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Abstract
We show the equivalences of several notions of entropy, like a version of the topological
entropy of the geodesic flow and the Minkowski dimension of the boundary, in metric spaces
with convex geodesic bicombings satisfying a uniform packing condition. Similar estimates
will be given in case of closed subsets of the boundary of Gromov-hyperbolic metric spaces
with convex geodesic bicombings.
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1 Introduction

This paper is devoted to the investigation of different asymptotic quantities associated to
a metric space, some of them classical and widely studied. As we will see in a minute
these invariants have different nature: dynamical, measure-theoretic and combinatorial. The
purpose is two-fold:

– to show the relations between these invariants, especially to understand when they are
equal;

– to develop interesting tools and techniques to simplify the computation of these invariants.

The second goal is extremely useful for applications: it is important to have flexible and easy
to compute definitions in order to study these invariants in concrete cases. In the forthcoming
paper [9] we will use this flexibility to extend Otal-Peigné’s Theorem ([22]) to a large class
of metric spaces. A simplified version of the techniques developed on this paper were used
to show the continuity of the critical exponent of fundamental groups of a large class of
compact metric spaces under Gromov-Hausdorff convergence, see [10].
We are mainly interested on metric spaces satisfying weak bounds on the curvature. As upper
bound we consider a very weak convexity condition: the existence of a convex geodesic
bicombing. A geodesic bicombing on a metric space X is a map σ : X × X × [0, 1] → X
such that for all x, y ∈ X the function σxy(·) = σ(x, y, ·) is a geodesic (parametrized
proportionally to arc-length) from x to y. A bicombing σ is convex if for all x, y, x ′, y′ ∈
X the map t �→ d(σxy(t), σx ′y′(t)) is convex. Among metric spaces admitting a convex
bicombing there are CAT(0)-spaces, Busemann convex spaces and all normed vector spaces.
The interest in this condition is given by its stability under limits ([13, 15]), while it is not
the case for Busemann convex spaces. Given a bicombing σ , every curve σxy is called a
σ -geodesic. The bicombing is geodesically complete if any σ -geodesic can be extended to
a bigger σ -geodesic. This notion coincides with the usual geodesic completeness in case of
Busemann convex metric spaces. A GCB-space is a couple (X , σ ) where X is a complete
metric space and σ is a geodesically complete, convex, geodesic bicombing on X .

As a lower bound on the curvature we take a uniform packing condition: a metric space X
is said to be P0-packed at scale r0 if for all x ∈ X the cardinality of a maximal 2r0-separated
subset of B(x, 3r0) is at most P0. This uniform packing condition interacts very well with
the weak convexity property given by a geodesically complete, convex, geodesic bicombing,
implying a uniform control of the packing condition at every scale (see Proposition 2.1 and
[13]). Sometimes, especially in the second part of the paper where relative versions of the
invariants will be studied, we will impose also a Gromov-hyperbolicity condition on our
metric space.

1.1 Lipschitz-topological entropy of the geodesic flow

The topological entropy of the geodesic flow has been intensively studied in case of Rie-
mannian manifolds, especially in the negatively curved setting. If such a manifold is denoted
by M̄ = M/�, where M is its universal cover and � is its fundamental group, then the set
of parametrized geodesic lines is identified with the unit tangent bundle SM̄ . Probably the
most important invariant associated to the geodesic flow is its topological entropy, denoted
htop(M̄). It equals the Hausdorff dimension of the limit set of � and the critical exponent of
� (see [22, 27]). Moreover if M̄ is compact then it coincides also with the volume entropy
of M ([21]), while this is no more true in general, even when M̄ has finite volume (cp. [16]):
we will come back to these examples at the end of the introduction.
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In case of GCB-metric spaces (X , σ ) we restrict the attention to σ -geodesic lines. The
topological entropy of the σ -geodesic flow is defined as the topological entropy (in the sense
of Bowen, cp. [6, 19]) of the dynamical system (Geodσ (X),�t ), where Geodσ (X) is the
space of parametrized σ -geodesic lines, endowed with the topology of uniform convergence
on compact subsets, and �t is the reparametrization flow. It is:

htop(Geodσ (X)) = inf
â

sup
K⊆Geodσ (X)

lim
r→0

lim
T→+∞

1

T
logCovâT (K , r),

where the infimum is taken among all metrics on Geodσ (X) inducing its topology, the
supremum is taken among all compact subsets of Geodσ (X), âT is the distance âT (γ, γ ′) =
maxt∈[0,T ] â(�t (γ ),�t (γ

′)) and CovâT (K , r) is the minimal number of balls (with respect
to the metric âT ) of radius r needed to cover K . We remark that in case of Busemann
convex (or CAT(0)) metric spaces the space of σ -geodesic lines coincides with the set of
geodesic lines. This flow has no recurrent geodesics, so applying the variational principle
(cp. [19]) it is straightforward to conclude that its topological entropy is zero (Lemma 4.1).
Looking carefully at the proof of the variational principle it turns out that the metrics on
Geodσ (X) almost realizing the infimum in the definition of the topological entropy are
restriction to Geodσ (X) of metrics on its one-point compactification. In particular they are
no the natural ones to consider in this setting. That is why, in Sect. 4, we will restrict the
attention to the class of geometric metrics â: those with the property that the evaluation
map E : (Geodσ (X), â) → (X , d) defined as E(γ ) = γ (0) is Lipschitz. Notice that for a
geometric metric two geodesic lines are not close if they are distant at time 0. Accordingly
the Lipschitz-topological entropy of the geodesic flow is defined as

hLip-top(Geodσ (X)) = inf
â

sup
K⊆Geodσ (X)

lim
r→0

lim
T→+∞

1

T
logCovâT (K , r),

where the infimum is taken only among the geometric metrics of Geodσ (X). Although the
definition of the Lipschitz-topological entropy is quite complicated, its computation can be
remarkably simplified. Indeed one of the most used metric on Geodσ (X) (see for instance
[5]) is:

dGeod(γ, γ ′) =
∫ +∞

−∞
d(γ (s), γ ′(s)) 1

2e|s| ds

that induces the topology of Geodσ (X) and is geometric, and it turns out that it realizes the
infimum in the definition of the Lipschitz-topological entropy.

Theorem A (Extract from Theorem 4.2 & Proposition 4.3). Let (X , σ ) be a GCB-space that
is P0-packed at scale r0. Then

hLip-top(Geodσ (X)) = lim
T→+∞

1

T
logCovdTGeod

(Geodσ (x), r0),

where Geodσ (x) is the set of σ -geodesic lines passing through x at time 0.

Therefore the infimumin thedefinitionof theLipschitz topological entropy is actually realized
by the metric dGeod and the supremum among the compact sets can be replaced by a fixed
(relatively small) compact set. Moreover also the scale r can be fixed to be r0 (or any other
positive real number).
Actually the result of Theorem A is still valid for a whole family of metrics on Geodσ (X):
this flexibility will be one of the fundamental ingredient in the main result of [9].
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1.2 Volume and covering entropy

The second definition of entropy we consider (see Sect. 3.2) is the volume entropy. If X is
a metric space equipped with a measure μ it is classical to consider the exponential growth
rate of the volume of balls, namely:

hμ(X) := lim
T→+∞

1

T
logμ(B(x, T )).

It is called the volume entropy of X with respect to the measure μ and it does not depend on
the choice of the basepoint x ∈ X by triangular inequality. This invariant has been studied
intensively in case of complete Riemannian manifolds with non positive sectional curvature,
where μ is the Riemannian volume on the universal cover. It is related to other interesting
invariants as the simplicial volume of the manifold (see [18]), [8]), a macroscopical con-
dition on the scalar curvature (cp. [24]) and the systole in case of compact, non-geometric
3-manifolds (cp. [12]). Moreover the infimum of the volume entropy among all the possible
Riemannian metrics of volume 1 on a fixed closed manifold is a subtle homotopic invariant
(see [1, 7] for general considerations and [2, 23] for the computation of the minimal vol-
ume entropy in case of, respectively, closed n-dimensional manifolds supporting a locally
symmetric metric of negative curvature and 3-manifolds).
A measure μ is called H -homogeneous at scale r if

1

H
≤ μ(B(x, r)) ≤ H

for every x ∈ X . Among homogeneous measures there is a remarkable example: the volume
measureμX of a complete, geodesically complete, CAT(0)metric space X that is P0-packed
at scale r0 (see [14] and [20] for a description of the measure). If X is a Riemannian manifold
of non-positive sectional curvature then μX coincides with the Riemannian volume, up to a
universal multiplicative constant.
A more combinatorial and intrinsic version of the volume entropy of a generic metric space
is the covering entropy, defined as:

hCov(X) := lim
T→+∞

1

T
logCov(B(x, T ), r),

where x is a point of X and Cov(B(x, T ), r) is the minimal number of balls of radius r
needed to cover B(x, T ). It does not depend on x but it can depend on the choice of r . This is
not the case when X is a GCB-space that is P0-packed at scale r0, as follows by Proposition
3.1. Moreover it is always finite (cp.Lemma 3.3).

1.3 Minkowski dimension of the boundary

The expression of the Lipschitz-topological entropy given by Theorem A suggests the possi-
bility to relate that invariant to some property of the boundary at infinity of X . For simplicity
we suppose X is also Gromov-hyperbolic, so that the boundary at infinity is metrizable. If
we denote by (·, ·)x the Gromov product based on x then the generalized visual ball of center
z ∈ ∂X and radius ρ is B(z, ρ) = {z′ ∈ ∂X s.t. (z, z′)x > log 1

ρ
}. The visual Minkowski

dimension of the Gromov boundary ∂X is:

MD(∂X) = lim
T→+∞

1

T
log Cov(∂X , e−T ),
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where Cov(∂X , e−T ) is the minimal number of generalized visual balls of radius e−T needed
to cover ∂X . If the generalized visual balls are metric balls for some visual metric Dx,a then
we refind the usual definition of Minkowski dimension of the metric space (∂X , Dx,a), once
the obvious change of variable ρ = e−T is made. This invariant is presented in Sect. 5.1.

1.4 Equality of the entropies

One of our main results is:

Theorem B Let (X , σ ) be a GCB-space that is P0-packed at scale r0. Then

hLip-top(Geodσ (X)) = hμ(X) = hCov(X),

where μ is every homogeneous measure on X. Moreover if X is also δ-hyperbolic then the
quantities above coincide also withMD(∂X).

Actually somethingmore is true but in order to state it we need to recall the notion of equiv-
alent asymptotic behaviour of two functions introduced in [10]. Given f , g : [0,+∞) → R

we say that f and g have the same asymptotic behaviour, and we write f 	 g, if for all
ε > 0 there exists Tε ≥ 0 such that if T ≥ Tε then | f (T ) − g(T )| ≤ ε. The function Tε is
called the threshold function. Usually we will write f 	

P0,r0,δ,...
g meaning that the threshold

function can be expressed only in terms of ε and P0, r0, δ, . . .

Theorem C Let (X , σ ) be a GCB-space that is P0-packed at scale r0. Then the functions
defining the quantities of Theorem B have the same asymptotic behaviour and the threshold
functions depend only on P0, r0, δ and the homogeneous constants of μ.

Therefore not only all the introduced quantities define the same number, but all of them
also have the same asymptotic behaviour. This means that if one can control the rate of
convergence to the limit of one of these quantities then also the rate of convergence of all
the other quantities is bounded. We remark that, differently from many of the papers in the
literature, we do not require any group action on our metric spaces.
The control of the asymptotic behaviour of the function defining the Minkowski dimension
is the main ingredient of the continuity theorem proved in [10]. The same ideas can be used
to show similar continuity statements in more general settings, but we won’t explore these
applications here.

1.5 Entropies of the closed subsets of the boundary

In case X is δ-hyperbolic it is possible to define the versions of all the different notions of
entropies relative to subsets of the boundary ∂X . For every subset C ⊆ ∂X we denote by
Geodσ (C) the set of parametrized σ -geodesic lines with endpoints belonging to C and with
QC-Hull(C) the union of the points belonging to the geodesics joining any two points of C .
Actually the hyperbolicity assumption (or at least a visibility assumption on ∂X ) is necessary
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since otherwise the sets Geodσ (C) and QC-Hull(C) could be empty. The numbers

hCov(C) = lim
T→+∞

1

T
logCov(B(x, T ) ∩ QC-Hull(C), r0)

hLip-top(Geodσ (C)) = inf
â

sup
K⊆Geodσ (C)

lim
r→+∞ lim

T→+∞
1

T
log CovâT (K , r)

MD(C) = lim
T→+∞

1

T
logCov(C, e−T )

are called, respectively, covering entropy of C , Lipschitz-topological entropy of Geodσ (C)

and visual Minkowski dimension of C . The volume entropy of C with respect to a measure
μ is

hμ(C) = sup
τ≥0

lim
T→+∞

1

T
logμ(B(x, T ) ∩ B(QC-Hull(C), τ )),

where B(Y , τ ) is the closed τ -neighbourhood of Y ⊆ X . If μ is H -homogeneous at scale r
then the volume entropy can be computed taking τ = r in place of the supremum (Proposition
6.3). For instance when X is a Riemannian manifold with pinched negative curvature then
the the Riemannian volume μX is H(r)-homogeneous at every scale r > 0, so the definition
does not depend on τ at all. Most of the relations of Theorem B remain true for subsets of the
boundary, but the asymptotic behaviour of the different functions involved in the definitions
of the entropies depend also on the choice of the basepoint x ∈ X . The best possible choice,
x ∈ QC-Hull(C), allows us to give again uniform asymptotic estimates.

Theorem D Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0 and let
C ⊆ ∂X. Then

hCov(C) = MD(C) = hμ(C)

for every homogeneous measure μ on X. All the functions defining the quantities above have
the same asymptotic behaviour and the threshold functions can be expressed only in terms
of P0, r0, δ and the homogeneous constants of μ, if the basepoint x belongs to QC-Hull(C).

The proof of this result does not follow by the same arguments of Theorem B, indeed it
will be based heavily on the Gromov-hyperbolicity of X . The relation between the Lipschitz-
topological entropy of Geodσ (C) and the other definitions of entropy is more complicated.
We have

Theorem E Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0 and let
C ⊆ ∂X. Then

(i) if C is closed then hLip-top(Geodσ (C)) = hCov(C) and the functions defining these
two quantities have the same asymptotic behaviour with thresholds function depending
only on P0, r0, δ.
More precisely, if x ∈ QC-Hull(C) then

hLip-top(Geodσ (C)) = lim
T→+∞

1

T
logCovdTGeod

(Geodσ (B(x, 22δ),C), r0),

whereGeodσ (B(x, 22δ),C) is the set of geodesic lineswith endpoints inC andpassing
through B(x, 22δ) at time 0.
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(ii) if C is not closed then

hLip-top(Geodσ (C)) = sup
C ′⊆C

hLip-top(Geodσ (C ′)) ≤ hCov(C),

where the supremum is taken among the closed subsets of C.

The inequality in (ii) can be strict, as shown in [9].

1.6 Differences of the invariants for geometrically finite groups

In this last part of the introductionwe restrict the attention to the case ofRiemannianmanifolds
M̄ = M/� with pinched negative sectional curvature. If � is geometrically finite then the
limit set of � is the union of the radial limit set �r(�) and the bounded parabolic points. The
latter is a countable set, therefore the Hausdorff dimension of the limit set coincides with the
Hausdorff dimension of the radial limit set. So by Bishop-Jones’ Theorem it holds (here HD
denotes the Hausdorff dimension):

HD(�(�)) = HD(�r (�)) = h�. (1.1)

We remark that this is not true if � is not geometrically finite, even when M is the hyperbolic
space.

Example 1.1 In general it can happen HD(�r(�))) < HD(�(�)). Indeed let � be a cocom-
pact group of H2 and let �′ be a normal subgroup of � such that �/�′ is not amenable.
Let F ⊆ �(�′) be the subsets of points z that are fixed by some g ∈ �′. For every z ∈ F
and every h ∈ � we have hz = hgz = g′hz for some g′ ∈ �′ since �′ is normal. Then
hz is fixed by g′ and so it belongs to F , i.e. F is �-invariant. By minimality of �(�) we
get �(�′) = �(�), so HD(�(�′)) = HD(�(�)). But by the growth tightness of � (cp. for
instance [25]) we have

HD(�r(�
′)) = h�′ < h� = HD(�(�)) = HD(�(�′)).

However if M is the hyperbolic space and� is geometrically finite then even something more
is true, indeed by [26]:

h� = HD(�(�)) = MD(�(�)). (1.2)

This equality fails to be true for geometrically finite (actually of finite covolume) groups of
manifolds with pinched, but variable, negative curvature. Indeed we have:

Example 1.2 In [16] it is presented an example of a smooth Riemannian manifold M with
pinched negative sectional curvature admitting a (non-uniform) lattice (i.e. a group of isome-
tries � with Vol(M/�) < +∞) such that h� < hμM (M) (recall that μM denotes the
Riemannian volume of M). We observe that since � is a lattice then �(�) = ∂M , so
hμM (M) = MD(�(�)) by Theorem B, while h� = HD(�r(�)) = HD(�(�)) by (1.1).

The example above is due to a relevant variation of the curvature of M . Indeed in [17] is
shown that for non-uniform lattices� of asymptotically 1/4-pinchedmanifolds with negative
curvature M it holds hμM (M) = h� . The general situation in the geometrically finite case
is:

HD(�(�)) = h� = htop(M/�)

hLip-top(Geod(�(�))) = hCov(�(�)) = hμM (�(�)) = MD(�(�)),
(1.3)
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where the equalities in the second line follow by Theorem D and Theorem E, while the
equalities in the first line are consequences of (1.1) and Otal-Peigne’s variational principle
[22]. Moreover it is clear that the first line is always less than or equal to the second one,
since the Hausdorff dimension is always smaller than or equal to the Minkowski dimension.
The relations in (1.3) allow us to give new interpretations of the phenomena occurring in
Example 1.2, i.e. the possible difference between the critical exponent of the group and the
volume entropy of �(�):

• measure-theoretic interpretation: it can be seen as the difference between the Hausdorff
and the Minkowski dimension of the limit set�(�), so it is related to the fractal structure
of the limit set;

• dynamical interpretation: it can be seen as the difference between the topological entropy
of the geodesic flowof the quotient and theLipschitz-topological entropy ofGeod(�(�)).

• combinatorial interpretation: it canbe seen as the differencebetweenh� andhCov(�(�)),
where the former counts the exponential growth rate of an orbit while the latter counts
the exponential growth rate of the cardinality of r -nets, for some (any) r > 0. Here the
difference arises in terms of sparsity of the orbit.

2 GCB-spaces and space of geodesics

Throughout the paper X will denote a metric space with metric d . The open (resp.closed)
ball of radius r and center x is denoted by B(x, r) (resp. B(x, r)), while the metric sphere
of center x and radius R is denoted by S(x, R). We use the notation A(x, r , r ′) to denote
the closed annulus of center x and radii 0 < r < r ′, i.e. the set of points y ∈ X such that
r ≤ d(x, y) ≤ r ′. A geodesic segment is an isometry γ : I → X where I = [a, b] is a a
bounded interval of R. The points γ (a), γ (b) are called the endpoints of γ . A metric space
X is said geodesic if for all couple of points x, y ∈ X there exists a geodesic segment whose
endpoints are x and y. We will denote any geodesic segment between two points x and y,
with an abuse of notation, as [x, y]. A geodesic ray is an isometry γ : [0,+∞) → X while
a geodesic line is an isometry γ : R → X .
Let Y be any subset of a metric space X :
– a subset S of Y is called r -dense if ∀y ∈ Y ∃z ∈ S such that d(y, z) ≤ r ;
– a subset S of Y is called r -separated if ∀y, z ∈ S it holds d(y, z) > r .
The packing number of Y at scale r is the maximal cardinality of a 2r -separated subset of Y
and it is denoted by Pack(Y , r). The covering number of Y is the minimal cardinality of a
r -dense subset of Y and it is denoted by Cov(Y , r). The following inequalities are classical:

Pack(Y , 2r) ≤ Cov(Y , 2r) ≤ Pack(Y , r). (2.1)

The packing and the covering functions of X are respectively

Pack(R, r) = sup
x∈X

Pack(B(x, R), r), Cov(R, r) = sup
x∈X

Cov(B(x, R), r).

They take values on [0,+∞]. By (2.1) it holds

Pack(R, 2r) ≤ Cov(R, 2r) ≤ Pack(R, r). (2.2)

Let C0, P0, r0 > 0. We say that a metric space X is P0-packed at scale r0 if Pack(3r0, r0) ≤
P0, that is every ball of radius 3r0 contains no more than P0 points that are 2r0-separated.
The space X is C0-covered at scale r0 if Cov(3r0, r0) ≤ C0, that is every ball of radius 3r0
can be covered by at most C0 balls of radius r0.
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A geodesic bicombing on a metric space X is a map σ : X × X × [0, 1] → X with the
property that for all (x, y) ∈ X × X the map σxy : t �→ σ(x, y, t) is a geodesic from x to
y parametrized proportionally to arc-length, i.e. d(σxy(t), σxy(t ′)) = |t − t ′|d(x, y) for all
t, t ′ ∈ [0, 1], σxy(0) = x, σxy(1) = y.
When X is equipped with a geodesic bicombing then for all x, y ∈ X we will denote by [x, y]
the geodesic σxy parametrized by arc-length.
A geodesic bicombing is:

• convex if the map t �→ d(σxy(t), σx ′ y′(t)) is convex on [0, 1] for all x, y, x ′, y′ ∈ X ;
• consistent if for all x, y ∈ X , for all 0 ≤ s ≤ t ≤ 1 and for all λ ∈ [0, 1] it holds

σpq(λ) = σxy((1 − λ)s + λt), where p := σxy(s) and q := σxy(t);
• reversible if σxy(t) = σyx (1 − t) for all t ∈ [0, 1].

For instance every convex metric space in the sense of Busemann (so also any CAT(0)metric
space) admits a unique convex, consistent, reversible geodesic bicombing.
Given a geodesic bicombing σ we say that a geodesic (segment, ray, line) γ is a σ -geodesic
(segment, ray, line) if for all x, y ∈ γ we have that [x, y] coincides with the subsegment of
γ between x and y.
A geodesic bicombing is geodesically complete if every σ -geodesic segment is contained in a
σ -geodesic line. A couple (X , σ ) is said a GCB-space if σ is a convex, consistent, reversible,
geodesically complete geodesic bicombing on the complete metric space X . The packing
condition has a controlled behaviour in GCB-spaces.

Proposition 2.1 (Proposition 3.2 of [13]) Let (X , σ ) be a GCB-space that is P0-packed at
scale r0. Then:

(i) for all r ≤ r0, the space X is P0-packed at scale r and is proper;
(ii) for every 0 < r ≤ R and every x ∈ X it holds:

Pack(R, r) ≤ P0(1 + P0)
R
r −1, if r ≤ r0;

Pack(R, r) ≤ P0(1 + P0)
R
r0

−1
, if r > r0;

Cov(R, r) ≤ P0(1 + P0)
2R
r −1, if r ≤ 2r0;

Cov(R, r) ≤ P0(1 + P0)
R
r0

−1
, if r > 2r0.

Basic examples of GCB-spaces that are P0-packed at scale r0 are:

i) complete and simply connected Riemannian manifolds with sectional curvature pinched
between two nonpositive constants κ ′ ≤ κ < 0;

ii) simply connected Mκ -complexes, with κ ≤ 0, without free faces and bounded geometry
(i.e., with valency at most V0, size at most S0 and positive injectivity radius);

iii) complete, geodesically complete, CAT(0)metric spaces X with dimension at most n and
volume of balls of radius R0 bounded above by V .

For further details on the second and the third class of examples we refer to [14].
When (X , σ ) is a proper GCB-space we can consider the space of parametrized geodesic
lines of X ,

Geod(X) = {γ : R → X isometry},
endowed with the topology of uniform convergence on compact subsets of R, and its subset
Geodσ (X) made of elements whose image is a σ -geodesic line. By the continuity of σ (due
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to its convexity, see [13, 15]) we have that Geodσ (X) is closed in Geod(X). There is a natural
action of R on Geod(X) defined by reparametrization:

�tγ (·) = γ (· + t)

for every t ∈ R. It is easy to see it is a continuous action, i.e. �t ◦ �s = �t+s for all
t, s ∈ R and for every t ∈ R the map �t is a homeomorphism of Geod(X). Moreover the
action restricts as an action on Geodσ (X). This action on Geodσ (X) is called the σ -geodesic
flow on X . The evaluation map E : Geod(X) → X , which is defined as E(γ ) = γ (0),
is continuous and proper ([5], Lemma 1.10), so its restriction to Geodσ (X) has the same
properties. Moreover this restriction is surjective since σ is assumed geodesically complete.
The topology on Geodσ (X) is metrizable. Indeed we can construct a family of metrics on
Geodσ (X) with the following method.
Let F be the class of continuous functions f : R → R satisfying

(a) f (s) > 0 for all s ∈ R;
(b) f (s) = f (−s) for all s ∈ R;
(c)

∫ +∞
−∞ f (s)ds = 1;

(d)
∫ +∞
−∞ 2|s| f (s)ds = C( f ) < +∞.

For every f ∈ F we define the distance on Geodσ (X):

f (γ, γ ′) =
∫ +∞

−∞
d(γ (s), γ ′(s)) f (s)ds. (2.3)

We remark that the choice of f = 1
2e|s| gives exactly the distance dGeod. We are motivated to

study the whole class F because of the applications in further works as [9].

Lemma 2.2 The expression defined in (2.3) satisfies these properties:

(i) it is a well defined distance on Geodσ (X);
(ii) for all γ, γ ′ ∈ Geodσ (X) it holds f (γ, γ ′) ≤ d(γ (0), γ (0)) + C( f );
(iii) for all γ, γ ′ ∈ Geodσ (X) it holds d(γ (0), γ ′(0)) ≤ f (γ, γ ′);
(iv) it induces the topology of Geodσ (X).

Proof For all γ, γ ′ ∈ Geodσ (X) we have

d(γ (s), γ ′(s)) ≤ d(γ (s), γ (0)) + d(γ (0), γ ′(0)) + d(γ ′(0), γ ′(s))
≤ 2|s| + d(γ (0), γ ′(0)),

so ∫ +∞

−∞
d(γ (s), γ ′(s)) f (s)ds ≤ d(γ (0), γ ′(0)) +

∫ +∞

−∞
2|s| f (s)dt < +∞.

This shows (ii) and that the integral in (2.3) is finite. From the properties of the integral and
the positivity of f it is easy to prove that (2.3) defines a distance. The proof of (iii) follows
from the convexity of σ and the symmetry of f . Indeed for all γ, γ ′ ∈ Geodσ (X) the function
g(s) = d(γ (s), γ ′(s)) is convex. This means that for all S, S′ ∈ R and for all λ ∈ [0, 1] it
holds

g(λS + (1 − λ)S′) ≤ λg(S) + (1 − λ)g(S′).

We take s ≥ 0 and we use the inequality above with S = s, S′ = −s and λ = 1
2 , obtaining

d(γ (0), γ ′(0)) = g(0) ≤ 1

2
g(−s) + 1

2
g(s) = d(γ (s), γ ′(s)) + d(γ (−s), γ ′(−s))

2
.
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We can now estimate the distance between γ and γ ′ as

f (γ, γ ′) =
∫ 0

−∞
d(γ (s), γ ′(s)) f (s)ds +

∫ +∞

0
d(γ (s), γ ′(s)) f (s)ds

=
∫ +∞

0

(
d(γ (−s), γ ′(−s)) + d(γ (s), γ ′(s))

)
f (s)ds ≥ d(γ (0), γ ′(0)),

where we used the symmetry of f . This concludes the proof of (iii).
If a sequence γn converges to γ∞ uniformly on compact subsets then it is clear that for every
T ≥ 0 it holds

lim
n→+∞

∫ +T

−T
d(γn(s), γ∞(s)) f (s)ds = 0.

For every ε > 0 we pick Tε ≥ 0 such that
∫ +∞
Tε

2|s| f (s) < ε. Then it is easy to conclude,
using the properties of f , that

lim
n→+∞

∫ +∞

−∞
d(γn(s), γ∞(s)) f (s)ds ≤ 2ε.

By the arbitrariness of ε we conclude that the sequence γn converges to γ∞ with respect to
the metric f .
Now suppose the sequence γn converges to γ∞ with respect to f and suppose it does not
converge uniformly on compact subsets to γ∞. Therefore there exists T ≥ 0, ε0 > 0 and a
subsequence γn j such that d(γn j (t j ), γ∞(t j )) > 6ε0 for every j , where t j ∈ [−T , T ].We can
suppose t j → t∞ and so d(γn j (t∞), γ∞(t∞)) > 4ε0 for every j . For all t ∈ [t∞−ε0, t∞+ε0]
we get d(γn j (t), γ∞(t)) > 2ε0. Therefore, if we set m = mint∈[t∞−ε0,t∞+ε0] f (s) > 0, we
obtain

∫ +∞

−∞
d(γn j (s), γ∞(s)) f (s)ds > 4ε20m

for every j , which is a contradiction. ��

Ametric â on Geodσ (X) inducing the topology of uniform convergence on compact subsets
is said to be geometric if the evaluation map E is Lipschitz with respect to this metric. Any
metric induced by f ∈ F is geometric by Lemma 2.2.(iii).

3 Covering and volume entropy

In this section we will introduce the first two types of entropy: the covering entropy, defined
in terms of the covering functions, and the volume entropy of a measure.

3.1 Covering entropy

Let (X , σ ) be a GCB-space that is P0-packed at scale r0. It is natural to define the upper
covering entropy of X as the number

hCov(X) = lim sup
T→+∞

1

T
logCov(B(x, T ), r0),
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where x is any point of X . The lower covering entropy is defined taking the limit inferior
instead of the limit superior and it is denoted by hCov(X).
By triangular inequality it is easy to show that the definitions of upper and lower covering
entropy do not depend on the point x ∈ X . In the next proposition, which is essentially
Proposition 3.2 of [10], we can see that they do not depend on r0 too and moreover we can
replace the covering function with the packing function.

Proposition 3.1 Let (X , σ ) be a GCB-space that is P0-packed at scale r0 and let x ∈ X.
Then

1

T
logCov(B(x, T ), r) 	

P0,r0,r ,r ′
1

T
log Pack(B(x, T ), r ′)

for all r , r ′ > 0. In particular any of these functions can be used in the definition of the upper
and lower covering entropy.

Proof For all 0 < r ≤ r ′ and x ∈ X clearly Cov(B(x, T ), r) ≥ Cov(B(x, T ), r ′) and
Cov(B(x, T ), r) ≤ Cov(B(x, T ), r ′) · supy∈X Cov(B(y, r ′), r). By Proposition 2.1 we

have supy∈X Cov(B(y, r ′), r) = Cov(r ′, r) which is a finite number depending only on
P0, r0, r , r ′. Therefore we obtain

1

T
logCov(B(x, T ), r) 	

P0,r0,r ,r ′
1

T
logCov(B(x, T ), r ′).

Now the thesis follows from (2.1). ��
The upper and lower covering entropies can also be computed using the covering function

of the metric spheres.

Proposition 3.2 Let (X , σ ) be a GCB-space that is P0-packed at scale r0 and x ∈ X. Then
for all r > 0

1

T
logCov(B(x, T ), r) 	

P0,r0,r

1

T
log Cov(S(x, T ), r)

Proof Clearly it holds that Cov(S(x, T ), r) ≤ Cov(B(x, T ), r). The other estimate is more
involved. We divide the ball B(x, T ) into annuli A(x, kr , (k + 1)r) with k = 0, . . . , T

r − 1.
We easily obtain

Cov(B(x, T ), 2r) ≤
T
r −1∑
k=0

Cov(A(x, kr , (k + 1)r), 2r).

Now we claim that for any k it holds that

Cov(A(x, kr , (k + 1)r), 2r) ≤ Cov(S(x, T ), r).

Indeed let {y1, . . . , yN } be a set of points realizing Cov(S(x, T ), r). For all i = 1, . . . , N we
consider the σ -geodesic segment γi = [x, yi ] and we call xi the point along this geodesic
segment at distance kr from x . Then xi ∈ A(x, kr , (k + 1)r) for every i = 1, . . . , N .
We claim that {x1, . . . , xN } is a 2r -dense subset of A(x, kr , (k + 1)r). We take any y ∈
A(x, kr , (k + 1)r) and we consider the σ -geodesic segment [x, y]. We extend this geodesic
to a σ -geodesic segment γ = [x, y′], where y′ is at distance T from x . Then there exists i such
that d(y′, yi ) = d(γ (T ), γi (T )) ≤ r . By convexity of σ we have d(γ (t), γi (t)) ≤ r , where
t = d(x, y). Therefore we conclude that d(y, xi ) ≤ d(y, γi (t)) + d(γi (t), xi ) ≤ 2r . This
ends the proof of the claim, so Cov(B(x, T ), 2r) ≤ T

r Cov(S(x, T ), r). The thesis follows
from these estimates and Proposition 3.1. ��
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Combining Proposition 2.1 and Proposition 3.1 we can find an uniform upper bound to
the covering entropy, see also Proposition 3.2 of [10].

Lemma 3.3 Let (X , σ ) be a GCB-space that is P0-packed at scale r0. Then

hCov(X) ≤ log(1 + P0)

r0
.

Proof For every x ∈ X it holds Pack(B(x, R), r0) ≤ P0(1 + P0)
R
r0

−1
. The thesis follows

immediately. ��

3.2 Volume entropy of homogeneousmeasures

Let (X , σ ) be a GCB-space that is P0-packed at scale r0. The upper volume entropy of a
measure μ on X is defined as

hμ(X) = lim sup
T→+∞

1

T
logμ(B(x, T )),

while the lower volume entropy hμ(X) is defined taking the limit inferior. These definitions
do not depend on the choice of the point x ∈ X .
A measure μ on X is called H-homogeneous at scale r > 0 if

1

H
≤ μ(B(x, r)) ≤ H

for all x ∈ X . We remark that the condition must hold only at scale r .

Proposition 3.4 Let (X , σ ) be a GCB-space that is P0-packed at scale r0 and let μ be a
measure on X which is H-homogeneous at scale r . Then

1

T
logμ(B(x, T )) 	

P0,r0,H ,r

1

T
logCov(B(x, T ), r).

In particular the upper (resp. lower) volume entropy of μ coincides with the upper (resp.
lower) covering entropy of X.

Proof For all x ∈ X it holds μ(B(x, T )) ≤ H · Cov(B(x, T ), r) and
μ(B(x, T )) ≥ 1

H · Pack(B(x, T − r), r).
By Proposition 3.1 and since T−r

T 	
r
1 we have the thesis. ��

Remark 3.5 The proof of the proposition shows another fact: if a measure is H -homogeneous
at scale r then it is H(r ′)-homogeneous at scale r ′ for all r ′ ≥ r and H(r ′) depends only on
H , P0, r0, r and r ′.

We provide here an example of a homogeneous measure. If X is a complete, geodesically
complete, CAT(0) metric space that is P0-packed at scale r0 then the natural measure on X
satisfies

c ≤ μX (B(x, r0)) ≤ C

for all x ∈ X , where c and C are constants depending only on P0 and r0 (Theorem 4.9 of
[14]). The following result follows immediately.

Corollary 3.6 Let X be a complete, geodesically complete, CAT(0) metric space. If it is P0-
packed at scale r0 for some P0 and r0 then hCov(X) = hμX (X). The same holds for the lower
entropies.
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4 Lipschitz-topological entropy

Let (X , σ ) be a GCB-space that is P0-packed at scale r0. The space Geodσ (X) is locally
compact but not compact. The topological entropy of the geodesic flow can be defined (see
[6, 19]) as

htop(Geodσ (X)) = inf
â
sup
K

lim
r→0

lim sup
T→+∞

1

T
logCovâT (K , r),

where the infimum is taken among all metrics â inducing the topology of Geodσ (X), the
supremum is taken among all compact subsets of Geodσ (X) and CovâT (K , r) is the covering
function of the compact subset K at scale r with respect to the metric âT defined by

âT (γ, γ ′) = max
t∈[0,T ] â(�tγ,�tγ

′).

By the variational principle this quantity equals the measure-theoretic entropy defined as
the supremum of the entropies of the flow-invariant probability measures on Geodσ (X) (cp.
[19], Lemma 1.5). An easy computation shows that the topological entropy is always zero.

Lemma 4.1 There are no flow-invariant probability measures on Geodσ (X). In particular
the topological entropy of the geodesic flow is 0.

Proof Suppose there is a flow-invariant probability measure μ on Geodσ (X). For x ∈ X and
R ≥ 0 we define AR = {γ ∈ Geodσ (X) s.t. γ (0) ∈ B(x, R)}. Clearly there exists R ≥ 0
such that μ(AR) > 1

2 . By flow-invariance of μ we have that the set

�−1
2R+1(AR) = {γ ∈ Geodσ (X) s.t. γ (2R + 1) ∈ B(x, R)}

has measure > 1
2 . This implies that μ(AR ∩�−1

2R+1(AR)) > 0, but this intersection is empty.
��

Looking at the proof of the variational principle given in [19] we can observe that
the sequence of metrics on Geodσ (X) that approach the infimum in the definition of the
topological entropy are the restriction to Geodσ (X) of metrics defined on its one-point
compactification. These metrics are not the natural ones on Geodσ (X), since they are not
geometric. We propose a more appropriate definition of topological entropy for proper GCB-
spaces.
We define the upper Lipschitz-topological entropy of Geodσ (X) as

hLip-top(Geodσ (X)) = inf
â
sup
K

lim
r→0

lim sup
T→+∞

1

T
logCovâT (K , r),

where the infimum is now taken only among all geometric metrics on Geodσ (X). The lower
Lipschitz-topological entropy is defined by taking the limit inferior instead of the limit supe-
rior and it is denoted by hLip-top(Geodσ (X)). The main result of this section is the following.

Theorem 4.2 Let (X , σ ) be a GCB-space that is P0-packed at scale r0. Then

hLip-top(Geodσ (X)) = hCov(X).

The same holds for the lower entropies.

One of the two inequalities is easy. In order to prove the other one we will show that for
the distances induced by the functions f ∈ F the definition of topological entropy can be
heavily simplified.
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4.1 Topological entropy for the distances induced by f ∈ F

For a metric f ∈ F we denote by h f the upper metric entropy of the σ -geodesic flow with
respect to f , that is

h f (Geodσ (X)) = sup
K

lim
r→0

lim sup
T→+∞

1

T
log Cov f T (K , r).

In the usual way it is defined the lower metric entropy with respect to f , h f (Geod(X)). For
a subset Y of X we denote by Geodσ (Y ) the set of σ -geodesic lines of X passing through Y
at time 0.

Proposition 4.3 Let (X , σ ) be a GCB-space that is P0-packed at scale r0 and let f ∈ F .
Then

(i) for all x, y ∈ X it holds h f (Geodσ (x)) = h f (Geodσ (y));
(ii) for all x ∈ X and R ≥ 0 it holds h f (Geodσ (B(x, R))) = h f (Geodσ (x));
(iii) for all x ∈ X it holds h f (Geodσ (X)) = h f (Geodσ (x)) ≤ hCov(X);
(iv) for all x ∈ X the function r �→ lim supT→+∞ 1

T log Cov f T (Geodσ (x), r) is constant.

The same conclusions hold for the lower Lipschitz-topological entropy.

The proposition is a consequence of the following fundamental key lemma.

Lemma 4.4 (Key Lemma) Let f ∈ F , γ ∈ Geodσ (X) and 0 < r ≤ r ′. Then

1

T
logCov f T (B f T (γ, r ′), r) 	

P0,r0,r ,r ′, f
0,

where B f T (γ, r ′) is the closed ball of center γ and radius r ′ with respect to the metric f T .
We remark that the convergence is uniform in γ .

Proof Let P > 0 depending only on f and r ′ such that
∫ −P

−∞
2|u| f (u)du +

∫ +∞

P
2|u| f (u)du <

r

4
.

We fix ε > 0 and T ≥ P
ε
. Let ET = {x1, . . . , xN } be a maximal r

16 -separated subset
of B(γ (T ), r ′ + εT ), so it is also r

16 -dense, and {y1, . . . , yM } be a r
16 -dense subset of

B(γ (−P), r ′ + 2P). For every i = 1, . . . , M and j = 1, . . . , N we take a σ -geodesic
line γi j extending the σ -geodesic segment [yi , x j ]. We parametrize γi j in such a way that
γi j (−P) = yi . The claim is that {γi j }i, j is a r -dense subset of B f T (γ, r ′) with respect to the
metric f T . We fix γ ′ ∈ B f T (γ, r ′). This means

max
t∈[0,T ] f

t (γ ′, γ ) = max
t∈[0,T ] f (�t (γ

′),�t (γ )) ≤ r ′.

In particular for all t ∈ [0, T ] we get d(γ ′(t), γ (t)) ≤ r ′, since

d(γ ′(t), γ (t)) = d(�t (γ
′),�t (γ )) ≤ f (�t (γ

′),�t (γ )) ≤ r ′.

Therefore d(γ ′(−P), γ (−P)) ≤ r ′ + 2P. Moreover

d(γ ′(T + εT ), γ (T )) ≤ d(γ ′(T + εT ), γ ′(T )) + d(γ ′(T ), γ (T )) ≤ εT + r ′.
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Thus there exists x j such that d(x j , γ ′(T +εT )) ≤ r
16 and yi such that d(yi , γ ′(−P)) ≤ r

16 .
We have d(γi j (−P), γ ′(−P)) ≤ r

16 , so if we denote with t j the time such that γi j (t j ) = x j
it holds that |t j − (T + εT )| ≤ r

8 . Then

d(γi j (T + εT ), γ ′(T + εT )) ≤ d(γi j (T + εT ), γi j (t j )) + d(γi j (t j ), γ
′(T + εT ))

≤ r

8
+ r

16
<

r

4
.

From the convexity of σ we have d(γ ′(u), γi j (u)) < r
4 for all u ∈ [−P, (1 + ε)T ]. For

t ∈ [0, T ] we have

f t (γ ′, γi j ) =
∫ +∞

−∞
d(γ ′(u), γi j (u)) f (u − t)du

≤
∫ −P

−∞

(
r

4
+ 2|u + P|

)
f (u − t)du+

+
∫ (1+ε)T

−P

r

4
f (u − t)du+

+
∫ +∞

(1+ε)T

(
r

4
+ 2|u − (1 + ε)T |

)
f (u − t)du.

The first term can be estimated as follows∫ −P

−∞

(
r

4
+ 2|u + P|

)
f (u − t)du ≤ r

4
+

∫ −P−t

−∞
2|v + t + P| f (v)dv

≤ r

4
+

∫ −P

−∞
2|v| f (v)dv.

The second term is less than or equal to r
4 . The third term can be controlled in this way:

∫ +∞

(1+ε)T

(
r

4
+ 2|u − (1 + ε)T |

)
f (u − t)du ≤ r

4
+

∫ +∞

(1+ε)T−t
2|v − (1 + ε)T + t | f (v)dv

≤ r

4
+

∫ +∞

(1+ε)T−t
2|v| f (v)dv

≤ r

4
+

∫ +∞

P
2|v| f (v)dv.

The last inequality follows from T ≥ P
ε
. Therefore

f t (γ ′, γi j ) ≤ r

4
+ r

4
+ r

4
+

∫ −P

−∞
2|v| f (v)dv +

∫ +∞

P
2|v| f (v)dv ≤ r .

We conclude that

Cov f T (B f T (γ, r ′), r) ≤ Cov

(
r ′ + 2P,

r

16

)
· #ET .

From Proposition 2.1, if ρ = min
{
r0,

r
16

}
, we get #ET ≤ P0(1 + P0)

r ′+εT
ρ

−1
. Thus

1

T
log Cov f T (B f T (γ, r ′), r) ≤ 1

T
K (P0, r0, r , r

′, f ) · εT

ρ
log(1 + P0)

= ε · K ′(P0, r0, r , r ′, f ).
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Here K , K ′ are constants depending only on P0, r0, r , r ′, f and not on ε or γ . So from the
arbitrariness of ε we achieve the proof. ��

The computation of h f requires to consider the supremum among all compact subsets of
Geodσ (X). We notice that given a compact subset K ⊆ Geodσ (X), the set E(K ) is compact
since E is continuous. In particular it is bounded, hence contained in a ball B(x, R) centered
at a reference point x ∈ X . We observe also that the set Geodσ (B(x, R)) is compact since the
evaluation map E is proper. We conclude that any compact subset of Geodσ (X) is contained
in a compact subset of the form Geodσ (B(x, R)) and therefore in order to compute h f it is
enough to take the supremum among these sets. The main consequence of Lemma 4.4 is the
following result, which is the key ingredient in the proof of Proposition 4.3.

Corollary 4.5 Let f ∈ F , x ∈ X, R ≥ 0 and 0 < r ≤ r ′. Then

1

T
logCov f T (Geodσ (B(x, R)), r) 	

P0,r0,r ,r ′, f

1

T
log Cov f T (Geodσ (B(x, R)), r ′).

Proof The quantity 1
T log Cov f T (Geodσ (B(x, R)), r) is

≤ 1

T
logCov f T (Geodσ (B(x, R)), r ′) · sup

γ∈Geodσ (X)

Cov f T (B f T (γ, r ′), r)

= 1

T

(
logCov f T (Geodσ (B(x, R)), r ′) + log sup

γ∈X
Cov f T (B f T (γ, r ′), r)

)

The conclusion follows by Lemma 4.4. ��

Proof of Proposition 4.3.(ii) Let ε > 0 and T > R
ε
. Let γ1, . . . , γN be a r -dense subset of

Geodσ (x) with respect to the metric f (2+ε)T . The claim is that {γi } is a K -dense subset of
Geodσ (B(x, R)) with respect to f T , where K depends only on r , R and f . We consider a
σ -geodesic line γ ∈ Geodσ (B(x, R)). Then there exists a σ -geodesic line γ ′ ∈ Geodσ (x)
extending the σ -geodesic segment [x, γ ((1+ ε)T )]. We call tγ ′ the time such that γ ′(tγ ′) =
γ ((1 + ε)T ). Then

tγ ′ = d(x, γ ((1 + ε)T )) ≤ d(x, γ (0)) + d(γ (0), γ ((1 + ε)T ))

≤ R + (1 + ε)T ≤ (1 + 2ε)T

since T ≥ R
ε
. Moreover |tγ ′ − (1 + ε)T | ≤ R. We know there exists γi such that

maxt∈[0,(1+2ε)T ] f (�tγ
′,�tγi ) ≤ r . In particular d(γ ′(tγ ′), γi (tγ ′)) ≤ r . Then d(γ ((1 +

ε)T ), γi (tγ ′)) ≤ r and in conclusion

d(γ ((1 + ε)T ), γi ((1 + ε)T )) ≤ d(γ ((1 + ε)T ), γi (tγ ′)) + d(γi (tγ ′), γi ((1 + ε)T )) ≤ r + R.

From the convexity of σ we have d(γ (t), γi (t)) ≤ R + r for all t ∈ [0, (1 + ε)T ]. We
have to estimate f t (γ, γi ) = ∫ +∞

−∞ d(γ (u), γi (u)) f (u − t)du for every t ∈ [0, T ]. Since
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d(γ (0), γi (0)) ≤ R and d(γ ((1 + ε)T ), γi ((1 + ε)T )) ≤ r + R then
∫ +∞

−∞
d(γ (u), γi (u)) f (u − t)du ≤

∫ 0

−∞
(R + 2|u|) f (u − t)du+

+
∫ (1+ε)T

0
(R + r) f (u − t)du+

+
∫ +∞

(1+ε)T
(R + r + 2|u − (1 + ε)T |) f (u − t)du

≤ R +
∫ −t

−∞
2|v + t | f (v)dv + (R + r)

+
∫ +∞

(1+ε)T−t
(R + r + 2|v − (1 + ε)T + t |) f (v)dv.

We conclude that the above quantity is less than or equal to

3R + 2r +
∫ 0

−∞
2|v| f (v)dv +

∫ +∞

0
2|v| f (v)dv ≤ 3R + 2r + C( f ) = K (R, r , f ).

By the previous corollary h f (Geodσ (B(x, R)))can be computed as

lim sup
T→+∞

1

T
logCov f T (Geodσ (B(x, R)), K )

which is

≤ lim sup
T→+∞

1

T
log Cov f (1+2ε)T (Geodσ (x), r)

= (1 + 2ε) lim sup
T→+∞

1

T
logCov f T (Geodσ (x), r).

Since this is true for all ε > 0 then we obtain the thesis. ��
Proof of Proposition 4.3.(i) We have y ∈ B(x, R), where R = d(x, y), so Geodσ (y) ⊆
Geodσ (B(x, R)). Therefore

h f (Geodσ (y)) ≤ h f (Geodσ (B(x, R))) = h f (Geodσ (x)).

The other inequality can be proved in the same way. ��
Finally we achieve the proof of the remaining parts of Proposition 4.3.

Proof of Proposition 4.3.(iii) & (iv) The equality in (iii) follows directly from (ii), so

h f (Geodσ (X)) = lim sup
T→+∞

1

T
logCov f T (Geodσ (x), r0),

where x is a point of X . We fix T > 0 and we consider a r0-separated subset ET of
S(x0, T ) of maximal cardinality, which is also r0-dense. For all y ∈ ET we consider a
σ -geodesic line γy extending the σ -geodesic segment [x0, y] such that γy(0) = x0 and
γy(T ) = y. We claim that {γy}y∈ET is a (r0 +C( f ))-dense subset of Geodσ (x) with respect
to f T . We take a σ -geodesic line γ ∈ Geodσ (x). Then there exists y ∈ ET such that
d(γ (T ), y) = d(γ (T ), γy(T )) ≤ r0. From the convexity of σ it holds d(γ (u), γy(u)) ≤ r0

123



Geometriae Dedicata (2022) 216 :54 Page 19 of 30 54

for all u ∈ [0, T ]. Moreover d(γ (u), γy(u)) ≤ r0 + 2|u − T | for all u ∈ [T ,+∞) and
d(γ (u), γy(u)) ≤ 2|u| for all u ∈ (−∞, 0]. Then for all t ∈ [0, T ] we get

f t (γ, γy) =
∫ +∞

−∞
d(γ (u), γy(u)) f (u − t)du

≤
∫ 0

−∞
2|u| f (u − t)du +

∫ T

0
r0 f (u − t)du+

+
∫ +∞

T
(r0 + 2|u − T |) f (u − t)du ≤ r0 + C( f ).

The last inequality follows from similar estimates given in the proofs ofLemma4.4. Therefore
applying Corollary 4.5 we have

lim sup
T→+∞

1

T
logCov f T (Geodσ (x), r0) ≤ lim sup

T→+∞
1

T
logCov(S(x, T ), r0).

This, together with Proposition 3.2, proves (iii). We observe that (iv) is exactly Corollary 4.5
with R = 0. ��

4.2 Proof of Theorem 4.2

We are ready to give the

Proof of Theorem 4.2 Proposition 4.3.(iii) shows that hLip-top(Geodσ (X)) is less than or equal
to hCov(X).
In order to prove the other inequality we fix a geometric metric â on Geodσ (X) and we
denote by M the Lipschitz constant with respect to â of the evaluation map E . Then we have

sup
K

lim
r→0

lim sup
T→+∞

1

T
logCovâT (K , r) ≥ lim sup

T→+∞
1

T
logCovâT (Geodσ (x), r0),

where x ∈ X . We fix T ≥ 0 and we consider a set γ1, . . . , γN realizing <

CovâT (Geodσ (x), r0) >. The claim is that γi (T ) is a Mr0-dense subset of S(x, T ). Indeed
we take a point y ∈ S(x, T ) and we extend the σ -geodesic segment [x, y] to a σ -geodesic
line γ ∈ Geodσ (x). Then there exists γi such that âT (γ, γi ) ≤ r0. Since the evaluation map
is M-Lipschitz we have

d(y, γi (T )) = d(γ (T ), γi (T )) = d(�T γ (0),�T γi (0)) ≤ Lâ(�T γ,�T γi ) ≤ Mr0.

Therefore

lim sup
T→+∞

1

T
log CovâT (Geodσ (x), r0) ≥ lim sup

T→+∞
1

T
logCov(S(x, T ), Mr0)

and the conclusion follows by Proposition 3.2. ��
Remark 4.6 By Proposition 4.3 and Theorem 4.2 the upper Lipschitz-topological entropy of
X can be computed as

hLip-top(X) = lim sup
T→+∞

1

T
logCov f T (Geodσ (x), r)

independently of f ∈ F , x ∈ X and r > 0. Moreover

1

T
log Cov f T (Geodσ (x), r0) 	

P0,r0, f

1

T
logCov(B(x, T ), r0)
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by the proofs of Theorem 4.2 and Proposition 4.3 and by Proposition 3.2.

5 Gromov-hyperbolic metric spaces

In the second part of the paper we will study the versions of the entropies introduced in the
first part relative to subsets of the boundary at infinity. In order to have meaningful definitions
we will consider Gromov-hyperbolic metric spaces.
Let X be a geodesic space. Given three points x, y, z ∈ X , the Gromov product of y and z
with respect to x is defined as

(y, z)x = 1

2

(
d(x, y) + d(x, z) − d(y, z)

)
.

The space X is said δ-hyperbolic if for every four points x, y, z, w ∈ X the following 4-points
condition hold:

(x, z)w ≥ min{(x, y)w, (y, z)w} − δ. (5.1)

The space X is Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.
Let X be a proper, δ-hyperbolic metric space x be a point of X .
The Gromov boundary of X is defined as the quotient

∂X = {(zn)n∈N ⊆ X | lim
n,m→+∞(zn, zm)x = +∞} /∼,

where (zn)n∈N is a sequence of points in X and ≈ is the equivalence relation defined by
(zn)n∈N ∼ (z′n)n∈N if and only if limn,m→+∞(zn, z′m)x = +∞.
We will write z = [(zn)] ∈ ∂X for short, and we say that (zn) converges to z. This definition
does not depend on the basepoint x .
There is a natural topology on X ∪ ∂X that extends the metric topology of X . The Gromov
product can be extended to points z, z′ ∈ ∂X by

(z, z′)x = sup
(zn),(z′n)

lim inf
n,m→+∞(zn, z

′
m)x

where the supremum is taken among all sequences such that (zn) ≈ z and (z′n) ≈ z′. For
every z, z′, z′′ ∈ ∂X it continues to hold

(z, z′)x ≥ min{(z, z′′)x , (z′, z′′)x } − δ. (5.2)

Moreover for all sequences (zn), (z′n) converging to z, z′ respectively it holds

(z, z′)x − δ ≤ lim inf
n,m→+∞(zn, z

′
m)x ≤ (z, z′)x . (5.3)

The Gromov product between a point y ∈ X and a point z ∈ ∂X is defined in a similar way
and it satisfies a condition analogue of (5.3).
Every geodesic ray ξ defines a point ξ+ = [(ξ(n))n∈N] of the Gromov boundary ∂X : we say
that ξ joins ξ(0) = y to ξ+ = z, and we denote it by [y, z]. Moreover for every z ∈ ∂X and
every x ∈ X it is possible to find a geodesic ray ξ such that ξ(0) = x and ξ+ = z. Indeed
if (zn) is a sequence of points converging to z then, by properness of X , the sequence of
geodesics [x, zn] converges to a geodesic ray ξ which has the properties above (cp. Lemma
III.3.13 of [4]). We denote any of these geodesic rays as ξxz = [x, z] even if it is possibly
not unique.
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Given different points z = [(zn)], z′ = [(z′n)] ∈ ∂X there always exists a geodesic line γ

joining z to z′, i.e. such that γ |[0,+∞) and γ |(−∞,0] join γ (0) to z, z′ respectively. We call z
and z′ the positive and negative endpoints of γ , respectively, denoted γ + and γ −.
Here we recall some basic properties of Gromov-hyperbolic metric spaces.

Lemma 5.1 (Projection Lemma, cp. Lemma 3.2.7 of [11]) Let X be a δ-hyperbolic metric
space and let x, y, z ∈ X. For every geodesic segment [y, z]we have (y, z)x ≥ d(x, [y, z])−
4δ.

We recall that a (1, ν)-quasigeodesic is a curve α : I → X such that

|t − t ′| − ν ≤ d(α(t), α(t ′)) ≤ |t − t ′| + ν

for all t, t ′ belonging to the interval I . As an immediate consequence of the previous lemma
and Proposition 2.7 of [13] we get:

Lemma 5.2 Let X be a δ-hyperbolic metric space, x ∈ X and ξ be a geodesic ray such that
ξ(0) is a projection of x on ξ . Then

(i) for all T ≥ 0 any curve α = [x, ξ(0)] ∪ ξ |[0,T ] is a (1, 4δ)-quasigeodesic. Moreover, if
γ is a geodesic segment [x, ξ(T )], then d(α(t), γ (t)) ≤ 72δ for all possibles t;

(ii) any curve α = [x, ξ(0)] ∪ ξ is a (1, 4δ)-quasigeodesic. Moreover, if ξ ′ is a geodesic ray
[x, ξ+], then d(α(t), ξ ′(t)) ≤ 72δ for all t ≥ 0.

Furthermore:

Lemma 5.3 Let X be a proper, δ-hyperbolic metric space. Let γ be a geodesic line and x ∈ X
with S := d(γ (0), x). Let x ′ be a projection of x on γ . Then

(i) there exists an orientation of γ such that [x, x ′] ∪ [x ′, γ +] is a (1, 4δ)-quasigeodesic,
where the second segment is the subsegment of γ ;

(ii) with respect to the orientation of (i) then every geodesic ray ξ = [x, γ +] satisfies
d(ξ(S + t), γ (t)) ≤ 76δ for all t ≥ 0;

(iii) for all orientations of γ every geodesic ray ξ = [x, γ +] satisfies d(ξ(S + t), γ (t)) ≤
2S + 76δ for all t ≥ 0.

By an orientation of a geodesic line γ we simply mean a unit speed parametrization.

Proof Wecan choose a parametrization of γ forwhich x ′ belongs to the negative ray γ |(−∞,0].
We take a geodesic ray ξ = [x, γ +]. By Lemma 5.2 the path α = [x, x ′] ∪ [x ′, γ +] is
a (1, 4δ)-quasigeodesic and moreover it satisfies d(ξ(S + t), α(S + t)) ≤ 72δ for every
t ≥ 0. Furthermore the time t0 such that α(t0) = γ (0) is between S and S + 4δ implying
d(ξ(S+t), γ (t)) ≤ 76δ.For the secondpart of the proofweassume tobe in the situation above
and we consider a geodesic ray ξ = [x, γ −]. By Lemma 5.2 the path α = [x, x ′] ∪ [x ′, γ −],
where the second segment is a subsegment of γ , satisfies d(ξ(S+t), α(S+t)) ≤ 72δ for every
t ≥ 0. Furthermore for every t ≥ 0 the point α(S + t) belongs to γ and d(α(S + t), γ (0)) ≤
d(α(S + t), x) + d(x, γ (0)) ≤ 2S + t + 4δ. So d(ξ(S + t), γ (t)) ≤ 76δ + 2S. ��

We remark that if γ (0) is a projection of x on γ then the first part of the lemma holds for
both the positive and negative ray of γ .
The quasiconvex hull of a subset C of ∂X is the union of all the geodesic lines joining two
points ofC and it is denoted by QC-Hull(C). The following is essentially Lemma 2.5 of [10].

Lemma 5.4 Let X be a proper, δ-hyperbolic metric space. Let x ∈ X andC ⊆ ∂X be a subset
with at least two points. Then for every z ∈ C it exists a geodesic line γ with endpoints in C
such that d(ξxz(t), γ (t)) ≤ 22δ + d(x,QC-Hull(C)) =: L for every t ≥ 0.
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Proof Let x ′ ∈ QC-Hull(C) realizing d(x,QC-Hull(C)). By Lemma 2.5 of [10] we know
there exists γ as desired such that d(ξx ′z(t), γ (t)) ≤ 14δ for every t ≥ 0. Now the thesis
follows by the fact that two geodesic rays with same endpoint are 8δ-close, see for instance
Proposition 8.10 of [3]. ��
Remark 5.5 Let z, z′ ∈ C ⊆ ∂X . It is clear that the conclusion of Lemma 5.4 is true with
L = 22δ + d(x, [z, z′]).
Lemma 5.6 Let (X , σ ) be a proper, δ-hyperbolicGCB-space. Let QC-Hullσ (C) be the union
of all σ -geodesic lines joining two points of C. Then for every x ∈ QC-Hull(C) there exists
x ′ ∈ QC-Hullσ (C) with d(x, x ′) ≤ 8δ.

Proof For all z, z′ ∈ ∂X there exists a σ -geodesic line joining them, see [13]. Moreover two
parallel geodesics are at most at distance 8δ ([3], Proposition 8.10), hence the conclusion. ��

5.1 Minkowski dimension

When X is a proper, δ-hyperbolic metric space we define the generalized visual ball of center
z ∈ ∂X and radius ρ ≥ 0 to be

B(z, ρ) =
{
z′ ∈ ∂X s.t. (z, z′)x > log

1

ρ

}
.

It is comparable to the metric balls of the visual metrics on ∂X , see Lemma 2.6 of [10].
Generalized visual balls are related to shadows. Let x ∈ X be a basepoint. The shadow of
radius r > 0 casted by a point y ∈ X with center x is the set:

Shadx (y, r) = {z ∈ ∂X s.t. [x, z] ∩ B(y, r) �= ∅ for all rays [x, z]}.
Lemma 5.7 (Lemma 2.7 of [10]) Let X be a proper, δ-hyperbolic metric space. Let z ∈ ∂X,
x ∈ X and T ≥ 0. Then

(i) B(z, e−T ) ⊆ Shadx (ξxz (T ) , 7δ);
(ii) Shadx (ξxz (T ) , r) ⊆ B(z, e−T+r ) for all r > 0.

The upper and lower visual Minkowski dimension of a subset C of ∂X was defined in [10]
as

MD(C) = lim sup
T→+∞

1

T
logCov(C, e−T ), MD(C) = lim inf

T→+∞
1

T
logCov(C, e−T )

respectively, where Cov(C, ρ) denotes the minimal number of generalized visual balls of
radius ρ needed to cover C . Taking C = ∂X we get

Proposition 5.8 Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0 and
let x ∈ X. Then

1

T
logCov(∂X , e−T ) 	

P0,r0,δ

1

T
logCov(S(x, T ), r0).

In particular the upper (resp. lower) visual Minkowski dimension of ∂X equals the upper
(resp. lower) covering entropy of X.

We need:
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Lemma 5.9 ([10], Lemma 2.2) Let X be a proper, δ-hyperbolic metric space, z, z′ ∈ ∂X
and x ∈ X. Then

(i) if (z, z′)x ≥ T then d(ξxz(T − δ), ξxz′(T − δ)) ≤ 4δ;
(ii) for all b > 0, if d(ξxz(T ), ξxz′(T )) < 2b then (z, z′)x > T − b.

Proof of Proposition 5.8 Let z1, . . . , zN be points of ∂X realizingCov(∂X , e−T ), and let yi be
the point at distance T from x along one geodesic ray ξxzi . We claim that {yi } covers S(x, T )

at scale 6δ. Indeed let y ∈ S(x, T ) and let z ∈ ∂X be the point at infinity of a σ -geodesic ray
ξ that extends the σ -geodesic [x, y]. We know there exists i such that (z, zi )x > T , then by
Lemma 5.9 we get d(y, yi ) ≤ 6δ. This shows Cov(∂X , e−T ) ≥ Cov(S(x, T ), 6δ).
Now let {yi } be points realizing Cov(S(x, T + δ), δ). For every i let zi ∈ ∂X be the point
at infinity of a σ -geodesic ray ξi that extends the σ -geodesic [x, yi ]. For every z ∈ ∂X
we take a geodesic ray ξxz . We know it exists i such that d(ξxz(T + δ), yi ) ≤ δ < 2δ,
therefore (z, zi )x > T by Lemma 5.9. This shows Cov(∂X , e−T ) ≤ Cov(S(x, T + δ), δ).
The conclusion follows by Proposition 3.1. ��

Putting together Proposition 3.1, Proposition 3.4, Proposition 5.8, Theorem4.2 and Propo-
sition 4.3 we get the proof of Theorem B.

6 Entropies of subsets of the boundary

Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0. In this section we will
consider a subset C of ∂X and we define the relative version, with respect to C , of all the
different definitions of entropies introduced in the previous sections. We observe that when
C = ∂X then we are in the case yet studied.

6.1 Covering and volume entropy

Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0 and let C be a subset
of ∂X . The upper covering entropy of C is defined as

lim sup
T→+∞

1

T
logCov(B(x, T ) ∩ B(QC-Hull(C), τ ), r),

where r > 0, τ ≥ 0 and x ∈ X and it is denoted by hCov(C). The lower covering entropy
of C , denoted by hCov(C), is defined taking the limit inferior instead of the limit superior.
These quantities do not depend on x ∈ X as usual. The analogue of Proposition 3.1 holds.

Proposition 6.1 Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0, C
be a subset of ∂X and x ∈ X. Then

1

T
logCov(B(x, T ) ∩ B(QC-Hull(C), τ ), r) 	

P0,r0,r ,r ′,τ,τ ′

1

T
log Pack(B(x, T ) ∩ B(QC-Hull(C), τ ′), r ′)

for all r , r ′ > 0 and τ, τ ′ ≥ 0. In particular any of these functions can be used in the
definition of the upper and lower covering entropies of C.
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Proof Once τ is fixed the asymptotic estimate can be proved exactly as in Proposition 3.1.
Moreover for all τ ≥ 0 it is easy to prove that

Cov(B(x, T ) ∩ B(QC-Hull(C), τ ), r)

≤ Cov(B(x, T ) ∩ QC-Hull(C), r0) · Cov(r0 + τ, r0).

and Cov(r0 + τ, r0) is uniformly bounded in terms of P0, r0 and τ by Proposition 2.1. This
concludes the proof. ��
Clearly when C = ∂X we have hCov(∂X) = hCov(X). Moreover if C is a closed subset of
∂X then hCov(C) ≤ hCov(∂X), so hCov(C) ≤ log(1+P0)

r0
by Lemma 3.3.

The analogue of Proposition 3.2 holds.We remark that in this case a dependence on δ appears.

Proposition 6.2 Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0, C
be a subset of ∂X and x ∈ X. Then

1

T
logCov(B(x, T ) ∩ QC-Hull(C), r) 	

P0,r0,r ,δ

1

T
logCov(S(x, T ) ∩ QC-Hull(C), r)

In particular any of these functions can be used in the definition of the upper and lower
covering entropies of C.

Proof As in the proof of Proposition 3.2 one inequality is obvious, so we are going to prove
the other. We divide the ball B(x, T ) in the annulii A(x, kr , (k+1)r)with k = 0, . . . , T

r −1.
Therefore we can estimate the quantity Cov(B(x, T ) ∩ QC-Hull(C), 72δ + 2r) from above
by

T
r −1∑
k=0

Cov(A(x, kr , (k + 1)r) ∩ QC-Hull(C), 72δ + 2r).

We claim that every element of the sum is ≤ Cov(S(x, T ) ∩ QC-Hull(C), r). Indeed let
y1, . . . , yN be a set of points realizing Cov(S(x, T ) ∩QC-Hull(C), r). For all i = 1, . . . , N
we consider the σ -geodesic segment γi = [x, yi ] and we call xi the point along this geodesic
at distance kr from x . We want to show that x1, . . . , xN is a (72δ + 2r)-dense subset of
A(x, kr , (k + 1)r)∩QC-Hull(C). Given a point y ∈ A(x, kr , (k + 1)r)∩QC-Hull(C) there
exists a σ -geodesic line γ with endpoints inC containing y. We parametrize γ so that γ (0) is
a projection of x on γ and y ∈ γ |[0,+∞). We take a point yT ∈ γ |[0,+∞) at distance T from x ,
so that yT ∈ S(x, T ) ∩ QC-Hull(C) and therefore there exists i such that d(yT , yi ) ≤ r . By
Lemma 5.2 the path α = [x, γ (0)] ∪ [γ (0), yT ], where the second geodesic is a subsegment
of γ , is a (1, 4δ)-quasigeodesic and, if ty denotes the real number such that α(ty) = y, it holds
ty ∈ [kr , (k + 1)r ]. By Lemma 5.2 we get d(y, γ ′

i (ty)) ≤ 72δ, where γ ′
i is the σ -geodesic

[x, yT ]. We conclude the proof of the claim since

d(y, xi ) ≤ d(y, γ ′
i (ty)) + d(γ ′

i (ty), γi (ty)) + d(γi (ty), xi ) ≤ 72δ + 2r ,

from the convexity of σ . The thesis follows by Proposition 6.1. ��
The upper volume entropy of C with respect to a measure μ is

hμ(C) = sup
τ≥0

lim sup
T→+∞

1

T
logμ(B(x, T ) ∩ B(QC-Hull(C), τ )),

where x ∈ X . The lower volume entropy is defined by taking the limit inferior instead of the
limit superior and it is denoted by hμ(C).
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Proposition 6.3 Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0, let
C be a subset of ∂X and let μ be a measure on X which is H-homogeneous at scale r . Then
for all τ ≥ r it holds

1

T
logμ(B(x, T ) ∩ B(QC-Hull(C), τ )) 	

H ,P0,r0,r ,τ

1

T
logCov(B(x, T ) ∩ QC-Hull(C), r0).

In particular the upper (resp. lower) volume entropy of C with respect to μ coincides with
the upper (resp. lower) covering entropy of C and it can be computed using τ = r in place
of the supremum.

Proof By Remark 3.5 we know that μ is H(τ )-homogeneous at scale τ for all τ ≥ r , where
H(τ ) depends on P0, r0, τ, r , H . Therefore the proof of Proposition 3.4 works in this case.

��

6.2 Lipschitz topological entropy

Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0. For a subset C of ∂X
and Y ⊆ X we set

Geodσ (Y ,C) = {γ ∈ Geodσ (X) s.t. γ ± ⊆ C and γ (0) ∈ Y }.
IfY = X we simplywriteGeodσ (C). ClearlyGeodσ (C) is a�-invariant subset ofGeodσ (X),
so the reparametrization flow is well defined on it. The upper Lipschitz-topological entropy
of Geodσ (C) is defined as

hLip-top(Geodσ (C)) = inf
â
sup
K

lim
r→0

lim sup
T→+∞

1

T
logCovâT (K , r),

where the infimum is taken among all geometric metrics on Geodσ (C). The lower Lipschitz-
topological entropy is defined taking the limit inferior instead of the limit superior and it is
denoted by hLip-top(Geodσ (C)). In the following result we observe the difference between
closed and non-closed subsets of ∂X .

Theorem 6.4 Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0 and C
be a subset of ∂X. Then

hLip-top(Geodσ (C)) = sup
C ′⊆C

hCov(C
′),

where the supremum is among closed subsets C ′ of C. The same holds for the lower entropies.

We remark that the supremum of the covering entropies among the closed subsets of C can
be strictly smaller than the covering entropy of C (see [9]), marking the distance between
the equivalences of the different notions of entropies in case of non-closed subsets of the
boundary. We start with an easy lemma.

Lemma 6.5 Let (X , σ ) and C be as in Theorem 6.4 and let x ∈ X. Then every compact
subset of Geodσ (C) is contained in Geodσ (B(x, R),C ′) for some R ≥ 0 and some C ′ ⊆ C
closed. Moreover Geodσ (B(x0, R),C ′) is compact for all R ≥ 0 and all closed C ′ ⊆ C.

Proof We fix a compact subset K of Geodσ (C). The continuity of the evaluation map gives
that E(K ) is contained in some ball B(x, R). Moreover the maps +,−: Geodσ (X) → ∂X ,
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defined by γ �→ γ +, γ − respectively, are continuous ([5], Lemma 1.6). Thismeans thatC ′ =
+(K ) ∪ −(K ) is a closed subset of ∂X and clearly K ⊆ Geodσ (B(x, R),C ′). By a similar
argument, and since the evaluation map is proper, it follows that the set Geodσ (B(x, R),C ′)
is compact for all R ≥ 0 and all C ′ ⊆ C closed. ��

For a metric f ∈ F and C ⊆ ∂X we denote by h f the upper metric entropy of Geodσ (C)

with respect to f , that is

h f (Geodσ (C)) = sup
K

lim
r→0

lim sup
T→+∞

1

T
logCov f T (K , r).

Taking the limit inferior instead of the limit superior we define the lower metric entropy of
Geodσ (C) with respect to f , denoted by h f (Geodσ (C)). The analogue of Proposition 4.3 is
the following.

Proposition 6.6 Let (X , σ ) be as in Theorem 6.4, C ′ be a closed subset of ∂X, f ∈ F , x ∈ X
and L be the constant given by Lemma 5.4. Then

(i) h f (Geodσ (B(x, R),C ′)) = h f (Geodσ (B(x, L),C ′)) for all R ≥ L;
(ii) h f (Geodσ (C ′)) = h f (Geodσ (B(x, L),C ′)) ≤ hCov(C ′);
(iii) The function r �→ lim supT→+∞ 1

T logCov f T (Geodσ (B(x, L),C ′), r) is constant.

The same conclusions hold for the lower entropies.

We observe that applying the Key Lemma 4.4 we have directly the relative version of
Corollary 4.5.

Corollary 6.7 Let f ∈ F , x ∈ X, R ≥ 0 and 0 < r ≤ r ′. Then
1

T
logCov f T (Geodσ (B(x, R),C ′), r ′) 	

P0,r0,r ,r ′, f
1

T
logCov f T (Geodσ (B(x, R),C ′), r).

Proof of of Proposition 6.6 We fix R ≥ L and T ≥ 0. We take a set γ1, . . . , γN of σ -geodesic
lines realizing Cov f T (Geodσ (B(x, L),C ′), r0). Our aim is to show that γ1, . . . , γN is a

(4R + 2L + C( f ) + 76δ + r0)-dense subset of Geodσ (B(x, R),C ′). This, together with
Corollary 6.7, will prove (i). We consider a σ -geodesic line γ ∈ Geodσ (B(x, R),C ′), so
d(γ (0), x) =: S ≤ R. By Lemma 5.3 there exists a σ -geodesic ray ξ starting at x such that
d(ξ(S+ t), γ (t)) ≤ 2S+ 76δ for all t ≥ 0 and in particular ξ+ belongs to C . Now we apply
Lemma 5.4 to find a σ -geodesic line γ ′ ∈ Geod(C ′) such that d(ξ(t), γ ′(t)) ≤ L for all
t ≥ 0. Clearly we have γ ′ ∈ Geodσ (B(x, L),C ′) and d(γ ′(S + t), γ (t)) ≤ 2S + L + 76δ
for all t ≥ 0. Therefore d(γ ′(t), γ (t)) ≤ 3S + L + 76δ for all t ≥ 0. This implies that for
all t ∈ [0, T ] we have

f t (γ, γ ′) ≤
∫ −t

−∞
(
d(γ (0), γ ′(0)) + 2|s|) f (s)ds +

∫ +∞

−t

(
3S + L + 76δ

)
f (s)ds.

Since d(γ (0), γ ′(0)) ≤ L+S we get f t (γ, γ ′) ≤ 4S+2L+C( f )+76δ using the properties
of f , and so f T (γ, γ ′) ≤ 4R+2L+C( f )+76δ.Moreover, since γ ′ ∈ Geodσ (B(x, L),C ′),
there exists γi such that f T (γ ′, γi ) ≤ r0. This implies f T (γ, γi ) ≤ 4R + 2L + C( f ) +
76δ + r0.
We observe that (iii) follows directly from the previous corollary.
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The first equality in (ii) follows by (i). In order to prove the inequality we fix y1, . . . , yN
realizing Cov(S(x, T ) ∩ QC-Hull(C ′), r0). Up to change yi with a point at distance at most
8δ from it we can suppose there are γi ∈ Geodσ (C ′) such that yi ∈ γi and y1, . . . , yN is
a (8δ + r0)-dense subset of S(x, T ) ∩ QC-Hull(C ′), as follows by Lemma 5.6. By Lemma
5.3 there exists an orientation of γi such that, called Si = d(x, γi (0)) and Ti ≥ 0 such that
γi (Ti ) = yi , we have T ≤ Si + Ti ≤ T + 4δ and the σ -geodesic ray ξi = [x, γ +

i ] satisfies
d(ξi (Si + t), γi (t)) ≤ 76δ for all t ≥ 0. By Lemma 5.4 there exists γ ′

i ∈ Geodσ (B(x, L),C ′)
such that d(γ ′

i (t), ξi (t)) ≤ L for all t ≥ 0. We claim that the set {γ ′
i } is (6L + 176δ + 2r0 +

2C( f ))-dense in Geodσ (B(x, L),C ′). By (i) and (iii) this would imply the thesis. We fix
γ ∈ Geodσ (B(x, L),C ′), so there exists y ∈ S(x, T ) and Ty ∈ [T − L, T + L] such that
γ (Ty) = y and therefore d(y, yi ) ≤ 8δ + r0 for some i . We observe that we have d(γ ′

i (Si +
Ti ), yi ) ≤ L + 76δ and so d(γ ′

i (T ), yi ) ≤ L + 80δ. Moreover d(γ (T ), yi ) ≤ L + 8δ + r0
implying d(γ (T ), γ ′

i (T )) ≤ 2L+88δ+r0. Furthermore by definition d(γ (0), γ ′
i (0)) ≤ 2L ,

so by convexity of σ we get d(γ (t), γ ′
i (t)) ≤ 2L + 88δ + r0 for all t ∈ [0, T ]. The thesis

follows by the classical subdivision of the integral defining f into three parts, each estimated
by the constants above. ��
Proof of Theorem 6.4 We fix a geometric metric â on Geodσ (C) and we denote by M the
Lipschitz constant with respect to â of the evaluation map E . By Remark 5.5 the constant
L given by Lemma 5.4 can be chosen independently of C ′ ⊆ C , once x is fixed. Clearly we
have

sup
R≥0,C ′⊆C

lim
r→0

lim sup
T→+∞

1

T
logCovâT (Geodσ (B(x, R),C ′), r)

≥ sup
C ′⊆C

lim sup
T→+∞

1

T
logCovâT (Geodσ (B(x, L),C ′), r0).

Wefixσ -geodesic linesγ1, . . . , γN realizingCovâT (Geodσ (B(x, L),C ′), r0). Sinced(γi (0),
x) ≤ L for all i = 1, . . . , N then there exists ti ∈ [T − L, T + L] such that d(γi (ti ), x) = T .
We claim that the points yi = γi (ti ) ∈ S(x, T )∩QC-Hull(C ′) are (2L +80δ + Mr0)-dense.
By Proposition 6.2 this would imply

hLip-top(Geodσ (C)) ≥ sup
C ′⊆C

hLip-top(Geodσ (C ′)) ≥ sup
C ′⊆C

hCov(C
′).

We fix y ∈ S(x, T ) ∩ QC-Hull(C ′) and we select a geodesic line γ ∈ Geod(C ′) containing
y. Up to replacing y with a point at distance at most 8δ we can suppose γ ∈ Geodσ (C ′),
as follows by Lemma 5.6. By Lemma 5.3, with an appropriate choice of the orientation
of γ , the σ -geodesic ray ξ = [x, γ +] satisfies d(ξ(S + t), γ (t)) ≤ 76δ for all t ≥ 0,
where S = d(x, γ (0)). By Lemma 5.4 there exists γ ′ ∈ Geodσ (B(x, L),C ′) such that
d(ξ(t), γ ′(t)) ≤ L for all t ≥ 0, implyingd(γ ′(S+t), γ (t)) ≤ L+76δ for all t ≥ 0.Denoting
by Ty the real number such that γ (Ty) = y we have by Lemma 5.3 that T ≤ S + Ty ≤
T + 4δ. Therefore we apply the previous estimate with t = Ty obtaining d(γ ′(T ), y) ≤
d(γ ′(T ), γ ′(S + Ty)) + d(γ ′(S + Ty), y) ≤ L + 80δ. Moreover there exists i ∈ {1, . . . , N }
such that âT (γ ′, γi ) ≤ r0 and in particular d(γ ′(T ), γi (T )) ≤ Mr0. Therefore we get
d(yi , y) ≤ d(γi (ti ), γi (T )) + d(γi (T ), y) ≤ 2L + 80δ + Mr0. Now, up to adding 8δ, we
obtain the inequality. The other inequality follows by Proposition 6.6. Indeed we have

hLip-top(Geodσ (C)) ≤ sup
C ′⊆C

h f (Geodσ (C ′)) ≤ sup
C ′⊆C

hCov(C
′).

��
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Remark 6.8 Let (X , σ ) be as in Theorem 6.4, C ⊆ ∂X closed and
x ∈ QC-Hull(C). By the proof of Theorem 6.4, Lemma 5.4 and Remark 5.5 we obtain

1

T
log Cov(S(x, T ) ∩ QC-Hull(C), r0) 	

P0,r0,δ, f

1

T
logCov f T (Geodσ (B(x, L),C), r0)

for all f ∈ F , where L = 14δ.

6.3 Minkowski dimension

The relative version of Proposition 5.8 is:

Proposition 6.9 Let (X , σ ) be a δ-hyperbolic GCB-space that is P0-packed at scale r0, let
C be a subset of ∂X, x ∈ X and L be the constant given by Lemma 5.4. Then

1

T
logCov(C, e−T ) 	

P0,r0,δ,L

1

T
logCov(S(x, T ) ∩ QC-Hull(C), r0).

In particular the upper (resp. lower) Minkowski dimension of C equals the upper (resp.
lower) covering entropy of C.

Proof We can suppose T ≥ L . Let z1, . . . , zN be points realizing Cov(C, e−T ). For every
i we take a geodesic ray [x, zi ]. By Lemma 5.4 there exists a geodesic line γi with both
endpoints in C such that d(γi (t), ξ(t)) ≤ L for every t ≥ 0. We take a point yi = γi (ti )
with ti ≥ 0 such that d(yi , x) = T . We know |ti − T | ≤ 2L . We claim the set {yi } covers
S(x, T ) ∩ QC-Hull(C) at scale 82δ + 3L . Indeed let y ∈ S(x, T ) ∩ QC-Hull(C), i.e. there
exists a geodesic line γ with both endpoints in C such that y ∈ γ . We parametrize γ so that
γ (0) is a projection of x on γ and y ∈ γ |[0,+∞). We consider a geodesic ray ξ = [x, γ +].
By Lemma 5.3 we know that d(ξ(T ), y) ≤ 76δ + 3L . Moreover γ + ∈ C , so there is i such
that (zi , γ +) > T . By Lemma 5.9 we get d(yi , ξ(T )) ≤ 6δ, so d(y, yi ) ≤ 82δ + 3L . This
shows

Cov(S(x, T ) ∩ QC-Hull(C), 82δ + 3L) ≤ Cov(C, e−T ).

Let {y1, . . . , yN }bepoints realizingCov(S(x, T+2L+38δ)∩QC-Hull(C), L
2 ). Therefore for

every i there exists a geodesic line γi with both endpoints inC containing yi . We parametrize
each γi so that γi (0) is a projection of x on γi and yi ∈ γi |[0,+∞). We claim that the set
{γ +

i } covers C at scale e−T . Indeed for every z ∈ C we take a geodesic ray ξ = [x, z] and
we set y = ξ(T + 2L + 38δ). By Lemma 5.4 we know it exists a geodesic line γ with both
endpoints in C such that d(y, γ (T + 2L + 38δ)) ≤ L . Moreover there is a point y′ along γ

which is at distance exactly T + 2L + 38δ from x and that satisfies d(y, y′) ≤ 2L . Now we
know there exists i such that d(y′, yi ) ≤ L

2 , moreover for a fixed geodesic ray ξi = [x, zi ] it
holds that d(ξi (T + 2L + 38δ), yi ) ≤ L + 76δ by Lemma 5.3. So in conclusion we get

d(ξ(T + 2L + 38δ), ξi (T + 2L + 38δ)) < 4L + 76δ.

By Lemma 5.9 we conclude that (z, zi )x > T , i.e.

Cov(C, e−T ) ≤ Cov

(
S(x, T + 2L + 38δ) ∩ QC-Hull(C),

L

2

)
.

Now the conclusion follows by Proposition 6.1. ��
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The proof of Theorems D and E follow by Proposition 6.1, Proposition 6.2, Proposition
6.3, Theorem 6.4, Proposition 6.6, Remark 6.8 and Proposition 6.9.
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