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ABSTRACT
Deep learning models have shown excellent performance in hu-
man activity recognition tasks. However, these models typically
require large amounts of computational resources, which makes
them inefficient to deploy on edge devices. Furthermore, the su-
perior performance of deep learning models relies heavily on the
availability of large datasets to avoid over-fitting. However, the
expensive efforts for labeling limits the amount of datasets. We
address both challenges by designing a more lightweight model,
called TinyHAR. TinyHAR is designed specifically for human ac-
tivity recognition employing different saliency of multi modalities,
multimodal collaboration, and temporal information extraction.
Initial experimental results show that TinyHAR is several times
smaller and often meets or even surpasses the performance of Deep-
ConvLSTM, a state-of-the-art human activity recognition model.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; Human computer interaction (HCI); • Computing
methodologies→ Supervised learning by classification.
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1 INTRODUCTION
Sensor streams can only be represented in abstract ways and the
recorded data typically cannot be interpreted easily by humans [25].
This problem leads to difficulties in post-hoc annotation, which
limits the availability and size of annotated human activity recog-
nition (HAR) datasets. Given the complexity of sensor-based HAR
tasks, such large datasets are typically necessary to apply state-
of-the-art (SOTA) machine learning. Although deep learning (DL)
models have shown extraordinary performance on HAR tasks, most
DL models for HAR have large sizes (numerous trainable network
parameters). When available data is limited, overly large network
parameters make the model prone to overfitting, limiting or even
jeopardizing its generalization performance. The second challenge
arises from the fact that wearable devices that are intended to use
the HAR model typically have limited resources. As a result, an ex-
cessive number of network parameters complicates the deployment
of such models on end devices.

To address these challenges, it is desirable to design an efficient
and lightweight DL model. By reviewing related work, we found
only fewworks that considered designing a lightweight HARmodel.
To this end, we propose an efficient and lightweight DLmodel which
has small model size and low inference latency. In summary, the
contributions of this work are:

• We introduce a set of designing guidelines to design light-
weight DL models for HAR.

• Based on the summarized design guidelines, we propose an
efficient HAR model named TinyHAR.

• We conduct extensive experiments on six benchmark HAR
datasets and the result shows great improvement both in
performance and model size.

The proposed TinyHAR model meets or even surpass the opti-
mized DeepConvLSTM [4] with reduced model size by more than
93% on five datasets. This reduction in model size facilitates the
deployment of the model on common off the shelf low-cost devices
such as the Seed Studio’s RISC-V based Sipeed MAix BiT platform,
which we are currently using for developments. The implementa-
tion of TinyHAR can be currently found in GitHub1 and may be
freely used for wearable computing applications.

1https://github.com/teco-kit/ISWC22-HAR

https://orcid.org/0000-0001-7018-1159
https://github.com/teco-kit/ISWC22-HAR
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2 RELATEDWORK
Deep learning for HAR. DCNN [27] first demonstrated the po-

tential of convolutional neural networks (CNNs) for HAR tasks,
which has excellent local dependency extraction capability. To in-
vestigate how to optimally extract and fuse features from multi-
modal sensor data, MCNN [18] proposed multibranch CNNs. How-
ever, CNNs usually need to be stacked very deep to obtain a larger
receptive field to capture the long-term temporal dependencies.
To efficiently capture the long-term dependencies, different recur-
rent neural networks (RNNs) variants were introduced to HAR
tasks. Additionally, various CNN-RNN hybrid models were pro-
posed [20, 21, 30]. DeepConvLSTM [21], a popular benchmark
HAR model, first used a CNN subnet to extract local features from
different sensor modalities and feed the extracted features into a
long-short-term-memory (LSTM). However, RNNs still have dif-
ficulties capturing temporal dependencies over long ranges, as
they suffer from the "forgetting" defect [11]. In recent years, self-
attention based models [26] have shown superior performance
over RNN-based models in capturing long-term temporal depen-
dencies. The utilization of attention mechanism for HAR has also
been explored [17, 19]. Almost all work has focused on adding more
innovative structures to the DL models for improving the ability
of models to extract features. However, most previous works have
typically not taken the size of the model into account.

Lightweight DLmodels for HAR. Only a fewworks considered
to design lightweight and efficient DL models for HAR. Based on
the benchmark DeepConvLSTMmodel, the works in [4, 22] attempt
to optimize the number of channels or LSTM layers of DeepConvL-
STM model. In [7], only shallow CNN model is considered. Since
CNN models need to be stacked multiple times to obtain global
information, the work in [7] concentrates on improving the per-
formance of CNNs by incorporating the classical machine learning
model. The work in [15] attempts to use grouped convolution in
CNN-based models, but the optimized models still have more than
half million parameters. We thus try to investigate smaller model
structures designed from scratch while considering the unique
characteristics of the HAR tasks.

3 METHODOLOGY
Figure 1 gives an overview of the proposed TinyHAR model. In
this section, we first introduce the design guidelines, that we gath-
ered from previous experimentation with HAR models. Then, we
propose our TinyHAR that follows those guidelines.

3.1 Practical Guidelines for Efficient HAR
Model Design

Designing an optimal, lightweight DL model requires careful con-
sideration of the characteristics of target tasks and the factors which
could reduce the inference time and operations number. Based on
these two considerations, we developed the following guidelines to
design lightweight HAR models:

• G1: The Extraction of local temporal context should
be enhanced. Unlike the NLP task, where each word has
meaning in the sequence, the values at a single point in time
series bring limited information [1, 21].

• G2: Different sensor modalities should be treated un-
equally. These modalities include different sensor types and
wearing positions. Only some modalities are informative
for the recognition of certain activities, while other modal-
ities may also contain patterns that are irrelevant to the
activity [16, 28]. Irrelevant modalities may influence the
recognition and undermine the performance [6].

• G3: Multi-modal fusion. The activity is carried out col-
lectively through the movement of the various body parts.
Extracting features without considering interaction between
different modalities may limit the models’ performance [14].

• G4: Global temporal information extraction. Human
activities are sequentially embedded as transient informa-
tion in the sensor readings. Information on some time steps
may show more salient patterns [19] than their temporal
surrounding.

• G5: The temporal dimension should be reduced appro-
priately. Compared to image data, HAR data usually has a
much larger temporal than spatial dimension. Excessively
long temporal dimension poses a problem to the effective
extraction of global temporal dependencies [11]. Reducing
the temporal dimension can alleviate this problem and also
reduce the computational cost.

3.2 TinyHAR
Following the guidelines above, TinyHAR consists of five parts.
The input data of the model 𝑿 ∈ R𝑇×𝐶×𝐹 , where 𝑇 denotes the
temporal sliding window size, 𝐶 is the number of sensor channels,
and 𝐹 indicates the number of filters (𝐹 = 1 for the raw data input,
which has not been processed).

3.2.1 Individual Convolutional Subnet. To enhance the local
context, we applied a convolutional subnet to extract and fuse local
initial features from the raw data (G1). Considering the varying
contribution of different modalities, each channel is separately
processed through four individual convolutional layers (G2). For
each convolutional layer, ReLU nonlinearities and batch normaliza-
tion [10] are used. Individual convolution means that the kernels
have only 1D structure along the temporal axis (the kernel size is
5 × 1). To reduce the temporal dimension (G5), the stride in each
layer is set to 2. All four convolutional layers have the same number
of filters 𝐹 . The output shape of this convolutional subnet is thus
R𝑇

∗×𝐶×𝐹 , where 𝑇 ∗ denotes the reduced temporal length.

3.2.2 Transformer encoder: Cross-Channel Info Interaction.
Work [1] successfully adopted self-attention mechanism to learn
the collaboration between sensor channels. Inspired by this, we
utilized one transformer encoder block [26] to learn the interaction,
which is performed across the sensor channel dimension (G2) at
each time step. The transformer encoder block consists of a scaled
dot-product self-attention layer and a two-layers Fully Connected
(FC) feed-forward network. The scaled dot-product self-attention
is used to determine relative importance for each sensor channel
by considering its similarity to all the other sensor channels. Sub-
sequently, each sensor channel utilized these relative weights to
aggregate the features from all the other sensor channels. Then the
feed-forward layer is applied to each sensor channel, which further
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Figure 1: Overview of the proposed Algorithm.

fused the aggregated feature of each sensor channel. Until now, the
features of each channel are contextualized with the underlying
cross-channel interactions.

3.2.3 Fully Connected Layer: Cross-Channel Info Fusion.
In order to fuse the learned features from all sensor channels
(G3), we first vectorize these representations at each time step,
𝑿 ∈ R𝑇 ∗×𝐶×𝐹 𝑡𝑜 𝑿 ∈ R𝑇 ∗×𝐶𝐹 . Then one FC layer is applied toweighted
summation of all the features. Compared to the attention mecha-
nism used in [16], in which the features of same sensor channel
share the same weights, FC layer allows different features of same
sensor channel to have different weights. Such flexibility of the FC
layer leads to more sufficient feature fusion. This FC layer works
also as a bottleneck layer in the proposed TinyHAR, which reduce
the feature dimension to 𝐹 ∗. In our work we set 𝐹 ∗ = 2𝐹 .

3.2.4 One-Layer LSTM: Global Temporal Info Extraction.
After the features are fused across sensor and filter dimension, we
obtain a sequence of refined feature vectors ∈ R𝑇 ∗×𝐹 ∗

ready for
sequence modeling. We then apply one LSTM layer to learn the
global temporal dependencies.

3.2.5 Temporal Attention: Global Temporal Info Enhance-
ment. Given that not all time steps equally contribute to recogni-
tion of the undergoing activities, it is crucial to learn the relevance
of features at each time step in the sequence. Following the work
in [16], we generate a global contextual representation 𝒄 ∈ R𝐹 ∗

by
taking a weighted average sum of the hidden states (features) at
each time step. The weights are calculated through a temporal self-
attention layer. Because the feature at the last time step 𝒙𝑇 ∗ ∈ R𝐹 ∗

has the representation for the whole sequence, the generated global
representation 𝒄 is then added to the 𝒙𝑇 ∗ . Here, we introduce a
trainable multiplier parameter 𝛾 to 𝒄 , which allows the model has
the ability to flexibly decide, whether to use or discard the generated
global representation 𝒄 .

4 EXPERIMENT
4.1 Experiment Setup
In this section, we describe our evaluation methodology, including
benchmark HAR datasets, compared baselines and model training.

Benchmark HAR datasets. In order to validate the effectiveness
of the proposed TinyHAR, we evaluate it on six widely used HAR
benchmark datasets [1, 8, 14, 28]. The datasets were selected to

Dataset Freq (Hz) #𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 #𝐶𝑙𝑎𝑠𝑠 #𝑆𝑒𝑛𝑠𝑜𝑟𝑠 #𝑆𝑊
PAMAP2 [23] 33 9 12 18 A,G 5.12 s
Opportunity [5] 30 4 18 79 A,G,M 1 s
Skoda [29] 33 1 10 30 A 2.56 s
DSADS [3] 25 30 12 6 A,G 5 s
Daphnet [2] 64 10 2 9 A 1 s
WISDM [13] 20 36 6 3 A 5 s

Table 1: For all datasets used in experiments, #𝑆𝑒𝑛𝑠𝑜𝑟𝑠 repre-
sents the total number and type of sensor channels used (A =
accelerometer, G = gyroscope and M = magnetometer). #𝑆𝑊
denotes the sliding window length. On dataset Opportunity,
the 18 classes contain 17 sporadic gestures and a Null class.

exhibit a great diversity in terms of the sensing modalities used,
installation locations, sampling frequency, data collection scenarios
and activities to be recognized. Important information is summa-
rized in Table 1. Defined window sizes are consistent with the
settings used in [8, 14, 24].

Evaluation rules and metric. On all datasets (except the Skoda),
we performed Leave-One-Subject-Out (LOSO) Cross-Validation
(CV) to assess the performance of the model with focus on inter-
subject generalization. As there is only one subject in Skoda dataset,
a 5-fold CV was performed on this data. During training, the data
was split by a sliding window with 50% overlap between adjacent
windows. For the test data, the windowwas slid forward by one time
step [1]. We used the macro average F1-score 𝐹1𝑀 as the evaluation
metric, which reflects the ability of the model to identify each
activity, regardless of commonly unbalanced class distributions. The
CV experiments are performed for five runs with pseudo-random
number seeds (1,2,3,4,5). For each run, the mean 𝐹1𝑀 score of all
subjects are calculated. Then, the scores of five runs are averaged
and reported as the final performance.

Baselines. We compare the TinyHAR with the optimized Deep-
ConvLSTM from [4], which is widely used as a benchmark model
in various works. Specifications of all layers of the model are consis-
tent with [4]. Furthermore, we introduce a model shrinking hyper-
parameter width multiplier 𝛼 [9] to thin DeepConvLSTM uniformly
at each layer. By setting 𝛼 = {0.25, 0.5, 0.75}, the model size will
be reduced to approximately 1/2, 1/4 and 1/16 respectively (referred
as DeepConvLSTM_0_75, DeepConvLSTM_0_50 and DeepConvL-
STM_0_25). We adjust the filter number 𝐹 of TinyHAR, so that has
a comparable number of parameters to DeepConvLSTM_0_25.
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Figure 2: LOSO CV Performance comparison. For each dataset, the averaged 𝐹1𝑀 , the corresponding model size (number of
trainable parameters) and number of FLOPs are shown separately.

Training. The training is performed using theAdamoptimizer [12]
with an initial learning rate 10−4. The learning rate decays to 10%
with a patience equal to 5 epochs. We train models for a maximum
of 150 epochs with early stopping, and the batch size is 256. All
models were trained on a single NVIDIA A100 40G GPU.

4.2 Result
As summarized in Figure 2, TinyHAR by design has the smaller
size than the baseline. However, it achieves a better performance
on the three datasets (PAMAP2, DSADS and Daphnet) compared
to its competitors. On these three datasets, TinyHAR outperforms
the baseline in original size in terms of 𝐹1𝑀 by 1.8%, 3.1%𝑎𝑛𝑑9.78%.
We observed an overfitting trend of DeepConvLSTM variants for
the PAMAP2 and Daphnet dataset in comparison with the reduced
DeepConvLSTM model variants. Therefore, for Daphnet data, we
additionally compared TinyHAR to a DeepConvLSTM with 𝛼 =

0.21 (model size 17786), which achieved an 𝐹1𝑀 of 55.93% ± 1.75%.
Although the performance has gotten better, it is still 5.36% lower
than TinyHAR. For PAMAP2 dataset, we additionally reduced 𝛼 to
0.23 (model size 36254). In this case, we observe a degradation of
the performance (74.36% ± 1.02%)

Compared to the baseline, TinyHAR obtains slightly lower 𝐹1𝑀
on Skoda dataset and slightly higher 𝐹1𝑀 on WISDM dataset. Sig-
nificant tests show that there is no statistically significant difference
in the performance between both models. TinyHAR is, however,
much smaller than the comparison model and performs signifi-
cantly better than DeepConvLSTM_0_25 with a similar size. We
speculate that the reason for the positive correlation of performance
with model size for the baseline is that, Skoda data was collected
from only one subject, so it does not penalize overfitting as the
statistical independence of training and test samples within the
CV is smaller. Similarly, the WISDM dataset was collected from 36
subjects through controlled, laboratory conditions, which reduces
the effect of generalizability. Even under this condition, the Tiny-
HAR still reaches the same performance with around 6% model
size. The Performance on Dahpnet, PAMAP2, SKODA, WISDM, and
DSADS suggests that TinyHAR has a great capability to capture
temporal-spatial patterns in multimodal sensing.

However, TinyHAR obtains lower 𝐹1𝑀 score on Opportunity.
Compared to other datasets, dataset Opportunity has much more
sensor channels. We assume that the poor performance is owing
to the fact that the model is too small to effectively extract and
fuse information from so many channels. Thus, we increased the
filter number 𝐹 from 28 to 42 (model size 370082). The model’s 𝐹1𝑀
performance of 41.22% ± 1.19% in this case (as predicted) exceeds
the performance of all DeepConvLSTM variants.

As shown in Figure 2 (third row), we also utilized the computa-
tional cost (number of FLOPs) as an efficiency metric. The TinyHAR
model has a much smaller number of FLOPs compared to the Deep-
ConvLSTM model. Compared to the DeepConvLSTM_0_25 model,
the TinyHARmodel achieves better results on all datasets, although
it has a higher number of FLOPs.

5 CONCLUSION
Through a HAR-specific design, we were able to develop a light-
weight but highly competitive DL model. Particularly, when taking
the model size into account, which is of great importance for wear-
able computing, the model clearly outperforms the DeepConvLSTM
as an example of a state of the art HAR model in our experiments.

Instead of only adapting an architecture from another domain
and letting the optimizer do its magic, different saliency of multi
modalities, multimodal collaboration and temporal information
extraction were specifically translated into a network architecture
to achieve this performance. We believe that this shows that there
is still a great potential for improvement in HAR models with the
focus on deployment on wearable computing devices.
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