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ABSTRACT

One key characterstic of the cardiac function is its complexity, i.e., the multitude of differ-
ent phenomena acting on various temporal and spatial scales interacting with each other.
Over the past decades, many models varying in complexity describing these interactions
were presented and are used in current research. Despite the incredible progress made
in describing and simulating cardiac function, most of the more detailed models are not
properly embedded within mathematical theory.
This work aims to give a precise and comprehensive mathematical formulation of coupled
cardiac elastodynamics, including electrophysiology, elasticity and physiological boundary
conditions developed in recent years. Focussing on the analysis of dynamic elasticity, the
concept of anisotropy is applied to common cardiac tissue models, such as the models of
Guccione et al. and Holzapfel and Ogden. Frequently used modeling approaches, such as
incompressibility and the active strain decomposition, are integrated in one overarching
framework, allowing for propositions on polyconvexity of the materials and solvability of
the elastic system. The equations of elastodynamics are then complemented by the mon-
odomain equations, describing the propagation of the excitation potential in cardiac tissue,
and a surrogate model to simulate cardiovascular blood pressure. The full mathematical
description of this coupled model allows a detailed formulation of a discretization scheme
in space and time for the electro-elastodynamical system.
The classification of the coupled model within the context of weak solutions is presented
and a time-segregated numerical approximation method for the full system is derived. The
formulated numerical method is then examined by application on coupled test cases, pro-
viding first convergence results in space for the displacement in coupled cardiac problems.

Keywords:
cardiac modeling, cardiac coupling, computational modeling, elasto-dynamics, finite element meth-
ods
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ZUSAMMENFASSUNG

Ein zentrales Merkmal der Funktionalität des Herzens ist dessen Komplexität, d.h. die
Vielzahl verschieder Phänomene, die auf unterschiedlichen Zeit- und Raumskalen stattfin-
den und miteinander interagieren. In den letzten Jahrzehnten wurden viele unterschiedlich
komplexe Modelle, die solche Interaktionen beschreiben, vorgestellt und in Forschung und
Praxis verwendet. Trotz der erstaunlichen Fortschritte in der Beschreibung und Simula-
tion der Herzfunktion existiert für die meisten der detaillierteren Modelle jedoch keine
zugehörige mathematische Theorie.
Ziel dieser Arbeit ist es, eine präzise und vollständige mathematische Formulierung gekop-
pelter elastodynamischer Herzphänomene vorzustellen, welche Elektrophysiologie, Elasti-
zität sowie physiologische Randbedingungen umfasst. Der Fokus liegt hierbei auf der Ana-
lysis der dynamischen Elastizität. Die Theorie der Anisotropie wird aufbereitet und auf
gängige Materialmodelle von Herzmuskelgewebe, wie die Modelle von Guccione et al. und
Holzapfel und Ogden, angewandt. Häufig genutzte Modellierungsansätze, wie Inkompres-
sibilität und die Active Strain Zerlegung, werden in ein übergreifendes System integriert,
sodass Aussagen über die Polykonvexität der Materialien und der Lösbarkeit des Systems
möglich werden. Die dynamischen Bewegungsgleichungen werden durch die Monodomain-
Gleichungen, welche die elektrische Reizübertragung in Herzgewebe bescheiben, sowie ein
Ersatzmodell für den Blutkreislauf ergänzt. Die vollständige mathematische Darstellung
dieses gekoppelten Systems erlaubt eine detaillierte Formulierung eines in Raum und Zeit
diskreten Verfahrens zur Lösung des elektro-elastodynamischen Systems.
Die Einordnung des gekoppelten Modells in den Kontext schwacher Lösungen wird vor-
gestellt und ein in der Zeit gestaffeltes Verfahren zur numerischen Approximation des
vollständigen Systems wird hergeleitet. Das formulierte numerische Verfahren wird an-
hand ausgewählter Versuche untersucht sowie erste Konvergenzergebnisse im Ort für die
Verschiebung bei gekoppelten Problemen präsentiert.
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1

CHAPTER

ONE

INTRODUCTION

In this chapter we illustrate the topics of this thesis. Beginning with the
motivation of the research problem, an overview of the current research field is
given. Subsequentially, we highlight the contributions of this work and outline
its structure.

1.1 Motivation

Cardiovascular diseases are the primary contributors to morbidity and mortality in the
European Union [158]. In Germany, acute myocardial infarction, chronic ischemic heart
disease, heart failure, hypertensive heart disease and atrial arrhythmias cause 38.4% of all
deaths [48]. With the improvement of diagnostic tools and therapeutic options, the compu-
tational modeling of the cardiovascular system has advanced in the recent decades [42, 101,
115]. These models already have a clinical impact in diagnosis [5], risk stratification [11],
therapy planning [68, 105, 126] and intraprocedural support [103].
An essential characteristic of the human heart is its complexity, i.e., the multitude of dif-
ferent phenomena acting on various temporal and spatial scales and interacting with each
other. Cardiac electrophysiology describes the depolarization and repolarization sequence
of cardiac tissue with a reaction-diffusion model. Beginning at the sinoatrial node, an elec-
tric impulse is given which, on the microscopic or cellular level, triggers a reaction model
first described by Hodgkin and Huxley [84]. This signal then propagates through the car-
diac tissue where it is modeled on the macroscopic level as a diffusion-type equation [70,
92].
Electrically activated myocardial cells contract [107], the effect of which is modeled on
a macroscopic scale by cardiac mechanics. The corresponding mathematical models are
based on elasticity theory [38, 106, 173]. In isolation, such models are well-understood for
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small deformations, especially in a static setting. The mechanics of cardiac deformation
however are described by large deformations, where the mathematical assumptions for
regularity become more restrictive. Realistic representations of tissue deformation account
for the orientation of the cardiac fibres [51]. As fiber distribution is not measured in
clinical routine, rule-based algorithms [25, 166] are often applied to assign fibre fields.
From a mathematical point of view, the modeling of these fibre fields leads to anisotropic
constitutive materials [149].
Lastly, the contraction and relaxation of the heart is intimately connected to the cir-
culatory system and blood flow [46]. The flow of blood is modeled by a Navier-Stokes
equation [34] or, more general, as a non-Newtonian fluid, where the boundary of the circu-
latory domain satisfies a coupling condition with the mechanical domain boundary [133].
Multi-physics models allow the investigation of interdependencies between these mecha-
nisms to deduce more holistic studies [1]. Due to the complexity of the full multi-physics
problem, only few cardiac simulation frameworks have been proposed that solve the com-
plete system. Santiago et al. [141] presented and simulated such a full multiphysics prob-
lem, using simplified models for electrophysiology and passive material response, while
Nordsletten et al. [117] and Sugiura et al. [154] presented an FSI coupling for the left
ventricle. Quarteroni et al. [128, 129] describe the necessary steps for the fluid-structure
coupling in great detail, but refrain from a numerical simulation of the full model.
More common approaches replace the FSI representation by a phenomenological model
such as 0D lumped parameter models [15, 74, 75, 83, 94, 122, 138, 144]. Such models
take the form of systems of ordinary differential equations [169] or differential-algebraic
equations [63], which allow a computational efficient coupling to cardiac mechanics.
The reduction of the FSI physics allow for a more detailed description of the interactions
between electrophysiology and cardiac mechancs. Additionally, numerical simulations of
these models within clinically relevant time frames become feasible [122]. Dedè et al. [47,
64, 129] present multiple schemes for cardiac elastodynamics in the left ventricle. To reduce
the computational load of the matrix-multiplication in R3×3, Garcia-Blanco et al. [61, 62]
describe an efficient framework to handle passive material formulations. More recently,
reduced circulatory models for the full heart have been developed [15, 63, 83, 90, 132].
Still, reduced electro-mechanical systems consist of phenomena acting on different time
and spatial scales which need to be addressed. Since the discretization in space and time
for the electrophysiological system needs to be of orders of magnitude finer than the one
for the mechanical system [99, 114], choosing a single time- and space scale for all systems
is sub-optimal. Segregated solution methods of this coupled system require a discrete
uncoupling of the corresponding equations, the effects of which become an increasing
research focus [47, 131].
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1.2 Objectives and contribution

The goal of this work is to provide a full mathematical model for the electrophysiology
and mechanics of the human heart. Commonly used physiological constitutive equations
used in cardiac mechanics [43, 85] are investigated in detail on their mathematical prop-
erties and categorized within the framework of elastodynamics. We show how common
approaches, such as a volumetric splitting [56, 140] of stored energy functionals, the cou-
pling of microscopic fibre shortening by an active stress [119] or active strain [135] and
physiological boundary conditions [121, 168], fit into the context of hyperelastic materi-
als. In a joint research effort, we described the mathematical fundamentals together with
Gerach et al. [63]. Within said work, a full model of the human heart was presented and
evaluated with respect to its agreement on clinical data. However, as was mentioned in
the disscussion section, neither analytical nor numerical results on stability or convergence
were obtained. We derive a framework for a coupled system similar to the one given in [63],
allowing for a systematic approach of the investigation on such topics.

Despite the incredible progress made with respect to modeling and simulation of coupled
cardiac problems, as described in the previous section, there are only few contributions
which embed these models with their proper mathematical theory. Andreianov, Bendah-
mane, Quarteroni and Ruiz-Baier [6] proved an existence result for static, linearized elas-
ticity with only traction boundary conditions. Moreover, Bendahmane et al. [29] showed
a similar result for more involved electrophysiological models and boundary conditions,
but still using linearized cardiac elasticity.

We aim to elevate the mathematical description of the previously mentioned work and
give a precise and comprehensive mathematical formulation of coupled cardiac elastody-
namics, including the physiological boundary conditions developed in recent years. The
full mathematical description of this coupled model allows a detailed formulation of a
discretization scheme in space and time for the electro-elastodynamical model. The clas-
sification of the coupled model within the context of variational formulations is presented
and a time-segregated numerical approximation method for the full system is derived.

Besides the formulation of the mathematical model and the numerical scheme for coupled
cardiac elastodynamics, we additionally aim to investigate its numerical properties. Since
very little theory is applicable to the elastodynamical system, we provide experimental
results on numerical convergence behaviour. Suitable test cases are formulated to analyze
the dependencies of the solution of the elastodynamical part on the different coupling
mechanisms, including material properties, boundary conditions and electrophysiological
coupling.
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1.3 Structure of the thesis

We start by presenting the constitutive theory leading to the description of nonlinear finite
elasticity. In chapter 2, we summarize the fundamental mathematical concepts which
will be needed in the discussion of three-dimensional elasticity. This includes the theory
of Fréchet derivatives and basic concepts of tangents on smooth manifolds. With the
presented definitions, we briefly discuss general integral formulations relating to functions
acting on manifolds.

The abstract concepts of the previous chapter are then specified in chapter 3. We introduce
the basics of continuum mechanics and define the concepts of motions, velocities and
accelerations on continuum bodies. The spatial derivative of a motion, the deformation
gradient, will emerge as a relevant quantity. We utilize it to develop how balance laws,
the mathematical description of physical axioms such as the conservation of mass, can be
written by only using the initial configuration of the continuum body. Finally, we establish
the Cauchy stress principle as the core assumption in elasticity.

In chapter 4, we build on the Cauchy stress tensor introduced in the preceding chapter and
formulate additional mathematical and physical assumptions describing said tensor. These
constitutive equations lead to the concept of hyperelasticity, where materials are defined by
their stored energy functions. We present the fundamental theory of invariants to describe
the concepts of anisotropic, fibre-reinforced and incompressible materials. Subsequentially,
some common materials used within the context of cardiac elasticity are presented and
their restrictions regarding large deformations are pointed out.

In chapter 5, we introduce the basic anatomy of the human heart. Starting with the elec-
trophysilogical depolarization, mathematical models for both microscopic action potentials
and their macroscopic propagation within cardiac tissue are presented. The shift in ion
concentrations resulting from the electrical excitation of cardiac cells leads to a microscopic
contraction in each excited muscle cell. We discuss the coupling of this microscopic phe-
nomenon to the macroscopic formulations of elasticity. Additionally, the relevant boundary
conditions within this setting are described. We will see that for a proper mathematical
model, the pressure within the cardiac chambers ought to be realized as a fluid-structure
interaction model. However, since our focus lies only on the mechanical deformation of
the tissue, we adopt a surrogate model for the circulatory system and conclude with the
fully coupled model of cardiac electro- and elastodynamics.

Chapter 6 is dedicated to the numerical approximation of the previously defined model.
Beginning with a variational setting, we postulate the assumptions needed for existence of
solutions of the coupled model. We then present the discretizations in time and space of the
electrophysiological and mechanical model. Again, we focus on the elastodynamics, where
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we present a conforming and a mixed finite element approach. Lastly, some numerical
analysis of the coupled model is provided.
The theoretical considerations are then complemented by numerical studies in chapter 7.
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evaluation methods for the coupled dynamic setting and perform experiments to estimate
the convergence order of the active strain coupled system.
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CHAPTER

TWO

PRELIMINARIES

In this chapter, we introduce the basic notation and definitions used throughout
this thesis. The concept of Fréchet derivatives is depicted as a generalization
of differentiabilty on normed vector spaces. This allows us to consider differ-
entiable mappings on manifolds. The chapter concludes with the introduction
of k-forms and the resulting integral equations on smooth manifolds which are
fundamental for the rest of this thesis.

2.1 Notation

Throughout this work, mappings may be scalar-, vector-, or tensor-valued. We denote
scalar-valued properties by lowercase letters f , vector-valued properties by bold lowercase
letters f and tensor-valued properties by bold uppercase letters F.

Notation 2.1: If not further specified, we denote by

‖·‖ : Rn×n → R , ‖A‖ 7→ tr(A>A)

the euclidean norm.

Definition 2.2: Let A ∈ Rn×n be regular. We call

Cof (A) := det(A)A−>

the Cofactor matrix of A.

Definition 2.3: Let A ∈ Rn×nsym and B ∈ Rn×nsym be positive semi-definite, such that B2 = A.
We then call B square root of A and denote

A
1
2 := B .
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Every symmetric, positive definite matrix A has a square root A
1
2 (see e.g. [38, theorem

3.2-1]).

Notation 2.4: Let X ,Y be normed vector spaces. We denote by

Map(X ; Y) := {f : X → Y}

the space of all mappings from X to Y .

2.2 Fréchet derivatives

In this section, we outline the concepts of differentiabilty in general normed vector spaces.
For more details, we refer to [3]. Let X , Y be normed vector spaces and D ⊂ X be
open. We denote by C(X ; Y) the space of all continuous mappings f : X → Y . The subset
Lin(X ; Y) ⊂ C(X ; Y) denotes the set of all linear continuous mappings from X to Y .

Definition 2.5: A mapping f : D → Y is called differentiable in x ∈ D, if there exists
Df(x) ∈ Lin(X ; Y), such that

f(x + h) = f(x) + (Df(x)) (h) + o(‖h‖) , h ∈ X ,x + h ∈ D .

We call Df(x) the Fréchet derivative of f at the point x. If f is differentiable at all points
of D, we call f differentiable in D.

If a mapping f : X → Y is differentiable and Df : X → Lin(X ; Y) is continuous, we call f
continuously differentiable. The set of all continuously differentiable mappings is denoted
by C1(X ; Y). In this context, we also set C0(X ; Y) := C(X ; Y).

Definition 2.6: A mapping f : D → Y is called differentiable in x ∈ D in the direction
h ∈ X , if the limit

Df(x)[h] := lim
ε→0

f(x + εh)− f(x)
ε

∈ Y

exists. We call Df(x)[h] the directional derivative of f in the direction h.

For our purposes, as we will later see, it is more convenient to work with the directional
derivative, especially because it is easier to compute.

Lemma 2.7: Let f : D → Y be differentiable in x ∈ D. Then f is differentiable in x in
all directions h ∈ X and

(Df(x)) (h) = Df(x)[h] .
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Proof. For x ∈ D, h ∈ X , it holds

Df(x)[h] = lim
ε→0

f(x + εh)− f(x)
ε

= lim
ε→0

f(x) + (Df(x)) (εh) + o(‖εh‖)− f(x)
ε

= lim
ε→0

ε (Df(x)) (h)
ε

+ lim
ε→0

o(ε ‖h‖)
ε

= (Df(x)) (h)

The classical chain rule applies to Fréchet derivatives as well.

Theorem 2.8 (Chain rule): Let X , Y, Z be normed vector spaces and U ⊂ X , V ⊂ Y

be open. Further let f : U → V be differentiable in x ∈ U and g : V → Z be differentiable
in y := f(x) ∈ V. Then the mapping g ◦ f : U → Z is differentiable in x and

(g ◦ f)′(x) = (Dg(f(x)))(Df(x)) .

For h ∈ X , the corresponding directional derivative reads

D(g ◦ f)(x)[h] = Dg(f(x))
[
Df(x)[h]

]
.

Proof. Since f and g are differentiable, it holds

f(x + h) = f(x) + (Df(x))(h) + of (‖h‖X )

= y + (Df(x))(h) + of (‖h‖X ) ,

g(y + k) = g(y) + (Dg(y))(k) + og(‖k‖Y)

for h ∈ X ,k ∈ Y such that x + h ∈ U , y + k ∈ V . By setting k = (Df(x))(h) + of (‖h‖),
we see that

‖k‖Y ≤
(
‖(Df(x))‖Map(X ;Y) +

∥∥∥∥∥of (‖h‖X )
‖h‖X

∥∥∥∥∥
)
‖h‖X

=
(
‖(Df(x))‖Map(X ;Y) + ‖of (1)‖

)
‖h‖X

For this k, we then have

(g ◦ f)(x + h) = g(f(x) + (Df(x))(h) + of (‖h‖X ))

= g(y + k)

= g(y) + (Dg(y))
(
(Df(x))(h) + of (‖h‖X )

)
+ og(‖k‖Y)

= g(y) + (Dg(y))
(
(Df(x))(h)

)
+ (Dg(y))

(
of (‖h‖X )

)
+ og(‖k‖Y)

= g(y) + (Dg(y))
(
(Df(x))(h)

)
+ ψ(h) ,
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where we use the linearity of Dg(y) and

ψ(h) = (Dg(y))
(
of (‖h‖)

)
+ og(‖h‖X ) .

Using the same estimate as for the norm of k, we see that ψ(h) = o(‖h‖X ). Thus g ◦ f
is differentiable. The formula for the directional derivative follows from the equation
above.

For the sake of completeness, we briefly mention the concept of higher order Fréchet
derivatives.

Definition 2.9: Let f : D → Y be differentiable in D with derivative mapping

Df(x) : D → Lin(X ; Y) .

We call f twice differentiable in x ∈ D, if Df(x) is differentiable in x. We call

D2f(x) := D(Df)(x) ∈ Lin(X ,Lin(X ; Y))

the second derivative of f in x.
If f is twice differentiable for all x ∈ D, we call f twice differentiable in D.

Again, if the second derivative of f is continuous, we call the mapping f twice continuously
differentiable and write

f ∈ C2(X ; Y) .

Similar to above, the notation using directional derivatives is more useful:

Lemma 2.10: Let f : D → Y be twice differentiable. Then its second derivative is a
symmetric bilinear mapping, in the sense that

D2f(x)[h; k] = D
(
Df(x)[h]

)
[k] = D

(
Df(x)[k]

)
[h] = D2f(x)[k; h] , h,k ∈ X .

Proof. Direct calculation using the definition of the directional derivative.

We denote by
Linr(X ; Y) = Lin(X ,Linr−1(X ; Y)) , r ≥ 2 ,

the space of all continuous r-linear mappings from X to Y and set Lin1(X ; Y) = Lin(X ; Y).
Higher-order derivates are then defined iteratively:

Definition 2.11: Let f : D → Y be (r − 1)-times differentiable with (r − 1)th derivative
mapping

D(r−1)f : D → Linr−1(X ; Y) , x 7→ f (r−1)(x) .
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Then f is called r-times differentiable in x ∈ D, if f (r−1) is differentiable in x. We call its
derivative

Drf(x) := D(Df)(x) ∈ Linr(X ,Lin(X ; Y))

the r-th derivative.
If f is r-times differentiable for all x ∈ D, we call f r-times differentiable in D.

If the r-th derivative of f is continuous, we say that the mapping f is r-times continuously
differentiable and write

f ∈ Cr(X ; Y) .

Lemma 2.12: Let Ω ⊂ Rn be a region with smooth boundary and let

X = Cr(Ω;Rn) , Y = Ck−1(Ω;Rn)

for 1 ≤ k <∞. Let further be

W ∈ Cr
(
Ω×Map(Rn;Rn)→ Rn

)
with r ≥ k − 1− l ≥ 0. Then the function

f : X → Y , f(u)(x) = W (x,Du(x))

is in Cl and
(Df(u)[v])(x) = DDuW (x,Du(x))[Dv(x)]

Proof. We only show r = k = 1. Since

(Df(u)[v])(x) = lim
ε→0

1
ε

(f(u+ εv)(x)− f(u)(x))

= 1
ε

(W (x,Du(x) + εDv(x))−W (x,Du(x)))

= DDuW (x,Du(x))[Dv(x)]

and W ∈ C1, it follows Df ∈ C0. Therefore f ∈ C1(X ; Y).

2.3 Tangent maps

For a proper definition of the relevant mathematical objects in continuum mechanics, we
use basic definitions in differential geometry to introduce tangents on manifolds. We will
then see that deformations of a three-dimensional body are a special case of the represen-
tations below. We avoid the coordinate free description, as we will use all definitions in
Euclidean space. For a more general form and proofs, we refer to [106].
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Definition 2.13: A smooth n-manifold is a set M, such that

(i) For each x ∈M there is a subset U ⊂M with x ∈ U and an injective mapping

X : U → V ⊂ Rn .

Such a mapping X is called chart.

(ii) If X and X are two charts of a subset U , the change in coordinates

X(U)→ X(U)

has to be in C∞(X(U); X(U)).

Remark 2.14: Any open set M ⊂ Rn is a n-manifold with the chart

X : M→M , x 7→ x

being applicable for all subsets U ⊂ M. Additionally, each C∞ mapping is then also a
chart of M.

We will continue to pose defintions and theorems for general n-manifolds M,N . We will
later use them for open subsets of R3.

Definition 2.15: A manifold M is called oriented, if for all pairs of charts X,X of M,
the corresponding change in coordinates ψX,X : X(M)→ X(M) is orientation preserving,
that is

det(DψX,X) > 0 .

The term orientation preserving can be extended to any mapping between two manifolds
φ : M→ N .

Definition 2.16: Let M be a n-manifold and x ∈M.

1. The vector space Rn of all vectors originating at x ∈M is called tangent space TxM

of M in x.

2. The product TM = M × Rn consisting of pairs of points x ∈ M and associated
tangent vectors W ⊂ Rn is called the tangent bundle of M.

Definition 2.17: Let M be a n-manifold and φ ∈ C1(M; N ). Then the tangent map of
φ is defined as

Tφ : TM→ TN , (x,W) 7→ (φ(x) ,Dφ(x)[W]) .

For a fixed x ∈ Ω, the restriction Dφ
∣∣
TxM is a linear map.
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Lemma 2.18: Let U , V, W be manifolds and φ ∈ Cr(U ,V), ψ ∈ Cr(V ,W) with r ≥ 1.
Then

ψ ◦ φ ∈ Cr(U ,W) with T (ψ ◦ φ) = Tψ ◦ Tφ .

Proof. Let (x,W) ∈ TU . Then

T (ψ ◦ φ)(x,W) = (ψ(φ(x)),D(ψ ◦ φ)(x)[W])

=
(
ψ(φ(x)),Dψ(φ(x))

[
Dφ(x)[W]

])
= T (ψ) (φ(x),Dφ(x)[W])

= T (ψ) (T (φ(x),W))

by the chain rule.

Definition 2.19: Let M be a n-manifold. We call a mapping

v : M→ TM

a vector field on M, if v(x) ∈ TxM for all x in M.

Definition 2.20: Let M be a n-manifold and φ ∈ C1(M; N ).

• Let v be a vectorfield on M. Then

φ∗v := Tφ ◦ v ◦ φ−1

is called the push-forward of v by φ.

• Let vφ be a vectorfield on φ(M) and φ−1 ∈ C1(N ; M). Then

φ∗vφ := T (φ−1) ◦ vφ ◦ φ

is called the pull-back of vφ by φ.

Remark 2.21: If v and vφ are vectorfields on M and φ(M), respectively, then

φ∗v : φ(M)→ Tφ(M) , xφ 7→
(
xφ,Dφ(x)

[
v(φ−1(xφ))

])
,

φ∗vφ : M→ TM , x 7→
(
x,Dφ−1(xφ)

[
vφ(φ(x))

])
are vectorfields on φ(M) and M, respectively.
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2.4 Differential forms

In the previous section we introduced the concept of manifolds. We continue by briefly
discussing k-forms and their connection to integral formulations in three-dimensional
space. If not further specified, we always consider M and N to be a n-manifolds and
φ ∈ C1(M; N ). A more extensive study of the topic is given in [17].

Definition 2.22: A differential k-form is a mapping α of the form x 7→ αx, where

αx : TxM× · · · × TxM︸ ︷︷ ︸
k−times

→ R

is multilinear and skew symmetric, i.e.

αx(Wπ(1), . . . ,Wπ(k)) = sgn(π)αx(W1, . . . ,Wk) , W1, . . . ,Wk ∈ TxM

for any permutation π on {1, . . . , k}.

We omit the index x of αx for better readability, noting that the tangents Wi, i = 1, . . . , k,
always depend on their origin x.

Definition 2.23: Let α be a k-form and β be a l-form. Their exterior product

α ∧ β(W1, . . . ,Wk,Wk+1, . . . ,Wk+l)

:= 1
k!l!

∑
π

sgn(π)α(Wπ(1), . . . ,Wπ(k))β(Wπ(k+1), . . . ,Wπ(k+l))

defines a (k + l)-form α ∧ β.

Definition 2.24: Let d ∈ N and f ∈ C1(M;Rd) such that

Tf : TM→ TRd = Rd × Rd , (x,W) 7→ (f(x),Df(x)[W]) .

We call the 1-form

df := dfx : TxM→ Rd , W 7→ Df(x)[W]

the differential of f .

Definition 2.25: For k = 1, . . . , n, we call the 1-forms

dxk : TxM→ R , W 7→Wk

the coordinate differential forms, where Wk ist the k-th component of W ∈ Rn.

Theorem 2.26: There exists a unique linear operator d, such that for all k-forms α on
M, dα is a (k + 1)-form on M and



2.4. Differential forms 15

(i) d(dα) = 0.

(ii) d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ).

(iii) For a scalar function f : M → R, df coincides with the differential from defini-
tion 2.24.

Proof. See [106, chapter 1, theorem 7.4].

Definition 2.27: Let αφ be a k-form on φ(M). Then

(φ∗αφ) (W1, . . . ,Wk) = α (φ∗W1, . . .φ∗Wk) , W1, . . . ,Wk ∈ TxM

is called the pull-back of αφ on M.

Lemma 2.28: Let αφ be a k-form on φ(M). Then

(φ∗dαφ) = d(φ∗αφ) .

Proof. See [106, chapter 1, proposition 7.5].

We finalize this chapter by stating some key theorems about integration on manifolds.

Lemma 2.29: Let α be a k-form on M. Then there exists a unique function f : M→ R,
such that

αx = f(x)dx1 ∧ · · · ∧ dxk , x ∈M .

Proof. See [102, proposition 15.29].

The lemma above leads to the conclusion, that there exists a k-form on M of the form

dV := dx1 ∧ · · · ∧ dxn .

We call dV the volume element of M.

Theorem 2.30: Let φ be orientation-preserving and αφ a n-form on the n-manifold
φ(M). Then ∫

φ(M)
αφ =

∫
M
φ∗αφ .

Proof. See [106, chapter 1, theorem 7.12].

For the following theorems, we consider the boundary ∂M of the manifold M. The
boundary is itself a (n− 1)-manifold.

Theorem 2.31: Let ∂M be positively oriented and α be a (n− 1)-form on ∂M. Then∫
∂M

α =
∫

M
dα .
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Proof. See [102, theorem 16.11].

We call dA := dx1∧· · ·∧dxn−1 the area element on ∂M. It depicts the „volume element”
of the (n− 1)-manifold ∂M.

Theorem 2.32: Let v : M→ TM be differentiable on M. Then∫
M

div(v) dV =
∫
∂M

v · n dA ,

where n is the unit outward normal on ∂M.

Proof. See [106, chapter 1, theorem 7.17].

Corollary 2.33: Let v : M→ TM be a differentiable vectorfield on M and w : M→ R
be a differentiable scalar function. Then∫

M
div(v)w dV = −

∫
M

v ·Dw dV +
∫
∂M

v · n w dA ,

where n is the unit outward normal on ∂M.

Proof. Using the chain rule of the divergence operator, i.e., div(wv) = w div(v) + v ·Dw,
we get∫

M
div(v)w dV = −

∫
M

v ·Dw dV +
∫

M
div(wv) dV 2.31= −

∫
M

v ·Dw dV +
∫
∂M

v ·n w dA .

Remark 2.34: By lemma 2.29, differential forms can be described with scalar valued
mappings f : M→ R by

f(x)dx1 ∧ · · · ∧ dxk , x ∈M .

When using cartesian coordinates, the defintions above can be extended to vector-valued
functions f : M → Rd, d ∈ N. We interpret the corresponding vector-valued k-forms and
integrals component-wise.
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CHAPTER

THREE

FOUNDATIONS OF NONLINEAR CONTINUUM MECHANICS

This chapter introduces basic definitions and concepts of nonlinear kinema-
tics, utilizing concepts of differential geometry similar to the ones used in [106].
The derivation of balance laws and the equations of motion in the initial con-
figuration for elastodynamics follow the structure of [38], where these concepts
are well introduced for static problems. More details used in this chapter can
be studied further in [41].

3.1 Kinematic motion

In continuum mechanics, we consider bodies with continuous mass density occupying a
subset of three-dimensional space. Kinematics describes the deformation of these bodies
given external or internal forces. We begin by defining the basic objects we will consider
throughout this work.

Definition 3.1: A continuum body is an open set Ω ⊂ R3. A configuration of the body Ω
is a map

φ : Ω→ R3 .

We denote by Φ = Φ(Ω) the set of all configurations of Ω.

Definition 3.2: A motion of a continuum body Ω is a mapping

ϕ : [0, T ]→ Φ(Ω) , t 7→ ϕt(Ω) .

where ϕt are configurations of Ω.

The concept of a motion represents the transformation, rotation and deformation of a
body over time. This definition does not need to specify the initial configuration ϕ0(Ω).
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However, we will throughout this work always assume ϕ0(Ω) = Ω, i.e., no deformation
has taken place at the time t = 0.

Definition 3.3: A motion ϕ of Ω is called regular, if ϕt(Ω) is open and ϕt is invertible
for all t ∈ [0, T ]. A motion ϕ of Ω is called Cr-regular or r-regular, if ϕ−1

t ∈ Cr(ϕt(Ω); Ω)
for all t ∈ [0, T ].

The regularity of ϕ indicates the „niceness” of the physical deformation of Ω. Events such
as ripping, pinching or interpenetration of matter cannot be described by regular motions.

Remark 3.4: The definition of regularity allows self-contact, since ϕt(Ω) is open. In this
case however, we cannot extend ϕt to the boundary of Ω.

For every material point x ∈ Ω, we characterize the corresponding spatial point by

xϕ := xϕ(t) := ϕ(t,x) ∈ ϕt(Ω) .

Though each motion of a body is a curve in Φ, it is for our purposes more convenient to
rewrite motions as mappings in space and time, i.e.

ϕ : [0, T ]× Ω→ Φ(Ω) , (t,x) 7→ xϕ .

Definition 3.5: Let ϕ : [0, T ]× Ω→ Φ(Ω) be a motion. We call

u(t,x) := xϕ − x .

the displacement of x.

By this definition, we can also reformulate ϕ to ϕ(t,x) = x + u(t,x).

Definition 3.6: Let ϕ : [0, T ]× Ω→ Φ(Ω) be a 1-regular motion. We call the mapping

v : [0, T ]× Ω→ R3 , v(t,x) := ∂ϕ

∂t
(t,x) = ∂u

∂t
(t,x)

the material velocity of ϕ.

Note that the material velocity is only defined on the initial body Ω. We can formulate
the velocity on a configuration ϕt(Ω) as the parametrization vϕ(t,ϕ(t,x)):

Definition 3.7: Let ϕ : [0, T ]× Ω→ Φ(Ω) be a 1-regular motion. We call the mapping

vϕ : [0, T ]×Φ(Ω)→ R3 , vϕ(t,xϕ) = v(t,ϕ−1(t,xϕ))

the spatial velocity of ϕ.
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Intuitively, we often need to reverse the above definition: The velocity associated with a
given motion is ”measured” on the configuration ϕt(Ω). We would like to formulate this
velocity in the coordinates of the original configuration Ω. This gives us the relationship

v(t,x) = vϕ(t,ϕ(t,x)) .

Definition 3.8: Let ϕ : [0, T ]× Ω→ Φ(Ω) be a 1-regular motion and

fϕ : [0, T ]×Φ(Ω)→ R3 , (t,xϕ)→ fϕt (xϕ)

be a mapping with fϕt ∈ C1(ϕt(Ω);R3) for all t ∈ [0, T ]. Then

dfϕ

dt (t,xϕ) = ∂fϕ

∂t
(t,xϕ) + Dϕfϕ(t,xϕ)vϕ(t,xϕ)

is called the material (time) derivative of fϕ .

By Dϕ we denote the derivate in space with respect to xϕ. We always distinguish between
the derivative D with respect to the material coordinates x and the derivative Dϕ with
respect to xϕ. For any spatial mapping fϕ as above, we can set the corresponding material
mapping

f : [0, T ]× Ω→ R3 , f(t,x) := fϕ(t,xϕ) .

By the chain rule, it holds
∂f
∂t

(t,x) = dfϕ

dt (t,xϕ) .

Definition 3.9: Let ϕ : [0, T ] × Ω → Φ(Ω) be a 1-regular motion. We call the mapping
a(t,x) := ∂v

∂t (t,x) material acceleration of ϕ and aϕ(t,xϕ) = a(t,x) the spatial accelera-
tion of ϕ.

With the material derivative, we see that

a(t,x) = ∂vϕ

∂t
(t,xϕ) + Dϕvϕ(t,xϕ)vϕ(t,xϕ)

Remark 3.10: The object Dϕvϕ(t,xϕ) is called velocity gradient tensor. Using the con-
cepts of the following chapters, more convenient descriptions of this tensor can be derived.
Though we will not need it within the context of this work, the velocity gradient tensor
is crucial when considering viscoelastic materials [73].

3.2 Deformation gradient

The local deformation of the continuum body is described by the deformation gradient
of ϕ. We motivate this object as the tangent of ϕ, using the more abstract formulations
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introduced in section 2.3: As an open subset of R3, the domain Ω is a 3-manifold with
unit vector basis {e1, e2, e3}.
With these abstract definitions, we are well-equipped to define the relevant objects for our
three-dimensional special case.

Definition 3.11: Let φ : Ω→ Φ(Ω) be a C1-configuration of Ω. The tangent Tφ of φ is
denoted by F and called the deformation gradient of φ. For x ∈ Ω, the restriction

F(x) := Fx : TxΩ→ TxϕRn , y 7→ F(x)y

is a linear transformation.

The deformation gradient is well-defined for any 1-regular motion ϕ : [0, T ]× Ω→ Φ(Ω),
where we set F(t,x) as the tangent Tϕt of ϕt for all t ∈ [0, T ]. Again, it is more convenient
to write F as a tensor-valued function

F : [0, T ]× Ω→ R3×3 , (t,x) 7→ F(t,x) .

Lemma 3.12: Let ϕ : [0, T ] × Ω → Φ(Ω) be a 1-regular motion. Then its deformation
gradient for t ∈ [0, T ] and x ∈ Ω is given by

F := F(t,x) =


∂ϕ1
∂x1

∂ϕ1
∂x2

∂ϕ1
∂x3

∂ϕ2
∂x1

∂ϕ2
∂x2

∂ϕ2
∂x3

∂ϕ3
∂x1

∂ϕ3
∂x2

∂ϕ3
∂x3

 (t,x)

The deformation gradient describes local changes between the material and spatial config-
uration and most macroscopic properties of a motion rely on it. One particular property
is the change of volume discussed in section 4.3. We will see that the volume of a config-
uration ϕt(Ω) is connected to the determinant of F.

Definition 3.13: Let ϕ : [0, T ]× Ω→ Φ(Ω) be a 1-regular motion. The function

J : [0, T ]× Ω→ R , (t,x) 7→ det(F(t,x))

is called Jacobian.

Since the motion ϕ is regular, its deformation gradient is invertible for all (t,x) ∈ [0, T ]×Ω,
i.e.

J := J(t,x) = det(F) 6= 0 ∀ (t,x) ∈ [0, T ]× Ω .

Furthermore, since the determinant is continuous and F = I for t = 0, it holds

J(t,x) > 0 ∀ (t,x) ∈ [0, T ]× Ω .
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Lemma 3.14: Let ϕ : [0, T ]× Ω→ Φ(Ω) be a 1-regular motion with Jacobian J . Then

DFJ(t,x) = J(t,x)F−>(t,x) , ∂J

∂t
(t,x) = J(t,x)divϕ(vϕ(t,xϕ)) .

Proof. Let H ∈ R3×3 be arbitrary. Since J > 0, F is invertible and it holds

det(F + εH) = det(F) det(I + εF−1H) = det(F)(1 + ε tr(F−1H) + o(ε2)) ,

where the last expansion results from the definition of the determinant. Then

DF det(F)[H] = lim
ε→0

det(F + εH)− det(F)
ε

= det(F) tr(F−1H) = JF−> : H .

With this result, we use the chain rule on the determinant to get
∂

∂t
det(F) = DF det(F)[ ∂

∂t
F] = det(F) tr

(
F−1Dv

)
= det(F) tr

(
DϕvϕFF−1

)
= J divϕ(vϕ) ,

where we used [41, proposition 2.1] to get Dv = DϕvϕF.

We close this section by giving the definitions of two tensors commonly used in elasticity.

Definition 3.15: Let ϕ : [0, T ]× Ω→ R3 be a 1-regular motion. The symmetric tensor

B : TΩ→ TΩ , B := FF>

is called left Cauchy-Green strain tensor.

We mostly use the left Cauchy-Green strain tensor for some theorems in the upcoming
chapter.

Definition 3.16: Let ϕ : [0, T ]× Ω→ R3 be a 1-regular motion. The symmetric tensor

C : TΩ→ TΩ , C := F>F

is called right Cauchy-Green strain tensor.

The right Cauchy-Green strain tensor introduces a positive definite quadratic form which
we will later use to compute lengths. Let f ∈ R3 be a vector starting at x ∈ Ω with length
|f | =

√
f · f . The corresponding deformed vector fϕ = F(x)f then has the length

|fϕ| =
√

Ff · Ff =
√

f>Cf .

Definition 3.17: Let ϕ : [0, T ]× Ω→ R3 be a 1-regular motion. The tensor

E : TΩ→ TΩ , E := 1
2(C− I)

is called Green-St. Venant strain tensor.

As shown in [38, section 1.8], the Green-St. Venant strain tensor illustrates the ”deviation”
of ϕ to a purely rigid deformation.
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3.3 Equations of equilibrium

From this point on, we consider ϕ : [0, T ] × Ω → Φ(Ω) to be a motion on the continuum
body Ω with intermediate configurations ϕ(t,Ω) = ϕt(Ω). We set ϕ(t,x) = xϕ. If not
further specified, we assume ϕ to be regular enough to allow the upcoming definitions and
theorems.
This section describes the basic axioms of continuum mechanics, namely the conservation
of mass and momentum. These fundamental laws of physics will provide a set of equations
which will be the basis of our mathematical model.

Lemma 3.18: Let fϕ : [0, T ]×Φ(Ω)→ R be a spatial mapping with corresponding material
mapping f : [0, T ]× Ω→ R and let D ⊂ Ω be open. Then∫

ϕt(D)
fϕ(t,xϕ) dV ϕ =

∫
D
f(t,x)J(t,x) dV , t ∈ [0, T ] .

Proof. This follows from 2.30 with α = fϕ dV ϕ and ϕ∗ dV ϕ = J dV . For a more in-depth
proof, we refer to [49, section V.4].

Definition 3.19 (Piola transform): Let fϕ be a vectorfield on ϕt(Ω). Then the vec-
torfield

f(t,x) = J(t,x)(ϕ∗fϕ)(t,x) = J(t,x)fϕ(t,xϕ)F−>(t,x) , (t,x) ∈ [0, T ]× Ω ,

on Ω is called its Piola transform.

The Piola transform is essential for the transformation of vector- and tensor-valued vec-
torfields into the reference configuration Ω, due to the following properties. The proofs
of these identities are not difficult, but somewhat technical, which is why we refer to [38,
section 1.7].

Lemma 3.20 (Piola identity): Let ϕ[0, T ]× Ω→ R3 be a 1-regular motion. Then

div
(
(J(t,x)F−>(t,x)

)
= 0

Lemma 3.21: Let fϕ be a vectorfield on ϕt(Ω) with Piola transform f . Then

div(f(t,x)) = J(t,x)divϕ(fϕ(t,xϕ)) ,

Lemma 3.22: Let fϕ be a vectorfield on ϕt(Ω) with Piola transform f and let D ⊂ Ω be
open. Then ∫

∂ϕt(D)
fϕ · nϕ dAϕ =

∫
∂D

f · n dA .
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Remark 3.23: From lemma 3.22, we conclude two properties related to the area elements
of D and ϕt(D):

(i) If n and nϕ are the outer normal vectors at x and xϕ, then nϕ = Cof(F)n
|Cof(F)n| .

(ii) The area elements are related by dAϕ = Cof (F) dA.

The equations of equilibrium dictate that certain quantities stay constant over time. We
will therefore examine the time derivative of integrals over time-dependant functions. The
corresponding relation on moving geometries is given by Reynolds transport theorem:

Theorem 3.24 (Reynolds transport theorem): Let fϕ : [0, T ] × Φ(Ω) → R be a C1

mapping and D ⊂ Ω open. Then

∂

∂t

∫
ϕt(D)

fϕ dV ϕ =
∫
ϕt(D)

dfϕ
dt + fϕdivϕvϕ dV ϕ =

∫
ϕt(D)

∂fϕ

∂t
+ divϕ (fϕvϕ) dV ϕ

Proof. Using 3.18, it holds

∂

∂t

∫
ϕt(D)

fϕ dV ϕ =
∫

D

∂

∂t

(
f(t,x)J(t,x)

)
dV

=
∫

D

(
∂f

∂t
(t,x)J(t,x)

)
+
(
f(t,x)∂J

∂t
(t,x)

)
dV

3.14=
∫

D

(
∂f

∂t
(t,x) + f(t,x)divϕ(vϕ(t,ϕ(t,x)))

)
J(t,x) dV

=
∫
ϕt(D)

dfϕ
dt (t,xϕ) + fϕ(t,xϕ)divϕ(vϕ(t,xϕ)) dV ϕ

Definition 3.25: Let aϕ, bϕ : [0, T ] × Φ(Ω) → R and cϕ : [0, T ] × Φ(Ω) → R3. The
mappings aϕ, bϕ and cϕ satisfy the spatial master balance law, if for any open D ⊂ Ω with
sufficiently smooth boundary ∂D, the equation

d
dt

∫
ϕt(D)

aϕ dV ϕ =
∫
ϕt(D)

bϕ dV ϕ +
∫
∂ϕt(D)

cϕ · nϕ dAϕ

is well defined and holds for all t ∈ [0, T ].

The term ”sufficiently smooth” is usually fulfilled if ∂D is piecewise C1 [106, chapter 2.1].
However, some of the upcoming statements may require additional regularity of ∂D. Since
we are not interested in the specific regularity requirements on subsets D ⊂ Ω, we omit
them for the sake of brevity and always assume D is sufficiently smooth.

Theorem 3.26: Let aϕ ∈ C1([0, T ] × Φ(Ω);R), bϕ ∈ C0([0, T ] × Φ(Ω);R) and cϕ ∈
C1([0, T ]×Φ(Ω);R3). The mappings satisfy the spatial master balance law if and only if

∂aϕ

∂t
+ divϕ(aϕvϕ) = bϕ + divϕ(cϕ) . (3.1)
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Proof. With theorems 3.24 and 2.32, the master balance law is equivalent to
d
dt

∫
ϕt(D)

∂aϕ

∂t
+ divϕ(aϕvϕ) dV ϕ =

∫
ϕt(D)

bϕ dV ϕ +
∫
ϕt(D)

divϕ(cϕ) dV ϕ , D ⊂ Ω .

Thus, if (3.1) holds, the master balance law has to hold. Conversely, since D is arbitrary,
equation (3.1) holds if aϕ, bϕ and cϕ satisfy the master balance law.

Definition 3.27: Let a, b : [0, T ]×Ω→ R and c : [0, T ]×Ω→ R3 and let J be the Jacobian
of ϕ. The mappings a, b and c satisfy the material master balance law, if for any open
D ⊂ Ω, the equation

d
dt

∫
D
a J dV =

∫
D
b J dV +

∫
∂D

c · n dA

is well defined and holds for all t ∈ [0, T ].

Theorem 3.28: Let J be the Jacobian of ϕ and (a J) ∈ C1([0, T ]×Ω;R), (b J) ∈ C0([0, T ]×
Ω;R) and c ∈ C1([0, T ]×Ω;R3). The mappings satisfy the material master balance law if
and only if

∂

∂t
(a J) = b J + div(c) . (3.2)

Proof. This follows analogously to the proof of theorem 3.26.

With spatial and material definitions of the same principle, we lastly need to know how
to switch from a spatial to a material setting (and vice versa).

Theorem 3.29: Let the mappings aϕ, bϕ, cϕ and a, b, c from above be related by

a(t,x) = aϕ(t,xϕ) , b(t,x) = bϕ(t,xϕ) , c(t,x) = Jcϕ(t,xϕ)F−> .

Then aϕ, bϕ, cϕ satisfy the spatial master balance law if and only if a, b, c satisfy the ma-
terial master balance law.

Proof. Using conversion 3.18 for a and b and the divergence theorem 2.32 together with
the divergence property of the Piola transform 3.21 for c, we get
d
dt

∫
ϕt(D)

aϕ dV ϕ−
∫

ϕt(D)
bϕ dV ϕ−

∫
∂ϕt(D)

cϕ ·nϕ dAϕ = d
dt

∫
D
a J dV −

∫
D
b J dV −

∫
∂D

c ·n dA .

Theorem 3.30 (Cauchy): Let aϕ ∈ C1([0, T ]×Φ(Ω);R), bϕ ∈ C0([0, T ]×Φ(Ω);R) and
cϕ ∈ C0([0, T ]× TΦ(Ω);R). Assume that for all open D ⊂ Ω, aϕ, bϕ, cϕ satisfy
d
dt

∫
ϕt(D)

aϕ(t,xϕ) dV ϕ =
∫
ϕt(D)

bϕ(t,xϕ) dV ϕ+
∫
∂ϕt(D)

cϕ(t,xϕ,nϕ) dAϕ , t ∈ [0, T ] .

Then there exists a unique vectorfield cϕ ∈ C1([0, T ]×Φ(Ω);R3), such that

cϕ(t,xϕ,nϕ) = cϕ(t,xϕ) · nϕ , ∀ t ∈ [0, T ], xϕ ∈ ϕt(Ω), nϕ ∈ Tϕt(Ω)

and aϕ, bϕ, cϕ satisfy the spatial master balance law.
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Proof. See [106, section 2.1].

Remark 3.31: A similar statement holds for material quantities and the material master
balance law.

The master balance laws and Cauchys theorem are still only abstract integral equations
on a deformed continuum body. We continue by presenting the laws of physics mentioned
at the beginning of this section as integral equations.

Definition 3.32: A mapping ρϕ : [0, T ] ×Φ(Ω) → R is said to obey the conservation of
mass, if for all open D ⊂ Ω, it holds

d
dt

∫
ϕt(D)

ρϕ(t,xϕ) dV ϕ = 0 , t ∈ [0, T ] .

We call ρϕ the mass density and m(ϕt(D)) :=
∫
ϕt(D) ρ

ϕ dV ϕ the mass of ϕt(D).

The conservation of mass states that the mass of a continuum body does not change under
deformations, i.e.,

m(ϕt(D)) :=
∫
ϕt(D)

ρϕ(t,xϕ) dV ϕ =
∫

D
ρ(x) dV = m(D) , t ∈ [0, T ]

with the reference mass density ρ : Ω→ R. We naturally set ρϕ(0,ϕ(0,x)) = ρ(x).

Lemma 3.33: Let fϕ : [0, T ] × Φ(Ω) → R be a C1 mapping and D ⊂ Ω open. Let con-
servation of mass hold with mass density ρϕ. Then for the mapping ρϕfϕ, the transport
theorem 3.24 simplifies to

d
dt

∫
ϕt(D)

ρϕfϕ dV ϕ =
∫
ϕt(D)

ρϕ
dfϕ
dt dV ϕ .

Proof. Using the transport theorem 3.24 only for the mass density ρϕ, we get

0 = d
dt

∫
ϕt(D)

ρϕ dV ϕ =
∫
ϕt(D)

dρϕ
dt + ρϕdivϕ(vϕ) dV ϕ .

Since D is arbitrary, it follows
dρϕ
dt + ρϕ div(v) ≡ 0 .

With this, we evaluate the integral
d
dt

∫
ϕt(D)

ρϕfϕ dV ϕ 3.24=
∫
ϕt(D)

∂ρϕfϕ

∂t
+ divϕ(ρϕfϕvϕ) dV ϕ

=
∫
ϕt(D)

∂ρϕ

∂t
fϕ + ∂fϕ

∂t
ρϕ + D(ρϕfϕ) · vϕ + ρϕfϕdivϕ(vϕ) dV ϕ

=
∫
ϕt(D)

ρϕ
dfϕ
dt +

(
∂ρϕ

∂t
fϕ + fϕDρϕ · vϕ + ρϕfϕdivϕ(vϕ)

)
dV ϕ

=
∫
ϕt(D)

ρϕ
dfϕ
dt +

( dρϕ
dt + ρϕdivϕ(vϕ)︸ ︷︷ ︸

=0

)
fϕ dV ϕ .
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Up until now, we have stated all definitions and theorems for scalar functions and vector-
valued vectorfields. However, as mentioned in remark 2.34, the results so far can be
transferred to vector-valued functions and tensor-valued vectorfields. We then interpret
integrals component-wise and, for any tensor F : Ω→ R3×3, denote with div(F) ∈ R3 the
vector of divergences of the rows of F.

Definition 3.34: Let ϕ be a deformation resulting from exterior forces.

(i) The function bϕ : [0, T ] × Φ(Ω) → R3 describing all forces per unit volume acting
on ϕt(Ω) is called applied body force per unit volume.

(ii) The function gϕ : [0, T ] × Φ(Γ) → R3 describing the union of all forces acting on
subsets Γϕt ⊂ ∂ϕt(Ω) of the boundary is called applied surface force.

Let D be an open subset of Ω.

3. The sum of all forces acting on ϕt(D) is defined by

F (ϕt(D)) :=
∫
ϕt(D)

ρϕbϕ dV ϕ +
∫
∂ϕt(D)∩Γϕ

t

gϕ dAϕ , t ∈ [0, T ] .

4. The torque of all forces with respect to the origin acting on ϕt(D) is defined by

T (ϕt(D)) :=
∫
ϕt(D)

ρϕ(xϕ × bϕ) dV ϕ +
∫
∂ϕt(D)∩Γϕ

t

xϕ × gϕ dAϕ , t ∈ [0, T ] .

For a continuum body with mass density ρϕ, we may write the applied body forces as
fϕ := ρϕbϕ.

Definition 3.35: Let ϕ be the resulting deformation from applied forces bϕ,gϕ. The
forces are said to obey the conservation of linear momentum, if for all open D ⊂ Ω, it
holds

d
dt

∫
ϕt(D)

ρϕvϕ dV ϕ = F (ϕt(D)) , t ∈ [0, T ] .

We call ML(ϕt(D)) :=
∫
ϕt(D) ρ

ϕvϕ dV ϕ the linear momentum of D under ϕ.

Remark 3.36: The definition above is equivalent to Newtons second law of motion, which
states that the change of linear momentum ML(ϕt(D)) over time is equal to the sum of
applied forces F (ϕt(D)).

Definition 3.37: Let ϕ be the resulting deformation from applied forces bϕ,gϕ. The
forces are said to obey the conservation of angular momentum, if for all open D ⊂ Ω, it
holds

d
dt

∫
ϕt(D)

ρϕ(xϕ × vϕ) dV ϕ = T (ϕt(D)) , t ∈ [0, T ] .

We call MA(ϕt(D)) :=
∫
ϕt(D) ρ

ϕ(xϕ × vϕ) dV ϕ the angular momentum of D under ϕ.
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The following assumption, called the Stress Principle of Euler and Cauchy is the funda-
mental concept of continuum mechanics, which is why we formulate it as an axiom. It
postulates the existence of a vector-valued function, such that for each time t ∈ [0, T ], any
subset of ϕt(Ω), including ϕt(Ω) itself, is in a static equilibrium.

Axiom 3.38: Let S1 ⊂ R3 be the space of all vectors with unit-length and let ϕ be a
motion on a body Ω. Let the deformed body ϕt(Ω) have a mass density ρϕ : ϕt(Ω) → R
and be subjected to applied forces bϕ : ϕt(Ω)→ R3 and gϕ : ϕt(Γ)→ R3. Then there exists
a vectorfield tϕ : [0, T ]×Φ(Ω)× S1 → R3, such that for all open subsets D ⊂ Ω, it holds

tϕ(t,xϕ,nϕ) = gϕ(t,xϕ) , ∀ t ∈ [0, T ], xϕ ∈ ϕt(D), nϕ ∈ ∂ϕt(D) ∩ Γϕt

and bϕ, gϕ obey the conservation of linear and angular momentum.

We call tϕ the Cauchy stress vector.

3.4 The Cauchy stress principle

In the last section, we introduced balance laws and the fundamental axiom of contin-
uum mechanics. Combined, they imply major consequences, concluding in the partial
differential equation relating the exterior forces bϕ, gϕ and the motion ϕ.
Throughout the rest of this chapter, let ϕ : [0, T ] × Ω → Φ(Ω) be a motion with applied
forces bϕ : [0, T ]×Φ(Ω)→ R3 and gϕ : [0, T ]×Φ(Γ)→ R3 and let ρϕ : [0, T ]×Φ(Ω)→ R
be a mass density on ϕ(Ω).

Theorem 3.39: Let the stress principle 3.38 and the balance of linear momentum 3.35
hold. Let ϕ ∈ C1([0, T ] × Ω;R3) and the Cauchy stress vector tϕ be continuous. Then
there exists a unique tensorfield Tϕ : [0, T ]×Φ(Ω)→ R3×3 satisfying

tϕ(t,xϕnϕ) = Tϕ(t,xϕ)nϕ , ∀ t ∈ [0, T ] , xϕ ∈ ϕt(Ω) , nϕ ∈ Tϕt(Ω) .

We call Tϕ the Cauchy stress tensor.

Proof. Let D ⊂ Ω and ei ∈ R3 be a unit vector. The balance of linear momentum is
equivalent to the spatial master balance law

d
dt

∫
ϕt(D)

ρϕvϕ · ei dV ϕ =
∫
ϕt(D)

ρϕ(bϕ · ei) dV ϕ +
∫
∂ϕt(D)∩Γϕ

t

tϕ · ei dAϕ .

Defining the scalar-valued function cϕi (t,xϕ,nϕ) := tϕ(t,xϕ,nϕ)·ei, Cauchys theorem 3.30
implies the existence of a unique vectorfield cϕi , such that

cϕi (t,xϕ,nϕ) = cϕi (t,xϕ) · nϕ .
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We then set Tϕ as the tensor with rows cϕi for i = 1, . . . , 3, i.e. Tϕ = (cϕ1 | c
ϕ
2 | c

ϕ
3 )>.

This defines a unique tensorfield Tϕ : [0, T ]×Φ(Ω)→ R3×3, and it holds component-wise

(Tϕ(t,xϕ)nϕ) · ei = cϕi (t,xϕ) · nϕ = tϕ(t,xϕ,nϕ) · ei .

This implies tϕ(t,xϕnϕ) = Tϕ(t,xϕ)nϕ.

The existence of the Cauchy stress tensor is the basis of the partial differential equation we
motivate throughout the remainder of this chapter. We always assume the assumptions
of theorem 3.39 to hold.

Theorem 3.40: The Cauchy stress tensor Tϕ is symmetric if and only if the balance of
angular momentum 3.37 holds.

Proof. See [106, section 2.2].

Theorem 3.41: Let the conservation of mass hold. Then

ρϕaϕ = ρϕbϕ + divϕ(Tϕ) , in ϕt(Ω) , (3.3a)

Tϕnϕ = gϕ , on ϕt(Γ) . (3.3b)

Proof. Let D ⊂ Ω be arbitrary. Using lemma 3.33, the balance of linear momentum

d
dt

∫
ϕt(D)

ρϕvϕ dV ϕ =
∫
ϕt(D)

ρϕbϕ dV ϕ +
∫
∂ϕt(D)∩Γϕ

t

Tϕnϕ dAϕ

simplifies to ∫
ϕt(D)

ρϕ
dvϕ

dt dV ϕ =
∫
ϕt(D)

ρϕbϕ dV ϕ +
∫
∂ϕt(D)∩Γϕ

t

Tϕnϕ dAϕ

Using dvϕ

dt = aϕ and theorem 3.26, this is equivalent to

ρϕ
daϕ

dt = ρϕbϕ + div(Tϕ) , in ϕt(Ω) .

The equality on ϕt(Γ) follows directly from gϕ(t,xϕ) = tϕ(t,xϕ,nϕ) = Tϕnϕ.

The system (3.3) is given in the material configuration ϕt(Ω), as the forces and the Cauchy
stress tensor Tϕ are applied on the deformed geometry. In practice, the deformation ϕ
is usually the unknown, making the system unsuitable for applications. It is therefore
advantageous to rewrite (3.3) in material coordinates.

Definition 3.42: Let Tϕ be the Cauchy stress tensor of a motion ϕ. We call

P(t,x) := J(t,x)Tϕ(t,ϕ(t,x))F−>(t,x) , (t,x) ∈ [0, T ]× Ω ,

the first Piola-Kirchhoff stress tensor.
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With the first Piola-Kirchhoff stress tensor, we are now able to state the equations of
motion in the reference configuration.

Theorem 3.43: Let the conservation of mass hold. Then the following statements are
equivalent:

(i) The balance of linear momentum holds.

(ii) For any open set D ⊂ Ω, it holds

d
dt

∫
D
ρv dV =

∫
D
ρb dV +

∫
∂D∩Γ

Pn dA .

(iii) The first Piola-Kirchhoff stress P satisfies

ρa = ρb + div(P) , in Ω , (3.4a)

Pn = g , on Γ . (3.4b)

Proof. This follows directly from the conversion 3.29.

One downside of working with the first Piola-Kirchhoff stress tensor is the loss of symmetry,
due to F not being symmetric. In most literature, this is rectified by working with the
following tensor instead:

Definition 3.44: Let P be the first Piola-Kirchhoff stress tensor of a motion ϕ. Then
the symmetric mapping

S(t,x) := F−1(t,x)P(t,x) , (t,x) ∈ [0, T ]× Ω

is called the second Piola-Kirchoff stress tensor.

The second Piola-Kirchhoff stress tensor S will be useful in some proofs in the upcoming
chapter due to its symmetry. In general, we use the the first Piola-Kirchhoff stress tensor
P in the equations of motion in the reference configuration.
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CHAPTER

FOUR

CONSTITUTIVE MODELS OF PASSIVE SOFT TISSUES

Given the partial differential equation for kinematic motion, this chapter in-
troduces the concept of hyperelasticity to match the number of equations to the
number of unknowns. Different constitutive models, formulating a relation be-
tween the Cauchy stress tensor and the deformation, are presented. We later
focus on conditions and materials relevant for the modeling of soft tissue, which
will be relevant in the description of cardiac electromechanics.

Throughout this chapter, we consider Ω ⊂ R3 to be open and ϕ : [0, T ] × Ω → Φ(Ω)
be a motion on Ω with deformation gradient F and Jacobian J and use the terminology
as defined in the previouos chapter. We assume ϕ to be regular enough to allow for all
definitions and theorems and consider the external forces b and g to be given.

4.1 Hyperelastic materials

At the end of the previous chapter, we were left with a partial differential equation de-
pendant on the motion ϕ and its Cauchy stress tensor Tϕ. However, this system only
consists of three equations (one for each component) and nine unknowns: Three compo-
nents of ϕ and six components of the symmetric tensor Tϕ. To circumvent this issue, we
introduce constitutive equations, which state a relation between the Cauchy stress and the
underlying motion. To better specify different material types, we introduce basic axioms
of continuum physics and material assumptions, such as elasticity and hyperelasticity.
For a more thorough definition of constitutive theory, we refer to [106]. We state the axiom
of objectivity as in [116, 159]. Lastly, the definitions and statements for (hyper)elasticity
are depicted as in [38, chapter 3].
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If ϕ is r-regular for r ∈ N or r =∞, we set the set of all past motions up to time t to be

Mt := {φ : (−∞, t]× Ω→ Φ(Ω) | φ is r-regular for all −∞ < τ < t} .

With this we define the set of past histories by

H :=
⋃
t∈R

({t} ×Mt) .

Definition 4.1: We call a mapping T x : H→ R3×3
sym a constitutive equation for the Cauchy

stress tensor at x ∈ Ω, if Tϕ can be written as

Tϕ(t,ϕ(t,x)) = T x(t,ϕ[t]) .

Note that the mapping T x depends not only on the values of ϕ, but on ϕ as a whole,
which is denoted by ϕ[t]. This includes the possible derivatives of ϕ, the relevance of
which will become clear by the end of this section.

Remark 4.2: If T x is a constitutive equation for Tϕ at x ∈ Ω, then

Px : H→ R3×3 , Px := JT xF−> ,

is a constitutive equation for the first Piola-Kirchhoff stress P at x and

Sx : H→ R3×3
sym , Sx := F−1Px ,

is a constitutive equation for the second Piola-Kirchhoff stress S at x.

A constitutive equation describes intrinsic properties of the continuum body Ω, i.e. how
it behaves when exposed to specific deformations. The definition above allows for the
inclusion of rate and memory effects, which are important for viscose or plastic materials.
However, the elastic behaviour of the heart is similar to a sponge and such effects can thus
be neglected for the application in cardiac elastodynamics. We therefore drop them and
formulate constitutive equations for pure elasticity:

Definition 4.3: An elastic constitutive equation for the first Piola-Kirchhoff stress P at
a point x is a mapping Px : Φ(Ω)→ R3×3, such that

P(t,x) = Px(ϕ[t]) , ∀ t ∈ [0, T ] .

Lastly, the local definitions can be extended to the whole domain Ω.

Definition 4.4: We call a mapping

T : Ω→ C(Φ(Ω);R3×3) , x 7→ T x

an elastic constitutive equation for Tϕ, if T x are constitutive equations for Tϕ for all
x ∈ Ω.
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This definition of constitutive equations is deliberately abstract, as it can be applied on
a multitude of physical problems other than elastodynamics, such as thermodynamics,
plasticity or even electromagnetism [8, section 12.10]. Within this work, we focus on
elastodynamical constitutive equations for continuum bodies. Such constitutive equations
describe physical properties of the body Ω and are mainly related to the material it consists
of. We therefore associate the two and continue to describe material properties which are
both motivated by the physical context and mathematically convenient.

Definition 4.5: A material is called elastic, if there exists an elastic constitutive equation
T̂ for Tϕ of the form

Tϕ(t,ϕ(t,x)) = T̂(x,F(t,x)) , ∀ t ∈ [0, T ] , x ∈ Ω .

We call T̂ the response function of Tϕ.

Remark 4.6: As with general constitutive equations, if T̂ is a response function of T,
then

P̂ := JT̂F−> , Ŝ := JF−1T̂F−>

are response functions of the first and second Piola-Kirchhoff stress tensors, respectively.

For the sake of brevity, we use the term constitutive equation and response function for
Tϕ, P and S synonymously.

Definition 4.7: An elastic material with response function P̂ : Ω× TΩ→ R3×3 is called
hyperelastic, if there exists a mapping WP : Ω × R3×3 → R, which is differentiable with
respect to the second argument, such that

P(x,F) = DFWP(x,F) , ∀ x ∈ Ω, F ∈ TΩ .

The mapping WP is called stored energy function.

A general requirement in physics is that any deformation ϕ is unaffected by the direction
from which is it looked at. This assumption is called the axiom of frame indifference
or axiom of objectivity. For our mathematical framework, this means that any intrinsic
property of the regarded body Ω, such as its mass density, is independent of the orthogonal
basis in which it is computed. We introduce the concept of objectivity similar to [116].

Definition 4.8: A change of frame {c,Q, a} is a triple of mappings

c : [0, T ]→ R3 , Q : [0, T ]→ SO(3) , a : [0, T ]→ R ,

such that each time and point (t,x) are transformed into another pair (t′,x′) by

x′ = c(t) + Q(t)x ,

t′ = t− a(t) .
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If v : [0, T ]× Ω→ R3 is a vector-valued mapping, it is transformed according to

v′(t′,x) = Q(t)v(t,x) .

In the above definition, the mapping c depicts a translation in euclidian space, Q a rotation
of Ω and a a change of rate of time. Vector-valued mappings on Ω are only affected by the
rotational part of the change of frame. A similar observation can be made for tensor-valued
mappings:

Remark 4.9: Let A : [0, T ]×Ω→ R3×3 be a tensor-valued mapping. Defining its change
of frame transformation A′ by the property

A′v′ = (Av)′ , ∀ v ∈ R3 ,

we get
A′(t′,x) = Q(t,x)A(t,x)Q>(t,x) .

Definition 4.10: Let ψ be a motion of same regularity as ϕ and let T ϕ,T ψ be elastic
constitutive equations for the corresponding Cauchy stress tensors. We call the motions
ϕ and ψ equivalent, if there exists a change of frame {c,Q, a}, such that

ψ(t′,x) = c(t) + Q(t)ϕ(t,x) ,

T ψ(x) = Q(t)T ϕ(x)Q>(t) .

Two motions are equivalent, if they only differ by a change of frame. With this, we can
finally state the axiom of frame indifference:

Axiom 4.11 (Objectivity): Let {ϕ,T ϕ} be a motion with T ϕ being an elastic consti-
tutive equation for Tϕ. Then for any equivalent motion {ψ,T ψ}, T ψ is a constitutive
equation for Tψ.

With the axiom of objectivity, we can state some fundamental relations between the
response functions of Tϕ, P and S. The proofs of the following theorems can be found
in [38].

Theorem 4.12: The response function T̂ of an elastic material satisfies the axiom of
objectivity 4.11 if and only if

T̂(x,QF) = QT̂(x,F)Q> , ∀ x ∈ Ω, Q ∈ SO(3) .

Theorem 4.13: The response function T̂ of an elastic material satisfies the axiom of
objectivity 4.11 if and only if there exists a mapping S̃ : Ω× R3×3

sym → R3×3
sym, such that

Ŝ(x,F) = S̃(x,F>F) , ∀ F ∈ R3×3 .
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Theorem 4.14: Let WP be the stored energy function of a hyperelastic material. The
following statements are equivalent:

(i) WP satisfies the axiom of objectivity 4.11.

(ii) For all x ∈ Ω, F ∈ R3×3, it holds

WP(x,QF) = WP(x,F) .

(iii) There exists a mapping WS : Ω× R3×3
sym → R, such that

WP(x,F) = WS(x,F>F) ∀ x ∈ Ω, F ∈ R3×3 .

Theorem 4.15: Let WP be the stored energy function of a hyperelastic material which
satisfies the axiom of objectivity 4.11. Let WS : Ω× R3×3

sym → R be defined by

WS(x,C) := WP(x,C
1
2 ) , C ∈ R3×3

sym ,

and assume without loss of generality that DCWS is symmetric. Then

Ŝ(x,F) = S̃(x,F>F) = 2DCWS(x,F>F) , F ∈ R3×3 .

Theorem 4.16: Let Ŝ be the response function of an elastic material which satisfies the
axiom of objectivity 4.11. If there exisits a mapping WS : Ω× R3×3

sym → R such that

Ŝ(x,F) = 2DCWS(x,F>F), , F ∈ R3×3 ,

then the material is hyperelastic with stored energy function

WP(x,F) = WS(x,F>F) , F ∈ R3×3 .

Material models such as the ones for cardiac tissue described in section 4.4 are typically
defined by a differentiable stored energy function W . Using the fundamental theorems
above ensures the objectivity and hyperelasticity of the material model. We therefore
always associate a material with its corresponding stored energy function W .

4.2 Anisotropy

In the previous section, we restricted the form of the response function and the stored
energy, respectively, by enforcing the axiom of objectivity. We want to impose another
property on the given material, namely orthotropy, to account for similar material re-
sponses given rotated or mirrored deformations. The structure below is loosely based
on [31, section 1, 7].
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Definition 4.17: Let G ⊂ O3×3 be a subgroup of the group of orthogonal mappings and

ι : R3×3
sym × · · · × R3×3

sym︸ ︷︷ ︸
N times

×R3 × · · · × R3︸ ︷︷ ︸
M times

→ R

be a mapping depending on N symmetric tensors and M vectors. For A ∈ R3×3
sym and

a ∈ R3, set
A := QAQ> , a := Qa , Q ∈ G .

We call ι invariant under G, if for all Q ∈ G, it holds

ι(A1, . . . ,AN ,a1, . . . ,aM ) = ι(A1, . . . ,AN ,a1, . . . ,aM )

for all An ∈ R3×3
sym, n = 1, . . . , N and am ∈ R3, m = 1, . . . ,M .

Invariance under specific orthogonal transformations is a key feature of materials. Prefer-
ably, we would like the response function to be invariant under all orthogonal transforma-
tions (see definition 4.25). As we will see in section 4.4, this condition is too restrictive
for material models used in cardiac elasticity.
We continue to develop a basic invariant theory to specify the largest subgroup under
which the response function of such models is invariant. Within this section, we say ι

is an invariant, if there exists a subgroup G ⊂ O3×3, such that ι is invariant under G.
Multiple invariants in the same context are always assumed to be invariant under the same
subgroup G ⊂ O3×3.

Lemma 4.18: Let ι = {ι1, . . . , ιK} be a set of invariants. Then any mapping resulting
from arbitrary concatenations and combinations of ι1, . . . , ιK is also an invariant.

Proof. See [159, section 11].

Since any combination of invariants is again an invariant, the question arises when the
reverse is true: For any invariant ι, is there a set of invariants ι, such that ι can be
represented by the components of ι? We begin with some basic definitions as in [52, part
III].

Definition 4.19: Let ι be an invariant. If there exists a finite set of invariants

ι = {ι1, . . . , ιK} , K ∈ N ,

such that ι can be expressed as a function in ι1, . . . , ιK , we call ι reducible. If there exists
no such set of other invariants, ι is said to be irreducible.
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Definition 4.20: Let ι = {ι1, . . . , ιK} be a set of invariants.

(i) If any invariant can be expressed as a polynomial in the members of ι, then ι is
called an integrity basis.

(ii) If any invariant ι can be expressed as a function ι = ϕ(ι1, . . . , ιK), then ι is called a
functional basis.

We call ι minimal, if there exists no other integrity basis with fewer members.

Theorem 4.21: Let ι be an integrity basis. Then ι is a functional basis.

Proof. See [123].

It should be obvious that the size of any integrity basis depends on the argument counts N
and M of tensors and vectors, respectively. Our goal is to find a minimal functional basis
to describe the response function of an elastic or fibre-reinforced material. For an arbitrary
number of tensors and vectors, integrity bases have been calculated in [148, 150, 151]. We
discuss only results relevant for the characterization of cardiac tissue and therefore set
N = 1 and M = 3.

Lemma 4.22: Let ι be an invariant depending on A,a1,a2,a3. Then there exists an
invariant ι depending on four symmetric tensors, such that

ι(A,a1,a2,a3) = ι(A,a1 ⊗ a1,a2 ⊗ a2,a3 ⊗ a3) .

Proof. See the derivation made in [31, section 1].

A relevant simplification of the integrity basis arises if the three vectors are mutually
orthogonal:

Lemma 4.23: Let ι be an integrity basis of A,a1,a2,a3 and let a1,a2,a3 be mutually
orthogonal. Then the members of ι depending on a3 are reducible.

Proof. Since a1,a2,a3 are mutually orthogonal, it holds

a1 ⊗ a1 + a2 ⊗ a2 + a3 ⊗ a3 = I .

Hence a3 ⊗ a3 is a polynomial in a1 ⊗ a1 and a2 ⊗ a2. This property propagates to all
invariants depending on a3 ⊗ a3 in ι.

This observation leaves us with a minimal integrity basis for invariants depending on one
tensor and three mutually orthogonal vectors.
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Theorem 4.24: Let A ∈ R3×3
sym and a1,a2,a3 ∈ R3 be mutually orthogonal. Then a

minimal integrity basis for A,a1,a2,a3 is given by

ιA,a1,a2 =


ι1 := tr(A) , ι2 := 1

2(tr(A)2 − tr(A2)) , ι3 := det(A) ,
ι4,a1 := tr(A(a1 ⊗ a1)) , ι5,a1 := tr(A2(a1 ⊗ a1)) ,
ι4,a2 := tr(A(a2 ⊗ a2)) , ι5,a2 := tr(A2(a2 ⊗ a2)) .

 (4.1)

Proof. See [149, chapter 1].

We will continue to use the notation of the single invariants ι(·) for all integrity basis of a
symmetric tensor and two orthogonal vectors without specifying the tensor in the notation
of ι(·). The integrity basis to which the single invariants belong to should be clear within
the context.
The observations made for general invariants now allow us to specify material behaviour
under orthogonal transformations:

Definition 4.25: Let T̂ : Ω×R3×3 → R3×3 be the response function of an elastic material.
We call the material isotropic, if T̂ is invariant under the full orthogonal group O3×3, i.e.,
for all Q ∈ O3×3 it holds

T̂(x,FQ) = T̂(x,F) , ∀ F ∈ R3×3 . (4.2)

Isotropy is a common assumption in continuum mechanics. It illustrates the property,
that deformations related by transformations of a certain group, i.e. rotations or reflec-
tions, yield the same stress response. For a hyperelastic material, isotropy leads to very
convenient formulations of the stored energy function W .

Lemma 4.26: Let A ∈ R3×3 be invertible. Then there exist α0(ιA), α1(ιA), α2(ιA) ∈ R,
such that

A−1 = α0(ιA)I + α1(ιA)A + α2(ιA)A2 .

Proof. The Cayley-Hamilton theorem states, that for A ∈ R3×3, it holds

−A3 + ι1A2 − ι2A + ι3I = 0 ,

where the representatation with ι1, . . . , ι3 is calculated in [38, chapter 1]. The assertion
then follows by multiplying with A−1 and rearranging the arguments.

Theorem 4.27: The following statements are equivalent:

(i) An elastic material is objective and isotropic, i.e.

T̂(x,QF) = QT̂(x,F)Q> and T̂(x,FQ) = T̂(x,F) ∀ F ∈ R3×3 , Q ∈ O3×3 .
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(ii) There exists a mapping T : Ω× R3×3
sym → R3×3

sym of the form

T(x,B) = β0(ιB)I + β1(ιB)B + β2(ιB)B2 ,

such that T̂(x,F) = T(x,FF>) for all F ∈ R3×3.

(iii) There exists a mapping S̃ : Ω× R3×3
sym → R3×3

sym of the form

S̃(x,C) = γ0(ιC)I + γ1(ιC)C + γ2(ιC)C2 ,

such that Ŝ(x,F) = S̃(x,F>F) for all F ∈ R3×3.

Proof. See [38, section 3.6].

Physiological response functions of cardiac tissue are expressed with additional dependen-
cies on the cardinal directions of the muscle tissue, called fibre directions. Such response
functions are categorized within a certain set of materials:

Definition 4.28: Let f , s, t : Ω→ R3 be mappings, such that f(x), s(x), t(x) are linearly
independent for all x ∈ Ω. We call a material fibre-reinforced, if there exists an elastic
constitutive equation T̂ for Tϕ of the form

Tϕ(t,ϕ(t,x)) = T̂(x,F(t,x), f(x), s(x), t(x)) , ∀ t ∈ [0, T ] , x ∈ Ω .

As with elastic materials, T̂ is called response function of Tϕ.

For the sake of readability, we omit the dependency of x of the directions f , s, t.

Remark 4.29: Let the fibres of a fibre-reinforced material f , s, t be mutually orthogonal.
Then the response function T̂ reduces to

Tϕ(t,ϕ(t,x)) = T̂(x,F(t,x), f(x), s(x)) , ∀ t ∈ [0, T ] , x ∈ Ω .

Evidently, fibre-reinforced materials are not isotropic. The largest subgroup of orthogonal
transformations, for which the response function of fibre-reinforced materials is invariant,
is given, among others, in [31, chapter 1]:

Definition 4.30: Let f , s, t ∈ R3 be mutually orthogonal and R` ∈ O3×3 be the reflection
along the plane normal to ` for ` = f , s, t. We then call

O3×3
orth := {I,Rf ,Rs,Rt,Rf Rs,RsRt,Rf Rt,−I} ⊂ O3×3

the orthotropic symmetry group.

Definition 4.31: We call a fibre-reinforced material with fibre fields f , s, t orthotropic, if
T̂ is invariant under the orthotropic symmetry group, i.e., for all Q ∈ O3×3

orth it holds

T̂(x,FQ,Qf ,Qs) = T̂(x,F, f , s) .
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As we have seen in theorem 4.27, the response functions of isotropic materials can be
stated purely in terms of a symmetric tensor and its invariants. This leads to a useful
application for hyperelastic materials, as we will see below. A similar statement can be
drawn for fibre-reinforced materials, where we use the arguments from [149, chapter 1].
Let f : Ω→ R3 be a fibre field with unit length. For any given motion ϕ with deformation
gradient F, the fibre field on ϕt(Ω) is then given by Ff . However, since ϕt may involve
a stretching or shortening of the body Ω, Ff may not have unit length. We therefore
introduce the normalized fibre field

fϕ := 1
λ

Ff , λ =
√

f ·Cf ,

where we omitted the dependence of t and x for readability.

Theorem 4.32: The following statements are equivalent:

(i) A fibre-reinforced material is objective and orthotropic, i.e. for all F ∈ R3×3 and
Q ∈ O3×3

orth it holds

T̂(x,QF, f , s) = QT̂(x,F, f , s)Q> and T̂(x,FQ,Qf ,Qs) = T̂(x,F, f , s) .

(ii) There exists a mapping T : Ω× R3×3
sym × R3 × R3 → R3×3

sym of the form

T(x,B, f , s) = β0(ιB,f ,s)I + β1(ιB,f ,s)B + β2(ιB,f ,s)B2

+ β3(ιB,f ,s)fϕ ⊗ fϕ + β4(ιB,f ,s)sϕ ⊗ sϕ

+ β5(ιB,f ,s) (fϕ ⊗Bfϕ + Bfϕ ⊗ fϕ) + β6(ιB,f ,s) (sϕ ⊗Bsϕ + Bsϕ ⊗ sϕ) ,

such that T̂(x,F, f , s) = T(x,FF>, f , s) for all F ∈ R3×3.

(iii) There exists a mapping S̃ : Ω× R3×3
sym → R3×3

sym of the form

S̃(x,x,C) = γ0(ιC,f ,s)I + γ1(ιC,f ,s)C + γ2(ιC,f ,s)C2

+ γ3(ιC,f ,s)fϕ ⊗ fϕ + γ4(ιC,f ,s)sϕ ⊗ sϕ

+ γ5(ιC,f ,s) (fϕ ⊗Cfϕ + Cfϕ ⊗ fϕ) + γ6(ιC,f ,s) (sϕ ⊗Csϕ + Csϕ ⊗ sϕ) ,

such that Ŝ(x,F) = S̃(x,F>F) for all F ∈ R3×3.

Proof. The equivalence for (i) and (ii) is shown in [69]. The equivalence of (ii) and (iii)
follows by the same arguments as in the proof of theorem 4.27.

Theorem 4.32 is especially useful, as it provides a convenient expression for the second
Piola-Kirchhoff stress tensor S and does not require any regularity conditions on the
functionals γi, i = 0, . . . , 6.
Still, its main advantage is providing a method for directly calculating S for hyperelastic
materials, where hyperelasticity is similarly defined for fibre-reinforced materials as in
definition 4.7.
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Definition 4.33: A fibre-reinforced material with fibre fields f , s, t and response function
P̂ is called hyperelastic, if there exists a mapping WP, which is differentiable with respect
to its second argument, such that

P(x,F, f , s, t) = DFWP(x,F, f , s, t) , ∀ x ∈ Ω, F ∈ TΩ .

The main result of this section is the relation between the second Piola-Kirchhoff stress
tensor and the stored energy function of a hyperelastic material. For convenience, let

ι(R3×3
sym;R3;R3) := {ιA,a1,a2 is an integrity basis | A ∈ R3×3

sym,a1 ∈ R3,a2 ∈ R3}

be the set of all integrity basis for one symmetric tensor and two vectors.

Theorem 4.34:

(i) A hyperelastic material is objective and isotropic if and only if there exists a mapping
Wι : Ω× ι(R3×3

sym)→ R, such that

WP(x,F) = Wι(x, ιF>F) = Wι(x, ιFF>) , ∀ F ∈ R3×3 .

(ii) A hyperelastic, fibre-reinforced material is objective and orthotropic if and only if
there exists a mapping Wι : Ω× ι(R3×3

sym;R3;R3)→ R, such that

WP(x,F, f , s) = Wι(x, ιF>F,f ,s) = Wι(x, ιFF>,f ,s) , ∀ F ∈ R3×3 .

Proof. The proof for (i) can be found in [38, section 4.4]. The proof of (ii) follows ana-
loguously.

Hyperelastic, orthotropic materials therefore always admit to an invariant based formu-
lation of the stored energy function. Such stored energy functions allow for a convenient
formulation of the first and second Piola-Kirchhoff stress tensors.

Theorem 4.35: Let Wι be the stored energy function of a hyperelastic, orthotropic ma-
terial. If Wι is differentiable at ιF>F,f ,s, then the second Piola-Kirchhoff stress tensor
admits to the formulation

1
2 S̃(x,C) = (W1 + ι1W2 + ι2W3)I− (W2 + ι1W3)C +W3C2

+ W4,f (f ⊗ f) +W5,f (f ⊗Cf + fC⊗ f)

+ W4,s(s⊗ s) +W5,s(s⊗Cs + sC⊗ s) ,

where W(·)(x) := Dι(·)W (x, ιF>F, f , s).
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Proof. Since the stored energy admits to an invariant based description Wι, the material
must be objective and orthotropic (see theorem 4.34). By theorem 4.15, there exists a
stored energy function WS, such that

WP(x,F, f , s) = WS(x,C, f , s) and 1
2 S̃(x,C) = DCWS(x,C, f , s) , C = F>F .

By the chain rule, we then have to calculate

DCWS(x,C, f , s) = DCWι(x, ιC,f ,s) =
∑

ιk∈ιC,f ,s
Dιk

(
Wι(x, ιC,f ,s)

)
DC (ιk) . (4.3)

With the fundamentals shown in [38, chapter 1], it holds

DC (ι1) = I , DC (ι2) = tr(C)I−C = ι1I−C ,

DC (ι4,a) = (a ⊗ a)I , DC (ι5,a) = C(a ⊗ a) + (a ⊗ a)C ,

DC (ι3)= det(C)C−> = det(C)C−1 = C2 − ι1C + ι2I .

Using Wk = DιkWι(ιC,f ,s) and inserting the derivatives into the sum in (4.3), we get the
desired result.

Corollary 4.36: Let Wι be the stored energy function of a hyperelastic, orthotropic mate-
rial. If Wι is differentiable at ιF>F,f ,s, then the first Piola-Kirchhoff stress tensor admits
to the formulation

1
2P̂(x,F) = (W1 + ι1W2 + ι2W3)F− (W2 + ι1W3)FF>F +W3FF>FF>F

+ W4,f F(f ⊗ f) +W5,f
(
(Ff ⊗ Ff)F> + F(fF> ⊗ fF>)

)
+ W4,sF(s⊗ s) +W5,s

(
(Fs⊗ Fs)F> + F(sF> ⊗ sF>)

)
,

Proof. Using the formulation given by theorem 4.35 and P(F) = FS(F>F), we get the
result by direct calculation.

For the remainder of this thesis, we omit the dependence on x for constituive equations
and stored energy functions.

4.3 Incompressibility

Throughout this section, we consider the stored energy function WP : Ω × TΩ → R of a
hyperelastic, objective and isotropic or orthotropic material.

Definition 4.37: We call a motion ϕ : [0, T ]×Ω→ Φ(Ω) volume-preserving, isochoric or
incompressible, if ∫

ϕt(Ω)
1 dV ϕ =

∫
Ω

1 dV ∀ t ∈ [0, T ] .
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The property of being volume-preserving is usually enforced by the type of material which
is considered in the elastic material model. Common examples of incompressible materials
are rubber or water. While the modeling of water would better fit in the category of fluid
dynamics, objects filled with water also behave isochoric. This approximately applies to
muscle tissue, which is comprised mainly of water.

Lemma 4.38: The following statements are equivalent:

(i) ϕ is volume-preserving.

(ii) J(t,x) = 1 for all t ∈ [0, T ], x ∈ Ω.

Proof. For the identity mapping, it holds by lemma 3.18, that∫
ϕt(D)

dV ϕ =
∫

D
J(t,x) dV , t ∈ [0, T ] , D ⊂ Ω .

The equivalence of (i) and (ii) directly follows from this equation.

The stored energy function of incompressible materials does not rely on ι3 = det(F) and
is only defined for deformations with J ≡ 1. Our goal in this section is to formulate stored
energy functions which are well-defined for arbitrary motions, but penalize non-isochoric
behaviour.

Definition 4.39: We call a convex mapping Wvol : R+\{0} → R+ satisfying

Wvol(1) = 0 , lim
J→0

Wvol(J) =∞ , lim
J→∞

Wvol(J) =∞ ,

a volumetric energy function.

The first proposal for the integration of the incompressibiliy restriction into the material
formulation was given by Flory [56]. Let F be the deformation gradient of a motion ϕ.
Consider the multiplicative decompostition

F = FvolF , Fvol = J
1
3 I .

into a purely volumetric and an isochoric part. Then det(Fvol) = J = det(F), leaving
det(F) = 1. We then assume there exists an additive decomposition of the stored energy
function [26] of the form

Wι(ιC,f ,s) = Wiso(ι1, ι2) +Wvol(ι3) ,

with a volumetric energyWvol. Lastly, we enforce isochority of the first part by calculating

Wι(ιC,f ,s) = Wiso(ι1, ι2) +Wvol(ι3) ,

where ι(·) = ι(·)(F
>F) = ι(·)(J−

2
3 C).
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Remark 4.40: All considerations and statements for WP are equally valid for a fibre-
reinforced material with fibre fields f , s, as (near-)incompressibility only affects the defor-
mation gradient of ϕ. However, as suggested by Sansour et al. [140], the Flory split should
only be applied to the full isotropic part, namely

WP(F, f , s) = Wι(ιC,f ,s) = Wiso(ι1, ι2) +Wani(ι4,f , ι5,f , ι4,s, ι5,s) +Wvol(ι3) .

4.4 Passive models for cardiac tissue

At the beginning of this chapter, we introduced constitutive equations to describe the
properties of a continuum body Ω when deformed into a configuration ϕt(Ω). As we
have seen in section 4.1, determining the constitutive equation of a hyperelastic material
coincides with determining its stored energy function.
In the literature, materials are often described merely by their corresponding stored energy
function. We close this chapter by introducing the energy functions commonly used to
characterize cardiac tissue.

4.4.1 Ogden materials

Definition 4.41: LetM,N ∈ N and am > 0, αm ≥ 1 for m = 1, . . . ,M and bn > 0, βn ≥ 1
for n = 1, . . . N . We call a material with the stored energy function

WS(C) =
N∑
n=1

an tr(C)
αn
2 +

M∑
m=1

bm tr(Cof (C))
βm

2 +Wvol(det(C)
1
2 ) ,

where Wvol is a volumetric energy as in definition 4.39, Ogden material. [118]

Remark 4.42: Ogden materials are objective and isotropic, since

WS(C) = Wι(ιC) =
N∑
n=1

an

√
ιαn1 +

M∑
m=1

bm

√
ιβm2 +Wvol(

√
ι3) .

Definition 4.43: We call a material with the stored energy function

Wι(ιC) = aι1 +Wvol(
√
ι3) , a > 0

compressible Neo-Hooke material.

Definition 4.44: We call a material with the stored energy function

Wι(ιC) = aι1 + bι2 +Wvol(
√
ι3) , a, b > 0

compressible Mooney-Rivlin material.

Remark 4.45: Neo-Hooke and Mooney-Rivlin materials with Wvol ≡ 0 are called incom-
pressible.
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4.4.2 Guccione materials

Cardiac muscle cells, similar to skeletal muscle, are long and cylindrical, arranged in fibre
bundles [30, chapter 10]. The contraction of such fibre bundles is mainly one-directional,
and experimental observations have shown that the directions of these bundles has to be
modeled within the stored energy function [60]. Guccione et al. [71] proposed a fibre-
reinforced material model, which is still widely used. The following definition uses the
adapted alignment derived in [43].

Definition 4.46: Let f , s be the fibre fields of an orthotropic material. Let

Q : Ω→ SO(3) , Q(x) =
(
f(x) | s(x) | f(x)× s(x)

)
be the rotation aligning the frame of reference at x with the fibre directions f , s. For a
given deformation gradient F with Green-St. Venant strain E, let further

Ef = QEQ> = 1
2Q(I−C)Q> ∈ R3×3

sym

be the aligned Green-St. Venant strain with entries Eij , i, j = 1, 2, 3. If the material
adheres to the stored energy function

WS(C, f , s) = 1
2CG (exp (Qf (Ef ))− 1) , CG > 0 ,

where Q : R3×3 → R is a mapping of the form

Qf (Ef ) = bf (E2
11)+bs(E2

22+E2
33+E2

23+E2
32)+bf ,s(E2

12+E2
21+E2

13+E2
31) , bf , bs, bf ,s > 0 ,

it is called Guccione material.

The material formulation in definition 4.46 has two drawbacks: It lacks a volumetric energy
needed for modeling near-incompressibility and its description is in fibre coordinates rather
than global coordinates. However, we can reformulate the stored energy function to suit
our needs:

Lemma 4.47: Let WS be the stored energy function of a Guccione material. Then there
exists a stored energy function Wι, such that

WS(C, f , s) = Wι(ιC,f ,s) .

Proof. We follow the idea of [61, Appendix B], where the functional Qf is rewritten to use
the Green-St. Venant strain E in global coordinates: With unit vector basis {e1, e2, e3}
of R3, it holds

Qf (Ef ) = 4c1
(
e>1 Ef e1

)2
+ 4c2 tr

(
e>1 E>f Ef e1

)
+ 4c3 tr

(
E>f Ef

)
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with

c1 = 1
4(bf − 2bf ,s + bs) , c2 = 1

2(bf ,s − bs) , c3 = 1
4bs .

Since E = Q>Ef Q, we define the global functional

Q(E) := 4c1
(
f>Ef

)2
+ 4c2 tr

(
f>E>Ef

)
+ 4c3 tr

(
E>E

)
. (4.4)

Lastly, we use E = 1
2(I−C) to get the depency on the invariants of C. It holds

(
f>Ef

)
= 1

2
(
tr
(
f>f

)
− tr

(
f>Cf

))
= 1

2(1− ι4,f ) ,

tr
(
f>E>Ef

)
= 1

4
(
tr
(
f>f

)
− 2 tr

(
f>Cf

)
+ tr

(
f>C2f

))
= 1

4(1− 2ι4,f + ι5,f )

tr
(
E>f Ef

)
= 1

4(3− 2 tr(C) + tr(C2)) = 1
4
(
2 + (1− ι1)2 − 2ι2

)
.

Subsequently, we obtain the mapping Qι : ι(R3×3
sym;R3;R3)→ R, defined by

Qι(ιC,f ,s) = 2c1(1− ι4,f ) + c2(1− 2ι4,f + ι5,f ) + c3(2 + (1− ι1)2 − 2ι2) ,

satisfying Q(E) = Qι(ιC,f ,s) and

Wι(ιC,f ,s) := 1
2CG(exp(Qι(ιC,f ,s)− 1) = 1

2CG(exp(Qf (Ef ))− 1) = WS(C, f , s) .

Remark 4.48: The stored energy function of a Guccione material does not depend on
the change of volume ι3. From a modeling point of view, the material is considered
incompressible, i.e. it should only be used with the constraint J = 1. As indicated
in remark 4.45, we can define a compressible Guccione material by adding a volumetric
energy Wvol. We therefore consider

Wι(ιC,f ,s) = 1
2C(exp(Qι(ιC,f ,s)− 1) +Wvol(ι3) .

4.4.3 Holzapfel-Ogden Materials

Lemma 4.49: Let A ∈ R3×3
sym and a1,a2,a3 ∈ R3 with a3 being orthogonal to a1 and a2.

Then

ι8,a1,a2 = ι8,a1,a2(A) := (a1 · a2) tr (A(a1 ⊗ a2))

is an invariant.

Proof. See [149, chapter 1].
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Definition 4.50: Consider a material with (arbitrary) fibre fields a1,a2 ∈ R3 and let
a, b, a1, b1, a2, b2, a1,2, b1,2 > 0. We call a material with the stored energy function

Wι(ιC,a1,a2) = a

2b
[
exp

(
b(ι1 − 3)

)
− 1

]
+
∑
i=1,2

ai
2bi

[
exp

(
bi(ι4,ai − 1)2

)
− 1

]
+ a1,2

2b1,2

[
exp

(
b1,2ι

2
8,a1,a2

)
− 1

] (4.5)

Holzapfel-Ogden material. [85]

For an orthotropic material with fibre fields f , s, t, it holds

ι8,f ,s = 0 ,

since f and s are orthogonal. We therefore omit the last term in (4.5) for orthotropic
materials.

Remark 4.51: In most literature, the stored energy functions is written in dependence
of ι8,f ,s := tr (A(f ⊗ s)) for orthotropic materials with fibre fields f , s, t . However, ι8,f ,s is
not an invariant: Let Q ∈ O3×3 be the reflection at the plane spanned by s and t. Then

f = Qf = −f and s = Qs = s ,

since the fibre directions are mutually orthogonal. For the identity matrix I ∈ R3×3
sym, we

get
ι8,f ,s(I) = tr

(
(QIQ>)(−f ⊗ s)

)
= − tr (I(f ⊗ s)) = −ι8,f ,s(I) .

Remark 4.52: As before, Holzapfel-Ogden materials are considered to be incompressible.
We again define the compressible Holzapfel-Ogden material by adding a volumetric energy
Wvol and consider

Wι(ιC,f ,s) = a

2b
[
exp

(
b(ι1 − 3)

)
− 1

]
+
∑
`=f ,s

a`
2b`

[
exp

(
b`(ι4,` − 1)2

)
− 1

]
+Wvol(ι3) .

for orthotropic materials with fibre fiels f , s, t.

4.5 Constitutive restrictions for large strains

Constitutive equations for the Cauchy-Stress tensor should, additionaly to appropriately
modeling material specific behaviour, reflect proper physical restrictions. We conclude this
chapter by formulating two central constraints, which are both mathematically convenient
and physically reasonable [8, chapter 13]:
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(i) Extreme strains should be ensued by extreme stresses.

(ii) An increase in a component of strain should be accompanied by an increase in a
corresponding component in stress.

The mathematical descriptions of these constraints can of course be formulated for ar-
bitrary functions. Since we are only interested in the consequences for our constitutive
equations, we always consider a hyperelastic material with stored energy function WP.
A common measure of strain are the eigenvalues λ(F>F), where very large or very small
eigenvalues correspond to “extreme” strains. Item (i) states the requirement, that WP

approaches ∞ as any eigenvalue λ(F>F) approaches 0 or ∞. A detailed mathematical
description is given in [124]:

Definition 4.53: We say a stored energy function WP follows the growth conditions, if

det(F)→ 0⇒WP(F)→∞ and ‖F‖ → ∞⇒WP(F)→∞ .

While the growth conditions theoretically satisfy the premise of ensuring extreme stresses
under extreme strains, some problems additionally require a sufficiently fast growth of
stresses (see for example [7, 146]).

Definition 4.54: We call a stored energy functionWP coercive, if there exist A > 0, a > 1
and b ∈ R such that

WP(F) ≥ A tr(F)
a
2 + b .

As we will see in chapter 6, coercivity is a necessary assumption to guarantee the existence
of a solution of theorem 3.43 in a weak sense. The definition above is the same as in [8]
for homogeneous materials and, as shown in [124], equivalent to the one given in [21, 38].

Definition 4.55: Let WP be two times continuously differentiable. We say WP satisfies
the Legendre-Hadamard condition, if

D2
FWP(F)[H; H] ≥ 0 for all F ∈ R3×3 , H ∈ R3×3 . (4.6)

Lemma 4.56: Let WP be two times continuously differentiable. Then WP is coercive if
and only if it satisfies the Legendre-Hadamard condition.

Proof. See [67].

For the mathematical desciption of (ii), we follow the arguments given in [8, chapter
13]. The most desirable assumption would be for P to be strictly monotone, which for
hyperelastic materials is equivalent for WP to be strictly convex:
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Definition 4.57: A subset U of a vector space V is called convex, if

{λu + (1− λ)v : λ ∈ [0, 1]} ⊂ U , for all u,v ∈ U .

A function f : U → R defined on a convex subset U ⊂ V is called convex on U , if

f(λu + (1− λ)v) ≤ λf(u) + (1− λ)f(v) , for all u,v ∈ U and λ ∈ [0, 1]

and strictly convex on U , if additionally

f(λu + (1− λ)v) < λf(u) + (1− λ)f(v) , for u 6= v and λ ∈ (0, 1) .

Unfortunately, WP can not be convex for two reasons. First, the definition space of WP

is not convex, hence it is not convex in the sense of definition 4.57. This follows directly
from the following theorem.

Theorem 4.58: Let co(U) be the convex hull of a subset U ⊂ V and define

R3×3
+ := {F ∈ R3×3 : det(F) > 0} .

Then

(i) co(R3×3
+ ) = R3×3 ,

(ii) co
({

(F,Cof (F) ,det(F)) ∈ R3×3 × R3×3 × R+ : F ∈ R3×3
+

})
= R3×3 × R3×3 × R+ .

Proof. See [21].

Since we only allow ϕ to be a 1-regular motion, its deformation gradient is in the non-
convex subspace R3×3

+ , which was outlined in the remarks after definition 3.13. However,
we can extend convexity to functions defined on non-convex sets:

Lemma 4.59: Let U ⊂ V be a subset on a vector space V and f : U → R. Then the
function

f : V → R ∪ {∞} , v 7→

f(v) if v ∈ U ,

∞ if v /∈ U

is convex if and only if U is convex and f is convex.

Proof. See [38, theorem 4.7-9].

We can therefore theoretically define stored energy functionalsWP, such that the extended
functional WP is convex. This leads to the second, and more crucial, reason why this is
not possible within the scope of large strain elasticity. For the sake of readability, we
identify WP with WP in the context of convexity.
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Lemma 4.60: Let WP be convex. Then WP can not obey the growth conditions 4.53.

Proof. See [38, theorem 4.8-1].

To unite the concepts of convexity and the growth conditions, we present the condition of
polyconvexity, first introduced by Ball [21]:

Definition 4.61: Let WP be the stored energy function WP of a hyperelastic material.
We call WP polyconvex, if there exists a convex function

W : R3×3 × R3×3 × R→ R ,

such that
WP(F) = W(F,Cof (F) ,det(F)) for all F ∈ R3×3 .

Lemma 4.62: Let WP satisfy the growth conditions 4.53 and be polyconvex. Then WP is
coercive.

Proof. See [45, theorem 5.3].

Polyconvex materials still allow for existence and uniqueness results in a weak sense, for
the details we again refer to chapter 6. Similar results hold for other assumptions on WP,
such as the weaker quasiconvexity [109] or stronger uniform polyconvexity [147]. We focus
on the concept of polyconvexity, mainly because conventional stored-energy formulations
satisfy definition 4.61 as well as the growth conditions 4.53. As Ball [22] points out, it is
still unclear whether useful classes of quasiconvex stored-energy functions exist.
We finalize this section by giving some short statements on the stored-energy functions
defined in section 4.4.

Theorem 4.63: Ogden materials with the stored energy function as in definition 4.41 are
polyconvex.

Proof. See [38, theorem 4.9-2].

Theorem 4.64: Guccione materials with the stored energy function as in definition 4.46
are not polyconvex.

Proof. Wilber et al. [172] provide necessary conditions for a broader class of stored energy
functions to satisfy the Legendre-Hadamard condition. We will outline the parts relevant
for Guccione materials: Let Q : R3×3

sym → R be defined by

Q(E) :=
3∑

i,j=1
AijEiiEjj +

3∑
i,j=1,i<j

AijE
2
ij .
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Then, if the function E 7→ C exp (Q(E)) satisfies the Legendre-Hadamard condition, it
holds(

A11A12(A13 + A13)
) 1

3 ≥ 1
3 (A11 + A12 + A13) ,

(
A12A22(A23 + A23)

) 1
3 ≥ 1

3 (A12 + A22 + A23) ,(
A1(A23 + A23)A33

) 1
3 ≥ 1

3 (A13 + A23 + A33) ,
(
A11(A12 + A12)A13

) 1
3 ≥ 1

3 (A11 + A12 + A13) ,(
(A12 + A12)A22A23

) 1
3 ≥ 1

3 (A12 + A22 + A23) ,
(
(A13 + A13)A23A33

) 1
3 ≥ 1

3 (A13 + A23 + A33) .

For a Guccione material, we have A12 = A13 = A23 = 0. Therefore the left hand sides
above are always zero, leading to A11 = A22 = A33 = 0. Since A11 = bf > 0, the Guccione
material does not satisfy the equations above. By [172, theorem 5.7] and lemma 4.56, the
Guccione material is not coercive and thus by lemma 4.62 not polyconvex.

Theorem 4.65: Holzapfel materials with the stored energy function

Wι(ιC,f ,s) = a

2b
[
exp

(
b(ι1 − 3)

)
− 1

]
+
∑
`=f ,s

a`
2b`

[
exp

(
b`(ι4,` − 1)2

)
− 1

]
+Wvol(ι3) .

are polyconvex for all F ∈ R3×3
+ with ι4,`(F>F) > 1, ` = f , s.

Proof. We can write the stored energy function of a Holzapfel-Ogden material as

WP(F) = W1(F) +W2(Cof (F)) +W3(det(F)) +W4,f (F) +W4,s(F) ,

where

W1(F) = Wι1(ι1) , W2(Cof (F)) = Wι2(ι2) = 0 , W3(det(F))) = Wvol(ι3) ,

W4,` = Wι4,`(ι4,`) , ` = f , s ,

are the corresponding parts of the additive energy functional. As Schröder et al. [143] point
out, WP is polyconvex if the Wi, i = 1, 2, 3, {4, f}, {4, s}, are convex in their respective
argument and show further that W1,W2,W3 are convex. Holzapfel et al. [86] show that
the W4,`, ` = f , s are convex for ι4,` > 1 and a`, b` > 0.

Remark 4.66: The condition ι4,` > 1 physically resembles an extension along `. In order
to accomodate contractions within our deformations, let

〈·〉 : R→ R+ , x 7→

x , if x > 0

0 , otherwise
.

We use the modified stored energy function [85]

Wι(ιC,f ,s) = a

2b
[
exp

(
b(ι1 − 3)

)
− 1

]
+
∑
`=f ,s

a`
2b`

[
exp

(
b`〈ι4,` − 1〉2

)
− 1

]
+Wvol(ι3) . (4.7)
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Theorem 4.67: The modified Holzapfel constituve model (4.7) is polyconvex.

Proof. Schröder et al. [142] show that the function

a`
2b`

exp
(
b`〈ι4,` − 1〉2

)
, ` = f , s

is convex for a`, b` > 0. By the same argument as in the proof of theorem 4.65, it follows
that the functional (4.7) is polyconvex.
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CHAPTER

FIVE

AN INTEGRATED HUMAN HEART MODEL

In this chapter, we introduce the mathematical models used to describe a
healthy human heart. Beginning with a short outline of the anatomy of the
heart, the three main parts in coupled cardiac modeling are described: The
electrophysiological propagation of an action potential through cardiac tissue,
the following active contraction of the heart and the interaction of the cardiac
cycle with the cardiovascular pressure. We finalize the chapter by summarizing
the components and discuss a coupled cardiac model.

5.1 Physiological foundations

”The heart is a hollow organ that pumps the blood into the arteries” [129]. It is separated
into the right heart, which drives deoxygenated blood into the lungs, and the left heart,
which pumps oxygenated blood through the body. We refer to these two circulations as
the pulmonary and the systemic circulation. Each side of the heart consists of an atrium
and a ventricle, separated by valves.

The cardiac wall is comprised of three layers: The inner layer is called the endocardium
and similar in structure to the inner layer of blood vessels. The outer layer is called
the epicardium. Between these two layers lies the myocardium, which is the thickest of
the three and consists of muscular tissue. The whole heart is contained within a fibrous
sac called the pericardium, containing the motion of the heart and preventing excessive
enlargement [37].
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Figure 5.1: Structure of the heart and the cardiac wall [39, Figure 40.11(a), CC BY 4.0].

Cardiac cells are contractible in a similar fashion to skeletal muscle tissue. In addition,
they are excitable, meaning they enable an electric signal to propagate throughout the
tissue. This signal, called action potential, causes the cells to contract, which in turn
enable the pumping action of the heart.

The action potential is initiated in a cluster of cells named the sinoatrial node (SA node).
These cells are autonomous oscillators and initiate an electric signal about once per second
in a resting human body. The action potential then propagates through the atria only,
which are separated from the ventricles by a septum composed of non-excitable cells.
To reach the ventricles, the electric current has to reach the atrioventricular node (AV
node). From here, it propagates through the bundle of HIS, the bundle branches and
fascicular branches leading to the Purkinje fibres, ending in the endocardial surface of the
ventricles [93].

Through these propagation mechanisms, the action potential follows a predefined path.
The resulting excitation of cardiac cells initiates the contraction and subsequentially the
relaxation of the cardiac muscle in a specific pattern, the cardiac cycle. Starting in a
relaxed stated, the diastole, blood flows into the heart chambers. The cardiac diastole is
followed by the contraction (systole) of the atria, pushing blood into the ventricles and
concluding with the closing of the atrioventricular valves. Atrial diastole begins imme-
diately and the ventricular systole ensues after a short delay, pumping blood out of the
heart.

https://creativecommons.org/licenses/by/4.0/
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Figure 5.2: Flow direction of blood during the phases of a cardiac cycle [39, Figure 40.12,
CC BY 4.0].

The phases of the cardiac cycle can be represented in more detail with a Wiggers dia-
gram [108, 170]. We reiterate the explanation given in [129, section 4.2] and follow the
phases as shown in Figure 5.3, starting with the systole of the left ventricle.

1. Isovolumic contraction: The active contraction of the left ventricle starts. Since
both valves are closed, a fast increase in ventricular pressure can be observed.

2. Ventricular ejection: The pressure inside the ventricle is higher than the aortic
pressure, allowing the aortic valve to open. Since the ventricular systole is not
finished yet, pressure continues to increase. During the end of systole, the ventricular
and aortic pressure align, resulting in the closing of the aortic valve.

3. Isovolumic relaxation: The diastole of the ventricle starts with both valves closed.
The abscence of external cardiovascular pressure results in a decrease in ventricular
pressure.

4. Ventricular filling: With the opening of the mitral valve, blood starts entering the
left ventricle. Combined with the muscle relaxation, we observe an increase in ven-
tricular volume, gradually slowing down until the end of diastasis. The filling ends
with the contraction of the atria, forcing additional blood into the left ventricle
and leading to a short peak of ventricular volume and pressure. As atrial systole is
finished, the mitral valve closes and the next cardiac cycle begins.

https://creativecommons.org/licenses/by/4.0/
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Figure 5.3: Wiggers diagram, showing an idealized cardiac cycle [171, CC BY-SA 2.5].

5.2 Electrophysiological depolarization waves

As outlined in the previous section, the contraction of the heart is mainly driven by the
propagated action potential. In this section, we formalize the concept of electrophysiolog-
ical depolarization and repolarization by first introducing mathematical models of action
potentials of a single cardiac cell, also referred to as cardiomyocyte. We continue by es-
tablishing a macroscopical model of action potential propagation in cardiac tissue and
conclude by introducing reduced models which are later used within the coupled context.

5.2.1 Cardiac cell models

Each cell in the human body has a resting electical potential difference across its cell mem-
brane, the transmembrane voltage. This rest potential ensures the maintenance of the cell
volume, which would otherwise increase without bound due to osmosis effects. Specialized
cells, such as neurons or cardiomyocytes, can manipulate this potential difference to send
electrical signals to neighbouring cells. [70]
Mathematically, this change of transmembrane voltage can be formulated with the equa-
tions of an electrical ciruit model of the form

Cm
∂

∂t
v = −Iion(v,w, c) + Iext(t) , t ∈ (0, T ) . (5.1)

The capacitive current Cm
∂
∂tv with capacitance Cm balances any external applied stimulus

current Iext and the total ionic transmembrane current Iion, depending on the transmem-
brane voltage v, the state variable of transmembrane ion channels w and cellular ion
concentrations c.

https://creativecommons.org/licenses/by-sa/2.5/deed.en
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The first mathematical model to accurately describe cellular action potentials and the
underlying permeability changes was proposed by Hodgkin and Huxley [84]. Though
their model was initially described for nerve action potentials, the formalism passed to
cardiac tissue and enabled a multitude of different transmembrane current models. We
first present this formalism and will comment on some cell models of particular interest.

Definition 5.1: Let v : [0, T ]→ R be the transmembrane voltage in a cardiomyocyte and
N ∈ N. Let w : [0, T ] → Rdw be a vector with dw gating variables wi, i = 1, . . . , dw,
described by the system of ODEs

∂
∂twi(t) = αi

(
v(t)

)(
1− wi(t)

)
− βi

(
v(t)

)
wi(t) , t ∈ (0, T ) ,

wi(t) ∈ [0, 1] , t ∈ [0, T ] ,
wi(0) = w0 ,

αi(v), βi(v) > 0 , v ∈ R .

(5.2)

and c : [0, T ] → Rdc be a vector of intracellular concentration variables cj , j = 1, . . . , dc

following 
∂
∂tcj(t) = − Icj (v(t),w(t))·Acap

Vcj zcjF
, t ∈ (0, T )

wj(0) = c0 ,
(5.3)

with capacitive membrane area Acap, compartment volume Vcj , valence zcj , Faraday con-
stant F and Icj being the sum of ionic currents carrying ion cj . To ease notation, we will
omit the time dependence of all variables for the remainder of this chapter. We call

Iion(v,w, c) =
N∑
n=1

Gn(v, c)
dw∏
i=1

w
pn,i
i (v − vn(c))

+ Istatic(v,w, c) , pn,i ∈ N ,

a general ionic current model with N currents. The current Istatic accounts for time
independent fluxes.

For the sake of readability, we declare the main functions in (5.2) and (5.3) by

Gw(v,w) :=
(
αi
(
v(t)

)(
1− wi

)
− βi

(
v
)
wi
)
i=1,...,dw

,

Gc(v,w, c) :=
(
−
Icj (v,w) ·Acap

VcjzcjF

)
j=1,...,dw

.

Definition 5.2: Let v, w, c be as in definition 5.1. Then the evolution of the transmem-
brane potential of a single myocyte is given by

Cm
∂

∂t
v + Iion(v,w, c) = Iext in (0, T ) , (5.4a)

∂

∂t
w = Gw(t, v,w) in (0, T ) , (5.4b)
∂

∂t
c = Gc(t, v,w, c) in (0, T ) , (5.4c)

v = v0 , w = w0 , c = c0 for t = 0 . (5.4d)
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This general formalism and the corresponding system of equations (5.4) does not portray
the entirety of cellular transmembrane current models. Simple evolution models for trans-
membrane voltage, for example the one presented by FitzHugh [55], set dw = 1, dc = 0
and use an affine function Gw to model a system of the type

∂
∂tv = f(v, w) ,
∂
∂tw = g(v, w) .

These models only offer a basic qualitative transmembrane voltage evolution. However,
they are still widely used due to their low computational cost and the multitude of ex-
isting theory on existence, uniqueness and numerical treatment within the macroscopic
excitation propagation (see section 5.2.2). More involved models, such as the atrial cell
model proposed by Courtemanche et al. [44] and the ventricular cell model introduced by
ten Tusscher et al. [161, 162], do not follow the strict formalism described above. These
models consist of additional ODEs as well as algebraic equations, making the system a
differential algebraic system. We do not go into detail on such systems, but refer to an
extensive discussion on the topic in [79].

5.2.2 Macroscale models of cardiac excitation propagation

Within cardiac tissue, transmembrane voltage does not occur in isolation. The action po-
tentials of myocytes depend on and interact with neighbouring cells, since the intracellular
spaces are connected via low resistance gap junctions. The extracellular and intracellu-
lar spaces are intertwined, but separated by a membrane boundary. This arrangement
permits a flow of ionic currents between cells and allows a macroscopic excitation propa-
gation. [160]
Following the formalism established in [65], we depict cardiac tissue to be bounded by
intra- and extracellular spaces and denote by Ω ⊂ R3 the collection of cardiomyocytes
connecting the two domains. In theory, this allows the view of single myocytes at each
x ∈ Ω. Because of the microscopic lengths of these cells, which are typically around
100µm long and separated by about 250 angstroms [93, section 12.3], this approach is not
feasible in practice. For that matter, we regard each point x ∈ Ω as the homogenization
of several hundreds or thousands of cells. While the detailed mathematical analysis of this
homogenization process as well as further references can be found in [57, section 3.2], we
continue by giving a brief description of the physiological concepts leading to the model
describing excitation propagation.
Abusing notation, we extend the vectors of ion concentrations c and gating variables w
on Ω by assuming

c : [0, T ]× Ω→ Rdc , w : [0, T ]× Ω→ Rdw
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are evaluated in the sense that for each x ∈ Ω, c(·,x),w(·,x) follow the cell models pre-
sented in the previous section. The introduced concepts of electromagnetic field theory
can be viewed in more detail for example in [104] and its connection to cardiac elec-
trophysiology in [156, chapter 2]. We omit the dependencies of t and x for the sake of
readability.

Lemma 5.3: Let D ⊂ R3 and v ∈ C2(D;R) be a scalar field. Then

curl(∇v) = 0 .

Conversely, if curl(E) = 0 for any vector field E ∈ C1(D;R3) with D ⊂ R3 open and
1-connected, then there exists a scalar field v with E = −∇v.

The intra- and extracellular spaces can be modeled as volume conductors. Using the
subscripts “i, e” to denote intra- and extracellular space, respectively, the relation between
electric and magnetic fields is given by the first Maxwell equation

∇× Ei,e + ∂

∂t
Bi,e = 0 in (0, T )× Ω .

In the context of volume conductor theory, the temporal variations in electric and magnetic
fields within cardiac tissue are so slow that their coupling can be neglected. This leaves
us with the quasistationary case of the Maxwell equations, namely

∇×Ei,e = 0 .

Using lemma 5.3, there exists an electric potential vi,e, such that

Ei,e = −∇vi,e .

Definition 5.4: Let f , s, t be fibre fields on Ω and σi
f , σ

i
s, σ

i
t > 0 representing the intra-

cellular conductivities along the respective axis. We call

Di := σi
f f ⊗ f + σi

s s⊗ s + σi
t t⊗ t , in Ω

the intracellular anisotropic conductivity tensor.
Analogously, the extracellular anisotropic conductivity tensor De is defined for conductiv-
ities σe

f , σ
e
s, σ

e
t > 0.

We denote by ji,e : [0, T ] × Ω → R3 the intra- and extracellular current densities flowing
across the membrane surface. According to Ohm’s law, the relation between the current
density and electric field is given by

ji,e = Di,eEi,e = −Di,e∇vi,e . (5.5)
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The current density ji,e follows the law of conservation of charge, which states that the
current leaving D must be equal to the rate of change of charge Q within D. This is
expressed as

I i,e
M := ∂

∂t
Qi,e = −div(ji,e) . (5.6)

We call I i,e
M : [0, T ]×Ω→ R the total transmembrane current, which is determined by three

factors:

• the accumulation of charge ∂
∂tqi,e,

• the ion transmembrane current Iion,

• external applied stimuli I i,e
ext.

The quasistationary case of the Maxwell equations implies that there is no accumulation
in charge at any point. Since the myocyte tissue is modeled as an insulator between the
intra- and extracellular spaces, there may be some accumulation of charge in the separate
domains. However, because of the small thickness of the membranes, each accumulation
of charge in one layer immediately attracts an opposite charge in the other layer, resulting
in

∂

∂t
(qi + qe) = 0 . (5.7)

Definition 5.5: Let vi,e : [0, T ] × Ω → R be the respective potentials on the intra- and
extracellular spaces. We call

v : [0, T ]× Ω→ R , (t,x) 7→ vi(t,x)− ve(t,x)

the transmembrane voltage.

Lastly, we address the issue of different scales: The ion transmembrane current as well
as the membrance capacitance Cm are given per unit area of the cell membrane, while
the potentials vi, ve, charges qi, qe and the external stimuli I i,e

ext are given per unit volume
of the macroscale tissue. To unify these scales, we introduce a geometric parameter χ
representing the scale conversion and get the formula for the total transmembrane current:

I i,e
M = ∂

∂t
qi,e + χIion(v,w, c)− χI i,e

ext . (5.8)

Lemma 5.6: Let q = 1
2(qi − qe) be the transmembrane rate of charge, related to the

transmembrane current by χCm
∂

∂t
v = ∂

∂t
q. Then

div(ji) = −χCm
∂

∂t
v − χIion(v,w, c) + χI i

ext ,

div(je) = χCm
∂

∂t
v + χIion(v,w, c)− χIe

ext .
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Proof. By (5.6), we know that div(ji) = −I i
M. Using (5.7) yields the relation

χCm
∂

∂t
v = ∂

∂t
qi = − ∂

∂t
qe .

Inserting both terms in (5.8) results in

div(ji) = −I i
M = −χCm

∂

∂t
v − χIion(v,w, c) + I i

ext .

Analoguously, the equation for div(je) is derived.

Remark 5.7: In some literature, I i,e
ext may be given in the macroscopic scale and the

preceding χ is dropped. Since Iext may be regarded for a singular cell model as well, we
find it more coherent to present the applied current in the microscale.

Taking into account a suitable model for the cellular ionic transmembrane potential Iion

at each point x ∈ Ω, we can now use (5.5) and summarize the equations of the bidomain
model as follows:

Problem 5.8 (Parabolic-parabolic bidomain equations):
Let I i,e

ext : (0, T )× Ω → R be the applied intra- and extracellular currents per unit volume.
Find the intra- and extracellular potentials vi, ve : (0, T )× Ω→ R satisfying

Cm
∂

∂t
v − div (Di∇vi) = −Iion(v,w, c) + I i

ext in (0, T )× Ω , (5.9a)

−Cm
∂

∂t
v − div (De∇ve) = Iion(v,w, c)− Ie

ext in (0, T )× Ω , (5.9b)
∂

∂t
w = Gw(v,w) in (0, T )× Ω , (5.9c)
∂

∂t
c = Gc(v,w, c) in (0, T )× Ω , (5.9d)

(Di,e∇vi,e) · n = 0 on (0, T )× Γ , (5.9e)

v = v0 , w = w0 , c = c0 on {0} × Ω , (5.9f)

where D is the anisotropic conductivity tensor scaled by 1
χ .

The homogeneous Neumann boundary (5.9e) constitutes that no current passes through
the boundary ∂Ω. This is a reasonable assumption, since cells outside the cardiac tissue Ω
are not excitable and will therefore not conduct any action potential. Since the system (5.9)
depends on v = vi − ve, it can be more convenient to reformulate it to depend on the
transmembrane voltage v and the extracellular potential ve only.
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Lemma 5.9 (Parabolic-elliptic bidomain equations):
The system (5.9) is equivalent to the parabolic-elliptic bidomain equations

Cm
∂

∂t
v − div (Di∇v)− div (Di∇ve) = −Iion(v,w, c) + I i

ext in (0, T )× Ω , (5.10a)

−div (Di∇ve)− div ((Di + De)∇ve) = Iion(v,w, c) + I i
ext + Ie

ext in (0, T )× Ω , (5.10b)
∂

∂t
w = Gw(v,w) in (0, T )× Ω , (5.10c)

∂

∂t
c = Gc(v,w, c) in (0, T )× Ω , (5.10d)

(Di∇(v + ve)) · n = 0 on (0, T )× Γ , (5.10e)

((Di + De)∇ve) · n + (Di∇v) · n = 0 on (0, T )× Γ , (5.10f)

v(0) = v0 , w(0) = w0 , c(0) = c0 in Ω . (5.10g)

Proof. Inserting vi = v + ve in (5.9) yields the result.

Remark 5.10: The solutions vi, ve of both (5.9) and (5.10) are only unique up to an
additive constant ν : [0, T ]→ R due to the given initial conditions [156, theorem 3.5]. One
possibility to obtain a unique solution is by requiring∫

Ω
ve dx = 0 .

This does not affect the usefulness of the bidomain model, since only potential differences
v can be measured in applications [70].

5.2.3 Reduced macroscopic models

The bidomain model introduced in the previous section entails several disadvantages lim-
iting numerical simulations. The homogenized bidomain equations are intended to model
a full heartbeat lasting about 0.8 seconds. However, the ionic currents Iion used at each
point x ∈ Ω simulate concentration shifts and ion channel opening and closing, requiring
a timescale of at least 0.01 ms. Additionally, the bidomain model is ill-conditioned due to
the pure Neumann boundary conditions. [57, chapter 4]
A common simplifying assumption, which we will also employ, is that the ratios of the
entries of the conductivity tensors Di,e are equal. Though this variation is not based on
physiological foundations, the resulting patterns of action potentials v are very similar to
the full bidomain model, baring external stimuli such as defibrillation [40, 125]. The result
is a single parabolic reaction-diffusion equation coupled with the same cellular potential
models.
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Theorem 5.11 (Monodomain equations): Consider the system (5.10). Suppose there
exists a λ ∈ R, such that De = λDi. Then the system (5.10) is equivalent to

Cm
∂

∂t
v − div (D∇v) + Iion(v,w, c) = Iext in (0, T )× Ω , (5.11a)

∂

∂t
w = Gw(v,w) in (0, T )× Ω , (5.11b)
∂

∂t
c = Gc(v,w, c) in (0, T )× Ω , (5.11c)

(D∇v) · n = 0 on (0, T )× Γ , (5.11d)

v(0) = v0 , w(0) = w0 , c(0) = c0 in Ω , (5.11e)

with D = λ
1+λDi and Iext = λIi

ext+Ie
ext

1+λ .

Proof. Inserting De = λDi in (5.10) yields the result.

5.3 Constitutive elasticity models

Modeling the contraction of the human heart poses some distinct challenges regarding
the equations of elasticity (3.4). The types of stored energy functions used in this con-
text have already been discussed in section 4.4. We complete the system of equations by
detailing the specific boundary conditions of cardiac functions, incorporating the contrac-
tion of carciomyocytes resulting from the electrophysiological transmembrane voltage and
introducing a systematic approach for choosing initial conditions.

5.3.1 Boundary conditions in cardiac elasticity

Consider the domain of the heart Ω and its boundary Γ = ∂Ω. We denote by ΓD ⊂ Γ the
Dirichlet boundary, i.e., it holds

u(t,x) = u0(t,x) on (0, T )× ΓD .

The fixation of some part of Ω is necessary to ensure the stability of the system in a
mechanical sense. We continue with the boundary condition corresponding to the cardio-
vascular pressure pushing onto the endocardial surface.

Definition 5.12: Let ΓLV,ΓRV,ΓLA,ΓRA be the endocardial surface of the left and right
ventricle and atria, respectively, and let pC : [0, T ]→ R+ be the pressure inside the cham-
bers C ∈ {LV,RV,LA,RA}. The endocardial surface pressure is described by the boundary
condition

P(F)n = −pC(t) Cof (F) n on (0, T )× ΓC for C ∈ {LV,RV,LA,RA} .
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We follow the general convention that a positive pressure pC corresponds to a push on the
respective surface. Since the normal n points outwards, i.e., it points inside the cardiac
chamber, the negative sign is included to ensure the correct behaviour.

Remark 5.13: To increase readability, we combine the endocardial surfaces by setting

ΓN := ΓLV ∪ ΓRV ∪ ΓLA ∪ ΓRA

and defining p : [0, T ]× ΓN → R by

p(t,x) = pC(t) , if x ∈ ΓC for C ∈ {LV,RV,LA,RA} .

The specifics of the function p are discussed in section 5.4. However, as we have seen in
Figure 5.3, it can be roughly described by a positive base value which rapidly increases and
then decreases to its initial value. This boundary condition on its own would result in the
inflation and subsequential deflation of the heart chambers. Again refering to Figure 5.3,
a counterpart is needed for the chamber volumes to decrease simultaneously.
While the decrease in volume is mostly due to the active contraction depicted in the
following section, the movement of the epicardium during the cardiac cycle is additionally
constrained by the pericardium, a serous membrane divided into visceral and parietal
pericardium. The inner layer, the visceral pericardium, is connected to the epicardium of
the heart tissue. The parietal pericardium is reinforced by an outer layer of dense, irregular
connected collagen fibres. The small gap between these two layers is called the pericardial
cavity. It is filled with pericardial fluid, which acts as a lubricant and negates friction
between the moving visceral and the mostly static parietal pericardium [107, chapter 21].
During diastole, the pericardium mostly acts as a barrier to prevent extensive expansions
of the heart chamber. During systole, the contracting chambers mostly stay adherent to
the pericardium. The behaviour of the epicardium along the parietal pericardium can be
better described as a sliding motion. [121].
A physiologically accurate method of modeling this boundary condition was implemented
by Fritz et al. [58]. Here, a frictionless contact boundary condition using a bidirectional
penalty term was implemented. The contact boundary was generated by adding the phys-
ical pericardium to the domain Ω. While the outer layer of this additional volumetric
domain is fixated, the inner layer acts as a counterpart for the epicardial boundary condi-
tion. However, this method is computationally expensive as it requires larger geometries
due to the added pericardium and costly evaluations of the sliding boundary condition.
Therefore, we adopt the model of the pericardial boundary presented by Pfaller et al. [121].
Here, the epicardial surface is modeled as a spring and a dashpot in parallel at each point.
Mathematically, we write this as follows:
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Definition 5.14: Let ϕ ∈ D be a motion with displacement u and velocity v. For an
outwards-facing normal n ∈ S1, let

qP(u,v,n) := kPu · n + cPv · n .

The pericardial surface traction is described by the boundary condition

P(F)n = qP(u,v,n)n on (0, T )× ΓP ,

with kP, cP ≥ 0 and ΓP describes the boundary connected to the pericardium.

Remark 5.15: We can reformulate the traction function qP within the boundary condition
to be independent of n: Let

qP(u,v) := kPu + cPv .

Then qP(u,v,n) n = (n⊗ n) qP(u,v).

For large values of kP and cP, the function

q(u,v,n) := (n⊗ n)qP(u,v)

acts as a kind of penalty for large displacements and velocities along the outer normal
direction n.

Remark 5.16: Dede et al. [64] supplement this approach by adding a tangential part to
q, allowing for a more detailed model description. The traction function then takes the
form

q(u,v,n) = (n⊗ n) (k⊥u + c⊥v) + (I− (n⊗ n))
(
k‖u + c‖v

)
.

We will omit this term, as within their experiments, the authors set k‖ = c‖ = 0 except
at a quasi-fixated boundary.

The boundaries corresponding to the respective boundary condition are highlighted in
Figure 5.4. Summarizing the conditions used in our cardiac elasticity model yields the
following set of equations:

Problem 5.17 (Strong form of cardiac elasticity): Let Ω be a bounded domain. Find
u : [0, T ]× Ω→ Φ(Ω) satisfying

ρ
∂2

∂t2
u− div (P(F)) = 0 in (0, T )× Ω , (5.12a)

u = 0 on (0, T )× ΓD , (5.12b)

P(F)n = −p(t) Cof (F) n on (0, T )× ΓN , (5.12c)

P(F)n = q(u, ∂
∂t

u,n) on (0, T )× ΓP , (5.12d)

u = u0 , v = 0 , a = 0 on {0} × Ω , (5.12e)
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Figure 5.4: Location of boundary values on a left ventricle: Dirichlet ΓD (blue), pressure
ΓN (yellow) and traction ΓP (red).

The system (5.12) is complemented with suitable initial conditions. Since we want t = 0
to be the beginning of a cardiac cycle, we assume the heart to be in a resting state and
therefore set v(0) = a(0) = 0. Additionally, we want initial displacement u0 to be zero as
well. This in turn would require pC(0) = 0 for C ∈ {LV,RV,LA,RA}. Because the latter
assumption is not applicable in physiological problems [108], we will not enforce u0 = 0.
Suitable methods of modifying (5.12) to obtain u0 = 0 are presented in section 5.3.4.

5.3.2 Cellular tension development

Muscle tissue can be categorized into three different types: Skeletal, cardiac and smooth
muscle tissue. Smooth muscle can be found surrounding blood vessels and vital organs,
for example. This type of muscle tissue contracts and relaxes on its own in the sense
that their activity is often not triggered by neural activatons or at least it can not be
controlled arbitrarily. Skeletal muscle tissue is found in large muscle groups commonly
known only as “muscles”. Their activity is triggered actively by the nervous system and
can be managed voluntarily. Cardiac muscle tissue is similar to skeletal muscle in structure
and the contraction of both relies on an external impulse. [107]
As we have described in the previous section, such an impulse triggers an action potential
and, subsequentially, enables a shift in ion concentrations. The process of force genera-
tion and the following contraction of single muscle cells is explained by sliding filament
theory [89]. The muscle contraction occurs as a result of the relative sliding between thin
(actin) and thick (myosin) filaments. This sliding is caused by cycling cross-bridges, re-
acting to shifts in ion concentrations within the cell. For a more in-depth overview, we
refer to [112].
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Cardiomyocytes are thin, cable-like muscle cells [93, section 12.3] and contract mainly
along their longitudinal direction f . Our goal is to formulate a mathematical model de-
scribing the longitudinal stretch γf of these cells. As depicted in [93, chapter 15], the active
tension fk resulting in a muscle contraction is generated in small contractile units called
sarcomeres. Let w, c be the vectors of gating variables and ion concentrations introduced
in section 5.2. Tension development models are usually of the form

∂

∂t
k = Gk(w, c,k, `ϕ, ∂

∂t
`ϕ) , (5.13)

where k : [0, T ]→ Rdk is the vector of tension model variables and `ϕ is the current length
of the myocyte [77, 100, 112, 167].

Remark 5.18: Simpler tension evolution models only rely on the calcium concentration,
represented as one entry of c. More involved models, such as the one presented by Land et
al. [100], require additional coupling between c, w and k [63, section 2.4.1]. We therefore
keep the more intricate description for the sake of completeness.

Definition 5.19: Let ` be the initial length of a cardiomyocyte with longitudinal direction
f . Then, given its current length `ϕ, we call

γf := `ϕ − `
`

the stretch along f .

Remark 5.20: The stretch is by definition dimensionless and negative for cellular con-
tractions. In physiological setups, we expect γf ∈ [−0.3, 0] [135, 136].

We extend equation (5.13) by assuming the macroscopic contraction γf obeys a general
differential equation of the type [137]

∂

∂t
γf = Gγf (c,k, γf ,

∂

∂t
γf ,F) ,

Note that the stretch is also affected by the current state of deformation, represented by
the dependence on F. For a specific formulation of Gγf , we follow the arguments presented
by Rossi et al. [135]. Using the results of [152], we set

Gγf (c,k, γf ,F) = 1
µc2

Ca

α fk RFL(ι4,f (F>F)) +
5∑
j=1

(−1)j(j + 1)(j + 2)ι4,f (F>F)γjf

 ,

(5.14a)

where fk is the active tension generated by contractile force generated by the sarcomere
and RFL is the force length relationship, experimentally fitted by Strobeck et al. [153],
given by

RFL(λ) := δ`ϕ∈[lmin,lmax]

c0
2 +

3∑
j=1

(
cj sin(j

√
λl0) + dj cos(j

√
λl0)

) , (5.14b)
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where l0 is the initial length of the cell and lmin, lmax are its minimal and maximum possible
length. The symbol δ(·) represents the Kronecker-operator, ensuring no additional force
is generated if the myocyte cant contract or elongate further. The active tension fk is a
component of the tension vector k. This leaves us with defining a model for calculating
the components of k : [0, T ]→ Rdk containing the variables of the specific cellular tension
model. Some possible models were already cited above. To ease the analysis of the coupled
model, we keep the simple phenomenological model from [135]. We set dk = 1, leading k
to only consist of the contractile force fk, which will be set by the equation

Gk(w, c,k, γf ,
∂

∂t
γf ) = fk(c) := (cCa(t)− cCa(0))2 , t ∈ [0, T ] . (5.15)

Remark 5.21: Note that in contrast to the general tension development model (5.13)
presented at the beginning of this section, the equation for fk is not an ordinary differen-
tial equation. More involved electrophysiological activation models [44, 161] and tension
development models [100] similarly use algebraic updates for some entries of c,w or k,
respectively. This formalism is known as differential algebraic equation [79] (DAE). For
the time being, we abuse the notation of Gk to express both differential and algebraic
equations used to calculate k.

To conclude the subject of cellular tension development, we summarize the system of
equations calculating the microscopic fibre stretch.

Problem 5.22 (Stretch deveolpment): Let F : [0, T ] → R3×3 be the macroscopic de-
formation tensor acting on a single cardiomyocyte and let c : [0, T ] → Rdc ,w : [0, T ] →
Rdw be the ion concentration and gating variables over time. Find γf : [0, T ] → R and
k : [0, T ]→ Rdk satisfying

∂

∂t
γf = Gγf (c,k, γf ,

∂

∂t
γf ,F) in (0, T ) , (5.16a)

∂

∂t
k = Gk(w, c,k, γf ,

∂

∂t
γf ) in (0, T ) , (5.16b)

k(0) = k0 , γf (0) = 0 , (5.16c)

where Gγf and Gk are defined as in (5.14) and (5.15), respectively.

The extension of the stretch development model to the domain Ω can be done canonically
as was done in section 5.2 by assuming independent stretch developments at each x ∈ Ω.
We remark an alternative approach presented by Dede et al. [64]:
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Problem 5.23 (Regularized stretch deveolpment): Let F : [0, T ]×Ω→ R3×3 be the
deformation tensor of a motion ϕ and let c : [0, T ] × Ω → Rdc ,w : [0, T ] × Ω → Rdw be
the ion concentration and gating variables, resepectively. Find γf : [0, T ] × Ω → R and
k : [0, T ]× Ω→ Rdk satisfying

∂

∂t
γf −

ε

µc2
Ca

∆γf = Gγf (c,k, γf ,
∂

∂t
γf ,F) in (0, T )× Ω , (5.17a)

∂

∂t
k = Gk(w, c,k, γf ,

∂

∂t
γf ) in (0, T )× Ω , (5.17b)

∇γf · n = 0 on (0, T )× Γ , (5.17c)

k = k0 , γf = 0 on {0} × Ω . (5.17d)

The authors clarify that this approach is not motivated by physical considerations. How-
ever, it may be interpreted as the result of some homogenization process on Ω. Addition-
ally, the solutions γf of (5.17) have higher regularity, assisting the numerical approximation
of this system as well as the coupled elasticity problem.

5.3.3 The active strain decomposition

In the previous section, we illustrated the development of microscopic tension k and stretch
development γf . On the macroscopic level, these lead to an active deformation, which has
to be incorporated into (5.12). We highlight the two common approaches used in cardiac
modeling, the active stress and the active strain approach, focussing on the latter as it
will be used in the simulations in chapter 7.
Within the active stress approach [66, 113, 139], the active shortening of fibres in the
material model, the first Piola-Kirchhoff tensor is additively decomposed by

P = PP + PA (5.18)

into a passive part PP = DFWP(F), corresponding to the derivative of the stored energy
function, and an active part

PA = TA(k)Ff ⊗ f .

Remark 5.24: We may interpret PA as the derivative of some functional WA, as we
will see in lemma 6.43. Bonet et al. [61] show that WA satisfies the Legendre-Hadamard
condition (4.6). Since WA does not depend on det(F) and is linear in F, we see that
WP+WA is coercive and satisfies the growth conditions 4.53 if and only ifWP is polyconvex
and satisfies the growth conditions.
This observation is not true for arbitrary models of TA. As Pathmanathan et al. [119]
have observed, WP + WA may not be coercive if TA depends on the microscopic stretch
γf or the macroscopic equivalent ι4,f (F).
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As an alternative to the additive decomposition (5.18), the active strain approach consid-
ers a multiplicative split of the deformation gradient. First introduced by Kondaurov and
Nikitin [95] for muscle tissue, the approach follows the principle of intermediate configu-
rations used in elastoplasticity [145, chapter 9]. Consider the decomposition

F = FEFA , (5.19)

where FE is the purely elastic part of the deformation and FA consists of the macroscopic
active deformation generated by γf . This introduces an intermediate configuration Ω̂
as depicted in Figure 5.5. The deformation FA represents the plastic part of F, e.g.
irreversible deformations of Ω. Concurrently, Ω̂ is assumed to be stress-free. Removing
external forces from ϕ(Ω) would lead to the elastic relaxation F−1

E , again resulting in Ω̂.

Ω

Ω̂

ϕ (Ω)

FA
FE

F

Figure 5.5: Intermediate configuration

For hyperelastic materials, we then choose to only insert the elastic part of the deformation
FE as argument. With the general form of incompressible stored energy functions WP

detailed in section 4.3, we calculate

WP(F) = Wiso(FE) +Wvol(det(FE)) = Wiso(FF−1
A ) +Wvol(det(FF−1

A )) . (5.20)

Remark 5.25: It is customary within the theory of plasticity and the modeling of cardiac
elasticity to assume that the plastic flow is isochoric, i.e., det(FA) = 1. This reduces (5.20)
to

WP(F) = Wiso(FF−1
A ) +Wvol(det(F)) .

For hyperelastic materials, the active strain approach alters the form of the first Piola-
Kirchhoff tensor as well. We will use the nomenclature P(F,FA) := P(FF−1

A ) and similar
designations for P̃(C),P(E) and the different variations of S. Following the chain rule,
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the first Piola-Kirchhoff tensor is then given by

P(F,FA) = P(FF−1
A ) = DFWP(FF−1

A ) = DFEWP(FE)F−1
A .

Active deformation models for FA within cardiac elasticity typically construct a simple
transversly isotropic tensor. A popular model is given by Rossi et al. [136]:

Definition 5.26: Let f , s, t be fibre fields on Ω and γf , γs, γt be the cellular stretches along
these directions. We call

FA := I + γf f ⊗ f + γss⊗ s + γtt⊗ t

the active deformation gradient of the mircostructural contraction.

Since we insert FE = FF−1
A into the stored energy function, we use the analytical form of

the inverse of FA as presented in [136].

Lemma 5.27: Let FA be the active deformation gradient. Then

F−1
A = I− γf

1 + γf
f ⊗ f − γs

1 + γs
s⊗ s− γt

1 + γt
t⊗ t .

Proof. For `,k ∈ {f , s, t}, it holds

(`⊗ k) (`⊗ k) = `k>`k> =

0 , ` 6= k ,

`⊗ k , ` = k .

Then, a simple calculation shows

FAF−1
A = FA −

∑
`∈{f ,s,t}

(
γ`

1 + γ`
+ γ2

`

1 + γ`

)
`⊗ `

= FA −
∑

`∈{f ,s,t}

((1 + γ`)γ`
1 + γ`

)
`⊗ `

= I .

Remark 5.28: As Rossi et al. [135, 136] point out, the values of γf , γs and γt are not inde-
pendent. Experimental observations [130] indicate γf ≈ 4γt. We set γs = 1

(1−γf )(1−γt) − 1
to ensure det(FA) = 1.

Remark 5.29: As discussed in [129, section 6.2], the stretch along the sheet-normal di-
rection t is more accurately described by

γt = kt

( 1√
1 + γf

− 1
)
, kt > 0 .

Barbarotta et al. [23] proposed a transmurally heterogeneous model, such that kt : Ω→ R+

becomes dependent on the position within the myocardial wall.
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Combining the active strain model with the active tension development presented in sec-
tion 5.3.2 and the boundary conditions discussed in section 5.3.1, we can now state the
full system of cardiac elasticity:

Problem 5.30: Let Ω be a bounded domain and let c : [0, T ] × Ω → Rdc be the function
of ion concentrations over time. Find (γf ,k,u), such that

∂

∂t
γf = Gγf (c,k, γf ,

∂

∂t
γf ,F) in (0, T )× Ω , (5.21a)

∂

∂t
k = Gk(w, c,k, γf ,

∂

∂t
γf ) in (0, T )× Ω , (5.21b)

k = k0 , γf = 0 on {0} × Ω , (5.21c)

ρ
∂2

∂t2
u− div

(
P(FF−1

A )
)

= 0 in {0} × Ω , (5.21d)

u = 0 on {0} × ΓD , (5.21e)

P(FF−1
A )n = −p(t) Cof (F) n on {0} × ΓN , (5.21f)

P(FF−1
A )n = q(u, ∂

∂t
u,n) on {0} × ΓP , (5.21g)

u = u0 , v = 0 , a = 0 , γf = 0 on {0} × Ω . (5.21h)

where FA = I + γf f ⊗ f + γss⊗ s + γtt⊗ t.

5.3.4 Prestress

A common problem in cardiac modeling including intra-cavital pressure is that the ref-
erence domain Ω does not correspond to a stress-free configuration. This is because the
endocardial pressure approximately ranges from 5mmHg to 120mmHg during a full car-
diac cycle in healthy individuals [108], and thus never equals zero. Inserting a pressure
p(0) > 0 in equations (5.12) or (5.21) yields an initial displacement u(0) 6= 0. To be able
to match patient-specific geometries acquired by medical imaging with the corresponding
cardiac pressure, two methods have been proposed in literature.
During the process of pressure preloading [32], the static variant of the cardiac elasticity
problem (5.12) is solved at time step 0, i.e. v = 0 and a = 0. The solution u(0) is
then used as initial value for the simulation of the cardiac cycle. The difficulty with this
approach is that the stress-free reference domain Ω does not correspond with the initial
geometry given and may be unphysiological [96, section 4.2.1].
An alternative solution is pressure prestressing [87], where an initial internal stress P0 is
computed such that P̃(F) = P(F) + P0 = 0 for u = 0. This approach is presented in
more detail in [64, 157]. We define the static mechanical problem
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Problem 5.31 (Prestressed cardiac elasticity): Find u0 : Ω→ Φ(Ω) with F0 = Du0,
such that

−div (P(F0, I)) = 0 in Ω , (5.22a)

P(F0)n = −p(0) Cof (F0) n on ΓN , (5.22b)

P(F0)n = q(u0,
∂

∂t
u0,n) on ΓP . (5.22c)

The solution of problem 5.31 may be obtained by similar methods to the ones solving the
dynamic system, which are presented in section 6.4. This leaves us with the following
modified system of cardiac elasticity (5.21):

Lemma 5.32: Let u0 : Ω→ Φ(Ω) be the solution of problem 5.31 and set P0 := P(F0, I).
Then u = 0 solves the prestressed equations of elasticity

ρ
∂2

∂t2
u− div (P(F,FA)) = div (P0) in (0, T )× Ω , (5.23a)

u = 0 on (0, T )× ΓD , (5.23b)

P(F,FA)n = −p(t) Cof (F) n on (0, T )× ΓN , (5.23c)

P(F,FA)n = q(u, ∂
∂t

u,n) on (0, T )× ΓP , (5.23d)

u = 0 , v = 0 , a = 0 , γf = 0 on {0} × Ω , (5.23e)

where P̃(F,FA) = P(F,FA) + P0.

5.4 The circulatory system

The contraction of a heart chamber increases the pressure inside it, forcing blood to flow
out of that chamber and into the next chamber or the circulatory system, respectively.
Conversely, blood flows into the heart chamber during its relaxation phase.
As we have seen in section 5.3.1, the pressure on the endocardial wall is a boundary
condition for the equations of motion. In physiological models, this pressure cannot be
estimated in isolation, but requires the modeling of the circulatory system as well. The
most accurate model would be a fluid-structure-interaction (FSI) problem, where a set of
Navier-Stokes equations is solved on the inside of the heart chambers, calculating blood
displacement and pressure simultaneously. Such FSI models are usually not feasible to
implement for a full heart mesh due to their computational complexity [141, 155]. This
problem is aggravated by the rapid movement of the heart valves at certain pressure
thresholds [46].
Within this work, we are not concerned with the detailed distribution of blood flow and
pressure within the cardiac chambers. Alternative ODE-based surrogate models have been
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Figure 5.6: Schematic view of the circulatory system [39, Figure 40.10, CC BY 4.0].

proposed in multiple variations and for many types of cardiac simulations [14, 58, 63, 82].
Such models typically describe the circulatory system as a closed electrical circuit. We
will describe two such models, one for a single ventricle [64] and one for a full heart [63].
In both cases, pressure and volume of each cavity are intrinsically connected.

5.4.1 Circulatory system for a single ventricle

The typical pressure and volume development within a heart ventricle was schematically
shown in the Wiggers diagram (see Figure 5.3). Simple mathematical models of the four
phases described in section 5.1 are discussed in [50, 163]. We will reiterate the summary
of Dede et al. [64, section 4.1] of the models assigned to their respective phase.
The cavity pressure is not a function known beforehand, but is determined depending on
the pressure in and current volume of the ventricle. We will go into more detail on the
time discretization in chapter 6. For now, assume p is known at a time tn, n ∈ N and the
corresponding volume of the cavity is Vn. The goal is to find the pressure at a suitable
time tn+1 > tn.

1. Contraction: During this phase, the ventricular volume stays mostly constant while
the pressure increases rapidly. The pressure p(tn+1) is iteratively calculated by

p(tn+1) = p(tn) + Vn+1 − Vn
Cp

, Cp � 0 . (5.24)

until |Vn+1−Vn|
|Vn| < ε, where Cp is a constant parameter, called compliance, for the

volume change. The phase ends if p reaches a peak value of 95mmHg.

https://creativecommons.org/licenses/by/4.0/


5.4. The circulatory system 75

2. Ejection: The rate of change of p is determined by solving the ODE corresponding
to the Windkessel model [168, 169]

∂

∂t
p(t) = 1

C

(
−p(t)

R
− ∂

∂t
V

)
in (tn, tn+1) , (5.25a)

p(tn) = pn , (5.25b)

where C,R > 0 represent the capacitance and compliance resistance in the corre-
spondig electric circuit, see Figure 5.7 .

3. Isovolumic relaxation: Similar to the contraction phase, the ventricular volume does
not change while the pressure drops within a short timeframe. The pressure update
is again modeled with (5.24). The phase ends if p reaches a minimum value of
5mmHg.

4. Ventricular filling: Linearly increase the pressure so that the initial value p(0) is
again reached at the end of the cardiac cycle.

RC

Figure 5.7: Two-element Windkessel model (see [169])

Remark 5.33: As Dede et al. [64] point out, the modeling of ventricular filling does not
fully coincide with physiological behaviour. To correctly model this phase, a simulation
of the atrium would be necessary. Aligning with the arguments of the authors, we drop
the physiological correctness for the upside of having a pressure model applicable to single
ventricle models.

5.4.2 Circulatory system for a full heart

In contrast to the single ventricle, we have to model the interaction of pressures and vol-
umes between the four cardiac chambers when simulating a full heart. These interactions
consist of the behaviour of the valves and the response of the circulatory system connect-
ing the left and right ventricle to the right and left atrium, respectively. In the following,
we present the closed-loop circulatory system as introduced by Gerach et al. [63].
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Similar to the Windkessel model (5.25), the whole circulatory system is reinterpreted as
a series of transmissions as shown in Figure 5.8. The system consists of algebraic and
ordinary differential equations solving for internal volumes, pressures and flows.

Definition 5.34: Let p : [0, T ] → R4 be the development of the pressure inside the four
cardiac chambers given by

p =
(
pLV pRV pLA pRA

)>
.

The equations for a closed-loop circulatory model are denoted in the variables of circulatory
volumes

V : [0, T ]→ R8 , t 7→
(
VLV, VRV, VLA, VRA, VSysVen, VSysArt, VPulVen, VPulArt

)>
and circulatory flows

z : [0, T ]→ R8 , t 7→
(
QSysArt, QSysPer, QSysVen, QRav, QPulArt, QPulPer, QPulVen, QLav

)>
and are given by the equations

∂tV = GV(p,V, z) in (0, T ) , (5.26a)

0 = Gz(p,V, z) in (0, T ) . (5.26b)

The evolution of v in (5.26a) is determined by

∂tVLV = QLav −QSysArt , ∂tVSysVen = QSysPer −QSysVen ,

∂tVRV = QRav −QPulArt , ∂tVSysArt = QSysArt −QSysPer ,

∂tVLA = QPulVen −QLav , ∂tVPulVen = QPulPer −QPulVen ,

∂tVRA = QSysVen −QRav , ∂tVPulArt = QPulArt −QPulPer ,

while the entries of Gz(p,V, z) in (5.26b) are given by

QSysArt −max

 pLV −
VSysArt
CSysArt

RSysArtValve +RSysArt
, 0

 , QPulArt −max

 pRV − VPulArt
CPulArt

RPulArtValve +RPulArt
, 0

 ,

QSysPer −
VSysArt
CSysArt

− VSysVen
CSysVen

RSysPer
, QPulPer −

VPulArt
CPulArt

− VPulVen
CPulVen

RPulPer
,

QSysVen −
VSysVen
CSysVen

− pRA

RSysVen
, QPulVen −

VPulVen
CPulVen

− pLA

RPulVen
,

QRav −max
{
pRA − pRV
RRavValve

, 0
}
, QLav −max

{
pLA − pLV
RLavValve

, 0
}
.
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Remark 5.35: The variables VLV, VRV, VLA, VRA, VSysVen, VSysArt, VPulVen, VPulArt corre-
spond to the volumes of the four heart chambers and artificial volumes in the systemic and
pulmonary arteries and veins, respectively. The entries of z represent flow rates between
these components. A derivation of the analogy between the electrical circuit model (see
Figure 5.8) and the circulatory system is given in [164], where a numerical analysis of the
differential-algebraic systems is performed.

The system of equations (5.26) consists of ordinary differential equations and algebraic
equations. Such systems are appropriately called systems of differential-algebraic equa-
tions (DAEs). We do not go into detail about the mathematical theory of DAEs in this
work, again referring to [79].

RPulVen pLA
RLavValvepLV

RSysArtValveRSysArt

RSysPer

RSysVen
pRARRavValve

pRVRPulArtValve

pPulArt

RPulPer

pPulVen

CPulVen VLA VLV CSysArt

CPulArt VRV VRA

pSysVen

CSysVen

Figure 5.8: Schematic of the 4-chamber circulatory system model with the pressure values
of p and z, resistances R, fixed compliances C and variable compliances VC with C ∈
{LV, RV, LA, RA}. [63, see Figure 2, CC BY 4.0]

Remark 5.36: From the entries of Gz in (5.26b), we see that GV in (5.26a) is continuous,
but not C1. Typical error estimates for numerical methods of higher order cannot be
applied, since they require the right-hand side to be differentiable up to a certain degree
as well [78].

5.5 Electro-mechanical coupling mechanisms

In modeling sections 5.2 and 5.3, we have seen that the deformation of the human heart
follows the equations of elasticity, where in addition to external boundary conditions, an
internal active contraction is introduced as a consequence of the electrical excitation of the
cardiac tissue. We conclude this chapter by combining the monodomain equations (5.11)
with cardiac elasticity (5.23).

https://creativecommons.org/licenses/by/4.0/
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Definition 5.37: Let Ω ⊂ R3 be the domain of a full heart. We call ΩEP ⊂ Ω the excitable
tissue of Ω.

It is sufficient to define the transmembrane voltage v as well as the vector-valued functions
containing the cellmodel variables only on ΩEP. Since Ω\ΩEP is not excitable, no electrical
activation and no entailing active contraction of myofibrills take place.

Remark 5.38: Instead of restricting v to only be defined on ΩEP, we could alternatively
define

v : Ω→ R , v(t,x) :=

v(t,x) , x ∈ ΩEP ,

0 , x ∈ Ω\ΩEP .

We avoid this approach due to the increased size of the discretized system presented in
the following chapter.

Recalling definition 5.4, the conductivity tensor D depends on the fibre fields f , s, t. During
the deformation of Ω, the orientation of these fibre fields change. More precisely, the
monodomain equation has to be solved in the spatial configuration ϕ(Ω), i.e.,

Cm
dvϕ
dt − divϕ (Dϕ∇ϕvϕ) = −Iion + Iext in (0, T )×ϕ(ΩEP) , (5.27)

where Dϕ is the conductivity tensor along the fibre fields fϕ, sϕ, tϕ.
In the equation above, only Dϕ is actually depending on ϕ.

Lemma 5.39: The material formulation of the monodomain equation (5.27) is equivalent
to

Cm
∂

∂t
(vJ)− div

(
JF−1DF−>∇v

)
= J(−Iion + Iext) in (0, T )× ΩEP . (5.28)

Proof. This equivalence is derived in [4, section 2]. We use the tools from chapter 3 to
highlight the necessary steps. Without loss of generality, set Cm = 1. Let cϕ := Dϕ∇ϕvϕ

and bϕ := −Iion + Iext. Then vϕ, bϕ, cϕ satisfy the spatial master balance law 3.26.
By theorem 3.29 the mappings v(t,x) = vϕ(t,xϕ), b(t,x) = bϕ(t,xϕ) and c(t,x) =
Jcϕ(t,xϕ)F−> satisfy

∂

∂t
(vJ)− div(c) = bJ .

It remains to derive the formula for div(c). Let

aϕ := ∇ϕvϕ = divϕ(vϕi) ,

where i ∈ R3 is the vector whose entries are all one. Here we used the basic properties of
the divergence. Multiplying by J and using lemma 3.21 on the right-hand side yields

Jaϕ = div(JvF−>) ,
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where we again used vϕ(t,xϕ) = v(t,x). Substituting this in c = JDϕaϕF−> results in
∂

∂t
(vJ)− div(Dϕ div(JvF−>)F−>) = bJ .

Finally, we use

div(Dϕ div(JvF−>)F−>) = div(F−1Dϕ div(JvF−>))

and the Piola-identity 3.20 to get

div(JvF−>) = div(JF−> v) = JF−>∇v .

Combining these results leaves the desired result, namely

Cm
∂

∂t
(vJ)− div

(
JF−1DF−>∇v

)
= Jb .

This concludes the necessary adaptions to couple electrophysiology with the equations of
elasticity. This chapter can therefore be summarized by stating the full set of equations
of cardiac elastodynamics:

Problem 5.40: Let Ω be a bounded domain and ΩE ⊂ Ω be the subset of excitable tissue.
Find (v,w, c, γf ,u,V, z) defined as in their respective previous sections, such that

Cm
∂

∂t
(vJ)− div

(
JF−1DF−>∇v

)
= J(−Iion(v,w, c) + Iext) in (0, T )× ΩE , (5.29a)

∂

∂t
w = Gw(v,w) in (0, T )× ΩE , (5.29b)
∂

∂t
c = Gc(v,w, c) in (0, T )× ΩE , (5.29c)

∂

∂t
γf = Gγf (γf ,F) in (0, T )× ΩE , (5.29d)

(D∇v) · n = 0 on (0, T )× Γ , (5.29e)

v = v0 , w = w0 , c = c0 , γf = 0 on {0} × Ω , (5.29f)

ρ
∂2

∂t2
u− div (P(F,FA)) = div (P0) in {0} × Ω , (5.29g)

u = 0 on {0} × ΓD , (5.29h)

P(F)n = −p(t) Cof (F) n on {0} × ΓN , (5.29i)

P(F)n = q(u, ∂
∂t

u,n) on {0} × ΓP , (5.29j)

∂tV = GV(p,V, z) in (0, T ) , (5.29k)

0 = Gz(p,V, z) in (0, T ) , (5.29l)

u = 0 , v = 0 , a = 0 on {0} × Ω . (5.29m)

The functions Gw,Gc,Gγf are derived from appropiate cellular development models.
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Remark 5.41: Note that γf is only defined on ΩEP, as was justified in remark 5.38,
although FA = FA(γf ) has to be defined on Ω. Recalling that γf = 0 on Ω\ΩEP, we abuse
notation and set the active deformation gradient to be

FA = FA(x, γf ) =

I + γf f ⊗ f + γss⊗ s + γtt⊗ t , x ∈ ΩEP ,

I , x ∈ Ω\ΩEP ,

where γs and γt are calculated as presented in section 5.3.3.
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CHAPTER

SIX

FINITE ELEMENT METHODS FOR COUPLED ELASTICITY
PROBLEMS

With the mathematical model of the human heart at hand, numerical appro-
ximation methods for the coupled equations are presented in this chapter. Since
the existence of continuously differentiable solutions of the coupled problem
can not be guaranteed, we turn to solutions in a weaker sense. Foundations
of Sobolev spaces and variational methods are presented and applied onto the
equations of cardiac elastodynamics. The outlined methods can be studied in
more detail in [12, 35, 36, 53, 98, 175]. Subsequentially, discretization schemes
in space and time are described for the coupled system, where concerns about
the interaction between the separate equations are addressed.

6.1 Variational formulations of evolution problems

Classical solutions of the partial differential equations in (5.29) are smooth functions

v ∈ C2((0, T )× Ω) ∩ C([0, T ]× Ω) , u ∈ C2((0, T )× Ω) ∩ C([0, T ]× Ω) .

This requires the right-hand sides to be at least in C((0, T )×Ω) and the initial conditions be
of the appropriate continuity as well. Still, such conditions do not guarantee the existence
of a classical solution [91].
To remove the high smoothness requirements, we shortly introduce the concept of weak
solutions of said partial differential equations. We begin by defining the relevant spaces in
which such solutions exist and provide the basic concepts of variational formulations. We
use these concepts to derive the corresponding formulations for the coupled model (5.29).
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6.1.1 Sobolev Spaces

We start by giving a brief overview of Sobolev spaces for functions mapping into vector
spaces of higher dimensions. A summary of the relevant concepts is given in [97, Appendix
B], whereas we refer to [91, chapter 11] for a more detailed definition of the given spaces.
We always assume Ω ⊂ Rd to be open, connected with finite Lebesgue-measure.

Definition 6.1: Let 1 ≤ p <∞. We call

Lp(Ω;Rd) :=
{
φ ∈Map(Ω;Rd) : φ is measurable and ‖φ‖p :=

(∫
Ω
|φ|p dV

) 1
p

<∞
}

the Lebesgue space of functions which are Lebesgue-integrable to the power p.

By Lp we always refer to the Lebesgue space defined above equipped with the norm ‖·‖p,
where | · | depicts the Euclidean norm on Rd.

Remark 6.2: For p = 2, L2 is a Hilbert space with inner product

〈φ,ψ〉2 :=
∫

Ω
φ ·ψ dV , φ,ψ ∈ L2 .

Definition 6.3: Let φ ∈Map(Ω;Rd). We call

supp(φ) := {x ∈ Ω: φ(x) 6= 0}

the support of φ. We say that φ has compact support, if supp(φ) ⊂ Ω.

We will denote by C∞0 (Ω;Rd) all functions φ ∈ C∞(Ω;Rd) with compact support.

Definition 6.4: Let φ ∈ Lp(Ω;Rd) and α = (α1, . . . , αd) be a multi index, i.e. αi ∈ N0

for i = 1, . . . , d and α := |α| = α1 + · · ·+αd. We call Dα := ∂αφ
∂α1x1···∂αdxd the distributional

derivative of φ, if∫
Ω

Dαφ ·ψ dV = (−1)α
∫

Ω
φ ·Dαψ dV ∀ ψ ∈ C∞0 (Ω;Rd) .

With distributional derivatives, we call the vector of first order derivatives

Dφ =
(
∂

∂x1
φ, . . . ,

∂

∂xd
φ

)
the (weak) gradient of φ. Similarly, for k ∈ N, we use Dkφ to refer to the set of distribu-
tional derivatives of φ for all multi indices α with |α| ≤ k.

Definition 6.5: Let 1 ≤ p ≤ ∞. We call

Wk,p(Ω;Rd) :=
{
φ ∈Map(Ω;Rd) : φ ∈ Lp(Ω;Rd), Dkφ ∈ Lp(Ω;Rdk)

}
the Sobolev space of functions which are in Lp and all distributional derivates up to the
order k are in Lp as well.
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Remark 6.6: Within the definition of Wk,p, we implicitly assume the distributional
derivatives Dkφ of φ ∈Wk,p exist.

Again, Wk,p is equipped with a norm, namely

‖φ‖k,p := ‖φ‖p +
k∑
j=1

∥∥∥Djφ
∥∥∥
p
.

Note that since Dkφ ∈ Lp(Ω;Rdk), the norm of all distributional derivatives is taken into
account.

Remark 6.7: For p = 2, the Sobolev spaces Wk,2(Ω;Rd) are Hilbert spaces with inner
product

〈φ,ψ〉k,2 =
k∑
j=0
〈Dkφ,Dkψ〉2 , φ,ψ ∈Wk,2(Ω;Rd) .

where 〈·, ·〉2 ist the L2 inner product. We use the customary notation

Hk(Ω,Rd) := Wk,2(Ω;Rd) .

To better describe the variational setting of evolution problems, we use Sobolev spaces of
a specific form.

Definition 6.8: Let 1 ≤ p ≤ ∞ and k ≥ 0. Then the spaces

Lp([0, T ]; V) :=

φ : [0, T ]→ V |
(∫ T

0
‖φ(t)‖pV dt

) 1
p

<∞

 .

are called Bochner spaces.

For an overview of relevant properties of Bochner spaces, we refer to [10]. This definition,
as well as the following essential statements are also discussed in detail by Arendt and
Urban [9, chapter 8].

Lemma 6.9: Let V be a Hilbert space and f ∈ L1([0, T ]; V). Then there exists a unique
g ∈ V, such that ∫ T

0
〈f(t), φ〉V dt = 〈g, φ〉V ∀ φ ∈ V .

Proof. See [9, lemma 8.22]

We continue with the discussion of Bochner spaces in the context of evolution problems.
For the sake of clarity, we use the dot-notation to highlight the weak derivatives with
respect to time, i.e., for φ : [0, T ]→ V we set φ̇ := ∂

∂tφ
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Theorem 6.10: Let

Wk,p([0, T ]; V) :=
{
φ ∈Map([0, T ]; V) : φ ∈ Lp([0, T ]; V) , Dkφ ∈ Lp([0, T ]; V)

}
,

where the existence of the weak derivatives Dk is implied. Then

(i) W1,2([0, T ]; V) is a Hilbert space with respect to the inner product

〈φ, ψ〉1,2 :=
∫ T

0
〈φ(t), ψ(t)〉V + 〈φ̇(t), ψ̇(t)〉Vdt

(ii) Let φ ∈ W1,2([0, T ]; V). Then there exists a unique u ∈ C([0, T ); V), such that
φ(t) = u(t) almost everywhere. It holds

u(t) = u(0) +
∫ t

0
φ̇(τ)dτ ∀ t ∈ [0, T ) .

Proof. See [9, theorem 8.24].

As before, we set Hk([0, T ]; V) := Wk,2([0, T ]; V).

Remark 6.11: Lebesgue and Sobolev spaces are also defined for p = ∞. The norms in
Lp(Ω;Rd) and Wk,p(Ω;Rd) are then replaced by

‖φ‖∞ = ess supx∈Ω |φ(x)| , ‖φ‖k,∞ = max
{
‖φ‖∞ ,

∥∥∥Dkφ
∥∥∥
∞

}
.

To ease notation, we often drop the codomain from Sobolev spaces and only write Lp(Ω).
In these cases, the context should clarify the implied codomain.

6.1.2 Variational problems

We shortly describe the framework of variational formulations for abstract Hilbert spaces
V ,W with norms ‖·‖V ,‖·‖W .

Definition 6.12: We call a mapping b : V ×W → R a bilinear form, if b(·, ψ) is linear for
all ψ ∈W and b(φ, ·) is linear for all φ ∈ V .

Definition 6.13: A bilinear form b : V ×W → R is called continuous, if there exists an
α > 0 such that

|b(φ, ψ)| ≤ α ‖φ‖V ‖ψ‖W .

We denote by

B(V ,W) := {b : V ×W → R : b is a continuous bilinear form}

the set of all continuous bilinear forms. We are interested in the following general type of
problem:
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Problem 6.14: Let b ∈ B(V ,W) and ` ∈W∗. Find φ ∈ V, such that

b(φ, ψ) = `(ψ) ∀ ψ ∈W . (VP)

Definition 6.15 (Hadamard): The variational Problem (VP) is called well-posed, if for
all ` ∈W∗ there exists a unique solution φ = φ(`) ∈ V and there exists a c > 0 such that

‖φ‖V ≤ c ‖`‖W∗ ∀ ` ∈W∗ .

When investigating such variational problems, the question arises when (VP) is well-posed.

Definition 6.16: A bilinear form b : V ×W → R is said to satisfy the inf-sup condition,
if there exists a β > 0, such that

inf
ψ∈W

sup
φ∈V

b(φ, ψ)
‖φ‖V ‖ψ‖W

≥ β . (6.1)

We call β the inf-sup constant.

Theorem 6.17 (Banach-Nečas-Babuška): Let b ∈ B(V ,W) and ` ∈ W∗. Then the
variational problem (VP) is well-posed if and only if b satisfies the inf-sup condition (6.1)
and

∀ ψ ∈W : ∃φ ∈ V : b(φ, ψ) 6= 0 .

In this case, the solution φ ∈ V of (VP) satisfies

‖φ‖V ≤
1
β
‖`‖W∗ .

Proof. See [9, section 4.5.1].

Remark 6.18: Theorem 6.17 still holds if V ,W are Banach spaces and V is reflexive [53,
section 2.1]. Since we will later use V = W = Wk,2 for k = 0, 1, we will continue to only
state results for Hilbert spaces.

Corollary 6.19 (Lax-Milgram): Let V = W and b ∈ B(V ,V) be coercive, i.e., there
exists γ > 0 such that

inf
φ∈V

b(φ, φ)
‖φ‖2V

≥ γ .

Then the variational problem (VP) is well-posed.

Proof. See [53, section 2.1].

We want to apply the essential theorem 6.17 to inhomogeneous evolution equations, specif-
ically the heat equation and the wave equation. This introduction is concluded with two
basic well-posedness results for the types of partial differential equations included in the
coupled model (5.29).
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Theorem 6.20 (Well posedness of the parabolic problem): Let a ∈ B(V ,V) be
symmetric and coercive and f : [0, T ] → V. Let V = H1

0([0, T ]; V∗) ∩ L2([0, T ]; V) and
W = L2([0, T ]; V) and let further b : V×W→ R be defined by

b(φ, ψ) :=
∫ T

0
〈φ̇(t), ψ(t)〉2 dt+

∫ T

0
a(φ(t), ψ(t)) dt .

Then the variational Problem

b(φ, ψ) = `(ψ) ∀ ψ ∈W

where the linear form ` ∈W∗ is defined by

`(ψ) :=
∫ T

0
〈f(t), ψ(t)〉W dt , ψ ∈W ,

is well posed if f ∈W.

Proof. See [98, III, theorem 3.1]

Theorem 6.21 (Well posedness of the hyperbolic problem): Let a ∈ B(V ,V) be
symmetric and coercive and f : [0, T ] → V. Let V = H2

0([0, T ]; V∗) ∩ L2([0, T ]; V) and
W = H1([0, T ]; V) and let further b : V× V→ R be defined by

b(φ, ψ) :=
∫ T

0
〈φ̈(t), ψ(t)〉2 dt+

∫ T

0
a(φ(t), ψ(t)) dt .

Then the variational problem

b(φ, ψ) = `(ψ) ∀ ψ ∈W

where the linear form ` ∈W∗ is defined by

`(ψ) :=
∫ T

0
〈f(t), ψ(t)〉W , ψ ∈Wdt ,

is well posed if f ∈W.

Proof. See [98, IV, theorem 4.]

The theorems 6.20 and 6.21 provide the basis for the well-posedness of the weak for-
mulations of cardiac electrophysiology and elasticity, which we present in the following
sections.
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6.1.3 Weak description of cardiac electrophysiology

Consider the monodomain equations (5.11). We shortly present their variational descrip-
tion along with some existence and regularity results. These results were obtained by
Franzone et al. [57] for simple cellular activation models and Mroue [111] for the Beeler-
Reuter and Luo-Rudy model. In order to show existence and uniqueness of solutions in a
weak sense, the following conditions are assumed to hold:

(M1) The boundary ΓEP = ∂ΩEP is Lipschitz.

(M2) The coefficients of D satisfy σf , σs, σt ∈ L∞(ΩEP) and σf , σs, σt > 0

(M3) For the external current, it holds Iext(t, ·) ∈ L2(ΩEP) for a.e. t > 0.

(M4) The Sobolev embedding [36, theorem 9.16]

W1,2(ΩEP) ⊂ Lp(ΩEP) for 2 ≤ p ≤ 6

holds.

(M5) The initial data v0 ∈ H1(ΩEP) ∩ L∞(ΩEP), w0 ∈ L2(ΩEP)dw and c0 ∈ L2(ΩEP)dc

satisfy

vmin ≤ v0 ≤ vmax a.e. in ΩEP ,

wmin ≤ w0 ≤ wmax a.e. in ΩEP ,

cmin ≤ c0 ≤ cmax a.e. in ΩEP ,

with suitable values vmin, vmax,wmin,wmax, cmin, cmax, where we interpret the vector-
valued inequalities component-wise.

(M6) The transmembrane current Iion and the corresponding evolution functions Gw,Gc

satisfy suitable regularity conditions.

Remark 6.22: The regularity conditions in (M6) depend on the chosen cellular activation
model. Conditions for affine models such as FitzHugh-Nagumo [55], Aliev-Pantilov [2] or
Rogers-McCulloch [134] can be found in [57, section 3.5]. Mroue [111] presents neces-
sary conditions for the non-affine model Beeler-Reuter [27] along with the values for the
bounds (M5) motivated in [81].

To formulate the variational problem of (5.11), we define

mv : L2(ΩEP)× L2(ΩEP)→ R , mv(φ, ψ) :=
∫

ΩEP

Cmφ · ψ dV , (6.2a)

av : H1(ΩEP)×H1(ΩEP)→ R , av(w, c;φ, ψ) :=
∫

ΩEP

(D∇φ)∇ψ + Iion(φ,w, c)ψ dV , (6.2b)

fv : L2(ΩEP)→ R , fv(ψ) :=
∫

ΩEP

Iext · ψ dV , (6.2c)
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and choose the standard approach of multiplying (5.11) with suitable testfunctions and
integrating over ΩEP.

Remark 6.23: The validity of our variational approach is explained in [36, chapter 10],
where additional references are given. However, the results only align if dw = 1, dc = 0
and Iion is affine as assumed in [57]. Again, we refer to [111] for the relation to more
involved models.

Definition 6.24: We call the vector of functions (v,w, c) a weak solution of the mono-
domain equations (5.11), if

v ∈ L∞(ΩEP) ∩ L2([0, T ]; H1(ΩEP)) , w ∈ L2(ΩEP)dw , c ∈ L2(ΩEP)dc ,

such that v,w, c satisfy the restrictions (M5) and

mv(
∂

∂t
v, φ) + av(w, c; v, φ) = fv(φ) ∀ φ ∈ H1

0(ΩEP) , (6.3a)∫
ΩEP

∂

∂t
w ·ψ dV =

∫
ΩEP

Gw(v,w, c) ·ψ dV ∀ ψ ∈ L2
0(ΩEP)dw , (6.3b)∫

ΩEP

∂

∂t
c · θ dV =

∫
ΩEP

Gc(v,w, c) · θ dV ∀ θ ∈ L2
0(ΩEP)dc . (6.3c)

for almost every t ∈ [0, T ].

Theorem 6.25: Let the regularity assumptions (M1)–(M6) hold. Then there exists a
unique solution (v,w, c) of (6.3).

Proof. See [33] or [165], respectively.

Remark 6.26: The equations (6.3) miss the weak formulations for the ODEs of k, γf .
Since v,w, c do not depend on these values, their addition does not require any addition
in the regularity assumptions (M1)–(M6). For the coupled formulation, we will later add
similar weak formulations for k,γf .

6.1.4 Weak description of cardiac elasticity

Since the conductivities σf ,s,t of D are assumed to be constant, general theory of parabolic
partial differential equations can be applied after treating the term Iion. For small defor-
mations, P is usually linearized, yielding an equation of the form

ρa − div(C(Dε(u))) = ρb in (0, T )× Ω , (6.4)

where ε(u) = sym(Du) and Cε = 2µε + λ tr(ε)I with suitable parameters µ > 0, λ ≥ 0.
Such a linearization is physically motivated by Hooke’s law, stating a linear stress response
for small displacemenets. The analysis of this wave equation could utilize standard tools
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for hyperbolic differential equations. This linearization, however, is unsuitable for large
deformations.
We will shortly provide the general concept of potential energies leading to a variational
formulation of (5.12). This is achieved by showing the existence of differentiable func-
tionals, such that their derivative yields an expression which is equivalent to the classical
formulation. The following definitions and conclusions are discussed in more detail in [38,
section 4.1] for static problems and in [106, section 5.1] for dynamic problems.

Definition 6.27: Let bϕ : Φ(Ω) → R3 be a body load on ϕt(Ω) and gϕ : Φ(Γ) → R3

a surface load on ϕt(Γ). We call bϕ a dead body load, if its corresponding material
formulation b : Ω → R3 is independent of ϕ, i.e. b(t,x) is known for all (t,x) in [0, T ] ×
Ω. Similarly, we call gϕ a dead surface load, if the material formulation g : Γ → R3 is
independent of ϕ.

We will use the term dead load to mean either one of the terms defined above. A com-
mon example for a dead load is the force of gravity, which is independent of the actual
configuration of Ω.

Definition 6.28: Let bϕ : Φ(Ω)→ R3 be a body load with material formulation b : Ω→
R3 in such a way, that

b(t,x) = b̂(t,x,ϕ(t,x),Dϕ(t,x)) , ∀ t ∈ [0, T ], x ∈ Ω .

We call bϕ conservative, if there exists a functional F : Map(Ω;R3)→ R, such that

DF(ϕ)[φ] =
∫

Ω
ρb̂(t,x,ϕ(t,x),Dϕ(t,x)) · φ dV .

We call F the potential of bϕ.

Definition 6.29: Let gϕ : Φ(Γ) → R3 be a surface load with corresponding material
formulation g : Ω→ R3 in such a way, that

g(t,x) = ĝ(t,x,ϕ(t,x),Dϕ(t,x)) , ∀ t ∈ [0, T ], x ∈ Ω .

We call gϕ conservative, if there exists a functional G : Map(Γ;R3)→ R, such that

DG(ϕ)[φ] =
∫

Γ
ĝ(t,x,ϕ(t,x),Dϕ(t,x)) · φdA .

We call G the potential of gϕ.

All dead loads are conservative, since bϕ do not depend on ϕ and therefore b̂ = bϕ.

Remark 6.30: It is generally more common to call b̂ and ĝ the potentials of bϕ and
gϕ, respectively. We will use the term for both and presume the context clarifies which
mapping we mean.
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Lemma 6.31: Let gϕ : Φ(Γ)→ R3 be the surface load defined by

gϕ(t,xϕ) := −p(t)nϕ(xϕ) ,

where p : [0, T ]→ R is a time dependant pressure and nϕ is the outer normal vector on Γ.
Then gϕ is conservative with

G(t,θ) = −p(t)3

∫
Γ

Cof (Dθ) n · θ dA .

Proof. See [38, theorem 2.7-1].

Definition 6.32: Let ϕ : [0, T ]×Ω→ R3 be a motion subjected to conservative forces bϕ

and gϕ on a hyperelastic material with stored energy functionWP. Let F ,G the potentials
of said conservative forces. We then call

E(t,ϕ) :=
∫

Ω
WP(Dϕ(t,x)) dx dV − F(t,ϕ)− G(t,ϕ)

the potential energy of ϕ at time t ∈ [0, T ].

Definition 6.33: Let ϕ : [0, T ]× Ω→ R3 be a motion with velocity v. We call

K(t,v) :=
∫

Ω

ρ

2v(t,x) · v(t,x) dV

the kinetic energy of ϕ at time t ∈ [0, T ].

Definition 6.34: Let ϕ : [0, T ]×Ω→ R3 be a motion with velocity v as in definitions 6.32
and 6.33. We call

I(t,ϕ,v) := K(t,v) + E(t,ϕ)

the total energy of ϕ at time t ∈ [0, T ].

For better readability, we drop the dependency on t in the notation for the remainder of
this section.

Definition 6.35: Let J : V → R be a differentiable functional. We call an element ϕ ∈ V

a critical point of J , if
DJ (ϕ)[φ] = 0 ∀ φ ∈ V .

We write this as DJ = 0.

Theorem 6.36: Consider a hyperelastic material with stored energy function WP sub-
jected to conservative body and surface loads bϕ and gϕ. Then the equations of motion in
the reference configuration (3.4), i.e.,

ρa − div
(
DFWP(Dϕ)

)
= ρb in (0, T )× Ω , (6.5a)

(DF)WP(Dϕ)) n = g on (0, T )× Γ , (6.5b)
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are formally equivalent to
∂

∂t
DvK(v)[φ] = DϕE(ϕ)[φ] ∀ φ ∈ C0([0, T ]× Ω;R3) , t ∈ [0, T ] ,

where we set v = ϕ̇.

Proof. We summarize the discussions from [106, section 5.4] leading to this result. We
show that ϕ is a critical point of I(ϕ,v) if and only if the equations of motion (6.5) hold.
Using lemma 2.12, it holds

DϕE(ϕ)[φ] =
∫

Ω
DFWP(Dϕ)[Dφ] dV −DF(ϕ)[φ]−DG(ϕ)[φ] ,

where F ,G are the load and surface potentials. The derivative of I is then given by

DI(ϕ, ϕ̇)
[
(φ, φ̇)

]
= Dϕ̇I(ϕ, ϕ̇)[φ̇] + DϕI(ϕ, ϕ̇)[φ]

= DK(ϕ̇)[φ̇] +
∫

Ω
DFWP(Dϕ)[Dφ] dV −DF(ϕ)[φ]−DG(ϕ)[φ]

=
∫

Ω
ρϕ̈ · φ dV −

∫
Ω
ρb̂(ϕ,Dϕ) · φ dV

+
∫

Ω
DFWP(Dϕ) : Dφ dV −

∫
Γ

ĝ(ϕ,Dϕ) · φ dA (6.6)

If the equations of elasticity hold, then

DI(ϕ, ϕ̇)
[
(φ, φ̇)

]
=
∫

Ω
ρϕ̈ · φ dV −

∫
Ω
ρb̂(ϕ,Dϕ) · φ dV +

∫
Ω

div (DFWP(Dϕ)) · φdV

=
∫

Ω

(
ρϕ̈− ρb̂(ϕ,Dϕ)− div (DFWP(Dϕ))

)
· φ dV

= 0 ,

therefore ϕ is a critical point of I and hence
∂

∂t
DvK(v)[φ] = DK(ϕ̇)[φ̇] = DϕE(ϕ,Dϕ)[φ] .

On the other hand, if ϕ ∈ V is a critical point of I, we have∫
Ω
ρϕ̈ · φ dV −

∫
Ω

DFWP(Dϕ) : Dφ dV =
∫

Ω
ρb̂(ϕ,Dϕ) · φ dV ∀ φ ∈ V

and, since φ ≡ 0 on Γ,∫
Ω

DFWP(Dϕ) : Dφ dV =
∫

Ω
div (DFWP(Dϕ)) · φ dV

by Greens formula 2.33. Thus the variational formulation of (6.5a) holds for all φ, which
is equivalent to

ρa − div
(
DFWP(Dϕ)

)
= ρb in (0, T )× Ω .

Lastly, comparing the variational formulation of (6.5a) with (6.6), we see∫
Γ

(
DFWP(Dϕ)

)
n · φ dA =

∫
Γ

ĝ(ϕ,Dϕ) · φdA ∀ φ ∈ V ,

implying the boundary conditions (6.5b) hold.
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Remark 6.37: The space V in the proof above was intentionally left ambiguous. We will
resolve this issue by the end of the section.

By “formally equivalent” we imply that motions ϕ satisfying one of the statements are
regular enough for the other statement to be well-defined.

Corollary 6.38: Let

At :=
{
φ ∈W1,p(Ω)3 : det(I + Dφ) > 0 , φ = u0 a.e. on ΓD , I(t,φ, ∂

∂t
φ) <∞

}
be the set of admissible function at time t ∈ [0, T ] and ϕ ∈ D be the solution of the
minimization problem

I(ϕ, ϕ̇) = inf
φ∈At

I(φ, φ̇) . (6.7)

If ϕ is regular enough, then ϕ satisfies the equations of motion (6.5).

Proof. Since ϕ satisfies the minimization problem (6.7), ϕ is a critical point of I and thus

DI(ϕ, ϕ̇)[φ] = 0 ⇔ ∂

∂t
DvK(v)[φ] = DϕE(ϕ,Dϕ)[φ] for all φ .

The statement then follows with theorem 6.36.

Remark 6.39: The value of p in the set At depends on the specific boundary conditions
of the problem and the stored energy function WP, specifically if Cof (·) and det need to
be well-defined in a weak sense. We leave the value for p open but refer to [18, 20] for a
more in-depth analysis of the topic.

Theorem 6.36 justifies the formulation of the following variational problem. We define

mu : L2(Ω)3 × L2(Ω)3 → R , mu(φ,ψ) :=
∫

Ω
ρφ ·ψ dV , (6.8a)

au : W1,p(Ω)3 ×W1,p(Ω)3 → R , au(φ,ψ) :=
∫

Ω
P(Dφ) : ψ dV , (6.8b)

fu : W1,p(Ω)3 → R , fu(ψ) :=
∫

Ω
ρb ·ψ dV +

∫
Γ

g ·ψ dA . (6.8c)

Definition 6.40: We call u a weak solution of (5.12) with if

u ∈ L2([0, T ]; W1,p(Ω)3)
and for a.e. t ∈ (0, T ) it holds

mu( ∂
2

∂t2
u,φ) + au(u,φ) = fu(φ) ∀ φ ∈ H1

0(Ω)3 . (6.9)

The requirement u ∈ L2([0, T ]; W1,p(Ω)3) is a consequence of weak continuity conditions
required for I (see [21]). These continuity conditions are necessary in the proofs of exis-
tence, uniqueness and regularity of the variational formulation. We provide one well-known
result.
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Definition 6.41: Let bϕ,gϕ be independent of time. We call u ∈ W1,p(Ω)3 a weak
solution of the static problem, if

au(u,φ) = fu(φ) ∀ φ ∈W1,p
0 (Ω)3 . (6.10)

Theorem 6.42: Consider the static variant (6.10). Let the set of admissible functions

A0 =
{
φ ∈W1,p(Ω)3 : det(I + Dφ) > 0 , φ = u0 a.e. on ΓD , I(0,φ,0) <∞

}
be non-empty. Let the material be hyperelastic with polyconvex stored energy function WP

satisfying the growth conditions 4.53 and let b̂, ĝ be continuous and bounded from below.
Then there exists a solution of (6.9).

Proof. See [19].

Note that theorem 6.42 does not guarantee the uniqueness of a weak solution. In con-
trast to the problem (6.3), there are only few additional existence and uniqueness results
for (6.9). A comprehensive list of literature on the matter is given by Antman [8, section
13.6] and Ball [22]. In recent years, this has led to the approach of defining non-simple
materials [76], which include the second derivative of WP in the material formulations. A
comprehensive list of results using this technique for static and dynamic problems is given
by Kružík [97]. We nevertheless continue with the classic approach from chapter 4.

6.2 Variational formulation of the coupled system

When employing the active stress approach (5.18), the first Piola-Kirchhoff stress is com-
plemented by an active part PA. In the context of energy potential, the question arises if
PA can be interpreted as the derivative of an active stored energy WA. The stored energy
WP +WA then again would satisfy the equivalence of theorem 6.36.

Lemma 6.43: Let f : Ω→ R3 be a fibre field and PA be the active stress given by

PA(F, λ) := T (λ)Ff ⊗ f ,

where fϕ = Ff and T : R → R is an internal stress dependent on the fiber length λ =
√

Ff · Ff . Let WA : R→ R be a primitive of λT (λ) with respect to λ. Then

DFWA
(√

Ff · Ff
)

= PA(F, λ) .

Proof. We reiterate the arguments given in [110]: First observe that for λ =
√
‖fϕ‖2, it

holds
DFλ = 1

2λDF(f>F>Ff) = 1
λ

Ff ⊗ f .
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Let now WA be a primitive of λT , i.e., ∂
∂λWA(λ) = λT (λ). Then for λ =

√
Ff · Ff , we get

DFWA(λ) = DλWA(λ)DFλ = T (λ)Ff ⊗ f .

Remark 6.44: Since we will not apply the active stress approach, we will not go into
detail on the validity of the assumption that a primitive of λT (λ) exists. At least for
simple phenomenological models, T : R → R is given as a continuous function, providing
the existence of this primitive.

When considering the active strain approach (5.19), the term containing P in au has to
be adapted as well. Instead of F, we insert FE = FF−1

A into P. Applying the chain rule
then yields

DFWP(FF−1
A ) : Dφ = DFWP(FF−1

A ) [Dφ]

= DFEWP(FE)
[
(DFFF−1

A ) [Dφ]
]

= DFEWP(FE)
[
DφF−1

A

]
= DFEWP(FE) : DφF−1

A

With this, we finally formulate the variational setting of cardiac elasticity. By abusing
notation, the specific functionals in (6.9) for t ∈ (0, T ) are given by

mu(φ,ψ) =
∫

Ω
ρφ ·ψ dV , (6.11a)

au(γf ;φ,ψ) =
∫

Ω
P((I + Dφ)F−1

A ) : (DφF−1
A ) dV −

∫
ΓP

q(φ, ∂
∂t
φ) ·ψ dA , (6.11b)

fu(ψ) =
∫

Ω
P0ψ dV −

∫
ΓN
pn ·ψ dA , (6.11c)

where P0 is the prestress tensor from section 5.3.4 ensuring u0 = 0 . For the cellular
tension k and stretch γf , we use the same assumptions as in section 6.1.3.

Problem 6.45 (Weak formulation of cardiac elastodynamics): Letmv, av,mu, au, fv, fu

be the bilinear and linear forms introduced in (6.2) and (6.11). Find

v ∈ L2([0, T ],H1(ΩEP) , u ∈ L2([0, T ]; W1,p(Ω)3) ,

w ∈ C([0, T ]; L2(ΩEP)dw) , c ∈ C([0, T ]; L2(ΩEP)dc) ,

k ∈ C([0, T ]; L2(ΩEP)dk) , γf ∈ C([0, T ]; L2(ΩEP))

with

0 ≤ wi(t,x) ≤ 1 , i = 1, . . . , dw , cj(t,x) > 0 , j = 1, . . . , dc for a.e.(t,x) ,
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such that for almost every t ∈ (0, T ), it holds

mv(
∂

∂t
v, φ) + av(v, φ) = fv(v, φ) ∀ φ ∈ H1(ΩEP) , (6.12a)∫

ΩEP

∂

∂t
w · φw dV =

∫
ΩEP

Gw(v,w, c) · φw dV ∀φw ∈ L2(ΩEP)dw , (6.12b)∫
ΩEP

∂

∂t
c · φc dV =

∫
ΩEP

Gc(v,w, c) · φc dV ∀φc ∈ L2(ΩEP)dc , (6.12c)∫
ΩEP

∂

∂t
k · φk dV =

∫
ΩEP

Gk(w, c,k, γf ,
∂

∂t
γf ) · φk dV ∀φk ∈ L2(ΩEP)dk , (6.12d)∫

ΩEP

∂

∂t
γf · φw dV =

∫
ΩEP

Gγf (c,k, γf ,
∂

∂t
γf ,F) · φγf dV ∀φγf ∈ L2(ΩEP) , (6.12e)

mu(u,φ) + au(u,φ) = fu( ∂
2

∂t2
u,φ) ∀ φ ∈W1,p

0 (Ω) . (6.12f)

6.3 Approximation of variational problems

To calculate approximate solutions of a variational problem (VP), we replace the spaces
V ,W with finite-dimensional subspaces Vh ⊂ V and Wh ⊂W .

Remark 6.46: For Vh ⊂ V , Wh ⊂ W , the approximation setting is called conformal.
Within this work, we only consider conforming methods.

Problem 6.47: Let b ∈ B(Vh,Wh) and ` ∈W∗
h. Find φh ∈ Vh, such that

b(φh, ψh) = `(ψh) ∀ ψh ∈Wh . (VPh)

Just as with the original variational problem (VP), the discrete problem (VPh) has a
unique solution if and only if there exists a βh > 0 such that

inf
ψh∈Wh

sup
φh∈Vh

b(φh, ψh)
‖φh‖Vh ‖ψh‖Wh

≥ βh (6.13a)

and
∀ ψh ∈Wh∃φh ∈ Vh : b(φh, ψh) 6= 0 . (6.13b)

Note that (6.1) does not imply (6.13a), since Wh ⊂W . A similar argument holds for the
second condition of theorem 6.17.

Lemma 6.48: Let dim(Vh), dim(Wh) <∞. Then, if dim(Vh) = dim(Wh), it holds

(6.13a)⇐⇒ (6.13b) .

Proof. See [53, proposition 2.21]

Assume that for the spaces V , W , the variational problem (VP) is well-posed. Then
the well-posedness of (VPh) can be examined without explicitly providing the validity
of (6.13a).
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Lemma 6.49 (Fortin criterion): Let V ,W be Hilbert spaces and Vh ⊂ V, Wh ⊂ W

be closed. Let b ∈ B(V ; W) satisfy (6.1). Then, b satisfies the discrete inf-sup condi-
tion (6.13a) if and only if there exists a Πh ∈ Lin(W ; Wh), such that

b(φh,Πhψ) = b(φh, ψ) ∀ φh ∈ Vh, ψ ∈W .

Proof. See [53, lemma 4.19].

We call the operator Πh in lemma 6.49 interpolation operator.

Remark 6.50: Our conforming setting, i.e., assuming Vh ⊂ V , Wh ⊂W are finite dimen-
sional subspaces with dim(Vh) = dim(Wh), is a special case of lemma 6.49.

We finish the theory of approximation of variational formulations at this point and refer
to [12, 53] for a more thourough investigation of approximation theory.

6.4 Discretization in space

We briefly introduce the conforming finite element spaces as approximation spaces for the
equations (6.12a)-(6.12f). For an in-depth description of triangulations and conforming
finite elements, we refer to [9, 35, 53].
Let Ωh be an admissible, uniform triangulation of Ω into polyhedral cells with maximum
cell diameter h. We write this decomposition as

Ω =
⋃

K∈Ωh

K .

For our purposes, allK will be simplicial elements, i.e. triangles for d = 2 and tetrahedrons
for d = 3.

Definition 6.51: Let l ∈ N and let Pl(K) be the set of all polynomials of degree l defined
on a simplex K. We call

Sl,p(Ωh) :=
{
φh ∈ Hp(Ω) ∩ C(Ω): φ

∣∣
K
∈ Pl(K) ∀ K ∈ Ωh

}
the Lagrange finite element space.

Lemma 6.52: Let Ωh be a triangulation of Ω into tetrahedra. For K ∈ Ωh, let NK ∈ N be
the number of nodal points on K within the finite element space Sl,p(Ωh) (see Figure 6.1).
Then the nodal basis functions φh ∈ Sl,p are uniquely determined by the interpolation
problem

φh,j(xK,i) = δij i, j = 1, . . . , NK ∀K ∈ Ωh .

Proof. See [35, section II.5].
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Figure 6.1: Nodal points of the finite element space Sl,p for l = 0, 1, 2, 3 on a triangle

We call N (Ω) = ⋃
K∈Ωh{xK,i : i = 1, . . . NK} the set of all nodalpoints in Sl,p(Ω).

Theorem 6.53: Let 1 ≤ p ≤ ∞ and φ ∈ Wk+1,p(Ω). Let further be 0 ≤ k ≤ l. There
exists an interpolation operator Πh : Wk+1,p(Ω)→ Sl,p and C > 0 such that

‖φ−Πhφ‖1,p ≤ Ch
k ‖φ‖k+1,p .

For p <∞ it holds

lim
h→0

(
inf

φh∈Sl,p
‖φ− φh‖1,p

)
= 0 ∀ φ ∈W1,p .

Proof. See [53, corollary 1.110]. Our statement is a special case for Lagrange finite ele-
ments, also detailed in the subsequent example.

For everyK ∈ Ωh, we choose a quadrature formula withQ ∈ N quadrature points xK,q ∈ K
and weights ωK,q ≥ 0 for q = 1, . . . , Q, such that

∫
K
φh(x) dV =

Q∑
q=1

ωK,qφh(xK,q) φh ∈ Sl,p . (6.14)

Definition 6.54: Consider the quadrature formula (6.14). We call the operator Λh ∈
Lp(C(Ω);Sl,p(Ωh)∗) implicitly defined by the property

∫
Ω

Λhφ · ψh dV =
∑
K∈Ωh

Q∑
q=1

ωK,qφ(xK,q)ψh(xK,q) , φ ∈ C(Ω) , ψh ∈ Sl,p(Ωh) . (6.15)

the numerical integration operator.

For the weak coupled formulation (6.12), we choose the finite dimensional subspaces

Vh = Wh = Slv,1(ΩEP,h)× Slv,0(ΩEP,h)× Slv,0(ΩEP,h)× Slv,0(ΩEP,h)× Slv,0(ΩEP,h)× Slu,1(Ωh) .
(6.16)

Note that this yields to sets of nodalpoints, NEP,h and Nh, containing Nh and NEP,h

points, respectively. For each variable, we get the corresponding nodal basis

φvi ,φ
w
i , φ

c
i , φ

k
i , φ

γf
i , i = 1, . . . , NEP,h and φu

j , j = 1, . . . Nh .
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For every t ∈ [0, T ], we can write vh(t, ·) ∈ Sl,1(ΩEP,h) in its basis representation

vh(t,x) =
NEP,h∑
i=1

vi(t)φi(x) .

The discrete basis representation of vh is therefore given by the vector

v̂(t) = (v1(t), . . . , vNEP,h(t))> .

Similarly wh, ch,kh, γf ,h,uh are discretized in their respective finite element spaces. This
yields the following space-discretized system of (6.12)

Problem 6.55 (Space discretized coupled problem ): Let Vh = Wh be as in (6.16).
Define the following matrices with entries

(Mv)ij := mv(φvi , φvj ) , (Av)ij := av(φvi , φvj ) , i, j = 1, . . . , NEP,h

(Mu)ij := mu(φu
i ,φ

u
j ) , (Au)ij := au(φu

i ,φ
u
j ) , i, j = 1, . . . , Nh

and the right-hand sides with entries for i = 1, . . . , NEP,h and j = 1, . . . , Nh

(fv)i := fv(φvi ) , (fu)j := fu(φu
j ) .

Find (vh,wh, ch,kh, γf ,h,uh) ∈ Vh such that the discrete equations

Mv
∂

∂t
v̂ + Avv̂ = fv , (6.17a)

∂

∂t
ŵi −Gw(v̂i, ŵi, ĉi) = 0 , i = 1, . . . , NEP,h , (6.17b)
∂

∂t
ĉi −Gc(v̂i, ŵi, ĉi) = 0 , i = 1, . . . , NEP,h , (6.17c)

∂

∂t
k̂i −Gw(ŵi, ĉi, k̂i, γ̂f i) = 0 , i = 1, . . . , NEP,h , (6.17d)

∂

∂t
γ̂f i −Gγf (k̂i, γ̂f i, I + Dûi) = 0 , i = 1, . . . , NEP,h , (6.17e)

Mu
∂2

∂t2
v̂ + Auû = fu (6.17f)

with the initial conditions

v̂(0) = Πhv0 , ŵ(0) = Πhw0 , ĉ(0) = Πhc0 ,

k̂(0) = Πhk0 , γ̂f (0) = Πhγf ,0 , û(0) = Πhu0 .
(6.17g)

Remark 6.56: Note that the space-discrete formulations (6.17b)–(6.17e) are indepen-
dently given at each nodal point xi ∈ NEP,h. This stems from the assumption that the
intracellular gating mechanisms are independent of one another.
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To finalize this section, we apply the integration operator Λh from (6.15) on M,A and f.
For (6.17a), this yields the matrices and vectors with entries for i, j = 1, . . . , NEP,h

(Mv)ij =
∑
K∈Ωh

Q∑
q=1

ωK,qφ
v
i (xK,q)φvj (xK,q) , (6.18a)

(Av)ij =
∑
K∈Ωh

Q∑
q=1

ωK,q (D Dφvi (xK,q)) ·Dφvj (xK,q) , (6.18b)

(Iion)i =
∑
K∈Ωh

Q∑
q=1

ωK,qIion (vh(xK,q),wh(xK,q), ch(xK,q))φi(xK,q) . (6.18c)

Similarly, for i, j = 1, . . . , Nh, we get the corresponding matrices and vectors for equa-
tion (6.17f):

(Mu)ij =
∑
K∈Ωh

Q∑
q=1

ωK,qφ
u
j (xK,q) · φu

i (xK,q) , (6.18d)

(Au)i =
∑
K∈Ωh

P
(
(I + Duh(xK,q))F−1

A (γf ,h(xK,q))
)

: Dφu
i (xK,q)F−1

A (γf ,h(xK,q)) , (6.18e)

(Tk)ij =
∑

K∈Ωh∩ΓP

∑
fK∈K

Qf∑
q=1

ωfK ,q kP(nfK
⊗ nfK

)φu
j (xfK ,q) · φu

i (xfK ,q) , (6.18f)

(Tc)ij =
∑

K∈Ωh∩ΓP

∑
fK∈K

Qf∑
q=1

ωfK ,q cP(nfK
⊗ nfK

)φu
j (xfK ,q) · φu

i (xfK ,q) , (6.18g)

(P)i =
∑

K∈Ωh∩ΓN

∑
fK∈K

Qf∑
q=1

ωfK ,q p(t)nfK
· φu

i (xfK ,q) . (6.18h)

The two equations for the PDEs (6.17a) and (6.9) can thus be described by the system

Mv
∂

∂t
v̂(t) + Avv̂(t) + Iion(v̂(t), ŵ(t), ĉ(t)) = Iext(t), (6.19a)

Mu
∂2

∂t2
û(t) + Tc

∂

∂t
û(t) + Tkû(t) + Au(û(t), γ̂f (t)) = P(t) . (6.19b)

where we set Iext(t) := ΠhIext(t)

6.5 Discretization in time

Let vh,wh, ch,kh, γf ,h,uh be the space-discretized vectors from the previous section with
nodalpoint representations

v̂, ŵ, ĉ, k̂, γ̂f , û .

The equations for the electrophysiological problem (6.17a)-(6.17e) and the mechanical
problem (6.17f) are treated separately with respect to their time discretization. We split
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the interval [0, T ] into NT ∈ N equidistant time steps t0 = 0, t1, . . . , tN = T and denote
uniform stepsize by ∆t = T

NT
and the discretized interval by

T := {tn = n∆t : n = 0, . . . , NT } .

To ease notation, we write for any mapping f : [0, T ]× X → Y that

fn(x) := f(tn,x) , tn ∈ T .

We use a semi-implicit decoupled time-stepping scheme for the electrophysiological system
similar to the one presented in [54]. This scheme decouples the systems of ODEs (6.17b)-
(6.17e) from the parabolic PDE (6.17a). In a first step, the system of ODEs is solved by
an explicit method. We use a scheme similar to the one presented in [63]. When using the
Beeler-Reuter cell model, the evolution of the components of ŵ is given by

∂

∂t
ŵj = αj(v̂)− ŵj · (αj(v̂) + βj(v̂)) , j = 1, . . . , 6 . (6.20)

Each of these equations is solved exactly with the exponential integrator

Gj(v̂, ŵj) := ŵj,∞(v̂) + (ŵj − ŵj,∞(v̂)) exp
(
−∆t(αj(v̂) + βj(v̂))

)
,

ŵj,∞(v̂) = αj(v̂)
αj(v̂) + βj(v̂) .

Then the evolution equations (6.20) are solved exactly on [tn−1, tn] by

ŵnj = Gj(v̂n−1, ŵn−1
j ) .

We therefore set the discretized evolultion operator for w to

Gn
w(v̂, ŵ) :=

(
Gj(v̂n−1, ŵn−1

j )
)
j=1,...,dw

, n = 1, . . . , NT . (6.21)

The ordinary differential equations for c,k and γf are solved by a standard explicit Euler
method:

ĉn+1 = ĉn + ∆tGc (v̂n, ŵn, ĉn) , (6.22a)

k̂n+1 = k̂n + ∆tGk
(
ŵn, ĉn, k̂n, γ̂f

n
)
, (6.22b)

γ̂f
n+1 = γ̂f

n + ∆tGγf

(
k̂n, γ̂f

n, I + Dû
)
, (6.22c)

We choose this simple method since the ODEs for c, k and γf are much less stiff than the
one for w. The scheme

ŵn+1 = Gn+1
w (v̂, ŵ) (6.23)

is only applicable for small timesteps ∆t, as the coefficients αj , βj , j = 1, . . . , 6 are not
constant. Because of the high stiffness of (6.17b) for each i = 1, . . . , NEP,h, this method is
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nevertheless applicable for larger timesteps as a standard explicit method, such as Runge-
Kutta methods. Preliminary studies show that a higher order explicit method for (6.22)
does not yield better time convergence.
Given the gating and concentration vector ŵn+1, ĉn+1, we solve in a second step the PDE
for the transmembrane voltage. We use the generalized scheme presented by Sundnes et
al. [156, section 3.2.2]. Consider the system (6.19a), i.e.,

Mv
∂

∂t
v̂ = −Avv̂ − Iion(v̂, ŵ, ĉ) + Iext .

Define Intotal(v̂, ŵ, ĉ) := Iion(v̂, ŵ, ĉ)− Iext(tn). For θCN ∈ [0, 1], we approximate (6.19a) in
[0, T ] by

Mv
v̂n+1 − v̂n

∆t = θCN
(
−Av v̂n+1 − In+1

total(v̂
n+1, ŵ, ĉ)

)
+(1−θCN) (−Av v̂n − Intotal(v̂n, ŵ, ĉ)) . (6.24)

This method translates to an explicit Euler scheme for θCN = 0 and to an implicit Euler
scheme for θCN = 1. Choosing θCN = 1

2 yields the Crank-Nicholson scheme which is
of second order with respect to time. To ease computational load, we choose θCN = 1.
We then decouple the diffusion part from the reaction part Iion by means of a Godunov-
Splitting [127], yielding the system

v̂n+ 1
2 = v̂n −∆t

(
Iion(v̂n,wn+1, cn+1)− Inext

)
, (6.25a)

(Mv + ∆tAv)v̂n+1 = Mvv̂
n+ 1

2 . (6.25b)

Algorithm 1 Electrophysiological time stepping
Require: Tstart, Tend

Set N > 0 and t0 = Tstart, tN = Tend

v̂0 = v̂(t0), ŵ0 = ŵ(t0), ĉ0 = ĉ(t0), k̂0 = k̂(t0), γ̂f
0 = γ̂f (t0)

with the initial conditions (6.17g)
for n = 0 ; n < N ; n+ + do
Calculate wn+1 by (6.23)
Calculate vn+1 by (6.25)
Calculate ĉn+1, k̂n+1

, γ̂f
n+1 by (6.22)

end for
return v̂N , ŵN , ĉN , k̂N , γ̂f

N

Remark 6.57: As depicted in algorithm 1 and contrary to the schemes detailed above,
we first solve for vn+1 in (6.25) with wn+1, ĉn, k̂n, γ̂f

n and calculate the update of the
remaining ODEs afterwards. Preliminary results show that this scheme preserves the
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order of the initial scheme but is much more stable with respect to the timestep size ∆t.
We refer to the paper in preparation at our research group.

The time discretization of the elasticity equation (6.17f) is done by employing a gen-
eral Newmark β-scheme [88]. Approximating velocity and acceleration with the terms
∂
∂t û

n(x) ≈ v̂n(x) and ∂2

∂t2 ûn(x) ≈ ân(x), we choose βN, γN ∈ [0, 1] and define the time
integration in [tn, tn+1] by

ûn+1 = ûn + ∆tv̂n + ∆t2
(1− 2βN

2 ân + βNân+1
)
, (6.26a)

v̂n+1 = v̂n + ∆t
(
(1− γN)ân + γNân+1

)
. (6.26b)

Solving (6.26a) for ân+1 yields

ân+1 = 1
βN∆t

( 1
∆t

(
ûn+1 − ûn

)
− v̂n

)
− 1− 2βN

2βN
ân . (6.26c)

and by insertion into (6.26b), we get

v̂n+1 = γN
βN∆t

(
ûn+1 − ûn

)
+ (1− γN

βN
)vn + ∆t

(
1− γN(1 + 1− 2βN

2βN
)
)

ân (6.26d)

Applying this formulation of ân+1 and v̂n+1 on (6.17f) then results in the system

Muân+1 + Tc
∂

∂t
v̂n+1 + Tkûn+1 + Au(ûn+1, γ̂f ) = Pn+1 , (6.27)

where we set as usual Pn+1 := P(tn+1).

Remark 6.58: We intentionally omitted the time index of γ̂f . The corresponding coupling
to the electrophysiological equation (6.22c) is discussed in the next section.

We now solve (6.27) for ûn+1 by inserting (6.26c), (6.26d) to get
1

βN∆t2Muûn+1 +
(

γN

βN∆tTc + Tk
)

ûn+1 + Au(ûn+1, γ̂f )

= Pn+1 +
(

1
βN∆t2Mu + γN

βN∆tTc
∂

∂t

)
ûn +

(
1

βN∆tMu −
(

1− γN

βN

)
Tc

∂

∂t

)
v̂n

+
(

1− 2βN

2βN
Mu −∆t

(
1− γN

(
1 + 1− 2βN

2βN

))
Tc

∂

∂t

)
ân .

(6.28)

The main advantage of the Newmark β-method is the explicit description (6.28), which
allows for an efficient computational implementation. Depending on the values of βN, γN,
this scheme has additional side-effects and benefits, such as a numerical damping for
γN > 0.5.

Theorem 6.59: The Newmark β-method is uncoditionally stable for βN ≥ γN
2 ≥

1
4 .

Proof. See [28, section 6.3.3]

We refrain from an in-depth stability analysis of the Newmark β-method for our problem
in this work but refer to [28, section 6.6.7] instead.
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6.6 A segregated algorithm for the coupled problem

In the last two sections, we have seen the discretized equations of the monodomain and elas-
ticity equations, where we left some open remarks concerning the coupling between (6.17e)
and (6.9).
We will present the remaining steps for a fully coupled numerical scheme, starting with
the handling of the circulatory systems presented in section 5.4.

6.6.1 Circulatory feedback

The circulatory models presented in 5.4.1 and 5.4.2 calculate a pressure pn at time tn
depending on the volumes of heart chambers of Ω. We denote these volumes by

VLV(Ω), VRV(Ω), VLA(Ω), VRA(Ω)

and the corresponding cavities by ΩLV,ΩRV,ΩLA,ΩRA.

Remark 6.60: Since we only simulate the heart tissue, it holds ΩLV,ΩRV,ΩLA,ΩRA 6⊆ Ω.

As we have seen in section 4.3, the volume of these cavities for any configuration ϕt is
given by

VC(Ω) =
∫
ϕt(ΩC)

1 dV =
∫

ΩC
J(t,x) dV , C ∈ {LV,RV,LA,RA} .

If the cavity domains ΩC have closed surfaces, the volumes VC(Ωh) can be calculated by
the formula

VC(Ωh) =
∑

fK⊂ΓC,h

1
6ϕ(t,xfK ,1) ·

(
(ϕ(t,xfK ,2)−ϕ(t,xfK ,1))× (ϕ(t,xfK ,3)−ϕ(t,xfK ,1))

)
,

(6.29)
where xfK ,1,xfK ,2,xfK ,3 ∈ fK are the corners of the face fK of the cell K [176].

Algorithm 2 Elastodynamics with circulatory feedback
Require: ûn

Set un,0 = un and m = 0
Get initial pressure pn,0 from circulatory model
repeat
Calculate un,m+1 from un,m, pn,m by (6.28)
Update Circulatory model with VC(ϕn(Ωh))
Set m = m+ 1

until |VC(ϕn(Ωh))− VC| < ε for C ∈ {LV,RV,LA,RA}
return ûn+1 = ûn,m
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6.6.2 Transfer operators

In the coupled system proposed in the previous section, the finite element spaces Slv ,p(ΩEP,h)
and Slu,p(Ωh) are not specified to be of the same polynomial degree or mesh-size. This is
intended, as the electrophysiology equations (6.17a)–(6.17e) typically require very small
step sizes and fine triangulations of the underlying mesh (see e.g. [114]). On the other
hand, as we will see in the following chapter, cardiac elasticity (6.17f) performs well even
for coarse meshes and broad time steps, but quadratic polynomials should be used. From
an efficiency standpoint, it is unsuitable for coupled system to fully operate with quadratic
(or higher order) elements on fine space and time discretizations.
For this reason, we allow different refinements of ΩEP,h and Ωh and different polynomial
degrees on their respective finite element spaces. This however complicates the inclusion
of F̂ = Dû in (6.17e) and γ̂f in (6.17f).

Definition 6.61: Let ΩEP ⊂ Ω and Ωh, ΩEP,h be their respective triangulations. We call

T vu : Slu,p(Ωh ∩ ΩEP,h)→ Slv ,p(ΩEP,h) , Tu
v : Slv ,p(ΩEP,h)→ Slu,p(Ωh)

transfer operators between the two corresponding finite element spaces.

Such transfer operators are heavily used when applying adaptive or multiscale meth-
ods [120]. Within our framework, it is sufficient to choose two basic transfer operations.
Let Ωh be a given triangulation of Ω. We always assume that ΩEP,h is generated by taking
a subset of Ωh and further refining this set to the desired grid size. This process ensures
that the nodalpoints on ΩEP of the coarse mesh are a subset of the fine mesh, i.e.,

Nh ∩ ΩEP ⊂ NEP,h . (6.30)

The assumption makes the following approach applicable:

Definition 6.62: Let θh ∈ Slv ,p(ΩEP,h). The transfer operator from ΩEP,h to Ωh is defined
by the projection

(Tu
v θh)(x) :=

θ̂h(x) , x ∈ Nh ,

0 , else .

We later only use this operator on γ̂f . Since the non-excitable tissue Ω\ΩEP does not
contract actively, it is reasonable to impose γf = 0 on Nh\NEP,h.

Definition 6.63: Let θh ∈ Slu,p(Ωh). The transfer operator from Ωh to ΩEP,h is defined
by the interpolation

(T vuθh)(x) := ΠK
h (θh(x)) , x ∈ K ⊂ Ωh ,

where ΠK
h defines the linear interpolation from the nodal points in K.
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Algorithm 3 Coupled time stepping
Require: Tstart, Tend

Calculate prestress P0 by as solution of (5.22)
Set N > 0, M > 0 and t0 = Tstart, tN = Tend Choose û0 = 0
for n = 0 ; n < N ; n+ + do
Transfer ûnv = T vuû
Calculate v̂n+1, ŵn+1, ĉn+1, k̂n+1, γ̂f

n+1 on [tn, tn+1] with M timesteps using ûnEP

with the electrophysiological Algorithm 1
Transfer Ĝγf

n+1
f ,u = Tu

v γ̂f
n+1

Calculate ûn+1 as solution of (6.19b) with Ĝγf

n+1
f ,u

end for
return v̂N , ŵN ĉN , k̂N , γ̂f

N , ûN

This ensures T vuθh(x) = θh(x) for x ∈ Nh ∩NEP,h. The remaining nodalpoints NEP,h\Nh

are then interpolated according to ΠK
h . This concludes the formulation of the segregated

algorithm 3.
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CHAPTER

SEVEN

NUMERICAL EXPERIMENTS

To conclude the mathematical modeling and approximation of the human heart,
this chapter presents numerical simulations of commonly used geometries. Af-
ter defining some error quantities for application in cardiac elastodynamics,
the static elasticity problem is analyzed. The chapter concludes with first nu-
merical convergence results for dynamic problems on a left ventricle.

The presented numerical experiments have been implemented using the parallel finite ele-
ment framework M++[24]. The framework as well as the applications for cardiac elasticity
described in this chapter are open-source projects and all results were obtained with ver-
sion 1.0.0 of the CardMech framework [59]. The data of the results is accessible via this
repository as well.

7.1 Error quantities

There are no analytical solutions of finite elasticity problems for the non-linear materials
used within this work. Therefore, we cannot evaluate usual error quantities including the
exact solutions, i.e.,

‖u∗ − uh‖2 ,

where u∗ is the exact solution.

Definition 7.1: Let {Ωh} be a series of uniform mesh refinements with h→ 0. We call κ
the convergence rate of an error quantity e, if

e(h) = hκC asymptotically for h→ 0

with C independent of h.
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Let Ωh,0 be an initial triangulation of Ω. The refinement of Ωh,0 is performed by a bisection
of all edges of Ωh,0, yielding a new triangulation Ωh,1. Each refinement Ωh,l is generated
by l iterative bisections of Ωh,0 and we call l the level of our refinement. Then {Ωh,l} is a
series of uniform mesh refinements. If Ωh,l consists of N tetrahedra, then Ωh,l+1 contains
N · 23 tetrahedra and its maximum cell diameter h is halved.

Remark 7.2: The optimal convergence rate κL2 for ‖·‖2 is given by p+ 1, where p is the
polynomial degree of the finite element space Sp,k(Ωh). [16]

Since we cannot compute analytical convergence rates, we have to deduce them from the
error quantities of our simulations. From these observation, we state an experimental order
of convergece (EOC).

Definition 7.3: Let el, el+1 be error quantities on subsequent levels. We call

Rl = el
el+1

=
(
hl+1
hl

)EOC
=
(1

2

)EOC

the error ratio.

The error ratio gives us a simple tool to estimate the convergence rates from error quan-
tities. For the evaluation of cardiac simulations, two such error quantities are of special
interest.

Definition 7.4: Let Γendo,h,Γepi,h ⊂ Γ be the endocardial and epicardial wall, respectively.
For each xiendo ∈ Γendo,h, we set xiepi ∈ Γepi,h to be its nearest neighbour on the epicardial
wall, i.e.,

xiepi = argmin
{∥∥∥xiendo − x

∥∥∥ : x ∈ Γepi,h
}
.

We call

S(u) :=
Nh(Γendo,h)∑

i=1

(
xiendo − xiepi

ϕ(xiendo)−ϕ(xiepi)
− 1

)
the mean strain of the myocardial wall.

The myocardial strain at a given point characterizes the relative change in wall thick-
ness. The mean strain therefore can be interpreted as an averaged increase or decrease in
thickness.

Definition 7.5: Consider a hyperelastic material with first Piola-Kirchhoff stress P. For
a displacement u : Ω→ R3, we call

P (u) :=
(∫

Ω
P(F) : Du dV

) 1
2
, F = I + Du

the strain energy of u.
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For all experiments, we choose the volumetric stored energy function characterized by
Ciarlet [38, section 4.10]

Wvol(J) = λvolJ
2 − µvol log(J) . (7.1)

7.2 Evaluation of the passive materials

To validate the uncoupled elasticity equations, we recreate Problem 2 from the validation
experiments performed in [99]. An idealized ventricle, given in the form of a cut ellipsoid,
is inflated with a pressure p > 0.

Figure 7.1: Undeformed (left) and deformed (right) ellipsoid geometry ΩEll

To create Ω, consider the parametrization

x =
(
rs sin u cos v rs sin u sin v rl cosu

)>
and the three surfaces

• endocardial surface: rs = 7, rl = 17, u ∈ [−π, arccos 5
17 ], v ∈ [−π, π],

• epicardial surface: rs = 10, rl = 20, u ∈ [−π, arccos 5
80 ], v ∈ [−π, π],

• the base plane: z = 5:

The truncated ellipsoid is then given by the volume within these three surfaces. We denote
this domain by ΩEll. The ellipsoid is fixated at the base plane and a static pressure ist
applied at the endocardial surface, i.e.,
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ΓD = {x ∈ ∂ΩEll : x3 = 5} ,

ΓN =

x ∈ ∂ΩEll : ∃ u ∈ [−π, arccos 5
17], v ∈ [−π, π] such that x =


7 sin u sin v
7 sin u sin v

17 cosu


 .

The problem is complemented with a fibre field f generated by the function

f(u, v) = N
(
∂x
∂u

(u, v)
)

sinα(t) + N
(
∂x
∂v

(u, v)
)

cosα(t) ,

where N(v := v
‖v‖) and α(t) = 90 − 180t, where t ∈ [0, 1] ranges linearly from 0 on the

endocardium to 1 on the epicardium. On ΩEll, we consider the static elasticity problem,
i.e. ρ ≡ 0. The variational formulation is given by

∫
ΩEll

DFWP(F) : Dφ dV =
∫

ΓN
−pn dA ,

The ellipsoid is inflated by applying a pressure of p = 10kPa on the endocardial surface.
We examine the results for three different materials: The Guccione and Holzapfel-Ogden
materials presented in section 4.4 and the linearized material formulation already indicated
in (6.4), i.e.,

WLin(F) = 2µε+ λ tr(ε)I , ε = sym(Du) = sym(F− I) .

For the three materials, we choose the parameters according to Table 7.1.

Material Isochoric Parameters
Linear λ = 20kPa µ = 10kPa
Guccione C = 20kPa bf = 1 bs = 1 bf ,s = 1
Holzapfel-Ogden a = 1

2kPa af = 10kPa as = 1kPa b = 10 bf = 15 bs = 10

Table 7.1: material parameters for the inflation problem

Additionally, each of the materials is combined with the volumetric penalty function (7.1)
with the parameters defined in table 7.2.
We simulate the three materials on levels l = 0, . . . , 4 for polynomial degrees p = 1, 2.
To estimate the error, we use the solution on the finest mesh up,4 as a reference for the
coarser meshes for their respective polynomial degree p. We show in table 7.3 the results
for the linearized material, in 7.4 the results for the Guccione material and in 7.5 the
results for the Holzapfel-Ogden material, along with the respective mesh size, degrees of
freedom (DoF) and the error ratios.
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Material Volumetric Parameters
Linear λvol = 0 µvol = 0
Guccione λvol = 20 µvol = 20
Holzapfel-Ogden λvol = 20 µvol = 20

Table 7.2: material parameters for the inflation problem

As indicated in remark 7.2, we expect a convergence rate of κ2 = p+ 1 in the L2-norm for
the linearized material. Similarly, we expect the convergence rate of κp = p in the strain
energy P . We can see that the error EOC approximates these convergence rates well for
linear finite elements. For quadratic elements, the EOC does not exceed 2 as we should
expect.

Level l = 0 l = 1 l = 2 l = 3
Cells 7 013 56 104 448 832 3 590 656
DoF 5 343 35 460 254 181 1 914 663

p = 1∥∥u1,l − u1,4∥∥
2 19.20536 6.54623 1.979646 0.485584

Rl 2.93 3.31 4.08
P (u1,l − u1,4) 30.16462 12.729176 6.389952 2.466499

Rl 2.37 1.99 2.59
p = 2

DoF 35 460 254 181 1 914 663 14 840 523∥∥u2,l − u2,4∥∥
2 1.741003 0.540143 0.170897 0.045165

Rl 3.22 3.16 3.78
P (u2,l − u2,4) 10.055046 6.98076 3.986164 2.104425

Rl 1.44 1.75 1.89

Table 7.3: Errors on the oriented ellipsoid with the linearized material WLin

The Guccione material is in accordance with the corresponding theory regarding conver-
gence rates for linear elements. Again, we notice that the EOC for quadratic elements is
not of expected order. The model however is not well-equipped to handle large unphysio-
logical external forces, such as the ones prescribed in this scenario.



112 Chapter 7. Numerical Experiments

Level l = 0 l = 1 l = 2 l = 3
p = 1∥∥u1,l − u1,4∥∥

2 10.474307 3.760976 1.139931 0.275482
Rl 2.78 3.3 4.14

P (u1,l − u1,4) 11.537844 4.659333 1.916432 0.665136
Rl 2.48 2.43 2.88

p = 2∥∥u2,l − u2,4∥∥
2 0.597854 0.173981 0.062065 0.018642

Rl 3.44 2.8 3.33
P (u2,l − u2,4) 2.300186 1.362046 0.732034 0.342045

Rl 1.69 1.86 2.14

Table 7.4: Errors on the oriented ellipsoid with the Guccione material WG

Level l = 0 l = 1 l = 2 l = 3
p = 1∥∥u1,l − u1,4∥∥

2 17.042173 7.28342 2.607279 0.843293
Rl 2.34 2.79 3.09

P (u1,l − u1,4) 84.451375 34.676808 117.625376 4.087412
Rl 2.44 0.29 28.78

p = 2∥∥u2,l − u2,3∥∥
2 4.471021 2.355663 0.877976

Rl 1.9 2.68
P (u2,l − u2,3) 20 992 404.81 11 668 675.71 1 024 209.89

Rl 1.8 11.39

Table 7.5: Errors on the oriented ellipsoid with the Holzapfel material WH-O
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However, the absolute error is reduced by two orders of magnitude on the coarsest mesh
when utilizing quadratic elements. With this observation, quadratic elements become
more feasible, as exemplary shown in table 7.6. Each calculation was done on 4096 cores
on the HoreKa supercomputer.

Discretization l = 3, p = 1 l = 1, p = 2∥∥up,l − up,4
∥∥

2 0.275482 0.173981
Time 217.06s 107.52s

Table 7.6: Computational times and the corresponding errors using WG

For the Holzapfel model, we begin by remarking that due to the increased computational
load, p = 2 was only refined to level 3. Nevertheless, the EOC follows a similar pattern
to the previous two materials considering the L2-norm Finally, we address the issue of P .
It is clear that no convergence estimates can be derived from the given data. This may
be due to the fact that this scenario is not a physiological one. The model of Holzapfel et
al. [85] is specifically designed to simulate the passive response of muscle tissue.

7.3 Elastodynamics in a left ventricle

We finish this work by providing a numerical example of coupled elastodynamics. We
use Algorithm 3 to solve the dynamic problem without pressure or traction boundary.
As domain Ω, we choose the left ventricle geometry provided by Kovacheva [96], which
was extracted from a full heart geometry, which in turn was created from MRI data.
This left ventricle geometry, which we will denote by ΩVen, is well suited for convergence
studies, as the coarse triangulation Ωh,0 only consists of 5 081 tetrahedra, while retaining
a physiological shape.
As a time interval, we choose the length of a typical heartbeat, i.e., 0.8s. We fixate ΩVen

at the base ΓD. The external current function is given by

Iext(t,x) =

30 , t < 0.3 and
∣∣∣x− (8.8,−38.6,−4.8)>

∣∣∣ < 15 ,

0 , else .

We provide a full set of parameters in table 7.7. We run this problem for the linearized
material and the Guccione material with the parameters given in table 7.8, where we use
the same parameters for WG as Kovacheva [96].
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Cm χ µ α RFL

0.01 · 10−6 F
mm1 140 mm−1 16 6 see [135]

ρ βN γN

0.001082 0.25 0.5

w1(0) w2(0) w3(0) w4(0) w5(0) w6(0)
0.002980 1.0 0.9877 0.975 0.011 0.0056

v(0) cCa(0) σf σs = σt

−84.57 mV 0.0000002 mol
l 0.0001334177215Smm−1 0.00001760617761Smm−1

Table 7.7: Problem parameters

At every timestep tn, n = 0, . . . , NT , we calculate the L2-norm ‖u‖h, the mean strain
S(uh), the strain energy P (uh) and the cavity volume VLV(ϕh(ΩVen)). As error ratios we
then choose

El =

√√√√ 1
NT

NT∑
0

(el(t)− e4(t))2 ,

where el represents one of the four mentioned quantities.

Material Isochoric Parameters Volumetric Parameters
Linear λ = 0.6kPa µ = 0.3kPa λvol = 0 µvol = 0
Guccione C = 0.313kPa bf = 17.8 bs = 7.1 bf ,s = 12.4 λvol = 20 µvol = 20

Table 7.8: Material parameters for the contraction problem

We again run the simulations for l = 0, . . . , 4 using the algorithm 3 presented in the
previous chapter. Due to computational restrictions, we had to omit l = 4 for the Guccione
material with quadratic elements. As time discretization, we choose ∆tN = 0.005s for the
mechanical timestep and ∆tM = 0.0005s. All simulations were performed on the HoreKa
supercomputer using 4096 CPU cores. The computational times are shown in table 7.9
and the simulation results are shown in tables 7.10 and 7.11.

Level l = 0 l = 1 l = 2 l = 3
CPU-Time (h) 0:11:32 0:21:06 0:50:05 4:15:13
CPU-Time (s) 692 1266 3005 144913
CPU-Time per timestep (s) 4.3 7.9 18.8 905.7

Table 7.9: Computational times for quadratic elements using WG
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For linear elements, we see for both materials an EOC of 1 in the L2-norm. The remaining
error quantities could indicate convergence estimates, but are highly dependent on the used
material. For the linearized material, P seems to have the same rate as ‖·‖2, while for the
Guccione material this could be the case for S and VLV.

Level l = 0 l = 1 l = 2 l = 3 l = 4
Cells 5 081 40 648 325 184 2 601 472 20 811 776
DoF 5 085 30 471 203 136 1 462 842 11 054 190

p = 1∥∥u1,l − u1,4∥∥
2 32.726239 19.324948 7.454747 3.111835

Rl 1.69 2.59 2.4
S(u1,l − u1,4) 18.503477 9.941036 10.102623 8.476877

Rl 1.86 0.98 1.19
P (u1,l − u1,4) 3.494198 2.209847 0.990644 0.502451

Rl 1.58 2.23 1.97
(VLV(ϕ1,l)− VLV(ϕ1,4)) 0.793991 0.448844 0.234289 0.191357

Rl 1.77 1.92 1.22
p = 2

DoF 30 471 203 136 1 462 842 12 601 472 85 840 086∥∥u2,l − u2,4∥∥
2 53.264549 47.93663 38.754144 23.091254

Rl 1.11 1.24 1.68
S(u2,l − u2,4) 86.985761 76.389141 61.918506 36.752958

Rl 1.14 1.23 1.68
P (u2,l − u2,4) 9.047777 8.116332 6.548042 3.895424

Rl 1.11 1.24 1.68
(VLV(ϕ2,l)− VLV(ϕ2,4)) 2.289616 2.029508 1.649831 0.987749

Rl 1.13 1.23 1.67

Table 7.10: Errors on the left ventricle with the linearized material WLin
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Level l = 0 l = 1 l = 2 l = 3
Cells 5 081 40 648 325 184 2 601 472
DoF 5 085 30 471 203 136 1 462 842

p = 1∥∥u1,l − u1,4∥∥
2 133.158448 105.236365 54.853488 19.42377

Rl 1.27 1.92 2.82
S(u1,l − u1,4) 217.510795 152.796725 70.952586 25.472463

Rl 1.42 2.15 2.79
P (u1,l − u1,4) 233.016003 225.692899 208.2366 173.905587

Rl 1.03 1.08 1.2
(VLV(ϕ1,l)− VLV(ϕ1,4)) 6.691143 4.920864 2.395486 0.867453

Rl 1.36 2.05 2.76
p = 2

DoF 30 471 203 136 1 462 842 12 601 472∥∥u2,l − u2,4∥∥
2 55.052192 43.646671 26.495009

Rl 1.26 1.65
S(u2,l − u2,4) 89.960057 69.249928 42.396271

Rl 1.3 1.63
P (u2,l − u2,4) 12.842839 10.557681 6.608365

Rl 1.22 1.6
(VLV(ϕ2,l)− VLV(ϕ2,4)) 2.382011 1.848279 1.132776

Rl 1.29 1.63

Table 7.11: Errors on the left ventricle with the Guccione material WG
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(a) Evolution of v from v = −84mV (blue) to v ≈ 35mV (orange)

(b) Evolution of γf from γf = 0 (red) to γf ≈ 0.18 (blue)

(c) Evolution of |u| from |u| = 0 (blue) to |u| ≈ 4 (green)

Figure 7.2: Evolution of the different quantities at the timesteps t = 0, 0.3, 0.5
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CHAPTER

EIGHT

CONCLUSION

This final chapter concludes the thesis by giving an overview of the discussed
topics and presenting some further research applications.

8.1 Summary

The goal of this work was the precise mathematical description of the full cardiac elasto-
dynamical problem, its classification within the analytical and numerical theory and the
development of a numerical method, which allows for a proper computational investigation
of the system as a whole and its components.
The mathematical representation of kinematic motion of continuum bodies was introduced
by using fundamental concepts of continuum mechanics on manifolds. This framework
allowed not only for the description of the elastodynamic balance principles, but later
helped properly formulating the electrophysiological model on the reference domain as well.
We then established hyperelasticity of materials as a special case of constitutive equations.
Using invariant theory, the concept of anisotropy and the special case, orthotropy, for
fibre-reinforced materials was provided. This concept enabled the transfer of existence
theorems in elasticity from isotropic materials to fibre-reinforced materials. Additionally,
incompressibility and polyconvexity of materials used in cardiac mechanics were discussed.
We have seen that volumetric splits should only be applied on the isotropic part of a stored
energy function and that the commonly used Guccione material is not polyconvex.
From the physiological observations of cardiac functions, mathematical models of cel-
lular excitation propagation, sarcomere force generation, excitation potential diffusion,
circulatory feedback and necessary boundary condition were derived. For each system,
reasonable assumptions for proper model reduction were discussed and their interaction
outlined, resulting in a coupled system of ordinary and partial differential equations. This
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coupled system was then analyzed and a corresponding variational formulation derived.
Suitable discretizations in space and time were outlined and applied on the weak formu-
lation. Finally, a segregated approximation scheme for the discrete coupled system was
presented.
We then performed numerical experiments with the presented segregated scheme. To
validate the implementation of the elastodynamical setting, we evaluated a benchmark
example with the findings from [99]. The static problem showed that linearized materials
conform to the expected convergence results, while the non-linear materials deviate from
desired rates. Within the context of dynamical problems, we showed that the space dis-
cretizion of Ωh alone is not enough to improve rates of convergence. In both cases, the
absolute error of quadratic elements on the coarsest mesh refinement was lower than the
corresponding values for linear elements on finer triangulations, constituting the major
advantage of quadratic elements in cardiac elasticity.

8.2 Outlook

Finite element simulations of cardiac elastodynamics are typically done using either linear
or quadratic Lagrangian elements [47, 63] or mixed elements [13, 61], the latter implying
incompressibility of the cardiac tissue. The modularity of our finite element framework can
be used to implement a mixed method as well, allowing for a numerical comparison of the
two common approaches. Moreover, to our knowledge, there exists no research on more
involved space discretization schemes. Two examples of such methods are discontinuous
Galerkin [80] and enriched Galerkin [174] methods.
With the transfer operators presented in section 6.6, it is straightforward to include the
deformation gradient into the monodomain equation. The effect of considering the weak
form of (5.28) is not only interesting from a numerical standpoint, but allows a more
accurate way to model the transmembrane current [72].
Of course the numerical experiments presented in this work only covered few aspects
which affect the overall system. The dependency on boundary conditions, especially if
they are considered in their proper ”undead” formulation, the feedback of the circulatory
system and the interaction between electrophysiological and mechanical systems have to
be investigated in much more detail.
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A

THE BEELER-REUTER CELL MODEL

The ventricular cell model introduced by Beeler and Reuter in [27] is defined by the
dimensionless vector w = (w1, . . . , w6) = (d, f, h, j,m, x1) ∈ [0, 1]6 and the concentration
variable c = (cCa) ∈ R+, implying dw = 6 and dc = 1. The transmembrane voltage v is
measured in mV. The total ionic current Iion(v,w, c) is the sum of the two inward currents

Is(v, c, d, f) = gsdf(v − Es(cCa)) , INa(v,m, h, j) = (gNam
3hj + gNaC)(v − ENa) ,

and the two outward currents

Ix1(v, x1) = x1
0.8
(

exp(0.04(v + 77))− 1
)

exp(0.04(v + 35)) ,

IK(v) =
1.4
(

exp(0.04(v + 85))− 1
)

exp(0.08(v + 53)) + exp(0.04(v + 53)) + 0.07(v + 23)
1− exp(−0.04(v + 23)) ,

with the reverse potential Es(cCa) = −82.3 − 13.0287 log(cCa) and constant ENa, both
meaured in mV. In summary, the total ionic current is given by

Iion(v,w, c) = Is(v, cCa, d, f) + INa(v,m, h, j) + Ix1(v, x1) + IK(v) .

Corresponding to [27], the constants are set to

gNa = 4S/cm2 , gNaC = 0.003 S/cm2 , ENa = 50mV , gs = 0.09 S/cm2 . (A.1)

Depending on positive opening and closing rates αj(v) and βj(v)

αj(v) = C1(αj) exp(C2(αj)(v + C3(αj))) + C4(αj)(v + C5(αj))
exp(C6(αj)(v + C3(αj))) + C7(αj)

, (A.2)

βj(v) = C1(βj) exp(C2(βj)(v + C3(βj))) + C4(βj)(v + C5(βj))
exp(C6(βj)(v + C3(βj))) + C7(βj)

(A.3)
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with the parameters C1, . . . , C7 ≥ 0 shown in Table A.1, the evolution of w is determined
by

Gw(v,w) =
(
Gj(v, wj)

)
j=1,...,6

with Gj(v, wj) = αj(v)− wj
(
αj(v) + βj(v)

)
, (A.4)

for j = 1, . . . , 6. Remark that for the Beeler-Reuter cell model the gating variables are
not directly depending on the intracellular calcium ion concentration. The evolution cCa

is modeled by

∂tcCa = GcCa(v, cCa, d, f) = −10−7Is(v, cCa, d, f) + 0.07(10−7 − cCa) . (A.5)

C1 C2 C3 C4 C5 C6 C7

αm 0 0 47 -1 47 -0.1 -1
βm 40 -0.056 72 0 0 0 0
αh 0.126 -0.25 77 0 0 0 0
βh 1.7 0 22.5 0 0 -0.082 1
αj 0.055 -0.25 78 0 0 -0.2 1
βj 0.3 0 32 0 0 -0.1 1
αd 0.095 -0.01 -5 0 0 -0.072 1
βd 0.07 -0.017 44 0 0 0.05 1
αf 0.012 -0.008 28 0 0 0.15 1
βf 0.0065 -0.02 30 0 0 -0.2 1
αx1 0.0005 0.083 50 0 0 0.057 1
βx1 0.0013 -0.06 20 0 0 -0.04 1
Unit 1

ms
1

mV mV 1
mV·ms mV 1

mV -

Table A.1: Constants αj and βj of the gate equations in the Beeler-Reuter model
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B

MATERIAL DERIVATIVES

To properly compute the nonlinear materials introduced in section 4.4, we need the first
and second derivatives of their respective stored energy function WP. As a convenience
for anyone interested in simulating cardiac elasticity, we provide the formal first and
second derivatives of the Guccione material WG and the Holzapfel-Ogden material WH-O.
The derivatives are given in their native arguments E or C, respectively. To deduce the
corresponding derivatives with respect to F, we provide two basic results. We only outline
the proofs and leave the formal calculations as an exercise to the reader.

Lemma B.1: Consider a hyperelastic material with stored energy functionals

W (F) = W̃ (C) = Ŵ (E) , C = F>F , E = 1
2(C− I) .

Then their derivatives follow the relation

DFW (F) = 2DCW̃ (C) = DEŴ (E) .

Proof. We first note that, since W̃ and Ŵ are defined on R3×3
sym, their derivatives are

symmetric. The result then follows by using the chain rule on

DFW (F)[H] = DFW̃ (F>F)[H] or DFW (F)[H] = DFŴ (1
2(F>F− I))[H] ,

respectively.

Lemma B.2: Consider a hyperelastic material with energy functionals as in lemma B.1.
Their respective second derivatives then follow the relation

D2
FW (F)[G; H] = 2DCW̃ (C)[sym(G>H)] + 4D2

CW̃ (C)[sym(F>G); sym(F>H)]

= DEŴ (E)[sym(G>H)] + D2
EŴ (E)[sym(F>G); sym(F>H)] .

Proof. The result follows from direct calculations using the derivatives from lemma B.1,
the product rule and the chain rule similar to the previous proof.
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B.1 Guccione Material

Consider the Guccione material from definition 4.46 with stored energy function

ŴG(E, f) = 1
2CG (exp (Q(E, f))− 1) ,

where Q is given in global coordinate form

Q(E, f) := 4c1
(
f>Ef

)2
+ 4c2 tr

(
f>E>Ef

)
+ 4c3 tr

(
E>E

)
.

The derivatives are then given by

DEŴG(E, f)[H] =
(1

2CG exp (Q(E, f))
)

DEQ(E, f)[H] ,

D2
EŴG(E, f)[H,G] =

(1
2CG exp (Q(E, f))

)(
DEQ(E, f)[H] DEQ(E, f)[G] + D2

EQ(E, f)[H; G]
)
,

where the derivatives of Q are

DEQ(E, f)[H] = 8c1
(
f>Ef

) (
f>Hf

)
+ 8c2 sym

(
Eff>

)
: H + 8c3E : H

= 8 tr
((
c1
(
f>Ef

)
f f> + c2 sym

(
Eff>

)
+ c3E

)>
H
)
,

D2
EQ(E, f)[H; G] = 8c1

(
f>Hf

) (
f>Gf

)
+ 8c2 sym

(
Hff>

)
: G + 8c3H : G

= 8 tr
((
c1
(
f>Hf

)
f f> + c2 sym

(
Hff>

)
+ c3H

)>
G
)
.

B.2 Holzapfel-Ogden Material

Consider the Holzapfel-Ogden material from definition 4.50 with the stored energy function

W̃H-O(C, f , s) = a

2b
[
exp

(
b(tr(C)− 3)

)
− 1

]
+
∑
`=f ,s

a`
2b`

[
exp

(
b` (ι4,`(C))2

)
− 1

]
+ af ,s

2bf ,s

[
exp

(
bf ,s

(
ι8,f ,s(C)

)2)− 1
]
,

with ι4,`(C) = 〈`>C` − 1〉 for ` = f , s and ι8,f ,s(C) = 1
2(f>Cs + s>Cf) = C sym(fs>),

where we use modified invariant formulation as indicated in remark 4.66.

Remark B.3: As explained in remark 4.51, the invariant ι8,f ,s is zero when using mu-
tually orthogonal fibre directions f , s, t. We provide the full description for the sake of
completeness.

We rewrite W̃H-O = W̃ι1 + W̃ι4,f + W̃ι4,s + W̃ι8 with

W̃ι1(C) = a

2b
[
exp

(
b(tr(C)− 3)

)
− 1

]
,

W̃ι4,`(C, `) = a`
2b`

[
exp

(
b` (ι4,`(C))2

)
− 1

]
, ` = f , s ,

W̃ι8(C, f , s) = af ,s
2bf ,s

[
exp

(
bf ,s

(
ι8,f ,s(C)

)2)− 1
]
.
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The first and second derivative of the isotropic part are given by

DCW̃ι1(C)[H] = a

2
[
exp

(
b(tr(C)− 3)

)
− 1

]
tr(H) ,

D2
CW̃ι1(C)[H; G] = a

2
[
exp

(
b(tr(C)− 3)

)
− 1

]
tr(H) tr(G) ,

the derivatives of the anisotropic part for ` = f , s are given by

DCW̃ι4,`(C, `)[H] = a`
[
exp

(
b` (ι4,`(C))2

)
− 1

]
ι4,`(C)

(
`>H`

)
,

D2
CW̃ι4,`(C, `)[H; G] = a`

[
exp

(
b` (ι4,`(C))2

)
− 1

] (
2b` (ι4,`(C))2 + 1

) (
`>H`

) (
`>G`

)
,

and, finally, for the invariant ι8,f ,s we get

DCW̃ι8(C, f , s)[H] = af ,s
2
[
exp

(
bf ,s

(
ι8,f ,s(C)

)2)− 1
]
ι8,f ,s(C)

(
f>Hs + s>Hf

)
,

D2
CW̃ι8(C, f , s)[H; G] = af ,s

4
[
exp

(
bf ,s

(
ι8,f ,s(C)

)2)− 1
] (

2bf ,s
(
ι8,f ,s(C)

)2 + 1
)

·
(
f>Hs + s>Hf

) (
f>Gs + s>Gf

)
.
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