
Property Types for Mutable Data Structures
in Java

Master’s Thesis by

Joshua Bachmeier, B. Sc.

at the kit Department of Informatics
Institute of Information Security and Dependability (kastel)

Reviewer: Prof. Dr. Bernhard Beckert
Advisor: Florian Lanzinger, M. Sc.
Second advisor: Dr. Mattias Ulbrich
Third advisor: Dr. Werner Dietl∗

1st November 2021 – 1st August 2022

∗University of Waterloo, Canada

Karlsruher Institut für Technologie
Kit-Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I hereby declare that the work presented in this thesis is entirely my own. I confirm
that I specified all employed auxiliary resources and clearly acknowledged anything
taken verbatim or with changes from other sources. I further declare that I prepared
this thesis in accordance with the rules for safeguarding good scientific practice at
Karlsruhe Institute of Technology (kit).

Karlsruhe, 1st August 2022

. .
(Joshua Bachmeier, B. Sc.)

Abstract

Property Types are a kind of user-defined refinement type about variables and fields
in a program. They are verified by discharging as many properties as possible using a
scalable type checker. The remaining assertions are forwarded to a less scalable but
more powerful deductive verification tool. However, the design and implementation
by Lanzinger et al. cannot function in the presence of aliasing and mutability.

In this thesis, we find that property checking can be performed safely on mutable
data structures provided exclusive mutable access to the referenced object, which we
define as property-safety. We study different approaches to aliasing control, including
uniqueness, ownership and permissions. Based on this research, we present the
Exclusivity Type System, which can be used to check the property-safety of program
variables and class fields. Using flow-sensitive type refinement, we develop Mutable
Property Types, which can track changes in a variable’s property type over time.
Impure methods can be annotated to specify how they change the Property Types of
their receiver and arguments. We explain how the original Property Checker’s program
translation can be adapted to include correct assertions about the pre- and post-types
of each method. We present a prototypical implementation of the Exclusivity Checker
for Java programs using the Checker Framework.

Our work provides many insights into the nature of property type verification on
mutable data structures and we devise the theoretical groundwork for performing this
verification. To corroborate the reasonableness of the presented approach, we suggest
a thorough analysis of our systems through formal proofs.

v

Contents

1 Introduction 1
1.1 Reference Aliasing and Mutability . 2
1.2 Approach . 2
1.3 Overview . 3

2 Foundations 5
2.1 Checker Framework . 5
2.2 Property Types . 7
2.3 Field Assignment Language . 9
2.4 Type Contexts . 12

3 Exclusivity 15
3.1 Requirements for Property Types . 15
3.2 Exclusivity Type System . 16

3.2.1 Capabilities and Lattice . 16
3.2.2 Type Rules . 18

3.3 Well-Typedness . 23

4 Mutable Property Types 25
4.1 Property Refinement . 25
4.2 Property Safety . 26
4.3 Adapted Program Translation . 27
4.4 Correctness . 28

5 Implementation 29
5.1 Exclusivity Checker . 29
5.2 Outlook: Integration with Property Checker 30
5.3 Test cases . 31

6 RelatedWork 33
6.1 Aliasing Mitigation . 33

6.1.1 Uniqueness . 33
6.1.2 Ownership . 35
6.1.3 Combinations of Ownership and Uniqueness 36
6.1.4 Permissions . 37

6.2 Pseudo-Languages . 38

vii

Contents

7 Conclusion 39
7.1 Discussion . 39
7.2 Future Work . 40

List of Figures 43

List of Tables 45

List of Type Rules 47

List of Definitions and Theorems 49

List of Listings 51

Bibliography 53

viii

1 Introduction

In computer programming, there are many ways to perform static verification (i. e. at
compile time) of formal correctness guarantees. The two most prominent approaches,
both in research and practice, are type checking and deductive verification.

Most type systems can be naturally integrated with programming languages, scale
very well and impose comparatively little overhead on the programmer. These
advantages largely stem from the fact that type systems are decidable. However,
decidability is bought at the cost of precision: Type checkers usually only check for
a conservative approximation of the issue they are intended to protect from. That
is, a type checker might reject programs as unsafe that would in reality never emit
the problematic behaviour at run time (such errors are called false positives). This
usually occurs in cases where the observation that the error in question never occurs
depends on a complex dynamic condition that can only be known at run time.

In contrast, methods for deductive verification can be precise and reject exactly
that set of programs that emit the problematic behaviour. The downside of deductive
verification tools is that they do not scale well and impose a significant cognitive
overhead. Programs need to be elaborately annotated using special formal specification
languages, proving is often interactive and in most cases only semi-decidable.

In the context of Java [Gos+21], an example for a type system based approach to
generalised program verification is the Checker Framework [Pap+08], which we use in
our work; an example for a deductive verification is the KeY tool [Ahr+16].

Lanzinger et al. [Lan+21] introduce property types, as system that combines the
scalability of type checking with the precision of deductive verification. In their work,
declarations in programs are annotated with so called property types, which express a
certain formal guarantee about the annotated object. These programs are processed
using type checking techniques and any properties that the type system can already
guarantee to be valid are removed from the program. The remaining properties
(which might contain false positives) are translated into formal specifications and
the thus annotated program can be further analysed using deductive verification
techniques, possibly discharging further properties and leaving only those that are
truly problematic. The Property Checker is implemented for Java using the Checker
Framework to implement the type checker and jml [Lea+13] to discharge unverifiable
properties to KeY.

However, the work of Lanzinger et al. suffers from a severe limitation: Only deeply
immutable objects may be annotated by property types, because assignment to the
field of an object might invalidate the property, which cannot be handled by their
system. As virtually any real-world program in imperative programming languages
employs mutability in some way, solving this problem is paramount.

1

1 Introduction

void f() {
@MinLength(5) List l5 = ...;
@MinLength(4) List l4;

l4 = l5;

l4.removeFirst(); // -> l4: @MinLength(3)
}

Listing 1.1: Property types on mutable objects in the presence of aliasing.

1.1 Reference Aliasing and Mutability

To be precise, the problem is not mutability on its own, but mutability in the presence
of aliasing. Reference aliasing describes a situation in which two references (e. g. local
variables in a method or fields of a class) refer to the same memory location (object).
In this case, one reference might be used to modify the object and the change will be
visible to the other reference.

Listing 1.1 illustrates how this is problematic for property types. Here l5 is
annotated to contain at least 5 elements, l4 is annotated to contain at least 4
elements. Then, l5 is assigned to l4, which is valid, since l5 also contains at least
4 elements. In the next step however, an element is removed from l4. This is no
problem for l4, since the property of l4 is known at that point and can be updated
to reflect the change. However this line affects l5 in the same way, which is not
syntactically deducible. While it would even be possible for a sufficiently sophisticated
type system to detect the aliasing of l4 and l5, a situation where this is not possible
can easily be imagined, e. g. if an l5 and l4 were fields of completely different objects.

This possible invalidation of foreign properties is the core problem of verifying
property types for mutable data structures.

1.2 Approach

We aim to remedy this by working toward a complete solution to realise changing
property types about mutable data structures. A high-level overview of our approach
is shown in fig. 1.1. On a theoretical level, we establish a universal assumption that is
required to hold about a reference for it to be safely annotated with a property. The
assumption is verifiable by a type checker. Abstractly, it guarantees exclusive mutable
access to the object behind a reference, thereby asserting that any property maintained
by the holder of the reference cannot be invalidated through a foreign reference. By
exposing the assumption, we achieve modularity: Different type systems of varying
complexity and precision might be used to verify the assumption. There already exist
a multitude of different approaches that could be used to achieve exclusive mutability,
which we discuss in this thesis.

2

1.3 Overview

Check property
type assumption

Process property
type transitions

Property
Checker

Figure 1.1: Simplified pipeline for modular mutable property type checking (see fig. 5.1
for detailed version).

The next issue lies in the very nature of mutability: The objects and therefore
their properties can change. Consider again the example from listing 1.1: The call
l4.removeFirst() changes l4’s property. To accommodate this fact, we propose a
syntax to specify how a method affects the properties of its parameters. We explain
how a program annotated with such property transitions can be translated so that it
may be processed by Lanzinger’s property-checking pipeline, with some adaptations to
their system. Thereby, one can take full advantage of their combination of scalability
and precision.

1.3 Overview

In this thesis, we answer the question of how non-trivial type properties can be verified
in the presence of mutability and reference aliasing and how mutation and reference
sharing need to be restricted to enable sound property verification. We also determine
how this can be realised while still being able to discharge properties not verifiable by
the type system to a deductive verification mechanism. The key contributions of our
work are the following:

1. We expose a universal assumption for mutable property types that constitutes a
type-system-verifiable assertion about references. We thereby achieve modularity:
Different systems to verify the assumption can be combined with different system
for the verification of program properties.

2. We propose a simple Exclusivity Type System that verifies this assumption
and can also be used on its own as a system to prevent bugs induced by
reference-aliasing. For this, we explicitly formalise rules for flow-sensitive type
refinement, basing well-typedness on applicability of valid refinements and
discuss the advantages and disadvantages of this unusual approach. We supply
a prototypical implementation for Java using the Checker Framework.

3. We present mutable property types, a concept of modelling changing type proper-
ties using flow-sensitive type refinement that can be naturally integrated with
the property types of Lanzinger et al.

4. We give a thorough survey of available work on aliasing control and access
management in program verification. We organise the proposed systems based
on methodology and discuss how they relate to each other.

We start by introducing the foundations upon which our work builds and establish
basic formalisms in chapter 2. In chapter 3, we develop the property type assumption

3

1 Introduction

and present the Exclusivity Type System. Building upon this, we define a formalism
to realise mutable property types in chapter 4. Our implementation of the Exclusivity
Checker and a description of how our work can be integrated with the original Property
Checker is given in chapter 4. We discuss related work in chapter 6, especially regarding
methods of alias mitigation. Finally, we conclude our work in chapter 7 and discuss
the advantages and disadvantages of our approach.

4

2 Foundations

In this chapter we establish the foundations that precede our work. While sections 2.1
and 2.2 summarise work done by others that we build upon, sections 2.3 and 2.4
introduce concepts and formalisms developed by us that will be used throughout this
thesis.

2.1 Checker Framework

The Checker Framework [Pap+08] is a framework for verifying additional type systems
for Java programs as a way to extend the standard Java type system. Examples
include a nullness, an interning and a tainting checker1. While the Checker Framework
ships many builtin checkers, its key feature is that it provides a framework and many
utilities for writing third-party checkers of custom type systems.

In this section, we give a brief overview of the Checker Framework and especially
those aspects most relevant to our work.

Java Annotations The Checker Framework builds upon the Java feature of Annota-
tions. Technically, annotations are a special kind of interface type. While they do not
directly affect program semantics, they provide information and instructions to tools
and libraries [Gos+21, sections 9.6 and 9.7].

Annotations may take zero or more parameters and are written as @Annotation,
@Annotation("value") or @Annotation(key="value", ...). When annotations
were introduced in Java 5, they could only appear before declarations, such as
local variables, instance fields, methods and method parameters. Java 8 extended
annotations so that they can now appear at any type use, such as instance creation
expressions, casts, implements clauses and throws clauses. With this, it is possible to
use annotations to implement pluggable type systems.

Listing 2.1 shows an example of an annotation definition and usage. Here, the
custom annotation @GreaterEq is supposed to express that the annotated variable
is greater than or equal to the given value. Java provides many builtin annotations,
such as @SupressWarnings or @Deprecated that provide meta information to the
compiler.

These annotations can then be processed by so called annotation processors which
may perform checks on the supplied annotations or transform the program based on
the annotations. The Checker Framework is one such annotation processor.

1A more complete list of checkers can be found in the Checker Framework Manual [Che22].

5

2 Foundations

Type Checking To implement type checking of custom type systems, the Checker
Framework employs a visitor pattern to scan each element in the abstract syntax
tree and verify its well-typedness. The Checker Framework provides the base class
BaseTypeChecker which already implements standard type-system behaviour such as
basic subtyping rules during assignment and can be subclassed to overwrite or replace
this functionality.

Dataflow Analysis Furthermore, the Checker Framework supports flow-sensitive type
refinement [Die+11; Aut22] That is, it can sometimes deduce an expression’s type
to be more specific than what the programmer originally declared. Consider the
example in listing 2.2, which is taken from the Checker Framework Manual. Here
myVar is declared as @Nullable String, but it is treated as @NonNull String within
the body of the if test. Dually to the type checking process, type refinement is
performed by visiting each element in the programs control flow graph and calling a
transfer function on the visited element.

Again, the Checker Framework provides a base class CFTransfer which implements
standard refinement behaviour, but can be overwritten to implement more advanced
refinement steps for custom type systems.

@interface GreaterEq {
int value();

}

class Foo {
@GreaterEq(28) int
add(@GreaterEq(17) int a, @GreaterEq(11) int b) {

return a + b;
}

}

Listing 2.1: Definition and usage of GreaterEq annotation.

@Nullable String myVar;
... // myVar has type @Nullable String here.
myVar.hashCode(); // warning: possible dereference of null.
...
if (myVar != null) {

... // myVar has type @NonNull String here.
myVar.hashCode(); // no warning.

}

Listing 2.2: Example code illustrating local type inference in Java.

6

2.2 Property Types

Type
Checker

Program
Translator

Deductive
Verifier

3 7 type errors 3 7 open
obligations

partial
typing info

program with
assertions

program with
property types

Figure 2.1: Property-type-checking pipeline [Lan+21].

2.2 Property Types

As described in the introduction, this thesis is the advancement of property types to
incorporate mutable data structures. Property types were introduced by Lanzinger
et al. [Lan+21] To combine expressive type systems with deductive verification. Since
Lanzinger’s work forms the groundwork upon which this thesis is built, we will give a
detailed explanation, especially of the theoretical constructs that are referred to in
this thesis.

The Property Checker works in three stages, which are shown in fig. 2.1, taken
verbatim from Lanzingers work. In the first stage, the type checker attempts to verify
the given property-type-annotated program. If it encounters any type errors, these
are passed to the program translator, which translates the program into an equivalent
program annotated with formal specifications in jml [Lea+13]. These specifications
encode the type properties that the type checker was unable to guarantee. In the
final stage, a deductive verifier, such as KeY [Ahr+16] attempts verify the formally
specified program. Any remaining open proof obligations in this stage might point to
an actual bug in the code, but could also stem from other reasons, such as a lack of
reasoning power of the prover or weak formal specification.

Since our work is almost exclusively concerned with the first stage, the type checking
phase, this summary focuses on the formal background of the type system established
by Lanzinger et al.

Property Qualifier Hierarchies property types are based on what is called property
qualifiers. Property qualifiers are built over a system of base types (i. e. Java types).
In the following the base type is denoted by Ts and the value of the object in question
is s. The semantics of a parameterised property qualifier @A can be subsumed as in
eq. 2.1.

@A(v1 . . . vn) =⇒ PropA(s, v1 . . . vn) ∧ WfA(v1 . . . vn) (2.1)

where v1 . . . vn are the parameters. PropA is the formal condition (property) that the
subject s’ value must satisfy and WfA is the well-formedness condition, stating that
the property instantiated with the parameters is even a valid property qualifier. The
resulting property type is then called TA = @A(v1 . . . vn)Ts, which is a subtype of Ts

(the property type is a specialisation of the base type and keeps the original semantics
in tact).

7

2 Foundations

For example, eq. 2.2 shows a property qualifier stating that the subject’s value is in
a given interval. Here the base type Ts is integer.

@Interval(min,max) =⇒ PropInterval(s,min,max) ∧ WfInterval(min,max) (2.2)

where
PropInterval(s,min,max) :⇐⇒ min ≤ s ≤ max

WfInterval(min,max) :⇐⇒ −231 ≤ min ≤ max ≤ 231 − 1

These property qualifiers are then formed into a hierarchy which is used as a
subtyping relation by the type checker. This is described by eq. 2.3: The base type of
the more specific property type must be a subtype of the more general base type and
the property of the subtype needs to imply that of the supertype.

@A(a1 . . . an)U v @B(b1 . . . bn)V

⇐⇒ U v V ∧ ∀s : U . PropA(s, a1 . . . an) → PropB(s, b1 . . . bn)
(2.3)

where v is the subtype relation2.
Of course, these hierarchies are not formed automatically by the type checker based

on the formal property. Instead, a subrelation <: is specified by the programmer such
that

∀TA, TB . TA <: TB → TA v TB

by providing a boolean expression that only depends on A’s and B’s parameters like
for example in eq. 2.4:

@Interval(min,max) <: @Interval(min′,max′) :⇐⇒ min′ ≤ min∧max ≤ max′

(2.4)
This should be read as: An integer interval is a subtype of another integer interval, if
and only if the former is contained in the latter.

For brevity, since we are mostly not concerned with property type parameters and
base types, we usually denote P the property type lattice in question and write π ∈ P
to denote a property like @A(a1 . . . an)U and Propπ(s) for PropA(s, a1 . . . an).

Program Translation Based on these properties, assertions are inserted into the
program that check if the properties hold. For example, fig. 2.2 shows that before
an assignment the type’s property is asserted. Similar rules to inject assertions and
assumptions are defined for method invocations and declarations. The thus translated
program (with assertions already proven by the type checker removed), can then be
analysed using deductive methods.

2In Lanzinger’s work, � is used for this, but to be congruent with our syntax we use v.

Π[x] = @A(v1 . . . vn)T

Π ` x = y assert PropA(y, v1 . . . vn);x =̂ y
(Transl-Assign)

Figure 2.2: Example program translation rule from Lanzinger et al. [Lan+21] (syntax
adapted to match our convention).

8

2.3 Field Assignment Language

Implementation Lanzinger et al. implemented their proposal for Java using the
Checker Framework (see section 2.1). Their checker generates type lattices based on
input files containing definitions of property qualifiers and qualifier hierarchies in a
domain-specific language. In the next step, their custom checker not only tries to
verify the annotated program using the generated property types, but also outputs a
jml annotated program that can be further analysed with deductive verification tool.

2.3 Field Assignment Language

As a basis to develop the underlying theory for our Exclusivity Type System (chapter 3)
and, upon that, the Mutability Type System (chapter 4), we define a minimalistic
pseudo-language, the Field Assignment Language (fal). The language is designed to
be similar to Java, but is not a formal sub-language.

Technically, fal is a while-language with recursive function calls and records
(which we call classes). The fundamental and only mutating operation is the field
assignment, i. e. the assignment of expressions to fields of this (the receiver of the
current method). Direct assignment to local variables is also possible. The full
grammar is given in fig. 2.3.

Fal is as simple as possible and contains only those language constructs necessary
to reason about references, aliasing and simple program properties. As such, there
are classes with fields and methods but no advanced object-orientation features such
as polymorphism or inheritance.

A formal definition of the operational semantics of fal is not within the scope of
this work. However, we give a natural-language overview of the intuitive semantics of
each of the syntactical constructs.

Assignment There are no general expressions, only variations of the assignment
statement. The left-hand side of an assignment can only be a local variable or a field,
while the right-hand side can also be an object instantiation (new-expression) or a
method invocation.

The special form this indicates the receiving object of the current method and can
never appear alone, but only as the left-most element in a field reference or method
invocation. This prevents the this-reference to be leaked from the current context,
which allows more flexible type-checking of method receivers later on.

Otherwise, access is only allowed to local variables and fields of this, not deeper.
Methods can only be called on this, local variables and fields of this. For the
sake of simplicity, there is no dynamic name resolutions, which means all accesses to
fields are always of the form this.field. Therefore, local variables and fields can be
distinguished lexically, reducing specification overhead.

Types Aside from classes, there is the primitive type int, which has the usual
semantics attached to it. While we do not explicitly support arithmetic expressions,
these can be thought of as invocations of special methods.

9

2 Foundations

Prog = ClassDecl ∗

Class and method declarations:

ClassDecl = class Ident { FieldDecl∗ MthDecl∗}
FieldDecl = Type Ident ;
MthDecl = Type Ident (RecvType, ParamDecl∗) Stmt

ParamDecl = ParamTypeTransition Ident ,
RecvType = TypeTransition ExclusivityModifier this

ParamTypeTransition = TypeTransition PartialType
TypeTransition = Property -> Property

Statements:

Stmt = VarDecl | Assignment | If | While | { Stmt ∗}
VarDecl = Type Ident ;

Assignment = Var = Expr ;
Var = LocalVar | Field

Expr = Var
| new Ident ()
| (Var | this). Ident (Var ∗)

If = if (Var) Stmt [else Stmt]
While = while (Var) Stmt

LocalVar = Ident
Field = this. Ident

Type specifications:

Type = Property PartialType
PartialType = ExclusivityModifier Ident | int

ExclusivityModifier = @ExclMut | @Immut | @RO | @ShrMut
Property = property type according to Lanzingers syntax

Ident = identifier chars

Figure 2.3: Grammar for Field Assignment Language (fal).

10

2.3 Field Assignment Language

Class types are equipped with an exclusivity modifier which are used to declare
types in the Exclusivity Type System. While local variables and fields are additionally
declared with a property type, method parameters instead have a property type
transition a -> b. Here, a is the property that must hold for the parameter before
the method invocation (precondition) and b is the property that is guaranteed to
hold for the parameter after the method invocation (postcondition). The transitions
implement a kind of flow-sensitivity and are fundamental for a mutable property type
system, since they allow the programmer to express how an object is mutated by a
method invocation. Note that transitions only apply to the property-part of the type,
not the exclusivity modifier. This limitation is discussed in section 7.2.

While the uniqueness modifiers and property type declarations are mandatory in
the grammar, we sometimes omit them throughout this work for the sake of brevity.
In this case, a natural default element can be assumed in its place.

See section 2.2 for a more detailed explanation of property types. The nature of
exclusivity and mutable property types is explained in more detail in chapters 3 and 4,
respectively.

Control Flow Control flow constructs are limited to while- and if-statements. Con-
ditions of while- and if-statements can only be local variables or fields, no other
expressions such as method invocations. This is not a limitation, as the result of a
method invocation can simply be assigned to a local variable beforehand. Because
there is no boolean type, the type of a condition must be int, where a value of zero
is regarded as false and values unequal to zero are regarded as true.

Statements can be grouped in scopes, where variables declared within a scope
cannot be accessed outside of it. However, shadowing of outer variables is forbidden
by type system construction the reason for which is explained in chapter 3.

Terminology In this thesis, we use some special terms when talking about fal code,
which we briefly define here to avoid ambiguity:

reference A local variable or field of a class type that references an
object.

object An instance of a class that is pointed to (referenced) by one
or more references. When more than one reference points
to the same object, we speak of aliasing.

relevant properties The relevant properties of an object are the properties of
all references pointing to this object.

program point A statement in a method of the program. It can be thought
of as a line of source code. At each program point, all
references have a specific (possibly refined) type. This
should be differentiated from a program state, which would
represent an execution state at run time (with concrete
variable values, heap state, etc.).

11

2 Foundations

2.4 Type Contexts

In this work, we develop multiple type systems, namely the Exclusivity Type System
(chapter 3) and the mutability type system (chapter 4). For this we work with so
called type contexts, which assign types in a specific type system to variables and fields
in a program state. To ease specification of type rules in the following chapters, we
give some auxillary definitions regarding the handling of types and type contexts. As
usual, the types in a type system form a lattice. We use uppercase blackboard bold
letters to denote the set of elements in a type system, such as E for the exclusivity
lattice or P for a property type lattice.

Basics We first define type contexts and some operations to access their elements
and modify the contexts.

Definition 1 (Type context). A type context Γ is a right-unique relation

Γ ⊂ L× T

where L is the set of locations (variables or fields of the current receiver) and T is a
type lattice.

We refer to type contexts using capital Greek letters, e. g. E (calligraphic Epsilon) for
exclusivity type contexts or Π (Pi) for property type contexts. The greek letter Γ
(Gamma) is used to refer to an arbitrary type context in this section.

When not ambiguous, we sometimes leave out the set-braces and write just x :
τ, x′ : τ ′ instead of {x : τ, x′ : τ ′}. As they are simply relations, type contexts can be
combined using set union Γ ∪ Γ′. Contrary to the definition of type context updates
below (definition 3), set union does not account for duplicate entries in the type
contexts, so special care needs to be taken when this simple form is used.

Definition 2 (Type context access). To access elements of a type context, we write

Γ[x] = τ :⇐⇒ (x : τ) ∈ Γ

Since Γ is right-unique, Γ[x] is unique for any x.

Definition 3 (Type context update). When merging two type contexts, elements of
the latter override those of the former.

ΓC− Γ′ := Γ′ ∪ {(x : τ) ∈ Γ | x 6∈ dom(Γ′)}

where dom is the domain of a relation, i. e. dom(R) = {a | ∃b.(a, b) ∈ R}.
The type context update is well defined, since ΓC− Γ′ is right-unique if both Γ and

Γ′ are right-unique. In other words, the definitions ensures that no duplicate entries
are ever added to a type context.

12

2.4 Type Contexts

Definition 4 (Restriction and subtraction). To restrict a type context to a certain
set of variables, or to subtract a certain set of variables, we write:

V C Γ := {(x : τ) ∈ Γ | x ∈ V }
V C− Γ := {(x : τ) ∈ Γ | x 6∈ V }

Definition 5 (Type context join). We join two type contexts by joining all the
elements in the cut of their domains

Γ t Γ′ := {(x : Γ[x] t Γ′[x]) | x ∈ dom(Γ) ∩ dom(Γ′)}

where τ t τ ′ is the supremum (smallest upper bound) of τ and τ ′, with the usual lattice
semantics.

Refinements Throughout this work, we need to distinguish between declared types
(what the programmer wrote) and refined types (what our system inferred the type
to actually be). For this, we write ΓD for the declared and ΓR for the refined type
context. The refined types must always be at least as precise as the declared types,
as per the definition of a subcontext in definition 6: ΓR v ΓD

Definition 6 (Subcontext). A type context is a subcontext of another type context, if
and only if its domain is a subset of the other domain and all the types are subtypes
of the corresponding entry in the other context.

Γ v Γ′ :⇐⇒ x ∈ dom(Γ′) ∧ Γ[x] v Γ′[x] ∀x ∈ dom(Γ)

Definitions for @, w and A follow naturally.

If, given a declared type context, two refinement contexts are valid then their combi-
nation using each of the four operators is still valid (theorem 1). This can be seen
easily by the definitions of the operators. Note that this is not the case for the join
operator t.

Theorem 1 (Closedness). Let ΓR, Γ′
R,ΓD be type contexts such that

ΓR v ΓD ∧ Γ′
R v ΓD

then
ΓR C− Γ′

R v ΓD

ΓR C Γ′
R v ΓD

ΓR C− Γ′
R v ΓD

ΓR ∪ Γ′
R v ΓD

The last statement holds only if ΓR ∪ Γ′
R is right-unique.

13

2 Foundations

A notation that is frequently encountered in this thesis is (ΓDC−ΓR)[x], which is equal
to the refined type of x if that exists and the declared type otherwise. In other words:

(ΓD C− ΓR)[x] =

{
ΓR[x] if x ∈ dom(ΓR)

ΓD[x] else

Definition 7 (Refinement step). The refinement-step notation means that fal code c
is well-typed under contexts ΓD,ΓR and the check produces contexts Γ′

D and Γ′
R:

ΓD,ΓR ` c 7→ Γ′
D,Γ

′
R

The declared context is unchanged by most type rules (except rules T-Var-Decl
and T-Mth-Decl), i. e. ΓD = Γ′

D in which case it is omitted from the right side.

14

3 Exclusivity

As established in the introduction a requirement for mutable property types is the
restriction of access to objects in a way that gives the holder of a reference sufficient
control over the object to be able to assume and maintain a property.

In this chapter, we first establish precisely what this means in section 3.1, i. e. what
kind of predicate about a reference must be asserted to safely maintain a property.
Following this, we establish a simple type system for the Field Assignment Language
(fal) in section 3.2, which includes a type that implements said predicate.

3.1 Requirements for Property Types

In order to establish a predicate for safely maintaining a property about the object
behind a reference at compile-time, a definition of what “safely” means in fal is
required.

When dealing with property types about mutable objects the central problem
originates from aliasing: If the reference in question was unique, i. e. no other reference
in the program could ever refer to the same object, maintaining the property would
be no issue at all. Every mutation of the object would be done from a point in the
program where the only relevant property was the one annotated to said reference.
But, when allowing both aliasing and mutation, the object behind a reference could be
changed from a point in the program where that particular reference’s property is not
known. Or, seen from the other point of view, the point in the program mutating an
object can never be guaranteed to know all properties relevant for the object. These
observations lead to a natural definition 8 of property safety.

Definition 8 (Property-safe reference). A reference (local variable or field) is property-
safe, if and only if any access of the referenced object (including all transitively reachable
objects)

1. does not mutate the object or

2. is performed through that reference.

In chapter 4 we analyse in more detail how program correctness is achieved by this
definition. Intuitively, at each program point either item 1 asserts that aliases need
not be considered and item 2 asserts that mutations are guarded by the holder of the
reference. An observation similar to item 1 has also been established by Lanzinger
et al. [Lan+21, section 4.3]. The definition of property-safe references can easily be
lifted to types as in definition 9.

15

3 Exclusivity

Definition 9 (Property-safe type). Given a type lattice T, τ ∈ T is property-safe, if
and only if for any reference x:

x : τ =⇒ x is property-safe

3.2 Exclusivity Type System

We now propose a type system which contains a type that is property-safe. In fact, it
contains multiple property-safe types which are, however, all subtypes of a common
property-safe type. In section 3.2.1 we present a suitable lattice and assign semantics
to each of the lattice elements, while in section 3.2.2 we formally define the type rules
that achieve said semantics.

3.2.1 Capabilities and Lattice

When handling references, we consider the following four capabilities attached to
references, which can be thought of as operations the holder of a reference may
perform.
READ Reading the referenced object
WRITE Mutating the referenced object
COPY Copying the reference (shallow copy)
PROP Assuming and maintaining a formal property about the referenced object

While COPY concerns the reference itself, READ, WRITE and PROP make a statement about
the referenced object. When performing an operation on a transitively reachable
object, the capabilities of all references in the chain must allow the operation. For
example, when the object referenced by a has a field b and a has WRITE, but b has
not then the object referenced by a.b cannot be mutated, at least not through this
reference. However, the reference a.b itself could be mutated to point to another
object, since a has WRITE.

Lattice A reference may be equipped with a subset of these capabilities and as such
the type of the reference is an element of the power set of all capabilities:

P(C), where C = {READ,WRITE, COPY, PROP}

Together with the subset relation for subtyping (v:=⊆), P(C) already forms a lattice,
but contains elements that are not useful for our purposes, e. g. {READ,WRITE} without
either COPY or PROP. Additionally, we impose no restriction on reading a reference,
since reading a reference can never violate a property (see item 1 of definition 8) and
therefore only consider elements which contain READ. As a result, we can define an
exclusivity lattice E as a sublattice of P(C) in definition 10:

Definition 10 (Exclusivity lattice).

E := {RO, ShrMut, Immut,Restricted,ExclMut, C}

where > = RO and ⊥ = C.

16

3.2 Exclusivity Type System

Type Capabilitiesa Supertype Aliases
RO READb any

ShrMut WRITE, COPY RO ShrMut

Restricted PROP RO Immutc

Immut COPY Restricted Immut

ExclMut WRITE Restricted RO

aAll types implicitly inherit capabilities of supertypes.
bAll types allow copying as RO, which effectively gives RO COPY.
cRestricted references have a single inactive ExclMut alias, which

is the “lent” reference.

Table 3.1: Explanation of exclusivity lattice elements.

Table 3.1 shows the capabilities granted by each type, additionally to the ca-
pabilities inherited by supertypes. For example, ShrMut = {READ,WRITE, COPY} =
RO∪{WRITE, COPY}. Table 3.1 also shows the possible types of other references to
the same object. For instance, a Immut reference might have aliases which are also
Immut, but can never have a ShrMut or even ExclMut alias.

Notice that ExclMut (“exclusively mutable”) does not grant COPY: Copying a
reference would invalidate exclusivity, as it would create another reference to the same
object. ShrMut (“shared mutable”) on the other hand grants both WRITE and COPY.
In this case, ShrMut aliases are explicitly allowed. Therefore, contrary to ExclMut, it
must not grant PROP; the property might be violated by mutation through another
reference. Immut (“immutable”) on the other hand grants PROP while also granting
COPY: There might be aliases, but since they also cannot mutate the object, a property
can be assumed to hold. Therefore, we understand immutability as defined by Potanin
et al. [Pot+13, section 2.1]. Lastly, Restricted represents a reference that may have a
property but can neither be copied nor used for mutation. The use-case for this is a
ExclMut field of an object that is accessed through a non-ExclMut reference. Such a
reference must not be mutated, since the outer reference does not allow mutation, but
might still be equipped with a property that can be assumed to hold. Incidentally,
Restricted is a common supertype of ExclMut an Immut. By construction of fal
(fig. 2.3), no reference may be explicitly annotated with Restricted. Instead, the type
is automatically generated during access adaptation. This is explained in more detail
below.

Figure 3.1 visualises the exclusivity lattice. It contains the bottom type ⊥, which
represents an invalid type: A reference that can be mutated (WRITE ∈ ⊥) and aliased
(COPY ∈ ⊥) is not property-safe, but PROP ∈ ⊥. The dashed line separates the types
that allow mutation (below) from those that do not (above). The dotted line separates
the types that may be annotated with a property (inside the parabola) from those
that may not (outside the parabola).

17

3 Exclusivity

RO

ShrMut

Restricted

ExclMut

Immut

⊥

no modification allowed
modification allowed

no
pr

op
er

ty
al

lo
wed

pr
op

er
ty

al
lo

w
ed

Figure 3.1: Lattice for exclusivity type system E.

For convenience, we define three predicates that can be used to query the capabilities
of a given type based on the lattice structure in definition 11. With this, we have
fully abstracted the types from the original capabilities and can continue to define a
set of type rules achieving the same semantics.

Definition 11 (Copyable, mutable and property-annotatable).

prop(ξ) :⇐⇒ ξ v Restricted
copy(ξ) :⇐⇒ ExclMut 6v ξ

mut(ξ) :⇐⇒ Immut 6v ξ

for any ξ ∈ E.

The predicates mut and prop can easily be visualised by studying fig. 3.1. copy
can be thought of “must not be on the path from ExclMut to RO”. Each of these
is equivalent to explicitly checking for containment of the corresponding capability
(e. g. mut(ξ) ⇐⇒ WRITE ∈ ξ).

3.2.2 Type Rules

We define the type rules structurally for all possible statements in a method, thus
establishing a notion of well-typedness for methods. By convention, the greek ξ (mi-
nuscule xi) and variations (ξ′, ξt, etc.) represent elements of the exclusivity lattice
E. E is a type context over E (see section 2.4). Literal fal code is always set in
typewriter font, variables representing fal code however are not. The magic value
this always refers to the current receiver. We assume that class, method and field
declarations are globally available. For brevity we leave out all parts of the full type
not significant for exclusivity (i. e. property and base type) in the type rules. The
special form ΓD,ΓR ` l ≈ e 7→ Γ′

R is called pseudo-assignment and states that an
expression e is assignable to a variable l and what refinement this produces.

This type system is based on the concept of type refinement. In addition to the
declared types ED a refinement context ER is maintained that contains more precise
type judgements deduced by the type system based on the encountered statements. The

18

3.2 Exclusivity Type System

fundamental working of this type system is that each rule specifies a type refinement
using the refinement-step notation (definition 7) and contains the assumption that
the newly refined types are compatible with the declared types. Multiple rules may
therefore be tried to type a single statement. If none is applicable the statement is
not well-typed.

Assignment At the heart of typing fal in the Exclusivity Type System lies the
assignment statement. Figure 3.2 shows the type rules for the assignment statement.
Any assignment is first typed by rule T-Assign, which ensures that the current
receiver is mutable when the left-hand side is a field. The rule then delegates further
checking to the pseudo-assignment l ≈ e, for which there are multiple rules that differ
in the kind of right-hand side of the assignment in each conclusion.

The three rules for (ED C− ER)[e] = ExclMut (rules T-Ref-Split-Mut, T-Ref-
Split-Immut and T-Ref-Transfer) all have the same conclusion. Which one is to
be applied can be statically distinguished by checking compatibility with the declared
types. Each rule assumes a different refinement E for the right- and left-hand side
of the assignment. Whichever rules assumes a valid refinement E (i. e. E v ED) may
be applied. Consider for example rule T-Ref-Split-Mut. Here E = e : ShrMut, l :
ShrMut. The exclusive reference might be split into two mutably shared references,
if this rule is applicable. But if e. g. ED[l] = Immut, this rule cannot be applied
since ShrMut 6v Immut. Intuitively, these three rules achieve the semantics that a
given ExclMut reference may either be split into two ShrMut references, two Immut
references or the exclusivity can be fully “transferred” to the left-hand-side, leaving
the original reference RO.

Rules T-Ref-Copy, T-Ref-Copy-Ro and T-Ref-New are straightforward: Any
copyable reference may be copied, any reference may be copied as RO and references
to a newly instantiated objects are always ExclMut.

The most complex rule is T-Call. For better understanding, we break it up and
examine each assumption individually:

` class(v)[m] : ξt(ξ1 . . . ξn) → ξr
Firstly, we assume the method signature to be available. ξt is receiver’s, ξ1 . . . ξn the
parameters’ and ξr the return type.

∀i ∈ 1 . . . n . ED ∪ {tmp : ξi}, {tmp}C− E i−1
R ` tmp ≈ ai 7→ E i

R

Next, each parameter is assigned the supplied reference. For each parameter with type
ξi a temporary variable tmp is created and the argument ai is pseudo-assigned to it
(tmp ≈ ai) using the same rules as for the real assignment above. In each round, the
resulting refinement context is carried to the next round. The refinement of tmp from
the previous round is removed, because the left-hand side of this pseudo-assignment
does not really exist in the callers context. Effectively, this pseudo-assignment is much
simpler than the real assignment and can equivalently regarded as a function mapping
ξi and ai’s type to the new refined type, as is shown in table 3.2. The table entries
are the resulting ER[ai]. Empty cells are for combinations which are ill-typed.

19

3 Exclusivity

l is local variable ∨ mut(ED[this])
ED, ER ` l ≈ e 7→ E ′

R

ED, ER ` l = e; 7→ E ′
R

(T-Assign)

E = e : ShrMut, l : ShrMut E v ED
E ′
R = ER C− E (ED C− ER)[e] = ExclMut

ED, ER ` l ≈ e 7→ E ′
R

(T-Ref-Split-Mut)

E = e : Immut, l : Immut E v ED
E ′
R = ER C− E (ED C− ER)[e] = ExclMut

ED, ER ` l ≈ e 7→ E ′
R

(T-Ref-Split-Immut)

E = e : RO, l : ExclMut E v ED
E ′
R = ER C− E (ED C− ER)[e] = ExclMut

ED, ER ` l ≈ e 7→ E ′
R

(T-Ref-Transfer)

ξe = (ED C− ER)[e] E = l : ξe E v ED
E ′
R = ER C− E copy(ξe)
ED, ER ` l ≈ e 7→ E ′

R

(T-Ref-Copy)

E = l : RO E v ED
E ′
R = ER C− E

ED, ER ` l ≈ e 7→ E ′
R

(T-Ref-Copy-Ro)

E ′
R = ER C− l : ExclMut

ER, ED ` l ≈ new C() 7→ ER
(T-Ref-New)

` class(v)[m] : ξt(ξ1 . . . ξn) → ξr

∀i ∈ 1 . . . n . ED ∪ {tmp : ξi}, {tmp}C− E i−1
R ` tmp ≈ ai 7→ E i

R (ED C− ER)[v] v ξt

E ′
R = {f | f is field of this ∧ (prop(ED[this]) → v = this)} ∪ {tmp}C− En

R

E ′′
R = E ′

R C− l : ξr E ′′
R v ED

E0
R, ED ` l ≈ v.m(a1 . . . an) 7→ E ′′

R
(T-Call)

Figure 3.2: Type rules for Assignments. Here, l is any Lhs, e any Expr, C and m any
Ident, v and ai any Var according to the grammar in fig. 2.3.

20

3.2 Exclusivity Type System

right-hand side ((ED C− ER)[ai])
left-hand side (ξi) RO ShrMut Immut ExclMut Restricted

RO RO ShrMut Immut ExclMut Restricted

ShrMut ShrMut ShrMut

Immut Immut Immut

ExclMut RO

Table 3.2: Resulting right-hand side refinement after pseudo-assignment in rule T-
Call.

(ED C− ER)[v] v ξt
The receiver reference is handled differently: It must simply be compatible with the
method’s declared receiver type. Because this can never appear alone by construction
of the grammar, the reference cannot be leaked anyway.

E ′
R = {f | f is field of this ∧ (prop(ED[this]) → v = this)} ∪ {tmp}C− En

R

Because the callee might modify shared references in a way that violates local refine-
ments of fields of this that it doesn’t know about, all refinements regarding references
to objects possible affected by the method need to be removed from the callers refine-
ment context. The second part of the predicate (prop(ED[this]) → v = this) states
that refinement invalidation is only necessary if either this is declared ShrMut or RO
(because only then v might transitively contain a reference to this) or the method is
called directly on this.

E ′′
R = E ′

R C− l : ξr E ′′
R v ED

Finally, we refine the left-hand side to the return type of the method and ensure that
the final resulting refinement context is valid.

Control-Flow Figure 3.3 shows typing of control flow structures. This is largely
standard. Rule T-If types the then- and else-arm individually and joins the resulting
refinement contexts. Rule T-While requires a fixed point iteration, because in the
assumption E ′

R (the result of the refinement-step) is rejoined with the original ER.
Because of this, the refinement-step must be repeated until ER t E ′

R = E ′
R.

Note that in all control-flow rules we explicitly require the declared contexts to not
be changed by the refinement-step. By this we achieve that the top-level statement is
not a unscoped variable declaration.

Statement Composition and Variable Declarations Figure 3.4 shows the remaining
statements. Rule T-Scope-Compose consecutively types each statement in the
scope and removes all refinements not regarding references contained in the original

21

3 Exclusivity

declared context. Other refinements “survive” a scope, but new declarations naturally
do not. Rule T-Var-Decl forbids redefinition as well as shadowing of outer variables,
because rule T-Scope-Compose couldn’t handle it.

ED, ER ` s1 7→ ED, Ea
R ED, ER ` s2 7→ ED, Eb

R

E ′
R = Ea

R t Eb
R

ED, ER ` if (v) s1 else s2 7→ E ′
R

(T-If)

ED, ER t E ′
R ` s 7→ ED, E ′

R

ED, ER ` while (v) s 7→ E ′
R

(T-While)

Figure 3.3: Type rules for control flow structures. Here, s, s1 and s2 are Stmt and v
a Var according to the grammar in fig. 2.3.

∀i ∈ 1 . . . n . E i−1
D , E i−1

R ` si 7→ E i
D, E i

R

E ′
R = dom(E0

D)C En
R

E0
D, E0

R ` {s1 . . . sn} 7→ E ′
R

(T-Scope-Compose)

E ′
D = ED ∪ {v : ξ} v 6∈ dom(ED)

ED, ER ` ξ v ; 7→ E ′
R

(T-Var-Decl)

Figure 3.4: Type rules for remaining statements. Here, s, s1 and s2 are Stmt and v a
Var according to the grammar in fig. 2.3.

Method Definitions And Access Adaption Finally, rule T-Mth-Decl in fig. 3.5 estab-
lishes well-typedness of a whole method. This rule forms the entry point for the type
checker.

Naturally, the refinement context is initially empty. The main purpose of this rule
is to build the declared type context, which consists of the parameter types, the field
types and the special values this and retval. Returning a value from a function is
done by assignment to the special variable retval.

For the field types, an access adaptation takes places according to the access
combination operator (definition 12). This is necessary to account for the fact that all
references in a chain must share a capability for it to take effect. ξ I ξ′ returns the
effective type of accessing a ξ′ field through a ξ receiver. Intuitively, this is always
simply the unchanged field type, except when the field is ExclMut without the receiver
being also ExclMut or the field is ShrMut while the receiver reference does not allow
modification.

22

3.3 Well-Typedness

ED,∅ ` s 7→ ED, ER
ED = {ai : ξi}i∈1..n ∪ {f : ξt I ξf}(f :ξf)∈fields(CurrentClass) ∪ {this : ξt, retval : ξr}

` ξr m(ξt this, ξ1 a1 . . . ξi ai) s
(T-Mth-Decl)

Figure 3.5: Type rule for whole method bodies. Here, m is an Ident, ai are Var and s
is a Stmt according to the grammar in fig. 2.3.

Definition 12 (Access combination).

· I · : E× E \ {Restricted} → E

ξ I ξ′ :=

Restricted if ξ′ v ExclMut ∧ ξ 6v ExclMut
RO if ξ′ v ShrMut ∧ ¬mut(ξ)
ξ′ else

For examples of valid and invalid programs in the Exclusivity Type System, refer
to section 5.3, where we present test cases for our Java implementation, which are
almost identical in syntax to the corresponding fal instances.

3.3 Well-Typedness

To tie everything together, we formally define well-typedness based on the type rules
and connect it to property-safety (definition 9).

Definition 13 (Method well-typedness). A method m is well-typed, if and only if

` ξr m(ξt this, ξ1 a1 . . . ξi ai) s

where ξr m(ξt this, ξ1 a1 . . . ξi ai) s is the method declaration.

Definition 14 (Program well-typedness). A program is well-typed, if and only if all
methods of all classes in the program are well-typed.

Theorem 2 (Correctness). In a well-typed program, at each program point

prop((ED C− ER)[x]) =⇒ x is property-safe

for all references x, with ED and ER being the type contexts at that program point.

We do not give a proof of theorem 2. Abstractly, however, its correctness follows
from the equivalence of the type rules to the capability system and the selection of
which types grant PROP.

23

4 Mutable Property Types

In chapter 3 we established an assumption for property types and defined a type system
that provides this assumption. Abstractly, only references which are property-safe
(definition 8) may be annotated with property types or be used in property definitions.
We define this in more detail in section 4.2.

Initially however, we need to establish how the final property-type annotated
program is produced. Adding mutability to property types necessitates the ability
to change the property types of references. For example, a reference to a list might
be annotated with @MinLength(5). After adding an element to it we can know the
type to be @MinLength(6) (which is more precise). On the other hand, removing an
element generalises the type to @MinLength(4). In section 4.1 we describe how this
is accounted for and when type generalisations are possible.

Next, we give an idea of the changes necessary to the original Property Checker
implementation in section 4.3 and finally argue how all of this produces an under-
standing of correctness compatible with the work of Lanzinger et al. [Lan+21] in
section 4.4.

4.1 Property Refinement

In Field Assignment Language (fal), each method’s parameters a (as well as the
receiver) are annotated with a property type transition

π → π′, where π, π′ ∈ P

Semantically, π establishes the parameter’s pre- and π′ its postcondition. When
invoking a method, a : π must be guaranteed by the calling context. After the method
returns, a : π′ may be assumed by the caller. On the other hand, the callee’s context
may assume a : π at the beginning of the method but must guarantee a : π′ at the
end of the method.

To achieve this, the program’s property types are refined based on the declared
type transitions to produce a refined program, where the pre- and postconditions are
correctly included in the type contexts at each program point. Figure 4.1 shows an
excerpt of the type rules governing this.

Rule T-Prop-Call is used to type method invocations. As before, the method
signature is assumed to be known. The types of the supplied parameter values as well
as the receiver must be compatible with the declared pre-types of the method. Then
their types can be refined to the declared post-types of the method.

Rule T-Prop-Mth-Decl shows the other side of this mechanism, the method
declaration. Before typing the method’s body statement with the refinement-step,

25

4 Mutable Property Types

the declared pre-types πi of the parameters and receiver are added to the refinement
context. It is important that they are not added to the declaration context, because
these types may need to be generalised during typing of the method to reach the
target type π′

i. Returning to our previous example, a method remove of a list might
be annotated with @MinLength(n) -> @MinLength(n-1) this for the receiver pa-
rameter1. If the pre-type were added as a declared type it could never be violated
and implementing such a method would be impossible. In the refinement produced
by typing the body statement s, the parameters and receiver must then fulfill the
post-type.

Rules T-Prop-Assign and T-Prop-Var-Decl are straightforward. Assignment
transfers the refinement of the right-hand side to the left-hand side and when declaring
a variable, its property type is stored in the declaration context.

The rules for the remaining statements are omitted here for brevity, since they are
largely similar to the rules for the Exclusivity Type System shown in section 3.2.2
and provide no deeper insight into the property refinement mechanism.

` class(v)[m] : (πt → π′
t)(π1 → π′

1 . . . πn → π′
n) → πr

(ΠD C− ΠR)[v] v πt (ΠD C− ΠR)[ai] v πi

Π′
R = ΠR C− v : π′

t, a1 : π
′
1 . . . an : π′

n, l : πr

ΠD,ΠR ` l = v.m(a1 . . . an) 7→ Π′
R

(T-Prop-Call)

ΠR = ai : πi . . . an : πn, this : πt ΠD = retval : πr

ΠD,ΠR ` s 7→ ΠD,Π
′
R

(ΠD C− Π′
R)[this] v π′

t ∀i ∈ 1..n . (ΠD C− Π′
R)[ai] v π′

i

` πr m(πt → π′
t, π1 → π′

1a1 . . . πn → π′
nan)s

(T-Prop-Mth-Decl)

Π′
R = ΠR C− l : ΠR[v]

ΠD,ΠR ` l = v 7→ Π′
R

(T-Prop-Assign)

Π′
D = ΠD C− v : π

ΠD,ΠR ` πv 7→ Π′
D

(T-Prop-Var-Decl)

Figure 4.1: Type rules for establishing property type pre- and postconditions for
methods.

4.2 Property Safety

In a fal program, all references are annotated with a type composed of an exclusivity
type, a property type and a base type. To connect the exclusivity and the property

1For illustrative purposes, the property is a dependent type in this example, which is not currently
possible in property types.

26

4.3 Adapted Program Translation

ΠD,ΠR ` l = v.m(a1 . . . an) 7→ Π′
R

` class(v)[m] : (πt → π′
t)(π1 → π′

1 . . . πn → π′
n) → πr

ΠD,ΠR ` x = v.m(a1 . . . an);

assert Propπt
(v); assert Propπ1

(a1) . . . assert Propπn
(an);

tmp =̂ v.m(a1 . . . an);
assume Propπ′

t
(v); assume Propπ′

1
(a1) . . . assume Propπ′

n
(an);

assume Propπr
(tmp); assert Prop(ΠDC−Π′

R)v;

x =̂ tmp;
(Transl-Call-Mut)

Figure 4.2: Excerpt of adapted program translation rules.

component of each type, we define type validity in definition 15 such that only
property-safe types may have a non-trivial property.
Definition 15 (Valid type). Given a type system T and a property type system P

with τ ∈ T, π ∈ P, the compound type τπ is valid if and only if

π @ > =⇒ τ is property-safe

where > ∈ P is the top-element that every object fulfills, i. e. ∀x . Prop>(x).
Using this definition, we can lift our definition 9 of property-safety to whole methods
(and thereby programs) in definition 16.
Definition 16 (Property-safe method). A method is property-safe if all types occurring
in it are valid.
As stated in theorem 3, this definition of property-safety can be achieved with
exclusivity types.
Theorem 3 (Property-safety of refined method). A fully refined method using exclu-
sivity types is property-safe if at each program point, for any reference x

(ΠD C− ΠR)[x] @ > → prop((ED C− ER)[x])

where ΠD,ΠR, ED, ER are the type contexts at that particular program point.

4.3 Adapted Program Translation

The translation of programs annotated with property types to programs with assertions
as defined by Lanzinger et al. [Lan+21, fig. 9, rule Transl-Call] must be adapted
to account for changing properties, in particular the rule for method invocation.
Figure 4.2 shows a sketch of the adapted version of this rule. The main difference
to the original version is that after the method invocation, the post-types of the
parameters are assumed. Similar adaptations must be applied to the remaining
translation rules.

27

4 Mutable Property Types

4.4 Correctness

Lanzinger et al. define correctness based on the translation of property-type annotated
programs to programs containing assertions of the properties and the infallibility of
these assertions. We do not formally adapt their definitions for our purposes, since
Lanzinger et al. even use a different base language, but theorem 4 encompasses a
similar meaning.

Theorem 4 (Property-correctness). If a method is property-safe and correct according
to Lanzinger et al. [Lan+21, definition 3.11] with respect to a property type lattice P,
then at every program point

x : π =⇒ Propπ(x)

for all π ∈ P.

This theorem binds together the results of section 3.1 and this chapter. The crux lies in
the requirement for the method to be property-safe: For any reference x that does not
satisfy prop(x), π = > and since is Prop>(x) universally valid, the above implication
holds. For any reference that satisfies prop(x) (so π might be non-trivial), validity of
the implication follows from the construction of the property type transitions and the
program translation.

28

5 Implementation

We provide a partial implementation of our proposed enhancements to the Property
Checker of Lanzinger et al. The Property Checker, as well as our enhancements, target
the Java Programming Language [Gos+21], which is similar to, but not a formal
superset of the Field Assignment Language (fal). However, because fal is explicitly
designed to accommodate an easy implementation in Java, this does not account for
many issues.

Fully implemented is the Exclusivity Checker (chapter 3) as a completely separate
checker, which could also be used on its own. This is described in section 5.1. Further
integration with the original Property Checker, especially the property refinement
and validation of property-safety (chapter 4) is currently unimplemented. However,
in section 5.2 we give an outlook on how such an implementation would look like.

5.1 Exclusivity Checker

The Exclusivity Type System is implemented as a custom checker1 for the Checker
Framework [Pap+08]. As such, it can be used as an annotation processor for any Java
program.

Recall the principle design of the Exclusivity Type System: Multiple type rules
might be available for the same syntactical construct (e. g. an assignment). Each type
rules specifies a refinement that might be used to type the statement. In each step, a
type rule is applied that produces a refinement compatible with the declared types.

The main functionality therefore implemented as a transfer function, which deter-
mines the correct type refinement and applies it to the Checker Framework’s internal
store, which represents the type contexts. To determine which type rule to apply, each
one is tried in turn and the first one that is applicable is chosen (this is implemented via
a RuleNotApplicable exception). The order in which the rules are tried is predefined
and relevant, as multiple type rules might be applicable. For example, copying a
reference as RO is always possible (as long as compatible with the declared types),
but might not be the option yielding the most expressive typing, since RO is the least
powerful reference type.

An issue with this design is that the Checker Framework does not allow the
reporting of errors from the transfer function: It is intended to simply produce more
precise typing judgements, while the actual type checking is performed in the checker
component (a part of the transfer function might even be called multiple times, e. g. as
part of a fixed-point iteration, which would result in the same error being reported

1The implementation is publicly available online: https://github.com/joshuabach/exclusivity-
checker

29

https://github.com/joshuabach/exclusivity-checker
https://github.com/joshuabach/exclusivity-checker

5 Implementation

Type
Checker

Program
Translator

Deductive
Verifier

Exclusivity
Checker

Property
Refiner

Safety
Validator

3 7 type errors 3 7 open
obligations

7 type errors 7unsafe types

partial
typing info

program with
assertions

program with property
and exclusivity types

3 refined
program

refined
program

3

program with
property types

Figure 5.1: Enhanced property-type-checking pipeline.

multiple times). But, when no rule is applicable, our transfer function needs to report
an error. To solve this problem, it refines the problematic reference to ⊥ in such a
case. This is later caught during type validation by the type checking component
which analyses the store in effect after each statement and can report a suitable error.

Our Exclusivity Checker implementation currently supports at least all Java con-
structs that have a direct equivalent in fal, such as assignments and method invo-
cations but not others such as binary operators, arrays or string literals. To make
the implementation usable for real-world applications, it should be extended to sup-
port these, which should be mostly unproblematic and require no further theoretical
considerations.

5.2 Outlook: Integration with Property Checker

Based on the exclusivity type annotations it can be determined which references are
property-safe. Even more, the Exclusivity Checker has possibly refined the existing
exclusivity annotations to allow (refined) properties on even more references. Naturally,
after the Exclusivity Checker has run we can be sure that these annotations are correct.
With the property type assumption ensured, a checker for our mutable property types
could be implemented. While such an implementation does not currently exist, we
propose the following design for it.

Figure 5.1 shows our proposed enhanced property-checking pipeline (recall the
original in fig. 2.1). While the Exclusivity Checker is implemented as an entirely
different checker, the remaining components would all be part of the enhanced Property
Checker.

If no type error is found by the Exclusivity Checker, the refined program is passed
to the property refiner, which realises the logic from section 4.1 and is implemented
in the Checker Framework as a transfer function. The resulting refined types are then
passed to the safety validator, which ensures that they are valid (definition 15). It is
important that the validator also needs to check that only property-safe references

30

5.3 Test cases

are used in properties with classes as base types. The safety validator is implemented
as part of the Checker Framework’s type validator. Only if all types are property-
safe, it is safe to pass the refined property type program to the Property Checker.
The only change that must be made to the original Property Checker is to the
implementation of the program translator, so that it correctly translates the property
type transitions to assertions and assumptions. It should be noted that the Property
Checker implementation by Lanzinger et al. currently places most of its functionality
in the main checker component of the Checker Framework (TypeVisitor), leaving
the transfer function (CFTransfer) free to house the property refiner.

5.3 Test cases

Even though the Exclusivity Checker only supports very Rudimentary java programs,
some simple examples can still be presented to illustrate its usage. All examples
shown here are passing test cases from our implementation.

In all test cases, the special comment // :: error: <key> instructs the Checker
Framework’s testing mechanism that the test case is expected to report an error in
the following source line. The error key type.invalid indicates that the type of a
reference has been refined to ⊥ (because no refinement was applicable). More nuanced
and helpful error reporting could be implemented in the future.

Listing 5.1 shows a simple instance of the reference-splitting mechanism. The
assignment a = x is valid, even though the left-hand side is not a subtype of the
right-hand side, because rule T-Ref-Split-Mut can be applied to refine both a and
x to ShrMut. In listing 5.2 we illustrate that even an ExclMut reference can be copied
as RO arbitrarily often without losing or violating the exclusivity of the original
reference (see rule T-Ref-Copy-Ro). The method called in line this.mth() of
listing 5.3 might reassign this.field (which cannot be determined by the caller), to
a non-exclusive reference. Because of this, the refinement of a needs to be invalidated
to be on the safe side (see rule T-Call). This mechanism could be made more precise
by providing a means to specify which fields might be written by a method, similar
to jml’s assignable-clause [Lea+13, section 9.9.9]. Lastly, listing 5.4 illustrates the
first assumption of rule T-Assign. Since this is RO, it cannot be modified and the
field assignment produces an error.

Our implementation contains many more test cases, which we cannot present all
here. This small excerpt has been selected to be most illustrative.

31

5 Implementation

void splitMut() {
@ReadOnly Foo x;
@ShrMut Foo a;
@ExclMut Foo b;
x = new Foo(); // x is refined to @ExclMut
a = x; // x is updated to @ShrMut
// :: error: type.invalid
b = x; // invalid, x is not @ExclMut anyomre

}

Listing 5.1: Splitting an exclusive reference into two shared references.

void refCopyRo(@ExclMut Foo a) {
@ReadOnly Foo x;
@ReadOnly Foo y;
@ReadOnly Foo z;
// a stays @ExclMut for all of these
x = a; y = a; z = a;

}

Listing 5.2: Copying an exclusive reference as read-only.

void invalidate(@ExclMut Foo this) {
@ExclMut Foo a;
this.field = new Foo(); // field is refined to @ExclMut
this.mth();
// :: error: type.invalid
a = this.field; // refinement of field has been forgotten

}

Listing 5.3: Forgetting of possibly invalid refinements after method invocation.

void assignReadOnlyThis(@ReadOnly Foo this) {
// :: error: assignment.this-not-writable
this.foo = new Foo();

}

Listing 5.4: Cannot assign to field when receiver is read-only.

32

6 RelatedWork

In this chapter we discuss approaches similar to ours, or targeting the same problem
and organise the bulk of related work based on each of the employed methods. Since
our main contribution is the Exclusivity Checker (chapter 3) and thus the bulk of our
original work is related to uniqueness and mutability, we will focus on discussion of
other approaches to aliasing control. Even further, we give a structured overview of the
field and relate the different approaches to each other in order to give a understanding
of the relation between the different concepts. For a comparison of the property type
approach itself to other work on type systems and formal verification, please refer to
the discussion of related work by Lanzinger et al. [Lan+21, section 6]

6.1 Aliasing Mitigation

Reference aliasing is one of computer science’ most persistent problems. As such,
many approaches have been suggested and developed to control access to and sharing
of references. Typically these approaches are divided into ownership- and permission-
based systems, as well as classical uniqueness enforcement systems. While these all
serve slightly different goals and approach the problem from different angles, they are
closely related; Zhao and Boyland [ZB08] even argue that any ownership system can
be represented by (fractional) permission types. On the other hand, Östlund et al.
[Öst+08] propose an approach based on uniqueness and ownership and claim to be
able to encode fractional permission types in their system. Assigning any of these
approach to a single category is at best difficult. Nevertheless, we try to group the
work reviewed in this section roughly into these categories.

6.1.1 Uniqueness

The oldest approach to limit aliasing is probably the concept of unique references,
i. e. the guarantee that no other reference points to the same object. Unique references
are sometimes also called free or linear. A large body of work exists regarding
uniqueness which we selectively review here.

One of the first approaches is presented by Hogg [Hog91]. They realise that aliasing
is often unproblematic in local contexts well-known to the programmer and only
becomes an issue when references escape their set of familiar objects to a scope in
which the data structures implicit invariants are less known. They formalise and verify
side-effect free methods to build so called Islands as a way of encapsulating related
sets of objects. Within these islands, objects may be freely aliased, but all accesses
from outside an island must go through a single reference. While the term was not

33

6 Related Work

yet used at the time, this is already a very rudimentary form of ownership. Hogg
also introduces the often cited concept of destructive reads: To maintain uniqueness,
a unique reference must be invalidated (e. g. set to null) when read, to avoid the
creation of an alias. Destructive reads are found in one form or another in almost any
work on uniqueness and manifests itself as rule T-Ref-Transfer in our Exclusivity
Type System.

A even simpler conception of absolute uniqueness, by means of completely unsharable
objects is presented by Minsky [Min96]. They introduce the concept of methods
consuming references (making them unusable by the caller unless explicitly returned
by the callee), which serves a similar purpose as destructive reads and makes a
comeback much later in the Rust programming language [KN19, section 5.3]. Due to
the lack of internally aliasable object groups, Minsky’s work is more restrictive then
Islands, but also more similar to our approach, since we also reason about absolutely
unique references with ExclMut.

A major milestone has been laid by Noble, Vitek and Potter [NVP98] with Flexible
Alias Protection. They further elaborate on the observation that not all aliasing is
problematic and even argue that most if not all real issues stem from the visibility
of internal changes to other aliases. To remedy this, they adapt information hiding
techniques found in many programming languages to alias-protected containers: In a
container, fields are divided into argument and representation fields, separating the
container’s read-only from its mutable state. The arguments can be thought of as
references to other containers relevant to this one. A container may only modify its
representation and may only access the read-only state of its arguments. Due to these
rules, a container cannot access the mutable state of another container, so problematic
state-changes are never visible to aliases. As with Islands, this approach comes very
close to the concept of ownership, without naming it as such.

Realising the burden that destructive reads place both on the programmer and
the formal systems designer, Boyland [Boy01] proposes a method of enforcing unique
variables without destructive reads termed Alias Burying. Instead of invalidating a
unique variable when it is read, they require all aliases of that variable to be dead,
i. e. reassigned before being used again, if ever1. Boyland argues that while destructive
reads require a change to language semantics (a variable is actively invalidated when
read), Alias Burying can work as a completely separate check and the program can be
compiled and run independently of it. On another note, Boyland observes that most
methods never leak their receiver, making uniqueness assertions about it much more
simple then for other arguments. This is similar to our restriction in Field Assignment
Language (fal) that this may never appear on its own.

As a generalisation of their previous and other work, Boyland, Noble and Retert
[BNR01] develop Capability Sharing, as a means to provide a generic framework which
can be used to model different kinds of variable and field annotations by building
all possible combinations of capabilities into a lattice. This is very similar to the
capability system which we use to define the exclusivity lattice and even includes

1Dead variables can be determined using well-established data-flow analysis techniques, such as
live-variable analysis.

34

6.1 Aliasing Mitigation

an exclusive-write capability, which almost exactly corresponds to our ExclMut type.
Boyland, Noble and Retert even go a step further and include a notion of ownership
into the capabilities, making their system more expressive, albeit more complex than
ours.

Lastly, the Checker Framework ships a very simple aliasing checker itself [Che22,
chapter 26]. It is compromised mainly of a @Unique and a @MaybeAliased annotation
which form a 2-element lattice (with @Unique @ @MaybeAliased). References are
leaked (and thus uniqueness violated) at assignments, method calls, return and
throw statements. Sadly, the checker does not support uniqueness annotation at
fields, making it unusable for our purposes. The reason for this is that a field
@Unique Object f might already be aliased using the two expressions a.f and b.f,
even though f itself was never leaked using any of the above expressions. In our work,
we circumvent this issue by forbidding access to fields other than this, making it
easier to argue about field aliasing.

6.1.2 Ownership

The trend in contemporary research has been to move away from classical uniqueness
systems and towards more complex approaches based on ownership or permissions,
which are also more formally regarded as type systems. While the idea of encapsulating
objects and managing access through a singular reference has appeared at least as
far back as 1991 [Hog91], ownership types have first been explicitly introduced by
Clarke, Potter and Noble [CPN98] in 1998. Since then, the concept has become
very popular and has been adapted and repurposed many times. A survey of the
landscape of ownership type systems has been performed by Clarke et al. [Cla+13] in
2013. Recently, ownership types have made it into mainstream programming with the
Rust programming language [KN19] in 2010, first formally analyzed by Jung et al.
[Jun+17].

Here, we review Generic Universe Types (gut) by Dietl et al. [Die09; DDM12;
DM05], which we initially considered as a base for mutable property types, since it is
also implemented for Java in the Checker Framework [Pap+08]. Gut is a powerful
ownership type system that groups related objects into so called contexts, which form
the elements in the ownership tree. Variables annotated with rep are owned by the
current this, variables annotated as peer have the same owner as this (are siblings
in the ownership tree). Additionally, the annotation any is used for references with an
arbitrary owner. Taken together, peer and any are similar to the argument mode from
Flexible Alias Protection. Gut implements an owners-as-modifier discipline: Only the
current receiver and peer and rep references are mutable. We ultimately disregarded
gut as a basis for mutable property types, since the inclusion of peer references
does not sufficiently restrict the set of relevant properties as defined in section 2.3:
Each peer-reference in a context might still be used to invalidate properties of other
references in that context to the same object.

Dietl introduces a concept called viewpoint adaptation, which serves as the inspiration
of our access adaptation (see definition 12). When a method is called, the type of the
argument (which is declared from the callee’s point of view) must be translated to the

35

6 Related Work

caller’s point of view. To put it simple: An argument declared as peer on a method
with a rep receiver must be considered rep by the caller, since the owner of this in
the callee’s context is the caller’s context. Similarly, we also use access adaptation
to combine the types in a transitive field access into a single type. However, our
access adaptation is a slightly different concept, because the types in Dietl’s viewpoint
adaptation are fundamentally interpreted relative to this, while our exclusivity types
are more based on permissions which are technically independent of the current
receiver.

Within the context of gut, Dietl and Müller [DM13, section 4.4] also introduce
the concept of relevant invariant semantics. In that work, they study how object
ownership can ease program verification. They argue that when analysing invariants
regarding a multi-object data structure, which is similar to a property type dependent
on some of its subject’s fields, a classical visible state semantics (that a particular
invariant must only hold in the pre- and post-states of each method call) is insufficient.
They propose that in this case, a method m called on receiver o may assume and has
to preserve the invariants of o and its peers and all objects transitively owned by those
objects. In our work, we similarly require each method to specify how it affects the
Properties of its arguments and receiver, but further limit the relevant properties of
an object by restricting the transitivity described above: In fal, each object may only
directly access fields of this, any deeper accesses has to be guarded by a method.

6.1.3 Combinations of Ownership and Uniqueness

It can be argued that the concept of ownership contexts is a formalisation of the
idea found in many uniqueness systems that there be groups in which aliases are
permissible.

Clarke and Wrigstad [CW03] double-down on this observation and use an ownership
system to reason only about references into a context from outside of it. They
ultimately argue that this “External Uniqueness is unique enough”. While they once
again use destructive reads to achieve uniqueness, they claim that their system could
easily be enhanced to incorporate a more sophisticated mechanism, such as Alias
Burying [Boy01].

The aforementioned Joe3 by Östlund et al. [Öst+08] is a extension of External
Uniqueness to incorporate verification of immutability [Pot+13]. While it cannot
be used to directly make assertions about the absence of mutable aliases to object
referenced mutably, the authors claim that their system can be used to model fractional
permissions, which would enable such guarantees.

Bottom Line Throughout most of the work presented in this and the previous section,
the common concept emerges that there are certain local contexts within which aliasing
is unproblematic and should be permitted. While this may be true, it makes these
approaches unusable for our work, since we require total absence of mutable aliases
per our definition of property-safety (see definitions 8, 9 and 16).

36

6.1 Aliasing Mitigation

6.1.4 Permissions

Another approach to aliasing control, which is similar to Boyland, Noble and Retert
[BNR01]’s Capabilities, are permissions. Contrary to ownership and uniqueness,
permission-based approaches argue more about what operations may be performed
via a reference at hand, than how the referenced object is arranged within the global
object graph.

A very similar goal to ours is pursued by Foster, Terauchi and Aiken [FTA02]. They
present Flow Sensitive Type Qualifiers, which, akin to property types [Lan+21], also
constitute a means to annotate program variables with user-defined properties. To
this end, they implement many of the ideas that are included in our work as well,
such as the splitting of type contexts into one about declared and one about refined
types (called Store in their work). To handle aliasing, they perform a conservative
may-alias-analysis in a first program pass, where each expression result is assigned
an abstract location, which is a static approximation of the run time heap objects:
Every two expressions that may alias refer to the same abstract location, however, two
expressions can refer to the same abstract location and never actually alias at run time.
In the next step, the type contexts then map locations (instead of expressions) to
qualified types, thereby ensuring all possibly relevant qualified types are known for each
expression. Further, each abstract location has a specific linearity at each program
point. The linearity is an element of the lattice 0 @ 1 @ ω, where 0 represents an
unallocated expression, 1 a linear expression and ω a non-linear expression. Whenever
a location is reallocated, the linearity increases (0 7→ 1 7→ ω 7→ ω 7→ · · ·). Thus
linearity 1 is similar to our ExclMut: The location is allocated once and the type
qualifier may be changed by mutation (strong update). Linearity ω is a more powerful
version of our Immut: While Immut references can never be changed in our system,
non-linear locations may be mutated, but only insofar as the type qualifier is not
changed (weak update).

While not named as such, the linearities used by Foster, Terauchi and Aiken are a
sort of fractional permissions or fractional ownership (each non-linear reference only
represents a fraction of the ownership on the whole object).

This concept is mo more explicitly defined in ConSORT [Tom+20]: Here, all
references are annotated with refn, where n ∈ [0; 1] is the fraction. The semantics can
be subsumed as follows:

• ref0: The reference is read-only, but mutable aliases might exist (similar to our
RO).

• refn, where n ∈ (0; 1): The reference is read-only and no mutable aliases may
exist (similar to our Immut).

• ref1: The reference is mutable and any aliases are ref0 (similar to our ExclMut).

ConSORT does not include a counterpart to ShrMut. Whenever a reference refn is
copied, it is split into two ref

n
2 . For example, splitting of a ref1 (ExclMut) results in

two ref
1
2 (Immut), which corresponds to our rule T-Ref-Split-Immut. However,

37

6 Related Work

ConSORT provides a means to combine to references refn and refm back into refn+m,
making it in particular possible to recover the original ref1 reference when collecting
all the references split from it. This is a concept akin to borrowing found in many
ownership type systems, which is not possible in our system.

6.2 Pseudo-Languages

Before settling on defining our own in-house pseudo-language fal, we alternatively
considered using already established languages intended for formal reasoning.

The two most obvious candidates are Featherweight Java [IPW01] and Middleweight
Java [BPP03], which provide the advantage of being Java subsets. However, while
the former is not expressive enough (it is purely functional and in particular does
not support assignments, which is paramount for modelling mutability in procedural
languages) the latter is already to complex, including many language features analysis
of which is out of the scope of this work, such as inheritance and polymorphism.

Another interesting candidate is the Object Calculus by Abadi and Cardelli [AC95],
which is a kind of imperative, object-oriented, typed lambda calculus. Because intended
explicitly for use in formal analysis to make program reasoning as comfortable as
possible, it is in the spirit of formal calculi at its core very simplistic and even
simplest high-level constructs such as statement sequencing and let-bindings are built
from fundamental primitives. Because our work is explicitly focused on the Java
programming language and includes an implementation, the Object Calculus would
be unsuitable, since in the end the type rules must be applied to Java statements,
which is easier when the fundamental syntactical elements in the theoretical language
closely map real Java statements.

Many of the projects discussed in the previous section also define their own pseudo-
languages, including only those language constructs relevant and interesting for the
problem in question. In this spirit, we also defined our own simple language to avoid
the necessity of formalising large amounts of “boilerplate” language constructs, while
still staying close the targeted Java programming language.

38

7 Conclusion

In this thesis, we work towards a complete solution of flow-sensitive property types
for mutable data structures, both on a theoretical and an implementational level.
To this end, we formulate the notion of property safety as a universal assumption
enabling the safe verification of property types as defined by Lanzinger et al. [Lan+21]
in the presence of aliasing and mutability (section 3.1). We develop the Exclusivity
Type System (chapter 3), a simple refinement-based type system that can check
property safety of references and provide a prototypical implementation (chapter 5).
The Exclusivity Type System is also useful on its own as a type system for aliasing
control. Further, we extend Lanzinger’s original approach for property types to
mutable data structures by presenting mutable property types (chapter 4), which
employ flow-sensitive type refinement to model changing properties.

In the course of our work on the Exclusivity Type System, we found the field of
static aliasing control to be very vast and complex, containing many different – and
at second glance maybe not so different – approaches based on uniqueness, ownership,
permissions or a combination of those. We present a thorough overview of the field
and try to sensibly organise the large body of work (chapter 6).

7.1 Discussion

To ease further research on our subject, we review our own work and expose possible
drawbacks and disadvantages in this section.

Correctness While we abstractly argue the correctness of the Exclusivity Type
System (i. e. that it contains a property-safe type, see theorem 2), we do not give a
formal proof verifying the complete type system construction structurally. In fact,
we suspect the two most intricate constructions to be likely candidates for posing
problems in this regard. Firstly, the removal of possibly invalidated refinements in
rule T-Call employs a complex condition that relies on intricate assumptions about
the possibility of transitive modification of the current receiver by the invoked method.
Secondly, the access adaptation employed in rule T-Mth-Decl, which is based on
Dietl’s viewpoint adaptation [Die09], differs significantly from its original in some
regards. For example, access adaptation only affects types of fields, where viewpoint
adaptation is also – and mainly – about method parameter types. While we discuss
the distinction between the two concepts in section 6.1.2, it should be further analysed
whether an access combination that is closer to the original viewpoint adaptation
could increase the exclusivity type’s expressiveness and might even be required for
soundness.

39

7 Conclusion

Analysis of these potential issues is further impeded by the lack of a formal
operational semantics of Field Assignment Language (fal). Arguing about type
system soundness without a formalism to model program states and execution flow is
imprecise at best.

Implementation The design of our Exclusivity Type System follows the fairly unique
approach of basing well-typedness on the applicability of any of the available refine-
ments. The Checker Framework on the other hand follows a more established type
system design and clearly separates well-typedness from type refinement, where type
refinement is purely optional and merely enhances the precision of the type checker.
This discrepancy lead to difficulties in implementing our system with the Checker
Framework, as is discussed in section 5.1.

Additionally, the implementation currently only supports a very limited subset of
Java. To make it usable for real-world applications further development is required.

Usability Due to the deliberate simplicity of the Exclusivity Type System, it is not
obvious whether it is actually expressive enough to model meaningful and sufficiently
complex programs. For instance, it would be useful to apply the type transition
approach employed for mutable property types to exclusivity types: A method
parameter could then e. g. be annotated as @ExclMut -> @ShrMut to express that
the supplied reference must be ExclMut and will be mutably shared after the method
returns. Equally, an annotation like @ExclMut -> @ExclMut could then be used to
express that the reference is merely “borrowed” and will be available without restriction
after the method returns. A thorough evaluation of the expressiveness and usability
of the Exclusivity Type System and further research into possible improvements is
required.

The key feature of the property type approach is the ability to analyse false positives
by the type checker with deductive methods. However, in our approach this is only
possible for false positive property type errors. If the Exclusivity Checker is unable
to prove an e. g. an ExclMut annotation, there is currently no way to forward these
cases to the deductive verifier. Exclusivity annotations are much different from
property annotations, since they do not follow simple subtyping-rules but require
more sophisticated handling of statements that might duplicate references, making
this non-trivial. A method of analysing false positive type errors in a ownership type
system is studied by Jung et al. [Jun+17] for the Rust programming language. Their
work could provide further insight to how such a thing could be allowed for property
types.

7.2 Future Work

Independently of the issues discussed in the previous section, further extensions of
our work and additional research based on our findings are thinkable. In this section
we suggest selective future work that seems most promising to improve our system or
build upon it.

40

7.2 Future Work

First and foremost, the integration with and adaptation of Lanzinger’s Property
Checker as proposed in section 5.2 should be completed on a theoretical level and
then implemented.

While we already provide an overview of research on aliasing control, a more
elaborate survey and evaluation of the different approaches is called for. Since many of
the approaches are similar in core or even (claim to be) able to model other approaches,
a formalisation of a common base is a worthwhile goal. This has partly been done
before [ZB08; Öst+08; BNR01], but it seems likely that a more fundamental “common
denominator” of uniqueness, ownership and permissions can be established.

Much of the available work on aliasing control rightfully finds that organisation of
objects into internally aliasable groups is very useful (e. g. Islands [Hog91] or peer
contexts in Universe Types [Die09]). However, this conflicts with our design for
mutable property types insofar as we require the existence of absolutely (mutably)
exclusive references. A possible approach to working around this might be to reason
about properties of whole contexts as one, e. g. complete ownership-subtrees. How
this is possible and might be formalised should be studied in the future.

Another likely straightforward extensions to mutable property types could be allow-
ing multiply independent property type transitions annotated to a same variable. For
example, the list parameter of a method binaryInsert might be annotated with both
@Sorted -> @Sorted and @MinLength(n) -> @MinLength(n+1) to express how dif-
ferent possible properties of a reference are affected. Especially when combined with
having dependent property types, this promises to yield a significant increase of
expressiveness. This extension should be trivial to realise with the Checker Framework
and Lanzinger’s property type implementation.

41

List of Figures

1.1 Simplified pipeline for modular mutable property type checking. . . . 3

2.1 Property-type-checking pipeline . 7
2.2 Example program translation rule . 8
2.3 Grammar for Field Assignment Language (fal). 10

3.1 Lattice for exclusivity type system. 18
3.2 Type rules for Assignments. 20
3.3 Type rules for control flow structures. 22
3.4 Type rules for remaining statements. 22
3.5 Type rule for whole method bodies. 23

4.1 Property type rules. 26
4.2 Excerpt of adapted program translation rules. 27

5.1 Enhanced property-type-checking pipeline. 30

43

List of Tables

3.1 Explanation of exclusivity lattice elements. 17
3.2 Pseudo-assignment in rule T-Call. 21

45

List of Type Rules

2.1 Transl-Assign . 8

3.1 T-Assign . 20
3.2 T-Ref-Split-Mut . 20
3.3 T-Ref-Split-Immut . 20
3.4 T-Ref-Transfer . 20
3.5 T-Ref-Copy . 20
3.6 T-Ref-Copy-Ro . 20
3.7 T-Ref-New . 20
3.8 T-Call . 20
3.9 T-If . 22
3.10 T-While . 22
3.11 T-Scope-Compose . 22
3.12 T-Var-Decl . 22
3.13 T-Mth-Decl . 23

4.1 T-Prop-Call . 26
4.2 T-Prop-Mth-Decl . 26
4.3 T-Prop-Assign . 26
4.4 T-Prop-Var-Decl . 26
4.5 Transl-Call-Mut . 27

47

List of Definitions and Theorems

1 Definition (Type context) . 12
2 Definition (Type context access) . 12
3 Definition (Type context update) . 12
4 Definition (Restriction and subtraction) 13
5 Definition (Type context join) . 13
6 Definition (Subcontext) . 13
1 Theorem (Closedness) . 13
7 Definition (Refinement step) . 14

8 Definition (Property-safe reference) 15
9 Definition (Property-safe type) . 16
10 Definition (Exclusivity lattice) . 16
11 Definition (Copyable, mutable and property-annotatable) 18
12 Definition (Access combination) . 23
13 Definition (Method well-typedness) 23
14 Definition (Program well-typedness) 23
2 Theorem (Correctness) . 23

15 Definition (Valid type) . 27
16 Definition (Property-safe method) . 27
3 Theorem (Property-safety of refined method) 27
4 Theorem (Property-correctness) . 28

49

List of Listings

1.1 Property types on mutable objects in the presence of aliasing. 2

2.1 Definition and usage of GreaterEq annotation. 6
2.2 Example code illustrating local type inference in Java. 6

5.1 Splitting an exclusive reference into two shared references. 32
5.2 Copying an exclusive reference as read-only. 32
5.3 Forgetting of possibly invalid refinements after method invocation. . . 32
5.4 Cannot assign to field when receiver is read-only. 32

51

Bibliography

[AC95] Martin Abadi and Luca Cardelli. “An Imperative Object Calculus”. In:
Theory and Practice of Object Systems 1.3 (1995), pp. 151–166. doi:
10.1002/j.1096-9942.1995.tb00016.x.

[Ahr+16] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle,
Peter H. Schmitt and Mattias Ulbrich. Deductive Software Verification –
The KeY Book. Springer International Publishing, 2016. doi: 10.1007/
978-3-319-49812-6.

[Aut22] Various Authors. A Dataflow Framework for Java. 2022. url: https:
/ / checkerframework . org / manual / checker - framework - dataflow -
manual.pdf (visited on 08/01/2022).

[BNR01] John Boyland, James Noble and William Retert. “Capabilities for Sharing”.
In: ECOOP – Object-Oriented Programming. Springer Berlin Heidelberg,
2001, pp. 2–27. doi: 10.1007/3-540-45337-7_2.

[Boy01] John Boyland. “Alias Burying: Unique Variables Without Destructive
Reads”. In: Software: Practice and Experience 31.6 (2001), pp. 533–553.
doi: 10.1002/spe.370.

[BPP03] G.M. Bierman, M.J. Parkinson and A.M. Pitts. MJ: An imperative core
calculus for Java and Java with effects. Tech. rep. UCAM-CL-TR-563.
University of Cambridge, Computer Laboratory, Apr. 2003. doi: 10.
48456/tr-563.

[Che22] The Checker Framework Developers. The Checker Framework Manual.
Custom pluggable types for Java. Version 3.23.0. 2022. url: https://
checkerframework.org/manual/ (visited on 07/25/2022).

[Cla+13] Dave Clarke, Johan Östlund, Ilya Sergey and Tobias Wrigstad. “Ownership
Types: A Survey”. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 15–58. doi: 10.1007/978-3-642-36946-9_3.

[CPN98] David G. Clarke, John M. Potter and James Noble. “Ownership Types
for Flexible Alias Protection”. In: ACM SIGPLAN Notices 33.10 (Oct.
1998), pp. 48–64. issn: 0362-1340. doi: 10.1145/286942.286947.

[CW03] Dave Clarke and Tobias Wrigstad. “External Uniqueness Is Unique
Enough”. In: ECOOP – Object-Oriented Programming. Springer Berlin
Heidelberg, 2003, pp. 176–200. doi: 10.1007/978-3-540-45070-2_9.

53

https://doi.org/10.1002/j.1096-9942.1995.tb00016.x
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
https://doi.org/10.1007/3-540-45337-7_2
https://doi.org/10.1002/spe.370
https://doi.org/10.48456/tr-563
https://doi.org/10.48456/tr-563
https://checkerframework.org/manual/
https://checkerframework.org/manual/
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1145/286942.286947
https://doi.org/10.1007/978-3-540-45070-2_9

Bibliography

[DDM12] Werner Dietl, Sophia Drossopoulou and Peter Müller. “Separating Own-
ership Topology and Encapsulation With Generic Universe Types”. In:
ACM Transactions on Programming Languages and Systems 33.6 (2012),
pp. 1–62. doi: 10.1145/2049706.2049709.

[Die+11] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muşlu and
Todd W. Schiller. “Building and Using Pluggable Type-Checkers”. In:
Proceedings of the 33rd International Conference on Software Engineering
– ICSE. New York, NY, USA: Association for Computing Machinery, 2011,
pp. 681–690. doi: 10.1145/1985793.1985889.

[Die09] Werner Dietl. “Universe Types: Topology, encapsulation, genericity, and
tools”. PhD thesis. ETH Zurich, 2009. doi: 10.3929/ethz-a-005951213.

[DM05] Werner Dietl and Peter Müller. “Universes: Lightweight Ownership for
JML”. In: The Journal of Object Technology 4.8 (2005), p. 5. doi: 10.
5381/jot.2005.4.8.a1.

[DM13] Werner Dietl and Peter Müller. “Object Ownership in Program Verifi-
cation”. In: Aliasing in Object-Oriented Programming. Types, Analysis
and Verification. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 289–318. doi: 10.1007/978-3-642-36946-9_11.

[FTA02] Jeffrey S. Foster, Tachio Terauchi and Alex Aiken. “Flow-Sensitive Type
Qualifiers”. In: ACM SIGPLAN Notices 37.5 (May 2002), pp. 1–12. issn:
0362-1340. doi: 10.1145/543552.512531.

[Gos+21] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel
Smith and Gavin Bierman, eds. The Java Language Specification. Java SE
17. 2021. url: https://docs.oracle.com/javase/specs/jls/se17/
html/index.html (visited on 07/29/2022).

[Hog91] John Hogg. “Islands: Aliasing Protection in Object-Oriented Languages”.
In: ACM SIGPLAN Notices 26.11 (Nov. 1991), pp. 271–285. issn: 0362-
1340. doi: 10.1145/118014.117975.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce and Philip Wadler. “Featherweight
Java: A Minimal Core Calculus for Java and GJ”. In: ACM Transactions
on Programming Languages and Systems 23.3 (May 2001), pp. 396–450.
issn: 0164-0925. doi: 10.1145/503502.503505.

[Jun+17] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers and Derek Dreyer.
“RustBelt: Securing the Foundations of the Rust Programming Language”.
In: Proceedings of the ACM on Programming Languages. Vol. 2. Association
for Computing Machinery, Dec. 2017. doi: 10.1145/3158154.

[KN19] Steve Klabnik and Carol Nichols. The Rust Programming Language. Covers
Rust 1.59 or later. No Starch Press, 2019. isbn: 9781718500440. url:
https://doc.rust-lang.org/stable/book/.

54

https://doi.org/10.1145/2049706.2049709
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.3929/ethz-a-005951213
https://doi.org/10.5381/jot.2005.4.8.a1
https://doi.org/10.5381/jot.2005.4.8.a1
https://doi.org/10.1007/978-3-642-36946-9_11
https://doi.org/10.1145/543552.512531
https://docs.oracle.com/javase/specs/jls/se17/html/index.html
https://docs.oracle.com/javase/specs/jls/se17/html/index.html
https://doi.org/10.1145/118014.117975
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3158154
https://doc.rust-lang.org/stable/book/

[Lan+21] Florian Lanzinger, Alexander Weigl, Mattias Ulbrich and Werner Dietl.
“Scalability and Precision by Combining Expressive Type Systems and
Deductive Verification”. In: Proceedings of the ACM on Programming
Languages. Vol. 5. 143. Association for Computing Machinery, Oct. 2021.
doi: 10.1145/3485520.

[Lea+13] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, Daniel M. Zimmer-
mann and Werner Dietl, eds. Java Modeling Languagee (JML) Reference
Manual. 1st ed. 2013. url: https://www.cs.ucf.edu/~leavens/JML/
jmlrefman (visited on 07/27/2022).

[Min96] Naftaly H. Minsky. “Towards alias-free pointers”. In: ECOOP – Object-
Oriented Programming. 10th European Conference, Proceedings. Ed. by
Pierre Cointe. Springer Berlin Heidelberg, 1996, pp. 189–209. doi: 10.
1007/BFb0053062.

[NVP98] James Noble, Jan Vitek and John Potter. “Flexible alias protection”.
In: ECOOP – Object-Oriented Programming. 12th European Conference,
Proceedings. Ed. by Eric Jul. Springer Berlin Heidelberg, 1998, pp. 158–
185. doi: 10.1007/BFb0054091.

[Öst+08] Johan Östlund, Tobias Wrigstad, Dave Clarke and Beatrice Åkerblom.
“Ownership, Uniqueness, and Immutability”. In: Objects, Components,
Models and Patterns. 46th International Conference, TOOLS EUROPE
2008, Proceedings. Springer Berlin Heidelberg, 2008, pp. 178–197. doi:
10.1007/978-3-540-69824-1_11.

[Pap+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jeff H. Perkins and
Michael D. Ernst. “Practical Pluggable Types for Java”. In: Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA).
New York, NY, USA: Association for Computing Machinery, 2008, pp. 201–
212. isbn: 9781605580500. doi: 10.1145/1390630.1390656.

[Pot+13] Alex Potanin, Johan Östlund, Yoav Zibin and Michael D. Ernst. “Im-
mutability”. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 233–269. doi: 10.1007/978-3-642-36946-9_9.

[Tom+20] John Toman, Ren Siqi, Kohei Suenaga, Atsushi Igarashi and Naoki
Kobayashi. “ConSORT: Context- and Flow-Sensitive Ownership Refine-
ment Types for Imperative Programs”. In: Programming Languages and
Systems. 29th European Symposium on Programming (ESOP), Held as
Part of the European Joint Conferences on Theory and Practice of Soft-
ware (ETAPS). Springer International Publishing, 2020, pp. 684–714. doi:
10.1007/978-3-030-44914-8_25.

[ZB08] Yang Zhao and John Boyland. “A Fundamental Permission Interpretation
for Ownership Types”. In: 2nd IFIP/IEEE International Symposium on
Theoretical Aspects of Software Engineering. June 2008. doi: 10.1109/
tase.2008.45.

55

https://doi.org/10.1145/3485520
https://www.cs.ucf.edu/~leavens/JML/jmlrefman
https://www.cs.ucf.edu/~leavens/JML/jmlrefman
https://doi.org/10.1007/BFb0053062
https://doi.org/10.1007/BFb0053062
https://doi.org/10.1007/BFb0054091
https://doi.org/10.1007/978-3-540-69824-1_11
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1007/978-3-642-36946-9_9
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.1109/tase.2008.45
https://doi.org/10.1109/tase.2008.45

	Introduction
	Reference Aliasing and Mutability
	Approach
	Overview

	Foundations
	Checker Framework
	Property Types
	Field Assignment Language
	Type Contexts

	Exclusivity
	Requirements for Property Types
	Exclusivity Type System
	Capabilities and Lattice
	Type Rules

	Well-Typedness

	Mutable Property Types
	Property Refinement
	Property Safety
	Adapted Program Translation
	Correctness

	Implementation
	Exclusivity Checker
	Outlook: Integration with Property Checker
	Test cases

	Related Work
	Aliasing Mitigation
	Uniqueness
	Ownership
	Combinations of Ownership and Uniqueness
	Permissions

	Pseudo-Languages

	Conclusion
	Discussion
	Future Work

	List of Figures
	List of Tables
	List of Type Rules
	List of Definitions and Theorems
	List of Listings
	Bibliography

