
Printed Electrodermal Activity Sensor with Optimized
Filter for Stress Detection

Haibin Zhao
haibin.zhao@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Alexander Scholz
alexander.scholz2@kit.edu

Karlsruhe Institute of Technology
Eggenstein-Leopoldshafen, Germany

Michael Beigl
michael.beigl@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Si Ni
si.ni@student.kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Surya A. Singaraju
surya.singaraju@kit.edu

Karlsruhe Institute of Technology
Eggenstein-Leopoldshafen, Germany

Jasmin Aghassi-Hagmann
jasmin.aghassi@kit.edu

Karlsruhe Institute of Technology
Eggenstein-Leopoldshafen, Germany

ABSTRACT
This paper presents a tiny, flexible, and low-cost all-analog approach
for measuring electrodermal activity, based on the conductance
of the skin. We propose a tiny, fully-printed system on flexible
substrates, which guarantees flexibility and simplifies attachment to
the body, and allows for detection of high stress values in form of a
binary classification. Amajor contribution of this paper is the design
of the printed hardware, including a novel way to optimize the
hardware parameters, which is done via an evolutionary algorithm.

CCS CONCEPTS
•Hardware→ Sensors and actuators; •Human-centered com-
puting→ User models;Mobile devices; • Computing method-
ologies →Machine learning approaches.
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1 INTRODUCTION
Chronic stress can lead to several health risks [7]. Therefore, con-
tinuous and unobtrusive stress detection becomes important.

The most common wearable devices used for stress detection
are smartwatches/wristbands [3, 10, 13]. Despite the considerable
success of these devices and algorithms, there is still improvement
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Figure 1: Photo of the proposed hardware design for stress
detection. The copper wires are connected to power supply.

to be made: The devices are pricey1,2 and the hard housing of these
devices prevents them from complete unobtrusiveness. Thirdly, the
hardware for signal processing is sophisticated, when compared to
full analog circuits. In this respect, printed electronics becomes a
powerful candidate, as it allows flexibility, non-toxicity, ultra-low-
cost, etc. In this work, we propose the design of a printed hardware
system to do the binary classification for stress/non-stress of the
users. Figure 1 shows the flexibility and ultra-small size of the
printed prototype. Subsequently, we simulate the filtering behavior
and optimize the filter using an evolutionary approach to achieve
the best performance. Finally, we compare experimentally obtained
measurement from the printed electrodermal activity (pEDA) sen-
sor with an Empatica E4 wristband. It shows, that the sensor can
obtain a comparable signal, using the proposed filtering approach.

2 SYSTEM DESIGN
Here, we present the hardware design and its optimization. All
proposed components can be printed (see Figure 2). The fabrication
workflow and corresponding materials for the components can be
found in [11, 12].

2.1 Hardware
Printed EDA sensor. As shown in Figure 2a, the pEDA sensor

consists of two electrodes and two resistors for voltage division. As
electrodematerial, we utilize graphene, which shows great potential
as bio-compatible, wearable electrode material [1, 6].

1https://www.apple.com
2https://www.empatica.com/en-int/research/e4
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Figure 2: The schematics of the proposed hardware (left) and photos (right) of the hardware prototype. (a) printed EDA sensor.
(b) printed band-pass filter for signal processing. (c) printed diode-connected transistor as threshold for stress detection.

Figure 3: Simulated example of filter optimization, based on
WESAD dataset. The gray vertical curves separate different
temporal segments after removing meaningless time slots.

Band-pass filter. We use a band-pass filter for signal process-
ing to filter out the skin conduction level part of the signal, thus
minimizing differences between subjects, and leave only the skin
conductance response part for stress detection. (See [9] for detail
about EDA signal.)

Threshold diode. To do the binary classification, we implement
the threshold by a diode (printed as a diode-connected transistor).

2.2 Optimization
Optimization of filter. Rather than simulating the filtering in

frequency domain, we model and optimize the filter directly on
the hardware level. The parameters to be optimized are the resis-
tances and capacitances in Figure 2b. The relationship between
input voltage 𝑉𝑖𝑛 and output voltage 𝑉𝑜𝑢𝑡 is described by:

¤𝒛 =

[
− 𝑅1+𝑅2
𝑅1𝑅2𝐶1

1
𝑅2𝐶11

𝑅2𝐶2
− 1
𝑅2𝐶2

]
· 𝒛 +

[ 1
𝑅1𝐶1
0

]
·𝑉𝑖𝑛, 𝑉𝑜𝑢𝑡 = [1 − 1] · 𝒛 ,

where 𝒛 ∈ R2 is the internal state of this system. Since we will
classify the stress/non-stress by a threshold, the objective of the
optimization is to increase the filtered signal when the user is under
stress and vice versa, we optimize the parameters by CMA-ES [4],
which is an evolutionary algorithm for optimizing challenging
problems that are even non-convex and ill-conditioned. Figure 3
shows a simulation result of the filter optimization on WESAD [8].
We can see that, after the filter optimization, the output signal in
stress time slots are increased and vice versa.

Optimization of threshold. search [2] for finding the best thresh-
old. To avoid low recall or precision simultaneously, we take the 𝐹1
score [5] as the objective and perform grid search [2] for finding
the best threshold.

(a)

(b)

(c)

Figure 4: Signal alignment. (a) measured signals from E4
(transformed to voltage) and pEDA sensor. (b) signals after
transformation. (c) filtered signals after transformation.

3 FEASIBILITY TEST
In this section, we test the feasibility of the pEDA sensor by compar-
ing it with Empatica E4 wristband readings. Therefore, we equipped
both, the E4 wristband and pEDA sensor on subjects’ wrists (𝑁=3)
simultaneously, who read, play smartphones, and do other spon-
taneous activities for 30min. To compare both obtained signals,
we first transform the E4 signal from conductance to voltage, for
comparability with our proposed hardware structure (see Figure 2a).
Afterwards, we build a linear transformation to compensate the
difference between both signals, which may be caused by different
sensor specifications such as the shape/material of electrodes. We
can see from an exemplary segment (Figure 4), the pEDA sensor
signal is comparable to the E4 signal, especially after the band-pass
filtering, which is done by the proposed method, using simulation
and shows the feasibility of the proposed approach.

4 CONCLUSION
In this work, we proposed a printable, flexible, tiny, and cheap,
all-analog circuit for stress detection. Moreover, we intend to show
the possibilities of printed electronics in wearable computing.
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