria for model F1A1 are satisfied: (1) RMSEthres =1.0 ◦C
(F1A1-M1, black line); (2) the maximum absolute difference between the simulated and the
logged temperature for each measurement is 1.0 ◦C (F1A1-M2,red line). The blue star marks
the true values for the SFT (500 ◦C) and the flow rate (25 L/s).

illustrates that a wrong assumption in the thickness of the geological layers introduces
a bias that leads to shifting the acceptable model regions away from the true region.
This can be evidenced when comparing the black and red contours of Figure 4.6
with regards to the blue star location. We additionally examined a different layer
configuration F2 where the first layer extends to 4000 m (Figure 4.10). Again, the
inversion modeling is performed assuming a single geothermal gradient below 2500 m.
The solutions, as shown in Figure 4.11, move even further away from the true values
of the SFT and the flow rate. It is also worth mentioning that, for a hydrothermal
system, fliud advection or convection, or both, can cause variations in the geothermal
gradient which cannot be predicted by the conductive model (Schilling et al. 2013). It
would be therefore recommended that a comprehensive coupled thermal-hydro model
should be studied to predict the temperature distribution of the target area, constrained
by temperature measurements from boreholes (Athens and Caers 2019).

Finally, including different types of prior information into the inverse model might
also be necessary to limit the boundaries of the model space, especially when dealing
with large uncertainties in the joint estimation of the flow rate and the SFT. In
practice, this can be done by combining the borehole temperature profiles with other
types of borehole measurement data such as flowmeter logs (Molz et al. 1994) that
provide information on the rate of flow along depth, or geophysical surveys such as
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Figure 4.10: The true SFT profiles of formation F1 (black) and F2 (red).
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Figure 4.11: Contour lines for RMSE equals 1.0 ◦C for model F1 (black) and F2 (red) in the
model space of SFT at the bottom-hole and the flow rate below 3500 m, when both assuming
a constant geothermal gradient for the investigated depth interval between 2500 and 4500 m.
The blue star marks the true values for the SFT (500 ◦C) and the flow rate (25 L/s).
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magnetotelluric, gravity, resistivity logs (Hokstad and Tanavasuu-Milkeviciene 2017)
and geothermometry data (Ystroem et al. 2020) that can add additional constraints to
the in-situ formation temperatures.

4.5 Conclusion

In this paper, a data-driven-based inversion method is performed to analyse the un-
certainty of deriving static formation temperatures (SFT) from borehole temperature
logs measured under injection conditions. Specifically, the inversion scheme groups
the predicted temperature logs from the forward modeling step into two categories,
“passing” and “failing”, based on a user-defined misfit tolerance (e.g., root mean
squared error) between the predicted and the true temperature values. A k-nearest
neighbor machine learning model is then trained as a “classifier” that proposes the
most promising sampling points in the model space for each iteration until the optimal
prediction of the boundary between the two categories is achieved. Compared with
deterministic optimization methods that are used to find one optimal set of parame-
ters, the herein applied method allows simultaneous inversion of all relevant model
parameters that lead to model predictions matching equally the predefined quality of
the data fitting.

Our study showcases the method’s application in the assessment of multiple factors
that influence the accuracy of the solutions for the SFT. For example, the predicted
bottom-hole SFT can deviate from the true value by ±2.9%, i.e., ± 14.4 ◦C, when
the interpreted temperature log is measured after six hours of injection at 50 L/s with
a standard error of 1.0 ◦C. More generally, it is found that using temperature data
acquired under relatively smaller injection rates, or after shorter injection durations,
and unarguably, with higher accuracies would improve the quality of the prediction.
Additional case studies indicate that the occurrence of flow loss along the well could
add strong uncertainties in the determination of the SFT due to the thermal compensa-
tion effect between the formation temperature and the flow rate. Hence, integrating
prior information, e.g., from other types of measurements such as flowmeter logs or
geothermometers, into the inversion modeling would help to reduce such uncertainties.
Another option is to consider applying tighter constraints to the misfit between the
predictions and the measurements. However, like any misfit criteria, its choice should
be justified for instance in regards to the quality of the acquired data.
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The current study is based on the assumption that the SFT profile has a piecewise
linear shape corresponding to the structure of geological layers, which is most suitable
for conductive geothermal systems. Under such conditions, the results show that
prior information about the thickness and location depth of the geological layers is
necessary to estimate the SFT. If oversimplified assumptions are made due to a lack
of such information, the search of the solutions in the model space may be strongly
biased towards a wrong direction. On the other hand, for a hydrothermal convection
system where conductive heat flow can be disturbed due to the movement of fluids
in the formation, a piecewise linear-shape SFT may not be applicable. Nevertheless,
a coupled thermal-hydro forward model can still be adapted to the current inversion
scheme.

With this work, we demonstrate the promise of applying machine learning techniques
for efficient borehole data inversion including uncertainty quantification. Besides
the numerical setting of the problem, the performance of any inversion method also
relies on the availability and quality of the input data. As discussed herein, the use
of more sophisticated logging tools such as distributed temperature sensing to obtain
spatially and temporally dense measurements is therefore encouraging. Future work
may involve integrating other types of data into the inversion to help to reduce the
uncertainty in the estimated parameters or to investigate different parameters in the
context of other geophysical applications.
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Chapter 5

Surrogate-based inversion of borehole
logs for formation temperature
determination

This chapter is in preparation as Surrogate-based inversion of borehole logs for
formation temperature determination, Jia W., Fabian N., Emmanuel G., Thomas K.

Abstract

Temperature logs provide valuable information about the formation temperature distri-
bution, which forms the basis for evaluating the potential of a reservoir for geothermal
exploration. This study focuses on inverting temperature logs obtained during fluid
injections to determine the static formation temperature (SFT). The inversion scheme
is based on the Bayesian inference approach–Markov Chain Monte Carlo (MCMC).
To speed up the computational speed of each forward model, surrogate models are
trained using artificial neural networks to replace the original high-fidelity numerical
models. TMCMC simulations are then performed directly on surrogate models. The
inversion workflow is first tested on three synthetic scenarios to validate the proposed
method and investigate the effects of circulation loss and measurement noise on the
prediction of SFT. Results show that the inversion procedure can reproduce the SFT of
a formation with an arbitrary thermal gradient at each depth interval. The occurrence
of flow loss zones can potentially lead to an increase in the errors of the SFT estimates
at depths below the loss zone. Furthermore, noises in the measured data also have
a big impact on the accuracy of predicted SFT. In the second part of the study, the
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inversion approach is applied to temperature measurements from the RN-15/IDDP-2
well drilled in the Reykjanes geothermal field. Therein, the SFT around the well
below 2500 m is estimated jointly with circulation losses at three loss zones. It is
found that the losses can be well constrained from the temperature log, regardless of
different assumptions about the distribution of the geothermal gradient. According
to the results, the well was drilled under almost complete circulation losses (> 90%)
below 3.4 km. On the other hand, estimation of the SFT below 2500 m are subjected to
large uncertainty because of the lack of prior information on the geothermal gradient
distribution (i.e. uniform or varied in depth). According to the present study, the SFT
at the 4500 m is mostly likely to be between 492 ◦C and 551 ◦C, which is comparable
to the published results of other relevant work using different approaches.

5.1 Introduction

Information about the distribution of the initial undisturbed temperature of the sub-
surface (i.e., the static formation temperature, SFT) is one of the key aspects of
geothermal exploration. The most efficient way to obtain such information is to
conduct temperature survey from drilled boreholes. So far, most applied approaches
to determine the SFT have focused on the interpretation of temperature data measured
during the so-called shut-in periods, where the borehole is filled with a static fluid
column. However, applying these methods can face several challenging aspects, such
as the justification of thermal equilibrium condition between the formation and the
fluid (Talalay et al. 2020), the necessity of temperatures corrections to account for ther-
mal disturbances introduced from fluids to the surrounding formation (Bullard 1947;
Andaverde et al. 2005; Bassam et al. 2010; Wong-Loya et al. 2012) and the interfere
of the convective mixing of the fluid which can cause either over- or under-estimation
of the SFT (Luheshi 1983; Wang et al. 2019). Due to the uncertainties inherent in the
physical process, several studies have found significant estimation errors for the SFT
when simplified analytical models were applied due to their unrealistic assumptions
for the drilling phase and incorrect use of linear regression models (Espinoza-Ojeda
and Santoyo 2016; Andaverde et al. 2005). Other challenges come from the economic,
technical, and safety aspects of conducting temperature measurements during shut-in,
especially for very hot and deep boreholes. For example, extra high cost for conduct-
ing measurements over a large time span of shut-in periods; the risk that the recovered
temperatures exceed the limits of measuring devices which are mostly under 300 ◦C
and safety concerns about casing failures (Kruszewski and Wittig 2018).
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On the other hand, multiple studies have been focused on using temperature logs
measured under dynamic injection to assess borehole conditions. One important aspect
is to use temperature measurements to infer flow conditions in the well. Examples for
such kind of application are: Meyzonnat et al. (2018) used high-resolution temperature
measurements to characterize borehole inflow intensities and provide information
about the distribution of hydraulic properties with depth; Vidal et al. (2019) identified
the occurrence and the positions of fracture zones in wellbores; Klepikova et al.
(2011, 2014) applied numerical modeling method to determine the inflow rate at the
location of the fractures. The success of these applications (mostly in the field of
geo-hydrology) also encourages the use of temperature logging data to characterize
the circulation loss, which is very commonly occurred during drilling in geothermal
exploration wells (Xu et al. 2019; Allahvirdizadeh 2020).

In a previous work, Wang et al. (2021) performed a numerical study on the uncertainty
in estimating the SFT from temperature measurements. The initiative for the study
stems from the RN-15/IDDP-2 deep geothermal well drilled as part of the Icelandic
Deep Drilling Project (IDDP) in search of supercritical resources at depth deeper
than 4 km to increase power generation in the Reykjanes field. To evaluate the
energy potential of the geothermal well, knowledge of the formation temperature
is a prerequisite. Temperatures measured in the well (maximum 426 ◦C) confirm
the extremely hot downhole environment but are expected to be still far from the
thermal equilibrium state (SFT) because the well was under injection conditions
during the logging to cool the casing and measuring equipment (Friðleifsson et al.
2020). During drilling, severe circulation losses occurred at several depths below
3 km, but the amount of these losses was unclear. Given the acquisition of shut-in
temperature data is a difficult endeavor for such a hot geothermal well, Wang et al.
(2021) proposed the analysis of temperature data measured from injection conditions
for SFT determination. Therein, a deterministic method was employed to search all
possible solutions in the parameter space that result in the same discrepancies between
the model prediction and the true borehole fluid temperatures. These discrepancies
are presumably associated with several uncertainty factors, such as different injection
conditions (e.g., flow rate and injection duration), flow loss zones, measurement errors,
lack of prior information, etc. However, a generic approach to reduce the uncertainty
of the model parameters (i.e., SFT) by conditioning on temperature measurements is
still missing. To bridge such a gap, a Bayesian probabilistic approach is applied in
this study to solve the SFT by inverting injection temperature logs.

Over the past decades, the Bayesian inversion framework has gained great popularity



Chapter 5. Surrogate-based inversion of borehole logs for formation temperature
determination

92

due to its advantages in the possibility of introducing prior knowledge into the analy-
sis, better accuracy when facing noisy data, and the intuitiveness and straightforward
interpretation of results (Makowski et al. 2019). This study focuses on the mainstream
Bayesian inference approach-Markov chain Monte Carlo (MCMC) which has been
widely used to solve hydrological (Smith and Marshall 2008; Raje and Krishnan 2012;
Sun et al. 2013) and geophysical Hong and Sen (2009); Hansen and Cordua (2017);
Grana and Della Rossa (2010); Spikes et al. (2007) inverse problems. However, a
challenge often encountered when applying MCMC is the large number of model eval-
uations required, especially when the dimension of the model increases or when facing
strongly nonlinear problems. In case a single forward model is already CPU intensive,
then the computational cost of MCMC simulation will become prohibitive.

To alleviate the computational burden, one can take advantage of surrogate models. A
surrogate model (also named reduced-order model, proxy model, low-fidelity model,
etc.) can be viewed as a simple analytical model that mimics the input/output behavior
of complex systems (Smith and Marshall 2008). Compared to the high-fidelity model,
a surrogate model can obtain similar (while less accurate) model outputs at a much
lower computational cost. In this study, the surrogate models are constructed using
artificial neural networks (ANN) which has been widely used for system response
prediction, classification, and function approximations in various fields of studies.
Due to its high capability of solving non-linear and high-dimensional problems,
ANN has also been extensively employed in the study of subsurface systems. For
example, Zhou et al. (2019) predicted the production temperature of an enhanced
geothermal system, Bassam et al. (2010) derived relationships between the SFT and
the transient borehole temperatures during thermal recoveries using field temperature
database, Pan et al. (2014) optimized the CO2 storage in a saline aquifer and achieved
satisfactory results compared with the solutions obtained by the computationally
exhausted simulator.

The structure of this manuscript is organized as follows. First, the concept of artificial
neural networks and the Bayesian inversion framework are introduced. Then the
inversion workflow is performed on synthetic temperature logs that are generated
with different assumptions about the accuracy of the logging data and the occurrence
of circulation loss zones in the well. The influence of measurement error and flow
loss on the estimation of SFT is then discussed accordingly. Next, the approach is
applied to a real-world case where an injection temperature log was used to estimate
the SFT along with the amount of loss at those flow loss zones below 3 km for the
RN-15/IDDP-2 well. For this well in particular, the SFT below 2500 m is already
known (Chapter 5.4.2). Without knowing how the SFT profile will continue to develop
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below 2500 m, two different assumptions are made for the distribution of geothermal
gradient at depth. One is that the temperature gradient is constant; the other is that
the formation consists of multiple layers, where the thermal gradients are constant
within each layer but may vary between the layers. Finally, some discussions and
conclusions are provided in Chapter 5.5.

5.2 Method

The inversion scheme consists of two sequential steps, namely, surrogate modeling
using ANN and the MCMC simulation. These two steps are performed using the open
source code RAVEN, which supports different types of machine learning techniques
developed internally and implemented via the external Python library–scikit-learn
(Alfonsi et al. 2016). Each steps are described in detail below. All data set used to
build the surrogate models are generated by running an in-house borehole simulator
(the so-called high-fidelity model), developed based on a multiphysics simulation
framework MOOSE (Gaston et al. 2009). Details of the simulator and the solved
system equations can be found in Wang et al. (2019).

5.2.1 The artificial neural network

The first step of the inversion is to create a surrogate model using ANN. An ANN
model can be considered as a mathematical model of an arbitrary mapping between
two spaces. It consists of several layers with each layer containing a number of unit
cells called neurons. Each layer is an intermediate step in successive transformations
between the input and output space and has an associated transfer function, and each
neuron has an associated bias. By optimizing the free parameters of the mathematical
model, during a so-called training process, the mapping can be modified to represent
the desired relation.

We adopt the most widely used ANN, the so-called multi-layer perceptron (MLP)
which is a feed-forward neural network trained by the error back-propagation learning
algorithm. Figure 5.1 shows an MLP that consists of input, hidden and output
layers. The neurons of each layer are connected by three layers of free parameters
(weights and bias) that are represented by lines. In our context, the ANN model is
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trained to predict the temperature distribution of the borehole fluid at the time of the
measurement. The neurons in the input layer represent the parameters that control the
borehole temperatures, i.e., the SFT (or the geothermal thermal gradients) at depths
and the flow rate(s) below the loss zone(s). The output layer contains N number of
neurons representing the temperatures at different measuring depths. As such, the n-th
borehole temperature Tn can be expressed as a function of both the input parameter x,
the weight (w), and the bias (b) as follows:

Tn = g

[
K

∑
k

w(3)
kn h(2)k +b(3)n

]
, (5.1)

where g(·) represents the so-called activation function for the output neurons. Common
choices for the activation functions are the logistic and hyperbolic tangent functions.
We use the latter in this work, because symmetric sigmoids, such as the hyperbolic
tangent, often display better convergence properties during network training. w(3)

kn are
the weights applied to the third layer. h(2)k is the k-th component of the K neurons on
the second hidden layer that can be derived by a series of matrix multiplication and
transformation using the activation function g(·):

h(2)k = g

[
J

∑
j

w(2)
jk g

[
I

∑
i

w(1)
i j xi +b(1)j

]
+b(2)k

]
, (5.2)

where w(1)
i j and b(1)j are the weights and biases applied to the first hidden layer, and

w(2)
jk and b(2)k are the weights and biases applied to the second hidden layer, xi is the

i-th neuron of the input layer.

The number of neurons on the hidden layers can affect the performance of the
ANN model. Several methods can be adopted to determine the appropriate num-
ber, such as trial-and-error, systematic hyperparameters tuning using grid search and
random search (Pontes et al. 2016), or the empirical-formula approach (Bowden et al.
2005).
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Figure 5.1: A three-layer feed-forward Multilayer Perceptron (MLP) model. I number input
neurons are feed into the network. The two hidden layers which contain J and K number of
neurons, respectively, perform nonlinear transformations of the inputs (i.e., by multiplying
their associated weights, w) to the N number of outputs.

In surrogate modeling, the ANN model is first trained to have prediction capability
using the training set and then tested on newly generated samples, called the test set.
If the prediction accuracy is not within an acceptable range, then the training data or
the surrogate model must be modified for training again until a satisfactory model is
developed. The root mean square error (RMSE) is used to evaluate the accuracy of
temperature prediction, which is calculated as follows:

RMSEn =

√
1
M

M

∑
m=1

(Tp,n
m−Tt,n

m)2, (5.3)

where RMSEn is the RMSE value for the temperature at the n-th measuring depth,
M is the number of samples of the training or test data set, the subscripts p and t

denote the predicted temperature by the surrogate model and the true temperature (i.e
simulated by the borehole simulator), respectively.

5.2.2 MCMC method

Herein, the borehole thermal model can be expressed using the form:

TTT obs = T M(XXX)+ εεε, (5.4)
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where T M(·) denotes the high-fidelity thermal model that predicts the borehole
temperatures given input parameters XXX ∈ RI×1. Since a large number of evaluations
of T M(XXX) are needed in the MCMC simulation, T M(·) is replaced by the ANN
surrogate model from the previous step. TTT obs ∈ RN×1 is a vector for the borehole
temperature measurements with random error εεε ∈ RN×1. Our prior knowledge about
XXX is represented by p(XXX). According to Bayes’ theorem, such prior knowledge can
be updated with the observed data, TTT obs, by considering the following:

p(XXX |TTT obs) =
p(XXX)p(TTT obs|XXX)∫
p(TTT obs|XXX)p(XXX)dXXX

∝ p(XXX) ·L (XXX |TTT obs), (5.5)

where p(XXX |TTT obs) is the posterior distribution, L (XXX |TTT obs) is the likelihood function,
and

∫
p(TTT obs|XXX)p(XXX)dXXX is a constant term which is referred to as marginal likelihood.

Assume that the measurement errors are independent and follow normal distribution,
i.e., ε ∼ N(0,σ2), the log likelihood function can be given by:

L log(XXX |TTT obs) =−
N
2

log2π−
N

∑
i=1

(TTT obs,i−T Mi(XXX))2

2σi
2 −

N

∑
i=1

logσi, (5.6)

where i indicates the i-th component of the measurement. If the distributions of
measurement errors are not known, the following form of the log likelihood function
can be used (Vrugt 2016):

L log(XXX |TTT obs) =−
N
2

log{
N

∑
i=1
|TTT obs,i−T Mi(XXX)|2}, (5.7)

For non-linear, high-dimensional problems, p(XXX |TTT obs) can not be solved directly and
is often approximated by numerical techniques, e.g. MCMC.

MCMC is a stochastic simulation method where samples are generated consecutively
from a so-called proposal distribution and that the current sample depends only on
the states of the previous samples. After a sufficient number of steps (burn-in period),
the chain will have a unique stationary distribution, which is the demanded posterior
distribution of model parameters. In the following, the implementation steps of
MCMC using the Metropolis-Hastings algorithm is described:

1. Generate an initial model with XXX0 from th prior distribution p(XXX).

2. Continue to generate samples such that each current sample, XXXcr, is drawn from
a proposal distribution q(XXXcr|XXX pr) conditioned on the previous sample XXX pr.
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3. The acceptance rate which determines the probability that we accept XXXcr is
calculated as follows:

r = min
[

1,
p(XXXcr|TTT obs)

p(XXX pr|TTT obs)

]
. (5.8)

4. Compare r with a random number, u, draw from uniform distribution, i.e
u∼U(0,1). If u < r, XXXcr is accepted, otherwise, XXXcr is rejected.

5. Repeat steps 2-4 until the maximum iteration number is reached.

5.3 Analysis of synthetic scenarios

Firstly, synthetic numerical models are designed to test the capability of the proposed
inversion method. In the general model setup (see Figure 5.2a), a 2-D domain
consisting of a borehole with a radius of 0.11 m and a non-permeable formation with
a vertical extension of 4500 m and lateral of 50 m is simulated. The formation is
considered to have five layers with the same thickness (900 m). It should be noted that
the layers are subdivided according to the geothermal gradient, hence they are referred
to as "geothermal layers" in this study. The SFT is applied as both the initial condition
and the Dirichlet boundary condition at the right edge of the formation. Each layer
has an arbitrary geothermal gradient, α . Herein, we assume the five thermal gradients
are equal (0.06 ◦C/m, Figure 5.2b).

Three scenarios are then designed to investigate the impacts of measurement noises
and the presence of flow loss zones on the estimation of SFT. In the reference case, no
flow loss occurs in the borehole and the temperature log is measured without any error.
In case 1, no flow loss occurs and the temperature measurements have random errors
that follow a normal distribution (i.e. ∼ N(0,1) ◦C), and in case 2, 20% of the flow is
lost from the well to the formation at 3500 m and the temperature log is measured
with no error. For each scenario, a synthetic temperature log is simulated with an
injection flow rate of 50 L/s at the well-head after an injection duration of three hours.
Forty data points are sampled for each log, these logs are presented in Figure 5.2c.
Next, the inversion procedure is performed to estimate the relevant parameters, i.e.,
the five thermal gradients for all cases and the flow rate below the loss zone for case
2.
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Figure 5.2: (a) Schematic of the simulation set-up with the boundary and initial conditions.
Depends on the scenario, a flow loss of 20% may occur at 3500 m. (b) The SFT profile
when assuming the five layers have the same thermal gradient. (c) Synthetic temperature
logs for different scenarios: no flow loss occurs and the temperature log is measured with no
error (reference, solid line), no flow loss occurs and temperature measurements have random
error of ∼ N(0,1) ◦C (case 1, black dot line), 20% flow is lost into the formation and the
temperature log is measured with no error (case 2, red dash line).
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5.3.1 Surrogate models

Two surrogate models are trained for the three scenarios described above. In one
model (S1), the input layer of the ANN consists of the five neurons which represent the
thermal gradients. In another model (S2), one additional parameter – the remaining
flow rate ratio below 3500 m – is added to the input layer. To generate training data for
the surrogate models, the borehole simulator is run repeatedly to predict the borehole
temperatures from different combinations of input parameters (five thermal gradients
and the remaining flow below 3500 m) using the Latin Hypercube sampling (LHS)
technique, which is more efficient and less time consuming to achieve sufficient model
accuracy compared to the conventional Monte Carlo sampling (Atangana 2017). The
same procedure is repeated for generating the test data, only that the size of the test
data is 1/4 of the training data.

As the accuracy of a surrogate model can be affected by the size of the training
sample and the number of inputs, a sensitivity analysis of the variation of the RMSE is
performed. The maximum RMSE for the temperature predictions at different depths
in the test set is plotted against the size of the training sample on a semi-logarithmic
grid (Figure 5.3). The minimum training sample size is 100. Not surprisingly, the
accuracy of each surrogate model increases with increasing sample size. S1 is a
simpler model to train, as the maximum RMSE is already quite low (0.08 ◦C) using
training 100 samples. Therefore, it is decided that no further analysis needs to be done
for S1. To achieve the same accuracy as S1, 700 training samples are required for
S2. This indicates that the change of flow rate along the borehole (i.e., due to drilling
loss) could cause much more difficulties when predicting the temperature response
in the borehole using a simpler (compared to the high-fidelity model) mathematical
model. In this study, the finally determined training sample size for S1 and S2 are
100 and 700, respectively. After tuning the hyperparameters, two hidden layers with
each layer having the same number of neurons are adopted for both models, and the
number of neurons on each hidden layer are 20 for S1 and 30 for S2.
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Figure 5.3: Sensitivity of the maximum approximation error (RMSEmax) in the test set to the
training sample size for model S1 and S2.

5.3.2 Inversions of temperature logs

The SFT profile for each designed case is then estimated by performing MCMC
on its corresponding surrogate model. In fact, it is the thermal gradients for the
five layers to be predicted. For the MCMC process, normal distributions (whose
standard deviation can control the closeness of adjacent samples) are assumed for the
proposal probabilities of the unknown parameters. The standard deviation of these
proposal probability functions are selected to ensure that the acceptance rates range
between 25–45% to achieve good convergence rates for the parameters (Albert 2009;
Bedard 2008). Convergence is considered to be reached when the resulting posterior
distribution would not modify when adding more samples. In the end, 5e5 samples
are drawn from the chain with the first 1e5 samples being discarded (burn-in length).
The marginal posterior probability distributions (PPDFs) of the five thermal gradients
are transformed to the marginal PPDFs of the equivalent SFT values at the bases of
the five layers.

Results for the reference case are displayed in Figure 5.4. It can be seen, when
the inverted temperature data are accurate and the flow rate is constant along depth
(i.e., no loss occurs), the 95% confidence interval of the PPDF of each SFT estimate
captures the ground truth (real SFT value). The maximum prediction error (i.e., the
deviation of the left and right bound with respect to the true SFT) is found to be less
than 0.3 ◦C, which is below the typical errors of temperature measurement devices
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(> 0.5 ◦C) (Cao et al. 1988; Förster 2001). However, once temperature data with
random noises are used to invert the SFT (case 1), the 95% confidence zone becomes
much wider for all the SFT estimates than those in the reference case (figure 5.5). The
quality of the prediction in each layer can also be different. The uncertainty range of
the confidence interval varies between about 29 ◦ and 57 ◦C. For the SFT estimate
at each layer base, the maximum estimation error ranges from 16.6 ◦ to 47.2 ◦C and
the minimum error from about 0 ◦ to 16 ◦C. In addition, bias in each estimate can be
found as the maximum PPDF solution (optimum estimation) deviates from the true
solution (the deviations are between 6 ◦C and 33 ◦C). Furthermore, the noises lead to
different biases in the best estimated SFT values (highest posterior probability) for
different depths. This suggests that a deterministic approach such as least squares
fitting should be used with caution when inverting temperature measurement data,
since the SFT profile leading to the least fitting error may be very different from the
truth. For example, the best estimated SFT profile has a maximum local prediction
error of 39.4 ◦C (percent error: 14%) which occurs at the bottom-hole depth in case
1.

Figure 5.4: Marginal PPDF for the SFT (sft1–sft5) at the base of each layer in the reference
case. The true value and the 95% confidence interval are marked with the black and green
dash line, respectively.
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Figure 5.5: Case 1: marginal PPDF for the SFT at the base of each layer.

Since case 2 has one more estimation parameter (the remaining flow rate below 3500
m) compared to the other two cases, the inversion procedure is performed using S2.
Figure 5.6 displays the marginal PPDF of each parameter. Compared to the reference
case, the 95% confidence interval for the SFT value at the bottom depth of each layer
are generally wider, especially for the last two layers. Nevertheless, the accuracy of
the estimates at the base of each layer is still satisfactory. For the upper three layers,
the prediction errors are within 0.5 ◦C. Uncertainties in the SFTs of the last two layers
are slightly larger: the maximum prediction error of the 95% confidence interval is
about 1.0 and 2 ◦C for the SFT at the base of the fourth and fifth layer, respectively.
Finally, the remaining flow rate below the loss zone is also accurately estimated: the
maximum error in the confidence interval is only 0.2 L/s (0.5%). Considering that the
two surrogate models, S1 and S2, have almost the same accuracy, the differences in
the four estimates between the case 2 and the reference case are probably not due to
the approximation error of the surrogate models, but are related to the presence of the
flow loss zone, which locates within in the fourth layer. Because both flow rate and
formation temperature will affect the borehole temperature, but their impacts can be
compensated. Namely, an increased borehole temperature can be caused by either a
reduced flow rate (i.e. more time for heat exchange with the surrounding formation)
or an increased formation temperature. Conversely, a decreased well temperature due
to an increased injection rate may be offset by a decreased formation temperature. As
a result, a wider range for the combinations of flow rate and SFT can provide very
close fitting accuracy of the logging data. Therefore, for depths below the loss zone,
larger uncertainties in the SFT estimates are expected. Indeed, according to Figure



Chapter 5. Surrogate-based inversion of borehole logs for formation temperature
determination

103

5.6, the marginal PPDFs for the last two layers are wider than those for the upper
three layers.

Figure 5.6: Case 2: marginal PPDF for the SFT at the base of each layer and the remaining
flow rate after the loss zone at 3500 m.

5.4 Application to the temperature log from the RN-
15/IDDP-2 well

5.4.1 The RN-15/IDDP-2 well

In this section, the inversion workflow is applied to a real-world case where the SFT
is to be estimated for the exploration well RN-15/IDDP-2 located in the Reykjanes,
Iceland. The Reykjanes geothermal system is characterized by convective heat trans-
port in the reservoir down to a depth of about 2500 m, apart from heat conduction
at some shallower depths (Franzson et al. 2002; Friðleifsson et al. 2020). This is
seen from temperature profiles of several wells measured under the steady state of
thermal recoveries. Figure 5.7a (red line) shows the SFT profile for the old RN-15
well derived from direct temperature measurements during a maintenance stop in
2010 (Jónsson et al. 2010). Evidently there is a large section of the formation in which
convection exists, lifting high-temperature fluids close to the surface and influencing
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the near-surface gradient. For example, the formation temperature increases rapidly
to 270 ◦C at 1 km depth. However, it increases by only 17 ◦C at 2500 m depth.
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Figure 5.7: (a) The SFT profile in the upper 2500 m around the RN-15 (red line); and
temperature log of RN-15/IDDP-2 measured on January 3rd , 2017 (black line) with circulation
loss zones indicated. (b) The flow history at the well-head from the start of drilling to the end
of the temperature logging. The upper zoom plot shows the flow history on the day of the
logging. (c) The change of the temperature measuring depth with time (0 equals when the
logging starts) during the downward trip of logging device.

The drilling phase (from August 11th, 2016 to January 25th, 2017) of the RN-15/IDDP-
2 involves deepening the RN15 (2500 m deep) into a new well - IDDP-2 - with a final
depth of 4659 m. The first temperature log that ran almost to the bottom-hole depth
was conducted on January 3rd , 2017 (on workday 146). The highest temperature
measured was 426 ◦C at the bottom of the well at a fluid pressure of 340 bar, indicating
supercritical reservoir conditions. However, it is unlikely that these measurements
reflect the true formation temperature because they were obtained under injection
conditions and the formation temperature was perturbed from the initial condition.
Several loss zones (kick-off points) were detected from this temperature log, the
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largest loss zone was located at around 3400 m and several minor loss zones were
found at 4200 m, 4375 m, and 4500 m (Weisenberger et al. 2017). In the case study,
this temperature log was inverted for estimating the SFT around the RN-15/IDDP-
2 until 4500 m (Figure 5.7a, black line). The thermal modeling of this log takes
into account the well geometry and completion which are given in Table 5.1. The
highly fluctuated injection flow rate at the well-head was averaged daily for working
days 1-145 and every ten minutes on the day of logging (Figure 5.7b). Unlike the
instantaneous recording at all depths for the synthetic temperature logs in Chapter
5.3, the measuring of this log lasted about three hours because of the tripping of
the logging device. Therefore, the simulation also incorporated the spatial-temporal
function for the temperature recording (Figure 5.7c).

Depth (m) Casing Diameter (")

84.4 Surface casing 22 1/2

292.8 Anchor casing 18 5/8

793.8 Production casing 1 13 3/8

2932.4 Production casing 2 9 5/8

4563 Perforated liner 7

Table 5.1: Geometry and completion of the RN-15/IDDP-2 well (referenced to the ground
surface)

5.4.2 Estimation of the SFT below 2.5 km and fluid losses

In the following, the SFT between 2500–4500 m as well as the amount of the cir-
culation loss (in percentage) at three depths (3400 m, 4200 m, 4375 m) are jointly
estimated. Since there is no prior knowledge about the shape of the SFT below 2500
m, two different hypotheses about the SFT profile are made and the inversion results
are then compared to investigate the impact of different model assumptions. In one
hypothesis, the thermal gradient is constant. In another, the formation consists of
multiple layers where the thermal gradient of these layers can be different from each
other. For simplicity, the layers are considered to have equal thickness and the number
of these layers is assumed to be five in the present investigation.
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5.4.2.1 Surrogate models

As confirmed from the previous synthetic study, th accuracy of the surrogate model
depends both on the complexity of the problem (number of input parameters) and
the number of samples used to train the model. To reduce the computational cost of
obtaining a sufficient number of training samples, it makes sense to remove those
unrealistic ranges of parameter values during the sampling phase and make the prior
more informative. According to Wang et al. (2019), the magnitude of change in
the thermal gradient downstream of a zone with flow loss can be very sensitive to
the relative loss ratio, defined as the ratio between the amount of flow lost at the
loss zone and the amount of flow above the loss zone. Therefore, pre-selection of
plausible ranges for the amount of flow loss can be made relatively easily by visual
inspection of thermal gradients from temperature measurements. As an example, 200
prior model realizations are generated using LHS. The distribution of the simulated
borehole temperatures suggests that the prior range of the relative loss at 3400 m can
be set between 80% and 100% (Figure 5.8). Referring to the reported geothermal
thermal gradient values in Iceland (Flóvenz and Saemundsson 1993; Kranz 2006), the
prior distribution of geothermal gradient of each layer is assumed to be between 0 and
200 ◦C/km.

Because of the different hypotheses we have about the distribution of the thermal
gradient with depth, two groups of forward simulations, one with four parameters
and the other with eight parameters, are generated to train two surrogate models,
M1 and M2, respectively. For both surrogate models, the input layer contains three
neurons representing the three relative loss ratios at 3400 m, 4200 m, and 4375 m.
In addition, the input layer of M1 has one more neuron representing the thermal
gradient between 2500 and 4500 m. M2 has five additional neurons, representing the
thermal gradients of the assumed five layers, in its input layer. The output layer in both
models contains forty-four neurons which are the measured borehole temperatures at
forty-four different depths.
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Figure 5.8: 200 prior realizations of borehole temperature profiles and the observation tem-
perature log (logobs, red line). The profiles are shown in different colors corresponding to
four different ranges of the relative flow loss at the first loss zone (3400 m): > 90%, 80-90%,
70-80%, < 70%.

Again, a sensitivity analysis is performed to determine the number of training samples
that can be used to achieve sufficient accuracy of the surrogate model. The minimum
number of samples tested to train M1 and M2 are both 1000. According to Figure 5.9,
M1 is more accurate than M2 when the number of training examples is less than 4000.
This is to be expected because M2 has twice as many input variables as M1, so it is
more difficult to predict the system response for M2 compared to M1. However, the
difference in model accuracy seems to be the most significant when the sample size is
smaller than 2000 (the maximum difference is around 1.3 ◦C). As the training sample
size increases, such difference decreases until it becomes very small when the training
samples exceed 4000. This suggests that the difficulties in predicting temperatures at
different depths for the surrogate model caused by temperature gradients varying with
depth would decrease as the size of the training sample increases.

M1 and M2 are trained until the RMSE of the temperature prediction for each measur-
ing depth drops below 0.5 ◦C. The reason for choosing 0.5 ◦C as the threshold value is
that it is smaller than the typical errors of the temperature measuring devices (Förster
2001). To obtain an RMSE less than 0.5 ◦C, M1 and M2 need to use at least 8000
training samples, which are significantly larger than those required to train S1 and S2,
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which are less than 100 (see Figure 5.4). Such observation seems to contradict the fact
that S1 and S2 have more input variables (i.e., input neurons) than M1. This could
be due to that the training data for M1 and M2 are provided by the RN-15/IDDP-2
thermal model, which is more complex than the synthetic thermal model introduced
in Chapter 5.3 (i.e., due to the varying injection flow rates and different measuring
times for temperature at different depths, a higher number of flow loss zones, etc). In
particular, the three flow loss variables in M1 and M2 may cause the cost of training a
relatively accurate model to increase significantly compared to S1 and S2. This can be
inferred from the previous finding that S2 requires approximately seven times the size
of the training sample to achieve the same accuracy as S1 due to the presence of only
one additional flow loss variable. The maximum values of RMSE for temperature
prediction are 0.49 ◦C for M1 and 0.50 ◦C for M2, whereas RMSE values for most
depths are less than 0.1 ◦C. Two hidden layers are used for both M1 and M2. After
tuning using grid search, the final number of neurons per hidden layer was set to 60
and 70 for M1 and M2, respectively.

103 104

training sample size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
SE

m
ax
 in

 te
st
 se

t

M1
M2

Figure 5.9: Sensitivity of the maximum approximation error (RMSEmax) in the test set to the
training sample size for model M1 and M2.

5.4.2.2 Results of the SFT and flow loss estimates

In the MCMC simulation, the prior distributions of the estimated parameters are
uniform and consistent with their prior distributions in the surrogate modeling step
(Chapter 5.4.2.1). A total of 8e5 samples are generated with the first 2e5 samples
being discarded in the MCMC simulation for both models. Gaussian-type proposal
distribution functions are adopted and a final acceptance rate of 34% is achieved
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for both MCMC simulations. It should be noted that, measurement errors in the
temperature log are not considered in the inversion procedure.
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Figure 5.10: The best-fit temperature log predicted by the surrogate model M1 based on the
single-layer assumption ((a), blue line) and the surrogate model M2 based on the five-layer
assumption ((b), green line). The black dots and the arrows in (a) and (b) represent the
measured temperatures and the location of three circulation loss zones, respectively.

The final PPDFs for the two models can be found in Appendix (Figure A.1 and Figure
A.2). For the sake of an easier interpretation of the results, the inversion parameters
(geothermal gradients and the relative flow losses) are converted to the corresponding
SFT value at the base of each thermal layer and the accumulated loss (ALS) at each
loss zone. In addition, the mean and the 95% confidence interval as well as the optimal
estimate (maximum likelihood) for each parameter are summarized in Table 5.2. The
temperature logs predicted by M1 and M2 using the optimal parameter values at
depths between 2500 m and 4500 m are also shown in Figure 5.10 (blue line for
M1 and green line for M2). The RMSE values for these two logs are 1.53 ◦C (M1)
and 1.14 ◦C (M2) compared to the measured log (black dots); the RMSE values are
0.12 ◦C (M1) and 0.07 ◦C (M2) compared to their corresponding temperature logs
simulated by the high-fidelity numerical model.

As shown in Table 5.2, the 95% confidence intervals of the estimates for the three
accumulated losses in both models are quite narrow: the width of the confidence
interval for each flow loss is less than 1%. Also, the difference in the upper and lower
bound of the interval for each flow loss is within 0.4%. These indicate that the three
flow losses can be well constrained by temperature measurement despite different
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assumptions for the geothermal layers. After averaging the results of the two models,
the optimal estimates for ALS1, ALS2, ALS3 are about 90.7%, 94%, and 98.6%
respectively. On the other hand, the uncertainty in the SFT estimate for both models
can be significant and vary at different depth (Figure 5.11). For example, the width of
the 95% confidence interval of the SFT in the single-layer model increases linearly
with depth. This could be due to an artificial effect caused by the strong assumption
that the SFT profile is linear. However, in the five-layer model, the width of the 95%
confidence interval become narrower after the second layer. This could be linked to
the presence of the first loss zone (at 3400 m) that locates in the third layer. Since the
flow rate decreases significantly after 3400 m (more than 90% has been lost into the
formation), the impact of the high-rate injection on the borehole temperature becomes
much less dominant. Meanwhile, the borehole temperature becomes more sensitive to
the formation temperature and therefore can better constrain the SFT. According to
the best-fit SFT profile, the convective zone with a near-zero geothermal gradient in
the upper 2500 m is likely to extend within the first layer. From 2900 m to 4100 m
(from the top of the second layer until to the bottom of the fourth layer), the thermal
gradient becomes 0.13-0.19 ◦C/m. Below 4100 m, the gradient decreases almost to
zero.
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Figure 5.11: Prediction results of the two models: the optimal SFT profile (single-layer
model: black dash line; five-layer model: red dash line); 95% confidence interval of SFT
(single-layer model: blue shaded; five-layer model: green shaded); 95% confidence interval of
the accumulated flow loss ratio (%) at 3400 m, 4200 m and 4375 m with the optimal estimate
marked using a vertical tick (single-layer model: magenta horizontal line; five-layer model:
green horizontal line. For better readability, the lines are shifted vertically away from the
exact depths (marked with black stars) of the loss zones.

It should be mentioned that the assumptions about the distribution of the geothermal
gradient underlying the single- and five-layer model are not verified because no such
prior information is available for the investigated geothermal site. In fact, they are
only adopted to test the effects of different prior information on the result of the
SFT prediction. According to the present study, the maximum difference in the 95%
confidence interval of the SFT estimate between the two models is about 70 ◦C and
occurs at 3300 m (Figure 5.11); the SFT at 4500 m is most likely to be between
around 492 ◦C and 551 ◦C. The temperature field around the RN-15/IDDP-2 has
also been investigated by others using different approaches. Hokstad and Tanavasuu-
Milkeviciene (2017) adopted Bayesian inversion using the multi-geophysical data
collected during the drilling and their results suggest that the formation temperature at
4500 m is 535 ◦C (± 50 ◦C). Tulinius (2017) applied an analytical method (i.e., the so-
called Horner-plot) to correct the disturbed temperature measurement for determining
the SFT, their estimation for the in situ formation temperature at 4565 m is in the
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range 536–549 ◦C. These results also appear to be comparable to those of the current
study.

Models Parameter Mean (◦C or %) 95% confidence interval (◦C or %) Optimal

sft_bh 524.4 501.5 – 551.2 529.5

single-layer ALS1 90.6 90.3 – 90.9 90.5

ALS2 94.2 93.8 – 94.6 94.1

ALS3 98.6 98.3 – 98.9 98.5

sft1 304.1 287.0 – 340.0 289.6

sft2 352.4 324.7 – 380.1 344.6

sft3 425.3 399.5 – 451.7 423.8

five-layer sft4 498.2 473.2 – 520.8 503.6

sft5 511.7 492.1 – 533.1 504.9

ALS1 90.8 90.3 – 91.3 90.8

ALS2 94.0 93.6 – 94.4 94.0

ALS3 98.6 98.4 – 98.9 98.6

sft_bh is the SFT at bottom-hole depth in the single-layer model, sft1-sft5 are the SFT estimates at

the base of the five layers in the five-layer model. ALS1-ALS3 are the three accumulated flow losses

(in %) at 3400 m, 4200 m, and 4375 m, respectively.

Table 5.2: Summary of the mean, 95% confidence range as well as the optimal estimation of
each parameter in the single-layer and five-layer model.

5.5 Discussion and Conclusion

In the inversion scheme used in this study, the MCMC simulations are performed
with surrogate models trained with an artificial neural network instead of numerical
thermal models. In this way, the computation time for each MCMC simulation can be
significantly reduced. For example, a forward calculation performed by the borehole
simulator takes 105∼188s on a local computer with four cores, while the surrogate
models take only 0.08∼0.1s. Compared to inversion modeling using numerical mod-
els, the surrogate-based approach is expected to improve the computation efficiency by
1300∼1800 times. Moreover, the power of surrogate modeling can be much more sig-
nificant in solving large-scale, highly nonlinear multiphysics problems, such as those
often encountered in geoscience and reservoir engineering. This is mainly because the
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efficiency of high-precision numerical models is still severely limited by memory and
storage requirements (e.g., number of time steps and mesh refinement), the robustness
of solution algorithms (e.g., convergence rate and discretization requirements), and
complexity of the problem under study (dimensionality and nonlinearity). In contrast,
surrogate models, once trained, can evaluate low-fidelity functions on the fly at any
point of the model space. Therefore, they are more advantageous in terms of both
speed and memory efficiency.

A cumbersome challenge with any surrogate modeling approach is the presence of
surrogate approximation error (i.e., the difference between the high-fidelity and the
surrogate model output), which can later introduce some intrinsic bias into the MCMC
inversion step. In this study, the errors of the surrogate models are all below 0.5 ◦C
and less than the standard errors of temperature measurement instruments. Therefore,
we neglect the intrinsic errors of the surrogate models in the MCMC modeling step.
However, the achieved accuracy of a surrogate model may sometimes be limited, e.g.,
due to insufficient data available for training. In such cases, it can be necessary to take
into account the approximation error of the surrogate model. Several methods have
been proposed to address this problem. For example, Laloy et al. (2013) proposed
a so-called two-stage MCMC simulation (i.e., in the first stage, the parameter space
was sufficiently explored with the surrogate model, and in the second stage, the
high-fidelity model was evaluated for correction). Another rather simple approach is
to incorporate the surrogate approximation error (i.e., RMSE) directly into the error
covariance matrix of the likelihood function in Eq.5.6 (Xu et al. 2017; Zhang, Zheng,
Chen, Wu and Zeng 2020).

The proposed inversion method is applied to evaluate formation temperature in a
thermal equilibrium condition (SFT) by inverting borehole temperature measurements
obtained specifically under injection or cooling conditions, since these measurements
are more readily available than under thermal recovery (shut-in) conditions. In
synthetic test cases, results show that the method is very successful in predicting
SFT profiles, provided that both the borehole temperature data and the surrogate
model are accurate. If there is a flow loss zone in the borehole, the SFT estimation
error at depths below the loss zone is likely to increase. In addition, noises in the
measurement data can significantly affect the quality of the SFT estimates. In a test
scenario where measurements have Gaussian noises, the maximum possible error of
the predicted SFT at depth is between 16.6 ◦C and 47.2 ◦C in the 95% confidence
interval. Therefore, high-quality temperature data should be used to obtain more
reliable estimation results.

In a real-world example, the SFT is jointly estimated with three flow losses for depths
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greater than 2500 m for the RN-15/IDDP-2 well in Reykjanes (Iceland). As mentioned
in Friðleifsson et al. (2020), the Reykjanes geothermal system exhibits both conductive
and convective heat transport behavior in the formation at depths shallower than 2500
m. Without knowing how the SFT profile develops below 2500 m, two different
assumptions are made in this study. In one hypothesis, the geothermal gradient is
constant. In the other hypothesis, the formation consists of multiple layers, and each
layer may have different geothermal gradients. The inversion results indicate that the
drilling losses can be well constrained from the temperature log: The predicted fluid
losses are almost the same despite two different assumptions are used (the differences
is than 0.3%). In addition, according to these results, almost complete fluid losses
below 3400 m (> 90%) are encountered during the drilling of the RN-15/IDDP-2
well. In contrast, the SFT estimates are subjected to large uncertainties due to the lack
of prior information about the distribution of the geothermal gradient. Nevertheless,
the probable values for the SFT at 4500 m, ranging from 492 ◦C to 551 ◦C, are
comparable with the results of two other relevant studies, one applying a correction
method to down-hole temperature measurements and the other using an inversion
approach based on multi-geophysical data.

5.6 Acknowledgments

The study is initiated during the DEEPEGS “Deployment of Deep Enhanced Geother-
mal Systems for Sustainable Energy Business” Project of the European Union’s
Horizon 2020 research and innovation program. Accordingly, it received fund from
this project (Grant Agreement No. 690771). The support from both the Helmholtz
portfolio project “Geoenergy” and the program “Renewable Energies”, under the
topic “Geothermal Energy Systems”, is also gratefully acknowledged. We also thank
the EnBW Energie Baden-Württemberg AG for supporting geothermal research at
KIT.

5.7 Author contributions statement

JW: developed the workflow of inversion procedure, performed numerical modeling,
analyzed the results and wrote the manuscript; FN: supervised and supported the



Chapter 5. Surrogate-based inversion of borehole logs for formation temperature
determination

115

design of the study,reviewed and edited the manuscript; EG: supervised and supported
the design of the study,reviewed and edited the manuscript; TK: supervised the
research and finalization of the manuscript. All authors read and approved the final
manuscript.



116

Chapter 6

Conclusions and future work

Geothermal energy can provide an important contribution to the base-load energy
supply because it is available everywhere and withdrawals are continuously replen-
ished. Heat mining using EGS technology is considered the most important future
use of geothermal resources due to the great energy potential of high-enthalpy deep
boreholes. A special type of geothermal resource is geothermal fluids in supercritical
conditions with temperatures higher than 374 ◦C. As supercritical fluids have a much
higher power generation potential compared to subcritical fluids used in conventional
geothermal power plants. However, the development of supercritical geothermal sys-
tems faces several challenges from different prospects, such as exploration methods,
measurement, and logging technologies that can access the harsh downhole conditions.
On the other hand, research efforts on effective approaches to interpreting the sparse
and valuable data are urgently needed to compensate for the current difficulties in
obtaining extensive geophysical data.

In this work, I focus on the numerical simulation and interpretation of temperature logs
from high-enthalpy geothermal wells where cold water is continuously injected during
drilling operations. The primary goal is to use measurements obtained from sub-
critical borehole conditions to assess the thermal equilibrium state of the formation,
which could be supercritical before the drilling disturbance. The temperature of the
undisturbed formation (SFT) is an important parameter for geothermal exploration that
determines the energy potential of the reservoir, the installed capacity of geothermal
plants and eventually the economics of a geothermal project. All the conventional
methods to obtain SFT would require the thermal recovery data measured after
drilling stops (Chapter 2). However, such a requirement can become a difficult
endeavor for real practices in high-enthalpy boreholes due to commercial, safety, and
regulatory aspects of the borehole operation as well as limitations from the temperature
measurement device (e.g., maximum temperature range). As such, I investigate in this



Chapter 6. Conclusions and future work 117

dissertation a new concept of using injection temperature data to assess the SFT for
high-enthalpy boreholes.

The incentive for the problems studied arises from the particular challenge of the
high-enthalpy well, RN-15/IDDP-2, which is drilled under permanent cooling with
multiple flow loss zones encountered at greater depths (Chapter 1). Numerical codes
are first developed to simulate the complex drilling conditions to fulfill the prediction
of the borehole temperature (Chapter 3). I then developed workflows to rigorously
quantify uncertainty in SFT determination, subjected to the presence of flow loss
zones, data noises, and insufficient prior information (Chapter 4), and finally solved
the SFT in a statistical framework (Chapter 5), both by employing machine learning
techniques. Three studies were carried out progressively to address several aspects,
such as the key controlling factors for temperature distribution in a borehole during
and after injection; the appropriate choice of data and methods for SFT determination
for high-enthalpy wells; impact factors for the accurateness of the SFT estimates; the
probabilistic distribution of the SFT and flow losses constrained on the measurement
data. The main results of these studies (Chapter 3-5) are summarized in the following
section.

6.1 Major findings of the research

The first study (Chapter 3) was conducted to first examine the key factors that control
the thermal response of a high-enthalpy borehole drilled with circulation loss, both
during injection and shut-in operations. For the shut-in period, free convective heat
transfer can play a very important role in the temperature evolution during the early
transient stage. Whereas for the injection phase, the temperature distribution in the
well can be very sensitive to the flow loss, i.e., the flow loss leads to an increase in the
local temperature gradient. The gradient rise has been shown to depend on several
factors, such as the flow rate, the percentage of fluid loss as well as the lateral heat
transfer between the formation and the fluid. When the fluid loss is relatively small
(less than 30%) or when the injection rate is quite high, the fluid loss can be well
characterized by a monotonic relationship with the temperature gradient increment.
This highlights that the change in temperature gradient on a flowing temperature log
can potentially be a very good indicator for quantifying flow losses.

The well-known Horner-plot method (HM) has been widely used to determine the SFT
because of its simplicity. Herein, the accuracy of prediction with HM is investigated
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for temperature data measured both during normal shut-in and during injection of very
small flow rates at the wellhead, with flow lost to the formation in the deeper part of
the well. The latter case is intended to mimic cooling in wells in a high-temperature
environment, even during a thermal recovery period, to avoid damage to casing and
logging instrumentation. Results indicate that SFT tends to be greatly underestimated
during early shut-in times (less than 24 hours). The accuracy of the estimate depends
on both the strength of the heat transfer and the measurement time of the temperature
data. However, if temperatures measured after long shut-in times (at least more
than two days) are used, the SFT can be determined accurately. When applying the
HM to injection temperature logs, the estimation results can be inauspicious even if
the temperatures are measured under low injection rates, which indicates the strong
impact of any cooling source presented in the borehole.

It can therefore be demonstrated that the use of the HM type of temperature correction
method to derive the SFT in high-enthalpy wells may encounter significant limitations.
On the one hand, the long shut-in time required to make an accurate estimate can result
in high temperatures in the borehole that exceed the operating limit of most measuring
devices. In addition, a long pause during drilling to conduct these measurements will
dramatically increase the drilling cost. On the other hand, the thermal recovery phase
in high-enthalpy boreholes requires a lower injection rate into the wellbore to cool the
casing and instruments. However, the cooling source, depending on its magnitude,
can potentially lead to enormous errors in the estimates.

Based on the findings of the initial study, the focus of this research is directed to
the inversion of temperature logs measured under injection conditions for SFT deter-
mination, as the application of HM has previously been challenging. The synthetic
case studies in Chapter 4 provide insight into the effects of injection and drilling
conditions, data quality, and aspects of inverse modeling, such as prior information,
on the estimation accuracy of the SFT. Results therein suggest that, given data of
the same quality, temperature log measured under relatively low flow rates or after
shorter injection times should be preferred. Higher accuracy data need to be used, as
this study shows that the error in the SFT prediction has an almost linear dependence
on the standard error of the measured borehole temperatures. Downhole drilling can
also play a role in a way that the difficulty of obtaining an accurate estimate of the
SFT can increase dramatically if the drilling encounters an unknown circulation loss.
Therefore, information about the amount of the loss, e.g., from flowmeter logs, or
additional constraints on the range of the SFT, e.g., from geothermometers, would
help improve prediction accuracy. Moreover, linear or piecewise linear shapes were
assumed for the SFT, which means that the depths at which the thermal gradient starts
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to change must be known before the inversion procedure. As the study showed, this
would help to prevent bias in inversion results.

It is well recognized that geophysical data inversions very often face the problem of
inherent non-uniqueness and, therefore, the difficulty to accept or reject the model
or the values of the estimation parameters using deductive reasoning. Thus, in the
second inversion study (Chapter 5), I intend to apply a more robust approach that can
fully solve the SFT in a statistical framework by constructing the posterior probability
density function using the Markov chain Monte Carlo (MCMC) algorithm. The
inversion workflow was first tested with great success on synthetic temperature logs
and then applied to temperature data from well RN-15/IDDP-2 to resolve SFT below
2500 m and unknown flow losses at three loss zones below 3400 m. Informed by
the study in Chapter 4 that gradient change with depth is necessary prior information
to avoid introducing bias into the inversion results, I introduced one model with
a single geothermal layer and another with multiple geothermal layers. The two
models were found to have very similar estimates for the three flow losses (differences
less than 0.4%). Moreover, the losses seem to be well constrained by temperature
measurements since the width of the 95% confidence interval for each loss is below
1%. The almost complete loss of circulation in the RN-15/IDDP-2 well is confirmed
by this study, as the total loss rate in the three loss zones is most likely between
90.3% and 98.9%. In contrast, the maximum difference between the 95% confidence
interval of the SFT estimate of the two models can be about 70 ◦C, which occurs
above the first loss zone when the flow rate in the well is high. According to the
present study, the undisturbed formation temperature at 4500 m is mostly likely to be
between 492–551 ◦C. Such a result is still in agreement with other studies on this well
which have focused on different types of data, e.g., geochemistry and geophysical
logs (Chapter 1.2).

The research presented in this thesis is motivated by a key but challenging aspect
of drilling for thermal deep geothermal exploration, namely the development of
advanced data interpretation methods to overcome the current difficulties in obtaining
sufficient data and the potentially large computational burden of the data interpretation
process. To this end, I focused on the analysis of injection temperature logs which
are technically easier to access and also more economical (e.g., waived from long
measuring period compared to shu-in logs). I also adopted modern computational
techniques such as data-driven approaches in the temperature data inversion procedure.
Chapter 4 used surrogate models trained with a simple machine learning algorithm
to suggest the most promising solution regions, resulting in high sampling efficiency.
Another distinctive advantage of the applied approach is that it finds solutions to all
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combinations of relevant model parameters that yield model predictions having the
same fitting accuracy to the observation. By visualizing the results on a contour map,
the uncertainties of the individual estimation parameters can be easily quantified. In
Chapter 5, to reduce the computational cost of the MCMC approach, which requires a
large number of forward evaluations, inverse modeling is performed using surrogate
models created with artificial neural networks. These models run more than a thousand
times faster than the original thermal modeling code. In this respect, this dissertation
also represents a step forward towards more sophisticated techniques for predicting
the undisturbed formation temperature, as most published work on this topic is still
largely based on simple analytical methods (Chapter 2.3).

6.2 Future work

Borehole temperature is a complex response to various factors, in the most common
cases, including the wellbore layout, the flow conditions, the heat transfer mechanism,
measurement device, etc. Yet, in a wellbore during the drilling phase, the scenario
can be much more complex and may require to account additionally for the history of
injection, drilling schedule, the logging method (e.g. wire-line logging or distributed
temperature sensing), and so on (Appendix B.1). The numerical study presented in
this dissertation needs further improvements to model the borehole physics using
realistic thermo-physical properties of the fluid as they will also affect the prediction
of the borehole temperature (Abdollah Pour 2011; Nusiaputra 2017; Nitschke et al.
2020). Although this study assumes that cooling conditions prevail in the borehole,
which makes the assumption of constant fluid properties acceptable to a certain
extent, fluid properties can change dramatically, e.g. during the early injection or
thermal recovery phase (e.g. when the flow rate is significantly reduced or injection is
stopped), especially in the deeper part of the borehole when supercritical conditions
exist in the reservoir. While the modeling of the equation of state for fluids in
high temperature and high pressure regions still struggles with problems such as
convergence difficulties of the solution around the critical point (Gernert et al. 2014),
generally slow computational speeds (Brikowski 2001) and extrapolation errors in
the phase diagram (Tirone 2015), some research studies, which can be referenced,
have been carried out to simulate extreme reservoir conditions due to the global
interest in developing deeper and hotter geothermal resources (Gunnarsson et al. 2011;
Magnusdottir and Finsterle 2015).
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In addition, there is an open question that I would have liked to investigate further,
but due to time constraints, it will have to be left to future work. In the inversion
study in Chapter 5, the formation has been divided into layers for SFT estimation.
The division of these layers is only associated with the change of geothermal gradient
with depth, hence called "geothermal layers". A question has remained for real-world
applications such as the RN-15/IDDP-2 well: How many layers should be considered
for the inversion problem? In a conductive geothermal system, the number of layers is
usually determined according to the lithostratigraphic units. However, in convection
dominated systems, the natural geothermal gradient is disturbed due to the movement
of fluids in the formation and loses its connection to the geological units. In the
case of RN-15/IDDP-2, high circulation loss in the lower part of the well seems
to indicate that the formation has sufficient permeability for fluid movement, but
this will not be known before a production test of the well. In fact, one important
issue in solving inversion problems is the model selection problem which deals with
the selection of the number of free parameters or unknowns. In terms of model
parameterization, assuming too few parameters (e.g., layers) often lead to inadequate
data fit and biased parameter estimates, while adopting too many parameters yield
non-uniqueness solutions with excessive variance Hong and Sen (2009). To tackle
such an issue, researchers have proposed to directly treat the number of unknowns
itself as an unknown, which makes the inversion transdimensional (Sambridge et al.
2006; Guo et al. 2011). Typically, this approach uses a trade-off parameter that
controls the balance between fit residuals and model smoothness (i.e., between model
variance and resolution). The advantage of such an approach is that the uncertainty in
the number of layers can be included in the model uncertainty estimates. However,
since the number of layers must also be treated as an unknown when training the
neural network to build surrogate models, this may add up to the overall computational
cost.
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Appendix A

Marginal PPDFs of the SFT and flow
losses for the RN-15/IDDP-2 well
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Appendix B

Simulation of temperature log for the
RN-15/IDDP-2 well
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B.1 Introduction

In the framework of the DEEPEGS (Deployment of Deep Enhanced Geothermal
Systems for Sustainable Energy Business) Horizon 2020 research project, Reykjanes
was selected as one of the test sites for demonstrating the feasibility of delivering
energy using renewable resources. Prior to this project, the Icelandic geothermal field
has already been exploited by a long-term project for high-temperature hydrothermal
systems –the Iceland Deep Drilling Project (IDDP). The target of the IDDP is to drill
into supercritical zones with temperatures ranging from 450 to 600 ◦C where the power
production of a single well is expected to increase tenfold compared to a conventional
sub-critical geothermal well (Fridleifsson and Elders 2005). Consequently, this
requires the drilling of significantly deeper boreholes (> 4 km) than conventional
ones.

The Reykjanes geothermal field is located at the tip of the volcanic peninsula in the
southwest of Iceland. It is on the extension of the Mid-Atlantic Ridge, which lies on
the diverging plate boundary of the American and the Eurasian plates. Since the late
’90 s, over thirty wells down to less than three-kilometer deep have been drilled in
Reykjanes. Collected data from drill cores, flow testing, chemical measurements as
well as temperature and pressure logging from these wells have provided constraints
on the geological and geo-physical conditions at the field. Based on the gained
knowledge, the IDDP2 well was drilled by deepening an existing vertical production
well – RN15 that situates near a main hydrothermal up-welling zone where the
permeability at deeper depth is controlled by fracture system (Friðleifsson et al. 2020).
The maximum temperature that was measured was 426 ◦C at the well bottom with
fluid pressure reaching 340 bars, which reveals the successful drilling into supercritical
conditions.

The simulation of a single temperature log for the RN15-IDDP2 well can be complex
due to the highly dynamic drilling conditions that involve the variation of flow rate
during long-term injection, the deepening of the well, the presence of circulation loss,
the temporal change of measurement depth of temperature during the tripping of the
logging tool, etc. As a supplementary material to Chapter 5, the presented simulations
herein consist of the preliminary investigations on the key aspects that need to take
into account to achieve success in the temperature prediction for the RN15-IDDP2
well using numerical models.
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B.2 Drilling and temperature logging data of the RN-
15/IDDP-2 well

The details of drilling the RN-15/IDDP-2 well have been described in numerous
contributions (Friðleifsson et al. 2014; Friðleifsson and Elders 2017; Friðleifsson et al.
2017). Drilling was started with the old RN-15 well at 2.5 km depth and took 168
days before the well reached a final measured depth of 4659 m on January 25th, 2017.
During the drilling, several loss zones were encountered, with a major one located
below the production casing shoe at around 3.2 km depth. Only rocks samples from
deeper than 3100 m were available and were recovered with a limited total amount
of less than 30 m. As a result, detailed information on the physical properties of
rocks is still missing. However, previous studies (Friðleifsson et al. 2014) showed
that the subsurface lithology of the Reykjanes geothermal field until 2.5 km is a
characteristic of basaltic formations at depth beneath 1.4∼1.5 km. From there up
to ca. 400 m is a phreatic environment with tuffs and marine sediments. Then at
the shallower part, the stratigraphic unit mainly consists of subglacial/submarine
hyaloclastite formations which are often highly porous and permeable. In this study,
constant physical properties of basaltic rock type are assumed, except that the thermal
conductivity was calibrated along the depth using available temperature measurements
and static formation temperature data around the well that are already presented in
Chapter 5 (Figure 5.7).

B.3 Sensitivity analysis of the key factors

B.3.1 Impact of the flow averaging scheme

Injection flow at the wellhead was measured at a five-second interval, which is
too small a time step size for modeling the selected temperature log, which must
account for an injection period of 145 days. Therefore, the flow rate data needs
to be averaged properly to reduce both the computational effort and the impact of
averaging on the system behavior. As such, an analysis of the sensitivity of the
borehole temperature to the applied flow-time function was performed and comprised
three different cases:
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• FL1, the mean flow rate over 145 days’ period.

• FL2, daily average flow rates.

• FL3, daily average flow rates, except for the four weeks before the logging:
every-ten-minutes averaged flow rates.

Since the SFT below 2.5 km as well as the amount of flow loss at each loss zone
is not known yet, the sensitivity analysis was performed based on synthetic data. It
was assumed that the accumulated flow loss at 3400 m and 4200 m were 90% and
95% respectively, and the SFT below 2500 m increased linearly to 500 ◦C at 4500
m. These data were designed to reflect the large drilling circulation loss and the
high-temperature environment of the RN-15/IDDP-2 well, as mentioned in the drilling
report. Temperature logs were simulated using the three different flow averaging
schemes and their comparison is shown in Figure B.2. Note that the temperature log
simulated with FL3 was considered as a reference log, due to its small-time-interval
(ten minutes) data input over a long period (four weeks) before the log was calculated
(i.e., reasonably accurate input data). It can be seen that FL2 is a good proxy of FL3
since the maximum difference in the temperature logs was only 0.07 ◦C. However,
the maximum difference is about 25 ◦C in the temperature logs simulated with FL1
and FL3, which means that FL1 is not a reasonable scheme for flow averaging. It is
also noticeable that for both comparisons, the impact of choosing different flow-time
functions on the borehole temperature is much stronger at depths below the flow
loss zones than at depths above the loss zones. This could be due to the fact that
temperature is more sensitive to the flow variation in lower flow rate regime.
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Figure B.1: Three different flow-time functions applied at the wellhead over 145 days. FL1:
The average flow over a period of 145 days. FL2: Daily average flow rates. FL3: Daily
average flow rates, except that flow rate is averaged every ten minutes for the four weeks prior
to logging.



Appendix B. Simulation of temperature log for the RN-15/IDDP-2 well 129

(a)

0 40 80 120 160 200 240
temperature (°C)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

de
pt
h 
(m

)
FL1
FL2
FL3

(b)

0 5 10 15 20 25
temperature (°C)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

de
pt
h 
(m

)

FL3-FL1
FL3-FL2

0.00 0.02 0.04 0.06 0.08 0.10
temperature (°C)

Figure B.2: (a) Temperature logs simulated with the three different flow average scheme
FL1–FL3. (b) Temperature difference along depth between the logs simulated with FL1 and
FL3 (blue), and the logs simulated with FL2 and FL3 (red).

B.3.2 Impact of the deepening of the well

The change in the well length could play an important role in predicting the borehole
temperatures under drilling conditions. The cooling times of the drilling mud at
different well sections are not the same in reality. Therefore, it is necessary to consider
the drilling schedule (Figure B.3a) (i.e., the change in the well length with time) in
the numerical modeling to avoid over- or under-prediction of borehole temperature
at the local depth. In this study, this was accomplished by considering the flow
rate along the well as a function of time and well depth, i.e., the flow rate at any
depth is zero before the drill rig reaches that depth and becomes the injection rate
at the wellhead or the remaining flow after flow is lost into the formation at the loss
zones. Figure B.3b shows, as an example, the change in borehole temperature with
time at different depths (3400 m, 4200 m and 4375 m) with varying flow. For each
depth, the temperature perturbation caused by drilling starts at a different time, with
the shallower depth starting earlier. This temperature log was compared with the
log simulated assuming a pre-existing full-length borehole prior to fluid injection.
According to Figure B.4, neglecting the borehole development process leads to an
underestimation of the borehole temperature at depths below the first loss zone, but
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has no obvious effect on the temperature prediction above the first loss zone. The error
in the prediction increases with depth and is about 17 ◦C at the bottom of the borehole.
The reason for this is that with increasing depth, the time of local fluid circulation
is overestimated, and consequently, the temperature at this depth is underestimated.
However, the impact of deepening the well is expected to diminish if the temperature
is predicted long enough after the depth of the well is fully developed. In addition,
the higher the injection rate, the faster such impact would disappear.

(a)

0 50 100 150
drilling time [d]

2500

3000

3500

4000

4500

de
pt
h 
[m

]

well bottom depth
 vs drilling time

(b)

0.0 0.1 0.2 0.4 0.5 0.6 0.7 0.8 1.0 1.1 1.2
×107

0

100

200

300

400

500

te
m

pe
ra

tu
re

 [°
C]

temp_3400m
temp_4200m
temp_4375m

0.0 0.1 0.2 0.4 0.5 0.6 0.7 0.8 1.0 1.1 1.2
drilling time [s] ×107

0
20
40
60

flo
w

 ra
te

 [L
/s

]

injection rate

Figure B.3: (a) Drilling schedule. (b) Upper panel: Change in well temperature at 3400 m,
4200 m and 4375 m as a function of drilling time. Lower panel: Variation of injection flow
rate at the wellhead with time.
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Figure B.4: Simulated temperature logs when assuming a pre-existed well before the injection
(red cross) and when considering the drilling schedule (black dashed line), and the difference
between the two logs (blue solid line).

B.3.3 Impact of the movement of the logging tool

In conventional downhole logging, such as wireline logging, temperature sensor
(probes) are moved in or out along the borehole and record the temperature at each
specified depth. Therefore, the temperature is measured at a different time for each
depth. Considering the tripping time of a logging tool can be hours, the borehole
temperature can change very quickly, especially if the injection flow rate fluctuates in
the meantime. Therefore, it would be unrealistic or incorrect to consider a ’snapshot’
for the temperature profile at any point in time as the actual logging profile. In this
example, the variation of the injection rate and the movement speed of the logging tool
(Figure B.5) are integrated into the modeling. The simulated temperature log and the
instantaneous temperature profiles at the beginning and end of the logging are plotted
in Figure B.6. It can be seen that temperatures below 500 m have dramatically changed
since logging began, but the temperature appears to be stabilizing very quickly,
as indicated by the slight difference between the actual log and the instantaneous
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temperature profile at the end of the logging. This is likely due to the increase in
flow rate when the logging tool reached 500 m (Figure B.5) so that the borehole
temperature can quickly reach "steady-state" at a high flow rate.

(a) (b)

Figure B.5: (a) Flow rate variation with time during logging. (b) Change in the depth location
of the logging tool with time.

(a) (b)

Figure B.6: (a) Snapshots of the temperature profile along the borehole at the beginning
(temp_tbegin) and end of logging as well as the measured profile (temp_tend). (b) Difference
between the log and the temperature profile of the borehole at the beginning of the logging
(green line) and between the profile of the log and the temperature profile of the borehole at
the end of the logging (red line).
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B.4 Calibration of the effective thermal conductivity
of the formation

As mentioned earlier, the upper 2.5 km of the Reykjanes geothermal field is a hy-
drothermal system in which thermal conduction and advection occur at different
depths. Therefore, a so-called effective thermal conductivity (Witte 2001) should be
used in the numerical model, which, in addition to pure heat conduction, also takes
into account the advective heat transport mechanism. The value of the formation
thermal conductivity was calibrated using the borehole temperature measurements in
the upper 2.5 km and the prior known SFT profile (Figure 5.7a). Using the thermal
properties of materials of the casing, cement, formation and drilling mud listed in
Table B.1, the following distribution of effective thermal conductivity of the formation
was determined by trial and error: the thermal conductivity is 10.0 W/K/m from
surface to 300 m, 4.0 W/K/m between 300 m and 800 m, and 2.0 W/K/m below 800 m.
The result of the data fitting is given in Figure B.7. The layering of the formation evi-
dent from these thermal conductivity values agree relatively well with the description
from Friðleifsson et al. (2014) about the stratigraphy of the Reykjanes field (section
B.2). The high effective thermal conductivity in the upper layers could be due to the
enhancement of heat transport by groundwater flow in the near-surface aquifers and
precipitation infiltration through highly permeable rocks. Furthermore, the thermal
conductivity of 2.0 W/K/m at depth below 800 m appears to be a reasonable estimate
for typical Icelandic basaltic rocks (Ruether 2011). Due to a lack of data, this study
uses the same value for thermal conductivity (2.0 W/K/m) for the formation below
2.5 km.

Material
ρ

(kg/m3)
cp

(J/kg/K)
λ

(W/K/m)

Steel 8000 500 50

Cement 1830 1900 0.99

Formation 2650 900 (?)

Drilling fluid 4194 998 0.6

Table B.1: Material properties of the casing, cementing program and the formation
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Figure B.7: The measured temperature log (black circles) and calibrated temperature logs for
the upper 2500 m (blue dash line).

B.5 Summary

This case study presents the simulation of a single temperature log obtained from the
drilling of the well, RN-15/IDDP-2. The simulation takes into account several factors
such as long-term flow variations, well depth evolution, and temporal and spatial
variation in temperature sampling due to the movement of the logging device. It can
be shown that for long-term transient flow injections, a proper flow averaging scheme
is required to compensate between the high-resolution data input and the accuracy of
the model prediction. If the well is under development, the prediction of the borehole
temperature can theoretically be much more complex since the specific cooling time
at each depth investigated must be taken into account. Assuming a pre-existing well in
the modeling may underestimate the temperature because cooling at the later drilled
depth tends to be overestimated. According to the current study, the impact of well
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deepening can be reduced if the predictions are made for a relatively long time after
the well has reached its full depth. Furthermore, the injection flow rate can also play
a role. When the well is under strong cooling at a high injection rate, the influence
of the well deepening decreases more quickly. Finally, the numerical model needs
to take the method of logging into consideration. For conventional logging methods
like wire-line, the difference in the temperature measurement time at different depths
can be several hours. Due to temperature evolution over such a long period of time,
the logging profile can be different from an instantaneous temperature profile in the
well, especially if the flow rate highly fluctuates or the flow rate is so low that it takes
a long time for the temperature to reach a steady state. The above factors are found to
have a greater effect on the temperature prediction for the depths below the loss zone
than for the depths above the loss zone.
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