
Cube&Conquer-inspired Malleable
Distributed SAT Solving

Master’s Thesis of

Maximilian Schick

at the Department of Informatics

Institute of Theoretical Informatics, Algorithm Engineering

Reviewer: Prof. Dr. rer. nat. Peter Sanders

Advisor: M.Sc. Dominik Schreiber

Second advisor: Dr. rer. nat. Markus Iser

01. November 2020 – 30. April 2021

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 30.04.2021

. .

(Maximilian Schick)

Abstract

In order to make resource-e�cient use of high-performance computing environments

in the context of propositional satis�ability (SAT) solving, recent work suggested to

resolve multiple formulae at once within a decentralized framework for job scheduling.

In order to address the issue of highly variable processing times that are unknown in

advance, malleable SAT solving methods have emerged. Malleability denotes the ability

of a computational task to vary its number of processing resources during execution. In

this work we extend the �eld of malleable SAT solving by introducing two new methods

that are inspired by Cube&Conquer. This paradigm is based on using special lookahead

heuristics in order to partition a SAT instance into sub-problems that can be solved

simultaneously. Our �rst method uses malleability to resource-e�ciently create a static

workload which is afterwards balanced across a �exible number of processing elements.

The second method is built around continuous work generation coupled with work stealing

in order to exploit a �uctuating amount of resources. To enable collaborative SAT solving

of a dynamic workload, we present a new decentralized approach based on exchanging

failed assumptions. In the evaluation, we inspect parameters and show that both methods

can outperform a state-of-the-art sequential SAT solver. We also compare them to an

existing malleable solving engine based on portfolios. All work was implemented within

the recently published Mallob framework that manages the scheduling and load balancing

of a �uctuating number of malleable tasks within a distributed computing environment.

i

Zusammenfassung

Zur ressourcene�zienten Nutzung von Hochleistungsrechnern für die Lösung des Erfüll-

barkeitsproblems der Aussagenlogik (SAT) wird in neueren Arbeiten vorgeschlagen, den

Ablauf der Bearbeitung mehrerer Formeln von einem dezentralen System verwalten zu

lassen. Um die Problemeatik der hochvariablen und im Voraus unbekannten Verarbei-

tungszeiten zu behandeln, haben sich malleable-SAT-Löseverfahren bewährt. Malleability

bezeichnet die Fähigkeit einer Berechnung, während ihrer Ausführung die Anzahl der

zugewiesenen Rechenressourcen zu verändern. Diese Arbeit erweitert den Bereich der

malleable-SAT-Löseverfahren, durch die Einführung zweier neuer Methoden, die von

Cube&Conquer inspiriert sind. Dieses Paradigma basiert auf der Partitionierung einer SAT-

Instanz mittels vorausschauender Heuristiken. Die resultierenden Teilprobleme können

dann simultan gelöst werden. Die erste Methode verwendet Malleability, um ressourcenef-

�zient eine statische Arbeitslast zu erzeugen, die anschließend auf eine dynamische Anzahl

von Verarbeitungselementen verteilt wird. Die zweite Methode basiert auf einer konti-

nuierlichen Arbeitsgenerierung in Kombination mit Work-Stealing, zur Ausnutzug einer

variabel großen Rechenkapazität. Um kollaboratives SAT-Lösen in Verbindung mit einer

dynamischen Arbeitslast zu ermöglichen, wird ein neuer dezentralen Ansatz vorgestellt,

der auf dem Austausch von fehlgeschlagenen Annahmen basiert. Die Evaluierung betrach-

tet mögliche Parameter und zeigt, dass beide Methoden einen hochmodernen sequentiellen

SAT-Löser übertre�en können. Zusätzlich werden beide mit einem existierenden malleable-

SAT-Löseverfahren verglichen, das Portfolios verwendet. Die gesamte Arbeit geschieht im

Rahmen des kürzlich verö�entlichten Mallob-Frameworks. Dieses verwaltet den Ablauf

der Ausführung einer schwankenden Anzahl von malleable-Berechnungen auf verteilte

Verarbeitungselemente.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Motivation . 1

1.2 Approach . 2

1.3 Structure of this thesis . 3

2 Preliminaries and Related Work 5
2.1 De�nitions . 5

2.2 The Boolean satis�ability problem . 6

2.3 SAT solving algorithms . 6

2.3.1 SAT solver completeness . 6

2.3.2 Davis–Putnam–Logemann–Loveland algorithm 6

2.3.3 Con�ict driven clause learning 7

2.3.4 Incremental SAT solving . 7

2.3.5 Lookahead solver . 7

2.3.6 Search-space splitting . 8

2.3.7 Cube&Conquer . 10

2.3.8 Divide&Conquer with work stealing 11

2.4 Related work . 11

2.4.1 Paracooba . 11

2.4.2 Ampharos . 12

3 The Mallob Platform 15
3.1 Basic concept . 15

3.2 Designing a malleable job . 17

3.3 Mallob in the domain of SAT solving . 21

4 Design Decisions 23
4.1 On �nding splitting literals . 24

5 First Approach: Static Cube&Conquer 27
5.1 The concept . 27

5.2 Pruning . 27

5.3 The manager . 28

5.3.1 Work�ow of the manager . 29

v

Contents

5.3.2 Completeness . 29

5.3.3 Randomization . 30

5.4 The worker . 30

5.4.1 Extending IPASIR to suspend solvers 30

5.4.2 Work�ow of the worker . 30

6 Second Approach: Dynamic Cube&Conquer 33
6.1 The concept . 33

6.2 Dynamic cubes . 36

6.3 Completeness . 38

6.4 The cube solver threads . 38

6.5 The distribution of failed clauses . 41

6.6 The generator thread . 41

6.7 Handling of requests for cubes . 44

6.8 Malleability . 44

6.9 Handling of delayed messages . 45

7 Evaluation 47
7.1 Hardware . 47

7.2 Static Cube&Conquer . 47

7.2.1 Randomization . 48

7.2.2 Height of the cube tree . 49

7.2.3 Scaling . 50

7.3 Dynamic Cube&Conquer . 51

7.4 Comparison with the portfolio-based solving engine 53

8 Conclusion and Future Work 55
8.1 Conclusion . 55

8.2 Future work . 56

Bibliography 57

vi

List of Figures

2.1 Illustration of the creation of the sub-problems 9

3.1 Overview of the distributed architecture of Mallob 15

3.2 Schematic illustration of two job trees . 16

3.3 Exemplary data �ow over all nodes of a job 17

3.4 State diagram of the lifecycle of a job . 18

3.5 Schematic illustration of a PE with four job contexts 20

5.1 Concept of the �rst approach mapped onto a job tree 28

5.2 Work�ow of the cube solver thread in the worker 32

6.1 Creation and assignment of the active cubes 35

6.2 Scenario where sharing of failed clauses leads to a UNSAT resolution . . 36

6.3 Depiction of all invariants and multiple communication protocols of the

second approach . 37

6.4 Illustration of the reassignments of the cube solver threads 38

6.5 Illustration of the solving loop of a cube solver thread 40

6.6 Aggregation of failed clauses . 41

6.7 Broadcast of failed clauses . 41

6.8 Illustration of the work�ow of the cube generation thread 43

6.9 Aggregation of @G with G > 0 . 44

6.10 Broadcast of @0 . 44

7.1 Performance of Static Cube&Conquer with and without randomization . 48

7.2 Performance of Static Cube&Conquer using di�erent cube tree heights

and batch sizes . 49

7.3 Performance of Static Cube&Conquer using di�erent active jobs limits . 50

7.4 Performance of Dynamic Cube&Conquer using di�erent active job limits 52

7.5 Comparison with the portfolio-based solution in Mallob 54

vii

List of Tables

2.1 Overview of the IPASIR interface . 8

7.1 Number of solved problems per active job limit for Dynamic Cube&Conquer 53

ix

1 Introduction

1.1 Motivation

The Boolean satis�ability problem, or SAT problem, is one of the most prominent problems

in theoretical computer science. It is de�ned as the question of whether there is a variable

assignment for a propositional formula such that it evaluates to true. If such an assignment

is found, the associated formula is regarded as satis�able. The nonexistence of a satisfying

assignment makes a formula unsatis�able. The SAT problem was the �rst one to be proven

NP-complete, thus de�ning an entirely new complexity class [9]. Being the original NP-

complete problem, places it in the center of the families of NP and NP-hard problems. An

e�cient solving algorithm would therefore �nd application in a multitude of �elds. This

has drawn a lot of attention towards possible solving methods [8]. Due to the NP-complete

nature of the problem, all solving algorithms require worst-case exponential time [15, 23].

However, there has been promising work on creating solvers that work well in practice.

These have been applied successfully to SAT instances from �elds like integrated circuit

design automation, model-checking and planning [8, 23].

The interest in SAT solving culminated in the founding of the International SAT Competi-

tion in 1992. The contest, which is held annually since 2002, allows researchers to compare

their approaches with other new ideas and state of the art techniques. This has contributed

signi�cantly to the rapid progress in the �eld of SAT solving, making solvers more robust,

more reliable and more e�cient to solve a wide variety of problem instances [20, 27].

The advances in SAT solving over the last decades have resulted in very e�ective state-

of-the-art solvers. They are capable of solving many problems arising from industrial

applications in a reasonable amount of time. This has been achieved by incorporating

advanced heuristics and numerous preprocessing and inprocessing techniques. In addition,

specialized data structures have been used to push the maximum performance on today’s

single-core architectures [3]. To take advantage of this progress, a lot of research has

been done to transfer other problems from scienti�c �elds such as graph theory, computer

science, computer engineering, and operations research to equivalent SAT instances [7].

The resulting positive loop has made the SAT problem even more relevant [8].

However, the widespread application of SAT solvers on numerous tasks had an impact

on the average problem instance. Modern solvers are challenged by problems that are

larger, more complex and more diverse in their structure. This development has limited

the general increase in their performance [16, 1]. To cope with this issue and to utilise

the prevalence of multi core systems, much work has been done recently on parallel

SAT solving solutions. The goal of this next step is to create a new leap in SAT solver

1

1 Introduction

performance and to �nd ways to solve industrial problems that are currently not solvable

in a reasonable amount of time. The Parallel Track of the SAT Competition has therefore

been an integral part since its inception in 2008 [16]. Parallel SAT solving is usually done

by combining instances of one or multiple single threaded state-of-the-art solvers. This

allows the creation of a parallel SAT solver without having to worry about the complicated

internals of a modern sequential SAT solver. The solver can simply be used in a black box

manner utilizing the expertise gained from decades of research.

There are two predominant approaches for parallel SAT solving: portfolios and search-

space splitting approaches [24]. Most relevant parallel solvers can be assigned to one of

these two classes or use a hybrid solution.

• Portfolios exploit concurrency by applying several complementary strategies to a

problem. This is done by using a single or multiple solvers in a variety of con�gu-

rations. The approach is based on the idea that one of the strategies used might be

particularly well suited to solve the problem. The problem itself is not modi�ed.

• Search-space splitting is based on the concept of splitting the given SAT problem

into several smaller disjoint problems and solving them in parallel. Splitting can

be done either in advance, thus creating an additional upfront task or dynamically

during solving, making the algorithm much more complex. Finding a good split of

a problem is a complex task in itself. It is di�cult to �nd a split which produces

sub-problems of reduced di�culty and does not merely multiply the work to be done.

Both approaches can be improved by having concurrent solvers share learned information

which simpli�es the formula.

Recently, massively parallel and distributed SAT solving gained more attention. This has

lead to the introduction of a Cloud Track in the SAT Competition 2020 [4]. Having access to

a cluster consisting of hundreds of multi core machines could give state-of-the-art parallel

SAT solvers the edge to solve even more complex problem instances. It could also enable

the creation of a resource-e�cient SAT solving cloud service for a �uctuating number of

problem instances by scaling each concurrent solving process based on its demand and the

formula’s priority. This is possible by introducing malleability to parallel SAT solving [25].

Malleability in a parallel context stands for the ability to dynamically alter the amount of

processing elements in an application during its execution [12]. Instead of setting a �xed

degree of parallelization at startup, it can be increased or decreased during the run time of

a malleable computing task. This idea was already brought to the portfolios approach in a

submission to the 2020 SAT Competition [25], albeit only applied to a single formula at a

time due to the rules of the competition.

1.2 Approach

This thesis focuses on our progress in introducing malleability to parallel SAT solving based

on search-space splitting. To our knowledge, this has only been done in Paracooba [17],

but without priority-based load balancing and only for static workloads. Our approaches

2

1.3 Structure of this thesis

incorporate priority-based load balancing and our second approach is built around manag-

ing a dynamic workload. We do this in the scope of Mallob [26], a decentralized platform

that handles the scheduling and load balancing of a �uctuating number of malleable tasks

within a distributed computing environment depending on the task’s priority and demand.

All presented methods are therefore built around Mallob’s specialized communication

structure of the processing resources that are assigned to a task. A task in this context

represents the solving of a single instance of the SAT problem. Another limitation is

our design decision to base our approaches around a solver that implements the IPASIR

interface [5]. This allows the resulting methods to be used with various state-of-the-art

solvers. It also contributes to the simpli�cation, because we will not engage in the internals

of the SAT solver. We propose the following two di�erent SAT solving methods:

• The �rst one uses an initial sequential step to split the given problem into a prede�ned

number of sub-problems. In the second step, these are distributed to concurrent

SAT solvers in the assigned processing resources. The balancing of the workload is

then based on the fact that there are more sub-problems than active solvers. This

compensates for di�erent processing times per sub-problem.

• The second method is more dynamic in nature. Its workload balancing is based on

enabling each processing element to split a problem into sub-problems. This allows

each of them to divide received sub-problems further, providing diverse work for

the local solvers. Therefore, it is guaranteed that each inactive solver can obtain an

unsolved and unique sub-problem. A given problem is so dynamically partitioned to

the extent necessary to provide work to each solver.

Both methods are tested in di�erent con�gurations to estimate the in�uence of used

parameters and to test how well their solving capabilities scales with an increasing number

of processing elements per task. Then we compare the solving performance of both with

the the portfolio-based solving engine included in Mallob [26].

1.3 Structure of this thesis

We begin in Chapter 2 with the de�nition of the SAT problem and give a brief overview of

modern sequential SAT solving techniques. Next, we explain the search-space splitting

approach to parallel SAT solving and its caveats and propose possible implementations.

We end the Chapter with a reference to two related works. In Chapter 3, we introduce

Mallob and de�ne the interface a task must implement to allow its malleable scheduling.

In Chapter 4, we state and reason for all the chosen constraints on our approaches. Our

two approaches are presented in the Chapters 5 and 6 and we evaluate them in Chapter 7.

Finally, we summarize our results in Chapter 8 and propose future work.

3

2 Preliminaries and Related Work

In this chapter we �rst give a more detailed de�nition of the SAT problem and reference

the associated terminology that is used in the context of SAT solving. An explanation of

the basic algorithms and their properties follows. After that, we give an overview of the

search-space splitting approach to parallel SAT solving, list its weaknesses and present

two possible implementations. Finally, we introduce two related works that apply this

approach in a distributed computing environment.

2.1 Definitions

We start by giving some basic de�nitions that will help us to specify parts of the Boolean

satis�ability problem.

De�nition 1 (Boolean variable). A Boolean variable or propositional variable or in further

mostly just variable is a placeholder for the truth values true and false. In this thesis we

use them in combination with the unary operation negation (¬) and the binary operations

disjunction (∨) and conjunction (∧).

De�nition 2 (Boolean formula). A Boolean formula is a function mapping each assignment

of a �nite set of Boolean variables to either true or false.

De�nition 3 (Literal). A literal represents a positive assignment of a variable, a negated

variable is represented by an inverse literal. We use literals to form Boolean formulas and

to symbolize variable assignments.

De�nition 4 (Clause). A clause is a disjunction of one or multiple literals and inverse

literals.

De�nition 5 (Conjunctive normal form (CNF)). A Boolean formula is in the conjunctive
normal form if it consists of a single conjunction of one or multiple clauses.

De�nition 6 (Unit propagation). Unit propagation means a�ecting the entire formula by

a chosen variable assignment G . This is done by manipulating the clauses. All clauses that

contain G can be removed. They are satis�ed by this partial assignment. All clauses that

contain ¬G remove the literal. This procedure allows to simplify a formula as assignments

are made. It also helps to �nd dependant variable assignments that are forced by previous

assignments.

5

2 Preliminaries and Related Work

2.2 The Boolean satisfiability problem

The Boolean satis�ability (SAT) problem is de�ned as the question of the existence of a

satisfying variable assignment for a given Boolean formula. In the context of SAT solving,

all formulas are required to be in conjunctive normal form. In this structure, it is trivial to

see that a satisfying assignment has to satisfy each individual clause. The clauses therefore

play an essential role in SAT solving. Each clause consists of a subset of the �nite set

of variables of the formula. Each variable can be contained exactly once per clause. We

give an example of a Boolean formula in CNF in combination with a variable assignment

below. The assignment proves the satis�ability of the formula. It can be veri�ed by simply

checking if each clause is satis�ed.

Formula = (
Literal

↓
G1 ∨ G2 ∨

Inverse literal

↓¬G3)︸ ︷︷ ︸
Clause

∧ (¬G1 ∨ ¬G2) ∧ (G1) ∧ (G1 ∨ G3)

SAT assignment = {G1,¬G2,¬G3}

2.3 SAT solving algorithms

In this section, we present sequential and parallel SAT solving algorithms and methods

and their properties.

2.3.1 SAT solver completeness

Solvers for the Boolean satis�ability problem are called SAT solvers. They can be divided

into two categories: complete and incomplete algorithms. A complete algorithm is designed

to eventually exhaust the entire search space of a given problem. Thus, it is guaranteed

that the satis�ability will ultimately be determined. However, the exhaustion of the search-

space is only possible in exponential time. An incomplete algorithm does not o�er this

guarantee. In this work, we exclusively focus on solvers that use complete algorithms and

combine them to create new complete algorithms.

2.3.2 Davis–Putnam–Logemann–Loveland algorithm

The �rst SAT solving algorithm was proposed by Davis and Putnam in 1960 [11] and

improved by Davis, Logemann and Loveland in 1962 [10]. It is therefore known as the

Davis–Putnam–Logemann–Loveland (DPLL) algorithm. It is based on doing a depth-�rst

search by heuristically choosing a Boolean variable of the formula and assigning a truth

value to it, thereby branching into a sub-search-space. This is done by propagating the

decision. If propagation has resulted in an unsatis�able formula, the algorithm backtracks

to the nearest non-con�icting assignment branch. Further, if each branch has resulted in

a con�ict, the formula is considered unsatis�able. Otherwise, a satisfying assignment is

found eventually.

6

2.3 SAT solving algorithms

2.3.3 Conflict driven clause learning

The majority of modern sequential SAT solvers are based on the con�ict-driven clause
learning (CDCL) algorithm. The method is complete and has proven to be very e�cient

in solving large but simple instances of the SAT problem, making it especially useful in

practical applications. CDCL is an expansion of the Davis–Putnam–Logemann–Loveland

algorithm that was used in earlier SAT solvers. The core invariant of DPLL is kept and

expanded with the incorporation of a more complex con�ict analysis step. This step allows

the extraction of the information that lead to a contradiction. The information is then

used to simplify the formula by adding redundant clauses and to enable non-chronological

backtracking. A detailed description of the functionality of a CDCL based SAT solver can

be found in [7].

2.3.4 Incremental SAT solving

In many applications, SAT solvers face the challenge of solving incrementally expanding

problems or a single problem under several di�erent partial assignments. To accomplish

this, a fresh solver instance is applied each time. This results in the full duration per

run. In order to perform this task more e�ciently, solvers should be able to apply learnt

simpli�cations on related problem instances. This would allow the reuse of the same solver

instance for all problem instances. The simpli�cations that were learned while solving

the �rst formula should then be usable to reduce the run time from the second instance

onwards. This feature is known as incremental SAT solving. The applicability in multiple

domains has lead to most state-of-the-art solvers including it in some form.

To compare the progress and to standardize the interface of incremental SAT solving, a

dedicated Incremental Track was added to the SAT Competition in 2015 [5]. The proposed

interface to be implemented is called IPASIR which is the reversed acronym for "Re-

entrant Incremental Satis�ability Application Program Interface". In the Table 2.1 we

present methods from the interface. This is necessary because both approaches in this

thesis are built around this interface and thus reference its methods in their descriptions.

2.3.5 Lookahead solver

A lookahead solver is also a complete SAT solver that is based on the DPLL-algorithm. But

instead of focusing on a better con�ict analysis like in CDCL, they use a sophisticated

lookahead procedure to determine better branching variables. Given the formula � a looka-

head on the possible variable G works as follows [18]: First the decision G is propagated

on � creating the reduced formula � ′. If there was no con�ict, the reduction from � to � ′

is measured. There are several heuristics for this measurement. A widely used one is the

proportional number of clauses that have changed because of the propagation to the total

number of clauses. This step is then repeated with ¬G . If the propagation has lead to a

con�ict, the variable is remembered as failed literal. This procedure is performed for all

promising branching variables. Finally, the algorithm branches on the variable that had the

largest impact on the formula in both polarities. The sophisticated approach of lookahead

7

2 Preliminaries and Related Work

Method Behavior

add� Permanently add an additional clause to the formula.

assume� Assume a partial assignment for the next call to solve� .

solve� Start to solve the formula consisting of all clauses that were added, under

the speci�ed assumptions. If the formula is satis�able, SAT is returned. If

the formula is unsatis�able, UNSAT is returned. Otherwise UNKNOWN

is returned.

failed� If the formula was proven to be unsatis�able under a given partial assign-

ment in the last call to solve� , this method can be used to check which

assumed literals were used in the proof and therefore are responsible.

terminate� This method allows to insert a predicate into the solving loop which can

be used to force an early termination.

Table 2.1: Overview of the IPASIR interface.

solvers has proven to be e�cient in solving small but very complex problems [18]. In

addition, the structure of the used algorithm is well suited for parallelization. However,

for large industrial problems, a single-threaded CDCL solver outperforms a parallelized

lookahead solver running on multiple cores [18].

2.3.6 Search-space splitting

Search-space splitting is one the most dominant approaches to parallelize CDCL solvers. It

is based on partitioning the search space of the given SAT problem into several disjoint sub-

spaces, each de�ning a sub-problem. All sub-problems can be processed simultaneously.

This is done by selecting an internal variable of the formula and thereby de�ning the two

sub-formulas where the selected variable has been assigned one of the two truth values.

For example, if we have the formula � that contains the variable G1 we can create the two

disjoint sub-formulas �1 and �2 like shown below. The original formula � can be recreated

by forming the disjunction of both sub-formulas.

(G1 ∧ �)︸ ︷︷ ︸
�1

∨ (¬G1 ∧ �)︸ ︷︷ ︸
�2

= �

This division step can be repeated on the sub-formulas as often as desired. In this way, a

binary tree can be created where each node represents a partial assignment and each edge

depicts the assignment of a single variable. The leaves then form the set of the smallest

disjoint sub-problems that are equivalent to � in a disjunction. This is depicted in the

example below.

8

2.3 SAT solving algorithms

Example. Let � be a formula. We want to use search-space splitting on � to create

four sub-formulas. We therefore have to apply the presented division step three times.

This results in the creation of the binary tree below.

F

F1 F4F3F2

x1

x2 x3

¬x1

¬x2 ¬x3

Figure 2.1: Illustration of the creation of the sub-problems.

The created sub-formulas are

�1 = (G1 ∧ G2) ∧ �,
�2 = (G1 ∧ ¬G2) ∧ �,
�3 = (¬G1 ∧ G3) ∧ �,

and �4 = (¬G1 ∧ ¬G3) ∧ �
with � = �1 ∨ �2 ∨ �3 ∨ �4

Multiple instances of a CDCL solver can then be used to concurrently work on each leaf.

If a single instance �nds a satisfying assignment for a sub-formula, the entire problem is

solved. This follows from the disjunction that is needed to recreate the original formula.

The satisfying assignment of the sub-formula can simply be expanded using the literals on

the edges towards the root to create a valid satisfying assignment for the original problem.

In order to prove unsatis�ability, all leaves need to be proven unsatis�able.

However, �nding optimal division variables is a hard problem itself [22]. Each division step

must generate two sub-problems that are individually easier to solve than the outgoing

problem. Both sub-problems should also be equally time consuming to solve. Otherwise,

it would badly a�ect the load balancing.

The following two pathological cases show how poor partitioning can a�ect a formula

and thus its solving using the search-space splitting approach [2]. Let � ′ be a formula in

CNF. Using the two additional variables G1, G2 ∉ �
′
, we can de�ne another formula � as

follows that is also in CNF.

� = ((G1 ∨ G2) ∧ � ′) ∧ ((G1 ∨ ¬G2) ∧ � ′)

1. If G1 is chosen for a division, the sub-formulas

�1 = G1 ∧ ((G1 ∨ G2) ∧ � ′) ∧ ((G1 ∨ ¬G2) ∧ � ′) = G1 ∧ � ′

and �2 = ¬G1 ∧ ((G1 ∨ G2) ∧ � ′) ∧ ((G1 ∨ ¬G2) ∧ � ′) = ¬G1 ∧ (G2 ∧ � ′) ∧ (¬G2 ∧ � ′)

9

2 Preliminaries and Related Work

are created. It is easy to see that �2 can be proven to be unsatis�able without having

to traverse � ′, making the associated solving task very light. In a parallel context,

this leads to ine�cient load balancing.

2. If G2 is chosen for a division, the sub-formulas

�1 = G2 ∧ ((G1 ∨ G2) ∧ � ′) ∧ ((G1 ∨ ¬G2) ∧ � ′) = G2 ∧ G1 ∧ � ′

and �2 = ¬G2 ∧ ((G1 ∨ G2) ∧ � ′) ∧ ((G1 ∨ ¬G2) ∧ � ′) = ¬G2 ∧ G1 ∧ � ′

are created. This split forces the solvers that work on �1 and �2 to traverse the

unmodi�ed formula � ′. The division has therefore resulted in two redundant tasks.

This is bad because redundant task clog up processing resources with unnecessary

work.

Because of such cases, the splitting variables should be carefully selected. In particular,

when handling formulas that are likely to be unsatis�able, since the algorithm requires

each associated sub-formula to be proven unsatis�able in order to determine UNSAT.

Choosing optimal division variables requires the use of heuristics [22]. In the literature,

possible heuristics fall into the following two categories:

Lookahead heuristics Lookahead heuristics are based on predicting the behavior of

a solver if a given variable would be assigned. This is done exactly as in the lookahead

solver from Subsection 2.3.5. Each variable G8 is rated according to how an assignment of

G8 or ¬G8 would a�ect the formula. The variables that have a large impact on the formula

in both polarities are then preferred for partitioning. The advantage of this heuristic is

that it can be determined in advance. However, it demands a non-negligible amount of

additional computing time.

Lookback heuristics Lookback heuristics are based on gathered statistics during a past

behaviour of a sequential SAT solver. This is done by letting a solver instance work on

a formula for a certain amount of time and then extracting variable-related information.

A potential statistics is the number of times the assignment of a variable was inversed

during branching. This type of heuristic can be used to �nd good partitioning variables

during solving without requiring additional work.

2.3.7 Cube&Conquer

Cube&Conquer is a SAT solving method that can be seen as an implementation of the

search-space splitting approach. The term was coined in the work [18] by Heule, Kullmann,

Wieringa and Biere. Its main idea is to interleave a lookahead solver and an CDCL solver in

a two phase solving algorithm. In the �rst phase, a state-of-the-art lookahead solver is used

to partition the formula into sub-problems that are easy to solve for the CDCL solver. This

works well because of the sophisticated heuristics that are used in a lookahead solver. This

approach is therefore based on lookahead heuristics. To use a lookahead solver in this way,

its internal algorithm has to be modi�ed. Instead of depth-�rst following each decision

10

2.4 Related work

branch until either a con�ict or a satisfying assignment is found, each branch is cut o�

at a preset depth. A cut o� branch is then ignored in the further branching and cannot

be backtracked to. This can be compared to a branch that has been closed because of the

associated sub-formula being proven unsatis�able. If this modi�ed algorithm is applied to

an instance of the SAT problem, a perfect binary tree of the given depth is created. The

leaves then de�ne a disjoint set of sub-problems which are called the cubes. Since the goal

is to create sub-problems that are easy to solve for a CDCL solver, combinatorial hard

problems may need to be split into thousands or millions of cubes.

In the second phase, multiple concurrent instances of a state-of-the-art CDCL solver are

used to solve each individual cube. This can be done especially e�cient if they feature

incremental SAT solving. The same solver instance may then be sequentially applied to

multiple cubes by interpreting the given partial assignment using its assume functionality.

This allows reusing simpli�cations that were found during the solving of a previous cube.

In practice, this approach has proven to be very e�ective for large and complex problems.

A reason for this is that both solver types are able to make use of their individual strengths.

The lookahead solver is capable of �nding good divisions using its sophisticated heuristics.

This works well in avoiding the pathological cases that are given in Subsection 2.3.6. The

CDCL solver is then e�ective in solving the resulting large but now less complicated

sub-problems.

2.3.8 Divide&Conquer with work stealing

Divide&Conquer is another implementation of the search-space splitting approach [24,

2]. Compared to Cube&Conquer, it can be considered more dynamic since it is not based

on a static prepartitoned workload. The approach is based on multiple concurrent SAT

solvers, each working on a sub-problem. If a solver B1 becomes idle, work stealing is

used to provide it with new work. This requires another solver B2 to further divide its

sub-problem using the division step from Subsection 2.3.6. The used splitting variable is

usually chosen based on lookback heuristics. This allows B2 to quickly determine a good

variable on the basis of its solving progress. The prompted solver B2 can then also use the

chosen variable to simplify its sub-formula. The workload balancing of this approach is

based on the assumption that eventually each solver is working on a sub-formula that

requires a reasonable amount of work.

2.4 Related work

In this section we present work related to ours.

2.4.1 Paracooba

A related work is the state-of-the-art SAT solver Paracooba [17]. It uses the Cube&Conquer

method and is designed for a distributed computing environment. The solver consists of

11

2 Preliminaries and Related Work

master nodes that initiate solving and worker nodes that do actual solving using a local

pool of CDCL solvers. All nodes are connected and communicate by sending messages

over UDP and TCP. Additional nodes may be added dynamically using a custom auto

discovery protocol. To solve a problem with Paracooba, the associated master node must

�rst split it into cubes using the external lookahead solver March [19] or the integrated

CDCL solver Cadical [13]. All compute nodes then parse both the formula and the cube

tree. The distribution of work is then based on each node handling tasks representing paths

in the cube tree. Nodes distinguish between assigned tasks (path to leaves) that a node is

working on, and unassigned tasks (path to an inner node) that can be explored deeper to

open up more paths, or distributed to another node. This process is started by the master

node locally creating the unassigned task representing the empty path to the root of the

cube tree. Each node is also responsible for returning the results of distributed tasks. This

allows the master node to eventually determine whether the problem is satis�able. The

distributed paths of the cube tree are encoded as 64-bit unsigned integers to ensure minimal

bandwidth requirements. Paracooba performs malleable load balancing by balancing the

workload given by the tasks from multiple concurrent master nodes across all available

worker nodes.

The basic principle of our �rst approach is similar to Paracooba. However, we use a

centralized workload balancing strategy by creating a designated manager that directly

distributes cubes to workers. We also allow for the same cube to be spread to multiple

workers. This created redundancy helps in case a worker exits the solving process.

2.4.2 Ampharos

Another related work is the SAT solver Ampharos [1]. It is based on the Divide&Conquer

method and is also designed for a distributed computing environment. However, it does

not use the presented work stealing strategy. Instead, each solver works on a leaf of a

binary tree of sub-formulas like in the example from Subsection 2.3.6 that is created in

a distributed manner and managed by an designated manager. Each solver instance can

work on any leaf. If a solver decides to work on a leaf, they do so until a prede�ned number

of con�icts is reached. If this number is exceeded, the solver may choose to work on

another leaf. Each leaf posses a counter for the number of failed solving attempts. If this

counter exceeds a certain threshold, the cube is divided further. The used variable is chosen

based on lookback heuristics from its last attempting solver. Each cube is therefore split

until it can be solved in the given con�ict limit. If a leaf is proven to be unsatis�able, the

associated branch is closed. This is then announced globally. A closed branch is ignored

when searching for a new leaf to solve.

The method starts on a single leaf that represents the unmodi�ed formula. It terminates if

a leaf is proven to be satis�able or if all leaves were closed. Additionally, the solvers share

learnt clauses to improve their solving performance. Ampharos was originally created

without malleability in mind. However, the distributed and independent nature of the

used algorithm seems to be well suited for the inclusion of malleability.

12

2.4 Related work

We created our second approach with the dynamic cube generation of Ampharos in mind.

However, we decided to use separate cube generators based on lookahead heuristics in

order to not depend on regularly interrupting our solvers. The reason for this design

decision is given in Chapter 4. Also, we did not use a designated manager to prevent a

communication bottleneck in a massively parallel setting. Instead, we have developed

invariants and specialized communication strategies that allow each processing element

to control and extend a held set of cubes. To enable collaborative SAT solving, we rely on

a sharing strategy of found failing partial assignments.

13

3 The Mallob Platform

In this chapter we introduce Mallob, the Malleable Load Balancer or Multi-tasking Agile
Logic Blackbox [26]. Mallob is important in the context of this work because we used it as

a platform to execute our malleable algorithm in a distributed context. We will therefore

explain how Mallob works and how it controls the malleability of its running jobs. We

will then present our approaches using Mallob-speci�c terminology.

3.1 Basic concept

The scope of Mallob is a distributed computing environment consisting of< equivalent

compute nodes that are able to exchange messages using a Message Passing Interface [14].

Each compute node is used to host 2 ≥ 1 separate MPI processes. These ? B < ·2 processes

are called processing elements (PE). Each PE has a unique global rank A and encapsulates

multiple cores. A PE embodies the smallest computational resource in the context of

Mallob. Because of this we specify every demand of processing resources in a number of

PEs. An illustration of the architecture is given in Fig. 3.1.

PE 0

PE 1

..
.

PE c− 1

PE k

PE k + 1

..
.

PE p− 1

. . .

. . .
MPI

Core

Core

CoreCore

Core

Core

Core

CoreCore

Core

Core

Core

Core

Core

CoreCore

Core

Core

Core

CoreCore

Core

Core

Core

Compute node 0 Compute node m− 1

Figure 3.1: An overview of the distributed architecture of the Mallob platform [26].

The Mallob platform is designed to handle the massively parallel and distributed scheduling

and processing of a �uctuating number of malleable jobs on ? PEs. A job in this context is

de�ned as a single task that provides procedures that allow it to be solved by several largely

independent job nodes. These jobs may enter the platform through a given interface at

any time. Mallob assumes that there are always more processing elements than active jobs.

A job node, or node in short, can be viewed as a single processing element that is currently

working on a job. Each job 9 is introduced to the system with a preset priority c 9 ∈ (0, 1]

15

3 The Mallob Platform

and may dynamically change its demand 3 9 ∈ N of assigned PEs. By default, the demand

of each job starts at 3 9 = 1 and is doubled in intervals given by a system-wide growth

parameter. This can be overwritten by setting a constant demand or by implementing a

custom function of growth. The malleability of a job can then be used to dynamically vary

the number of assigned job nodes according to its priority, its demand and the overall

system state.

Internally, a job 9 is represented as a binary tree, called the job tree)9 , consisting of all

associated job nodes ?G (9). The root node ?0(9) is the �rst node that was assigned to the

job, marking the beginning of its life cycle. This node is responsible for the representation

of the job 9 in the system and to inform the system of the job’s resource requirements 3 9 .

Consequently, it cannot be reassigned during the life cycle of a job. Apart from that, it

behaves like all the other nodes. Each node ?G (9) in the)9 has an unique index G ≥ 0. The

children of ?G (9) have the indices ?2G+1(9) (left child) and ?2G+2(9) (right child). If a job

node is assigned to a job, it is added to the tree at the lowest free index. Conversely, if a job

needs to reduce its number of job nodes, the leaf with the highest index is removed �rst.

Because of this,)9 is always a complete binary tree. Each node locally stores the global

rank of the root, its parent and its children. These references allow each PE to address these

other PEs that work on the same job via MPI messages. An illustration of how multiple

PEs form a binary job tree is given in Fig. 3.2.

Job 1

Job 2

Core Core Core

CoreCore

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

CoreCore

Core Core

Core

Core

Core Core

Core

Core

Core

Core CoreCoreCore

CoreCore

Compute node 1 Compute node 2

p0

p1 p2

p0

p3 p4

p1 p2

Figure 3.2: Schematic illustration of two job trees and their assigned PEs from two identical

compute nodes.

The structure of a binary tree can be used for very e�cient data sharing over all PEs of a job.

If there is information across all nodes which we would like to concentrate to form a single

piece of data, we can simply perform a step-wise aggregation from the leaves towards the

root. If we then would like to share this data with all nodes, we can do so by broadcasting

it from the root to the leaves. Both operations only require a linear communication e�ort

per node depending on the size of the sent message. They are therefore suitable for a

massively parallel setting. Both steps of this processes are illustrated in Fig 3.3.

The amount of nodes in a job tree)9 is given by the volume of its job E 9 ≥ 1. These

volumes are calculated system-wide, taking into account all active jobs, in distributed

16

3.2 Designing a malleable job

(1) (2)

Aggregation Broadcast

Figure 3.3: Exemplary data �ow over all nodes of a job. Step one shows a step-wise

aggregation, step two a broadcast of the aggregated piece of data.

load-balancing computations. If a job 9 was assigned the volume E 9 , its job tree)9 consists

of the nodes ?0(9), . . . , ?E 9−1(9). If E 9 changes, the new value is recursively broadcast in

the tree starting from the root ?0(9). If the volume was decreased and the tree therefore

has to shrink in size, each excess node ?G (9), G ≥ E 9 starts to leave the job on receiving

the new volume. Leaving a job is accomplished by suspending all work on the job by

following a job-speci�c suspension procedure. The broadcast allows the parents of nodes

with ?G (9), G ≥ E 9 to remove their child references accordingly. In the opposite case, when

the tree is supposed to grow, the designated parent of the new nodes sends a request to

currently inactive PEs to join the tree. These requests are preferably sent to former job

nodes. This strategy allows the re-use of previously created solving resources and can

thus reduce overhead and make use of the progress which a job node made before it was

suspended. If a PE that was previously active on a job 9 accepts a participation request

for 9 , it follows a job-speci�c resumption procedure. If the PE is new to the job, it has to

perform a start procedure. After a node was added to the job tree, the references in its

parent are updated. In practice, we allow each PE to keep the solving resources of a certain

number of jobs and enforce it to discard the resources of old jobs if this limit is exceeded.

3.2 Designing a malleable job

To allow the malleable scheduling of a job to a varying number of PEs, a Mallob-speci�c job

interface needs to be implemented. This interface contains the start, suspend and resume

procedures that are required during job volume changes. It also contains various queries

to allow the platform to check the status of a job on a PE. To understand the design of the

approaches presented in this thesis, it is required to introduce the reader to the lifecycle of

a job on a PE and how the PE interacts with it. In the following we will therefore go into

detail and describe the interface of a job and all assumptions the system makes upon them.

We will also go over the internal processes of a PE.

17

3 The Mallob Platform

Each processing element A speci�ed by its rank 0 ≤ A < ? hosts a single controlling thread

C . A main function of C is to listen for and react to job requests. This allows it to control A

accordingly. In addition, the thread C is the only running entity on A that has the authority

to send and receive messages. Working on a job 9 requires C to �rst create a job context

^ 9 (A). Such a context contains a local instance of the job’s interface. The context ^ 9 (A) is

created if C has received a message to do so. The creation of a new job context in A does

not interfere with the current work of the PE and may be done concurrently. After the

creation of ^ 9 (A), the integrated interface is operated by C to control the local work on 9

according to the received requests. The interface should therefore allow to start and stop

working on the job in a preemptive way. The idea to use a single control thread per PE is

based on the limited support for message passing to and from multiple threads of a single

process. The decision has the additional e�ect that the individual methods in the interface

are mutually exclusive by design.

Start
Suspend

Resume

Active Standby

Terminate
Past

Inactive

Figure 3.4: A state diagram that shows the lifecycle of a job on a processing element.

The lifecycle of a job in a PE is shown by the state diagram in Fig. 3.4. We call f (^ 9 (A))
the current state of the context of job 9 on PE A . In the following list we describe what the

system expects if f (^ 9 (A)) equals the given state.

Inactive: This states represents a newly created job context^ 9 (A). This means A has not worked

on 9 in the past. It should therefore not contain any solving resources and active

threads.

Active: Only a single job context may be in this state at a time per PE. If this is the case for

job 9 for PE A , it means that A is in the process of creating solving resources in ^ 9 (A)
or it already uses them to work with its full computational power on 9 .

Inactive: A job 9 in this state was previously processed by A . The PE was then scheduled to

suspend its work on 9 . The system now assumes that^ 9 (A) contains solving resources

and thus that A can easily resume to work on 9 .

Past: If a job 9 leaves the system, each ^ 9 is put into this state by the corresponding

controlling thread. This state represents that all created resources for solving are

cleaned up or in the process to be cleaned up. This eventually allows the PE to forget

job 9 by deleting ^ 9 .

The four methods on the edges of Fig. 3.4 control a job’s state and therefore are members

of the job interface and correspond directly to a job request. We explain them in the

following list. Each of them is supposed to simply initiate the state transition and therefore

18

3.2 Designing a malleable job

to return instantly. If this transition requires heavy work in the job’s context, a separate

thread should be started to perform this concurrently.

start: After ^ 9 (A) was created, ^ 9 (A).start" may be called by C to adopt the job 9 . The

method leads to the creation of a solving engine in the corresponding job context.

The solving engine then starts one or multiple solver threads that do actual work

on 9 . The number of started threads is given by a global parameter. In practice this

parameter is set to the number of cores per PE.

If this methods returns, the PE enters the job tree)9 and f (^ 9 (A)) is set to Active.
The references of the new job node and its parent are automatically updated.

The work on a new job can only be started by a PE A if ∀9 ∈ A : f (^ 9 (A)) ≠ Active.
This is guaranteed by the controlling thread of A .

suspend: If A is supposed to suspend the work on its current job 9 with f (^ 9 (A)) = Active,
^ 9 (A).suspend" is called. This does not mean that job 9 is no longer an active job

in the system, but that the distributed load balancing computation has forced a

rescheduling. The PE A is therefore supposed to stop all solver threads in ^ 9 (A). This

can be done by by forcing them to fall asleep or by interrupting their solving and

joining them. Among others, the following considerations should be taken into

account:

1. If the threads remain in the suspended state and never resume their solving, is

the solving on 9 in total still correct?

2. How easily and quickly can the threads continue to work on 9 if they are

resumed?

Furthermore, if it is required for correctness, the control thread C may send a last

parting message to)9 during the call of ^ 9 (A).suspend" . This can be used to share

any locally reserved work.

If this method returns, all usage of computational resources in A on 9 are in the

process of being stopped. Therefore, A is removed from)9 and f (^ 9 (A)) is set to

Standby.

resume: If a PE A should resume working on a formerly active job 9 , ^ 9 (A).resume" is called.

Similar to start" , the controlling thread C of A guarantees that A does not have an

Active job. It is also guaranteed that f (^ 9 (A)) = Standby.

If this method returns, A is assumed to have resumed working on 9 . It is therefore

reinserted in)9 and f (^ 9 (A)) is set to Active. The references in the resumed job node

and its parent are then automatically updated.

terminate: The last method terminate" is called on ^ 9 , when a job 9 leaves the system. A job

leaves the system if its task was solved by some PE or if it was aborted due to a

timeout. The method is therefore called eventually for every job context, regardless

of its current state.

19

3 The Mallob Platform

On a call of ^ 9 (A).terminate" , the addressed PE A is prompted to clean up all solving

resources in ^ 9 (A). This should allow the control thread C to e�ortlessly delete the

job’s context at a future point in time.

Solver
Solver

PE r
κ1(r)

Active

Solving engine

Inactive

κ3(r)

κ2(r)

Past

Solving engine

Standby

κ4(r)

Solver

Solving engine

. .
.

. .
.

. .
.

Solver
SolverSolver

. .
.

. .
.

. .
.

Solver
SolverSolver

. .
.

. .
.

. .
.

In
te
rf
ac
e

In
te
rf
ac
e

In
te
rf
ac
e

In
te
rf
ac
e

Communication interface

Suspend[1] Job request to suspend job 1

C
on

tr
o
l
T
h
re
a
d

suspendM

working

suspended

deleting

Figure 3.5: A schematic illustration of a PE with four job contexts in various states. The

control thread currently reacts to a suspension request by calling the appropriate

method on the corresponding context.

In Fig. 3.5 we illustrate a PE A that contains four job contexts ^1(A), ^2(A), ^3(A) and ^4(A),
each in a di�erent state. The context of job 1 is working. Job 2 currently deletes its solving

engine. Job 3 is newly created and therefore has no solving engine. Job 4 was suspended

and therefore has an inactive solving engine. The control threads is in the processes of

suspending ^1(A) because it received a message to do so.

In addition to these lifecycle controlling methods, there are also methods in the job interface

that are supposed to report on the job’s status on a PE. They are used for communication

between the solving engine in a job context and the control thread C . We will name and

explain all necessary methods in the following list:

solved: This method is called periodically on each job node. It is used to report the solving

status of job 9 to the associated control thread. A successful solving of 9 is broadcast

in)9 to allow each PE to terminate the job.

demand: This method is only called in the root node. It returns the job’s current resource

requirements for the purpose of load balancing.

destructable: This method is called if f (^ 9 (A)) = Past. It allows the control thread of A to query

for the progress of the deletion of the solving engine in ^ 9 (A).

For collaborative solving, the interface also provides a way for communication between

multiple job contexts that work on the same job. This is implemented by the controlling

thread of A regularly asking whether ^ 9 (A) wants to send a job-speci�c message. This is

done via the method startComm" . In it, the solving engine in ^ 9 (A) can then address a PE

20

3.3 Mallob in the domain of SAT solving

in)9 via its stored references and send messages through the controlling thread. Sending

messages over)9 guarantees that a job-speci�c message exclusively reaches PEs that have

completed start" and thus have a solving engine in their context which can handle the

message. To handle received messages handleComm" needs to be implemented. This

method is called in ^ 9 (A) of the addressed PE A and passes the received message to its the

solving engine. This invocation happens regardless of f (^ 9 (A)). The call to handleComm"

on ^ 9 (A) can additionally be used to send further messages from A .

3.3 Mallob in the domain of SAT solving

The Mallob platform has its place in the domain of SAT solving after winning the Cloud

Track of the International SAT Competition 2020 using a malleable implementation based

on HordeSat [3]. However, since the competition was not aimed at solving multiple SAT

problems simultaneously, the system was con�gured to process the problems sequentially

using the maximum number of PEs for each problem from the beginning.

In the context of SAT solving on Mallob, each job represents an instance of the SAT

problem. The corresponding formula is therefore shared with each assigned PE as the

task of the job. In the implementation based on HordeSat, the interface is designed to

start multiple solver threads on job adoption. The solver threads are all working on the

problem’s formula using a globally uniquely con�gured instance of the sequential SAT

solver Lingeling [6]. In addition, learnt clauses are extracted from these threads and

accumulated in the solving engine. The engines then use the interface’s communication

mechanism to periodically share these clauses with all PEs that work on the same job

by performing an all-to-all clause exchange. This form of exchange can be produced by

aggregating all extracted clauses to the root node and then broadcasting the reduced set of

clauses back to each job node like shown in Fig 3.3. The aggregation step also includes a

clauses �ltering step in which duplicate clauses are removed. The received clauses are then

incorporated into the solving process of the local solver threads. To enable the preemption

capabilities of jobs, all parallelization in the job context is done using child processes. This

allows straightforward suspension, resumption and termination on the OS level through

signals with the minor overhead of creating additional processes.

21

4 Design Decisions

The main focus of each of our approaches was to form a SAT solving method using search-

space splitting that allows for malleability and works well on problem instances from

various applications. We did not restrict ourselves to problems which are known to be

highly complex or to work well with Cube&Conquer [17, 21]. Because of this decision we

based all our concepts on a generic state-of-the-art CDCL solver at its core. We did this by

building them around the incremental interface IPASIR presented in Subsection 2.3.4. The

reason for this decision is that modern CDCL solvers dominate in the discipline of solving

diverse problem instances that originate from practical contexts. It also contributes to the

conceptual simplicity of our approaches. The sophisticated internals of modern solvers

which include specialized inprocessing steps are not regarded. The solver is simply used

through the IPASIR interface as a blackbox.

Secondly, we decided to design our algorithms as unintrusive as possible regarding the

sequential SAT solvers. In particular, we aim to avoid frequent interruptions to their

solving process. Interruptions are made only when necessary to ensure correctness or

when required for malleability. We based this decision on these two assumptions:

1. In previous testing we observed that frequently forcing a CDCL solver to exit its

internal solving loop via terminate� has negative e�ects on its overall performance.

This may be even worse if we change its con�guration during the interruption. One

reason for this might be that a solver may be interrupted during a subroutine and

is unable to resume from exactly where it left o� and therefore cannot �nish an

inprocessing step. Another reason for this behavior could be that made solving

progress is discarded to return the solver in a universal state.

Also, interrupting a solver that could have been close to solving a major (sub)-

problem, only to recon�gure it, would degrade our algorithm. Especially given the

distributed context with an abundance of processing resources, we decided to allow

redundancy to increase the performance of our method in these cases.

2. Allowing for malleability will inevitably force solvers to be stopped because almost

each associated processing element could be rescheduled to another job at any time.

If we combine this condition with an algorithm that also requires solvers to be

interrupted, we end up with frequent interruptions and therefore with an algorithm

that will not perform well.

If for example a currently working solver B1 needs to be interrupted to allow the new

solvers B2 and B3 to work and if B2 and B3 leave the job again shortly thereafter, B1

23

4 Design Decisions

was interrupted unnecessarily. Instead, we focused on an approach that allows for

additional solvers to participate without impairing the current solvers.

4.1 On finding splitting literals

A key component in a parallel SAT solver that is based on the search-space splitting

approach is to �nd a good method for �nding well suited splitting literals. This is very

important because the quality of the splits is crucial for the resulting overall performance.

This trait is explained in more detail in the Subsection 2.3.6. In our search for a good

method we focused on the following three characteristics:

• Does the split result in two sub-formulas that are individually easier to solve than

the original formula and comparably equally di�cult to solve?

• How time-consuming is the process?

• Is it possible to enter learned information and thus to make split decisions using a

currently active solving progress?

The most intuitive option is to utilize a modi�ed version of a state-of-the-art lookahead

solver. This idea originates from the work that coined the term Cube&Conquer [18]. A

lookahead solver is expected to generate good splitting literals because of the sophisticated

heuristics it uses. A candidate for this is the lookahead solver March [19]. It is used

as an option to generate cubes in the state-of-the-art distributed Cube&Conquer solver

Paracooba [17]. Because March is designed as a standalone command-line tool, Paracooba

starts it by using a separate OS process and then collects the cubes that were written onto

the hard disk. This work�ow can be adapted if we also want to create a �xed size of cubes.

However, if we want to perform the lookahead procedure at di�erent points in time using

the current solving status, its integration is very unpractical because we cannot reuse a

solver instance and must incur the additional overhead required to make this system call

each time. Another reason against March is that the version of Paracooba which relied

on it did not perform very well in the 2020 SAT Competition. The reason for this most

likely is that March is designed to �nd promising decision variables based on specialized

heuristics, but is in doing so nowhere near as computationally e�cient as a state-of-the-art

CDCL solver. This makes its application unsuited for a time critical SAT solving platform.

Fortunately, multiple modern CDCL based SAT solvers include the lookahead proce-

dure. For example the solver Cadical includes one which is "in comparison to March less

tuned" [13]. This allows us to use the lookahead procedure in combination with state-

of-the-art incremental SAT solving features like reducing the complexity of the formula

by adding good redundant clauses or assuming a partial assignment without having to

use a fresh solver instance. In addition, the version of Paracooba that relied on Cadical to

generate cubes performed much better in 2020 SAT Competition. This could be caused by

requiring less time to generate cubes because its lookahead procedure pro�ts from the

highly optimized data structures of the very recent CDCL solver. We therefore decided to

use this way to �nd splitting literals. It allows us to form our method of generating cubes

24

4.1 On �nding splitting literals

in a similar way to how we solve them. As we chose the CDCL solver Cadical to generate

cubes, we will reference a call to its lookahead procedure using lookahead� .

The work on the adaptive parallel SAT solver Ampharos [1] presents another way for �nd-

ing splitting literals using a lookback heuristic. Instead of using a complicated lookahead

procedure, CDCL solvers are used to solve a problem until a set amount of con�icts have

occurred. Then the solver is interrupted and the literal that would have been assigned

at the start of the next recursion is returned. This procedure can be used to quickly �nd

a good splitting literal of a problem that has been proven to be complicated for a CDCL

solver. However, we did not consider this approach because it would require to interrupt

solvers. Also, getting the next decision variable is not a typical feature included in most

state-of-the-art CDCL solvers and would therefore deviate from the standard interface. In

addition, the required thresholds for an interruption, such as the number of con�icts or

number of decisions, are di�cult to set correctly because they scale with the structure of

the formula.

25

5 First Approach: Static Cube&Conquer

In this section we explain our �rst method to port parallel SAT solving using the search-

space splitting approach to the Mallob platform. We call this method Static Cube&Conquer
because we use a lookahead procedure to generate cubes once in advance as explained

in Subsection 2.3.7. We present our approach by �rst giving an overview of the concept

and explaining an important used technique. Then we introduce all important actors and

explain how they allow for malleability.

5.1 The concept

Cube&Conquer in its simplest form is based on the following two subsequent steps:

1. Partition the search space into many sub-problems called cubes by using a lookahead

procedure to �nd good splitting variables.

2. Solve all cubes using concurrent CDCL solvers. If one is proven to be satis�able,

return SAT. To determine UNSAT, all cubes need to be proven unsatis�able.

We realize this algorithm using the manager-worker principle. The manager is responsible

for creating, managing and distributing the set of cubes � for the formula � 9 of job 9 . It is

therefore active during step one and two. The workers are activated with the beginning

of step two. They then request the manager for cubes and solve the corresponding sub-

formulas. If a worker �nds a satisfying assignment for a cube, it can generate a valid

assignment for the entire formula. This allows the worker to individually terminate the

algorithm and return SAT. Otherwise, the worker sends its results back to the manager

and thus requests new cubes. The manager terminates the algorithm and returns UNSAT

if it determines every cube to be unsatis�able based on all received worker results.

This concept may be e�ortlessly transferred to job trees in Mallob. The root node ?0(9)
holds the manager. The other nodes ?1(9), ?2(9), ?3(9), . . . hold the workers. As the

manager only has light computing tasks, ?0(9) may host a worker as well. The requesting

of cubes and sending back results is done via the message passing system that Mallob

o�ers. The mapping of this concept to a job tree is illustrated in Fig. 5.1.

5.2 Pruning

To de�ne the results of a worker and to allow the manager to use them to mark certain

cubes unsatis�able, we used the pruning technique from [1]. Every solver in each worker

27

5 First Approach: Static Cube&Conquer

Worker 0

solve(c1)

Worker 1

UNSAT← solve(c2)

Worker 2

Manager

C = {c1, c2, c3, c4}
Result Request

Worker 0

solve(c1)

Worker 1

solve(c3)

Worker 2

Manager

C = {c1, c3, c4}
Distribute Distribute

(1) (2)

solve(c4)

p0(j) p0(j)

p1(j) p2(j) p1(j) p2(j)

Figure 5.1: Illustration of the concept of this approach mapped onto a job tree consisting

of three PEs. The cubes in the manager were created as depicted in the example

from Subsection 2.3.6.

processes a sub-formula of � 9 that is de�ned by a given cube 28 ∈ � by assuming the set

of literals {; | ; ∈ 28} with assume� and then executing solve� . If this returns UNSAT it

means that the the formula

∧
;∈28 ; ∧ � 9 was proven to be unsatis�able by the used solver.

The worker then extracts the assumed literals used in this proof q8 ⊆ 28 by calling failed� .
These responsible assumptions are in the following referred to as failed assumptions. This

allows us to generalize the proof of unsatis�ability to the potentially less restricted formula∧
;∈q8 ; ∧ � 9 . The failed assumptions are then sent to the manager, allowing it to prune all

cubes in � that contain q8 as a subset. In the occasion of a proof of unsatis�ability for a

cube 28 with q8 = ∅, the solver has proven the formula to be unsatis�able regardless of the

given partial assignment. The worker can therefore directly return UNSAT and terminate

the algorithm.

5.3 The manager

The role of the manager needs to be assigned at the start of each job. The manager instance

of the job 9 is therefore created on the root node ?0(9) during the �rst call to start" .

After its creation, it is tasked to generate the set of cubes � according to a prede�ned

height parameter ℎ. This is done by a single thread that uses lookahead� and assume� in

an interleaved way. This results in a perfect binary tree with height ℎ and 2
ℎ

leaf nodes

which represent the set of cubes � = {28 | 8 ∈ Z, 1 ≤ 8 ≤ 2
ℎ}, similarly to the example in

Subsection 2.3.6. This means that the lookahead procedure needs to be called 2
ℎ−1

times

in total, once for each inner node. The assume functionality is used here to choose each

next splitting variable under the partial assignment given by the path leading to it. This

allows us to reuse the same solver instance to generate all cubes.

During the cube generation the root node sets the demand of its job 9 to 3 9 = 1. This is

done to prevent the allocation of additional PEs while there is no work to be distributed.

28

5.3 The manager

After the cubes are generated, the root node creates and starts a local worker and raises

the demand by using the default growth function.

5.3.1 Workflow of the manager

The work�ow of the manager during the second phase consists only of interpreting

messages and responding accordingly. There are two types of messages in this approach:

(1) a message to return any failed assumptions to the manager and simultaneously request

new cubes and (2) a response to a worker which contains the requested unsolved cubes.

The amount of cubes sent is de�ned by the minimum of a parameter cubes-per-worker
and the number of remaining unsolved cubes. The cubes are taken from the beginning

of a sorted queue. They are sorted in ascending order by the number of times they were

distributed to a worker.

If the manager receives a request it proceeds with the following three step procedure:

1. If the request contains a set of failed assumptions Φ, use it to prune all cubes 2 ∈ �
with q ⊆ 2, q ∈ Φ. If this results in the removal of all remaining cubes, the manager

marks the job as unsatis�able.

2. Take the min{cubes-per-worker, size(�)} �rst entries of the priority queue which is

used to store � and send them to the requesting worker in a response. This includes

sending an empty set if � = ∅.

3. Increment the value of "times distributed" for each sent cube and re-insert them into

the queue.

If there are no messages, the manager is idle.

Because it resides on the root node, the manager is never paused using suspend" . It may

however be interrupted. If terminate" is called during the �rst step, the cube generation

thread is interrupted via terminate� . The second step is then never reached. If terminate"
is called during the second step, the manager can simply be destroyed. The manager

does not need any dedicated threads to distribute cubes. All of its logic is done by the

controlling thread in handleComm" .

5.3.2 Completeness

The completeness of this parallel SAT solving method is based on keeping each unsolved

cube in the manager and on only pruning them when a matching set of failed assumptions

is received. This makes each distribution of cubes to a worker a non-binding work

assignment. A designated worker may therefore leave a job at any time to allow for load

balancing without in�uencing� . In the worst case scenario with a job 9 of in�nite duration

and strongly �uctuating load balancing such that each job node ?G (9), G > 0 never is able

to solve a cube, the completeness follows from each cube in� eventually being distributed

to the worker on ?0(9) which will solve each cube because it uses a complete solver.

29

5 First Approach: Static Cube&Conquer

5.3.3 Randomization

In the standard con�guration, all cubes are initially placed in the priority queue ordered

from the left-most leaf to the right-most. This places cubes representing similar partial

assignments adjacent. This can be seen as an advantage because similar cubes are likely

to be distributed to the same worker, allowing it to work on more similar problems and

thus making more use out of the incremental SAT solving feature. However, it can also

be seen as a disadvantage because if the number of cubes greatly exceeds the number of

workers, all solving is done in similar sub-spaces. The work on more diverse search-spaces

is postponed. In addition, this approach introduces an order between all cubes in which

they are processed by workers. This results in the following problem: If there are two

cubes 2 and 2′ with 2 before 2′ and 2 being very hard to solve and 2′ being very easy, every

worker that receives 2 and 2′ gets stuck on 2 .

To test this assumption, we added an option to randomize the distributed cubes. This is

done by initially placing the cubes into the queue in a random order and by reshu�ing

each distributed set of cubes.

5.4 The worker

In this section we discuss the work�ow of a worker. However, to do this, we must �rst

introduce an extension to the IPASIR interface.

5.4.1 Extending IPASIR to suspend solvers

As explained in Section 3.2 each processing element in Mallob is required to be able to

pause its active work on a call of suspend" . Since we will be using IPASIR-based solvers

in each worker, we require a method to expand this interface to produce this desired

mechanism. This should also be done respecting our design decisions by being minimally

invasive. We achieved this by inheriting an older concept from the implementation based

on HordeSat in Mallob. The concept is based on installing a monitor into the main loop of

the solver by placing it into the predicate which is inserted via terminate� . The de�nition

of the interface requests the solver to periodically check the predicate to allow it to indicate

termination. During such a check, we can then use the monitor to halt the solving thread.

The now sleeping thread is then stored in the queue of a condition variable and waits for

a noti�cation to resume. With this method, we can pause the execution of a solver that

implements the IPASIR interface without altering its work�ow by allowing it to continue

exactly where it left o�.

5.4.2 Workflow of the worker

If the second phase of a job 9 is reached, each job node ?G (9) will instantiate the worker

in its solving engine in ^ 9 . The PE of ?0(9) does this at the end of its cube generation, the

PEs of the other job nodes ?G (9), G > 0 do so during the call to start" . A worker instance

30

5.4 The worker

contains one or multiple cube solver threads B= with = ∈ N that start working as soon as

they are created. Each of them encapsulates an instance of an IPASIR based solver which

the thread uses to sequentially process all passed cubes in a loop. If new cubes are required

to continue, the thread stores all extracted failed assumptions in the wrapping worker

instance and informs it to request new cubes. This instruction is then asynchronously

read by the controlling thread of the PE during a periodic call to startComm" which then

sends the accumulated failed assumptions to the manager and requests new cubes. The

received unsolved cubes from the manager are then passed to the waiting solver thread

during a call to handleComm" so that it can continue its solving loop. To reduce overhead,

a single request is sent for all waiting threads.

If a PE A is supposed to leave the job 9 with f (^ 9 (A)) = Active, ^ 9 (A).suspend" is called.

This means, all cube solver threads are instructed to halt their execution. This is achieved

by suspend� being called on the encapsulated solver instance of each thread. The thread

is thus only stopped when it is processing a cube. All communication still needs to be

completed. This is necessary to leave the thread in an easily resumable state. If resume"
is called subsequently, the thread simply resumes processing the cube.

There are three scenarios that lead to the termination of a solver thread.

• terminate" is called while the thread is currently processing a cube or suspended.

• A solver found a satisfying assignment. The job is then also marked as satis�able.

The control thread is noti�ed of the successful solve during its next call to solved" .

• An empty set of cubes is received because the manager was able to prune all cubes

in � .

The solving loop of a solver thread and its communication with the control thread is

depicted in Fig. 5.2.

31

5
FirstA

pproach:Static
C
ube&

C
onquer

[UNSAT]

[SAT]

resumeM

Interrupt solvingSuspend solving

terminateM

terminateM

suspendM

1..* Cube solver thread sn

Add formula Fj

Worker in κj of px(j)

[received empty set of cubes]

[else]

Manager in κj of p0(j)

Send cubes

startCommM

Receive cubes

handleCommM

handleCommM

[all local cubes solved]

M
P
I

Mark job j as
unsatisfiable

Mark job j as
satisfiable

[else]

[C empty]

Send failed assumptions
Φ(x) and request cubes

Sleep until
notification

[should request
new cubes]

Get cubes from
worker

Store Φ(sn) in Φ(x) and
inform worker to request

new cubes

Notify sn and pass
received cubes to sn

[else]
Solve a cube ci

Extract failed
assumptions φi

and store them
in Φ(sn)

Receive failed
assumptions Φ(x)

Prune in C using
Φ(x)

Figure 5.2: Illustration of the work�ow of a cube solver thread in a worker instance and its communication with the manager. Each

smaller rectangle represents an action, each edge denotes a transition following the completion of the action. Dotted edges

denote the start of concurrent actions or transitions to and from un�nished actions, in case of preemption. All of these

cases are dependant on an asynchronous call of a method of the Mallob interface. Dashed edges represent send messages

connecting their send and receive action. Diamond shapes represent decisions.

3
2

6 Second Approach:
Dynamic Cube&Conquer

The initial cube generation plays a major role in the previous approach. It enables a

centralized work distribution strategy that makes workers independent of each other.

This independence allows for a straightforward integration of malleability because each

additional worker of job 9 in ?G (9), G > 0 is not required for completeness and can therefore

be discarded at any time. However, it is based on an initial step that does not make use

of the massively parallel environment of Mallob. We therefore created a second more

decentralized approach that uses parallelism from the beginning. This approach is partly

inspired by the Divide&Conquer technique explained in Subsection 2.3.8.

The key idea of this second approach is to start solving as soon as the job is entered into

the system. This includes trying to solve the unmodi�ed formula. Cubes are generated

concurrently to provide diversi�ed and specialized work for additional solvers. New

cubes are created in unsolved search-spaces and their generation involves knowledge of

the current solving process. This however leads to some redundancy, because solvers

that work in a non-disjoint search-space to a new cube are not interrupted. To prevent

complete redundancy between two active solvers, the cube generation and distribution

strategy is designed in a way that disallows the generation of duplicate cubes. Found

failed assumptions are spread to all solvers similarly like learnt clauses in the portfolios

approach.

By doing so we combine ideas of the portfolios and the search-space splitting approach.

We support the solving process of each solver by sharing failing assumptions. Each solver

works on a sub-space to allow more diverse solving.

We keep the name Cube&Conquer for this approach, because we continue to refrain from

interrupting solvers to �nd splitting variables. We will instead rely on separate solver

instances that are fed with accumulated information to generate cubes using the lookahead

procedure lookahead� .

6.1 The concept

We created this approach by de�ning multiple linked invariants per job node. This allows

for nearly the same functionally per node and thus making the general method much

simpler to understand and easier to control. The invariants are based on each job node

possessing cube solving and cube generating capabilities. Both capabilities consist of

33

6 Second Approach: Dynamic Cube&Conquer

IPASIR-based solver instances in separate threads. They are supported by communication

protocols over the job tree. We �rst introduce how cubes are shared between nodes and

how new cubes are generated. We then go into how each node uses its solving capabilities

to work on cubes, and how the solving results are distributed in the job tree and used by

the receiving node. Finally we specify each termination scenario of the resulting algorithm.

Each available cube of a job 9 is uniquely assigned to the job node it is contained in. If

a node ?G (9), G > 0 does not hold any cubes, it relies on its parent node to obtain cubes.

This is done by ?G (9) sending a request @G for cubes to its parent via the communication

mechanism of Mallob. The parent is then supposed to ful�ll @G by passing cubes to ?G (9).
To pass cubes, they must be removed locally and then assigned to the requesting node by

sending them in response. This is done to keep the condition of each cube being uniquely

assigned. If the parent is unable to do so, the request of ?G (9) is forwarded to the next

parent node and so forth, similar to the aggregate operation. Eventually, a request reaches

the root node ?0(9) and resides there until the root ful�lls it.

If the root node does not contain any cubes, it deviates from this requesting chain because

it relies on its children to obtain cubes. This is done by ?0(9) sending a request for cubes

to its direct children ?1(9) and ?2(9). If a child can ful�ll this request, it passes cubes in

the same manner as in the protocol above. Is a node ?G (9) unable to do so, it forwards

the requests to its children ?2G+1(9) and ?2G+2(9). If ?G (9) is a leaf and cannot ful�ll the

request, it is discarded.

As long as there are locally assigned cubes, a node may split them further using its

generating capabilities to provide work to the local solving capabilities. This is done by

taking a local cube 28 and using assume� (28) followed by lookahead� to �nd a literal ;8+1
with ;8+1 ∉ 28 , creating the two new cubes 228+1 = 28 ∧ ;8+1 and 228+2 = 28 ∧ ¬;8+1. The

extended cube 28 is then removed from the local set of cubes and replaced by 228+1 and 228+2.
The indices of the cubes describe their position in a binary tree generated by repeated

application of this extension procedure, starting from the empty cube 20 that represents

the unrestricted formula. In combination with the requirement that each cube is uniquely

assigned to a job node, this extension protocol disallows the creation of duplicate cubes.

This follows from the deductions below:

• Each job node ?G (9) contains a pair-wise disjoint subset�G of the leaves of the binary

cube tree. Inner cube nodes are never contained in a job node because they are

discarded after their extension. This is illustrated in Fig. 6.1.

• Any pair of cubes {20, 21} with 20 ≠ 21 from any two subsets 20 ∈ �G and 21 ∈ �~
always di�er in the polarity of one literal ;4 with ;4 ∈ 20 and ¬;4 ∈ 21 . This follows

from the fact that both are di�erent leaves in the binary tree of expanded cubes,

which forces the path to each of them from the root node to split at an inner cube

24−1.

• We can then apply the extension procedure on 20 and 21 to generate the set of four

new cubes {220+1, 220+2, 221+1, 221+2}. The two pairs {220+1, 220+2} and {221+1, 221+2} still

di�er in ;4 . The two cubes in both pairs di�er in the polarity of the new literal ;0+1 or

34

6.1 The concept

;1+1 respectively that was found during the extension procedure. This makes each

newly generated cube unique.

c0

c1

c4 c5

c2

c6c3

c12c7 c9 c10 c11c8

p0

p1

p3

p2

l1 ¬l1

l2

¬l4l4

l3¬l2 ¬l3

l5 ¬l5 l6 ¬l6

C3

C1

C0
C2

p4 p5

Figure 6.1: Illustration of the creation of a currently active set of cubes

{26, 27, 28, 29, 210, 211, 212} and how they are assigned the job nodes ?0, ?1,

?2 and ?3. The job nodes ?4 and ?5 do not hold any cubes.

The solving capabilities of each node ?G (9) are used to concurrently work on a subset of the

local cubes�G using one or multiple cube solver threads. If the formula � 9 of the job 9 was

proven to be unsatis�able under the partial assignment of a cube 28 , the failed assumptions

q8 are extracted using failed� . If q8 ≠ ∅, the failed assumptions q8 are transformed into the

failed clause k8 and stored locally. A failed clause k8 =
∨
;∈q8 ¬; is a clause that consists

of the inverse literals in q8 . These locally accumulated failed clauses are then all-to-all

exchanged using the explained aggregate and broadcast operations of the job tree. If a

job node receives new failed clause via the broadcast operation, the clause is added to

each solver instance in both capabilities using add� . This allows us to share the knowledge

of the generated proof of unsatis�ability for the partial assignment given by q8 to other

solver instances via incremental SAT solving. Doing so should therefore simplify � 9 for

each solver instance and thus improve its solving and cube generating capabilities. To

prevent unnecessary additions, each node holds a �lter which it uses to detect and discard

newly received but already added failed clauses.

There are two termination scenarios for this approach. If a solver �nds a satisfying

assignment while processing any cube, it may terminate the job and return SAT. If a solver

proves the formula � 9 of the job 9 to be unsatis�able under a cube 28 with q8 = ∅, UNSAT

is returned and the algorithm is terminated. Because of the sharing of failed clauses,

the UNSAT case also accounts for the circumstance that the formula was distributedly

proven to be unsatis�able for a set Φ of partial assignments with

∨
q∈Φ = � 9 . Such a case

is illustrated in Fig. 6.2. Note that q8 ⊆ 28 . Another way to recognize this is when a solver

proves a cube unsatis�able because its added failed clauses are inherently unsatis�able. The

concept therefore allows the use of the search-space splitting approach without requiring

a designated manager with global knowledge of all generated and solved cubes.

35

6 Second Approach: Dynamic Cube&Conquer

S3.addI(ψ2) ψ2

ψ3

c2

c3 c4

φ3 ← S2(c3)

φ2 ← S1(c2)

S3.addI(ψ3)

φ4 ← S3(c4)

c0

c1

Return UNSAT because c2 ∨ c3 ∨ c4 = Fj

Figure 6.2: Illustration of a scenario where the sharing of failed clauses allows a solver (3
to conclude that all leaf cubes were proven to be unsatis�able. (1 is a solver

who proves 22 to be unsatis�able and then sendsk2 to (3. The solver (2 does

the same for 23. (3 starts to process 24 after (1 and (2 have �nished their work

and it has added their failed clauses. If (3 then proves � 9 to be unsatis�able

under 24, it can return UNSAT and terminate the work on 9 .

In Fig. 6.3 we illustrate all invariants and multiple communication protocols for the job

node ?2 from Fig. 6.1. In the �rst step, the solving capabilities begin to process the local

cube 212, while at the same time the generating capabilities start extending the local cube

26. In step two, 212 was proven to be unsatis�able, generating the failed clause k12. The

cube 26 was extended and thus replaced by the new cubes 213 and 214. Simultaneously,

a request for cubes @5 was received from the child node ?5. Consequently, step three

shows ?2 ful�lling the request by sending the cube 214 to ?5. In step four, ?2 is instructed

to aggregate failed clauses by obtaining an empty set of failed clauses from ?5. It does

this by unifying the locally stored failed clauses with the received empty set and sending

the resulting set {k12} to its parent. In the last step, the aggregated set of failed clauses

{k8,k12} is received. After a local �ltering, they are incorporated into both capabilities

and then forwarded un�ltered to the single child node ?5.

In the following we will introduce how we ported this concept to Mallob. We will do this

by introducing multiple used concepts and components and how they interact with each

other. We will thereby also go over how this approach allows for malleability.

6.2 Dynamic cubes

To enable the simultaneous solving and expanding of a single cube in a job node, we

introduce the concept of dynamic cubes. A dynamic cube 38 wraps a globally unique cube

28 and manages its assignment to the local cube processing threads. Each job node ?G (9)
of job 9 therefore implicitly contains the set �G of dynamic cubes for its local set of cubes

�G . Each dynamic cube 38 can be simultaneously assigned to a single cube solver thread

that solves 28 and to the generator thread that performs the extension procedure on 28 .

The concept therefore allows both capabilities of ?G (9) to work on a single local cube 28 at

36

6.2 Dynamic cubes

C2 = {c12, c6 } C2 = {c12, c13, c14}

{ψ12}

C2 = { c13 }

{ψ12}

Aggregate failed clauses

p2
S

o
lv

in
g

G
en

er
a
ti

n
g

p2

p2

C2 = { c13 }

p2

Broadcast failed clauses

S
o
lv

in
g

G
en

er
a
ti

n
g

S
o
lv

in
g

G
en

er
a
ti

n
g

S
o
lv

in
g

G
en

er
a
ti

n
g

(4)

(1) (2)

(5)

Filter

{ψ8, ψ12}

Receive request q5

C2 = { c13, c14}

{ψ12}

Fulfill request q5

p2

S
o
lv

in
g

G
en

er
a
ti

n
g

(3)

Received {} from p5 Forward to p5

∪

Figure 6.3: Depiction of all invariants and multiple communication protocols for the job

node ?2 from Fig. 6.1.

the same time. The assignments of a dynamic cube also restricts its ability to be passed to

other job nodes. Only a free dynamic cube which is not assigned to any threads is allowed

to be passed to a requesting node.

In the following, we assume a dynamic cube 38 ∈ �G which is processed by a cube solver

thread B and the generator thread 6 of ?G (9) and discuss both possible interleavings:

• If 6 �nishes �rst by �nding a splitting literal ;8+1, the two new dynamic cubes 328+1 =
38 ∧ ;8+1 and 328+2 = 38 ∧ ¬;8+1 are created and replace 38 in �G . The solver thread B

is not noti�ed of this replacement and keeps working on 38 . Instead, 328+1 or 328+2
is virtually assigned to B . This is done to maintain the condition that the solving

capability only works on locally contained cubes. This assignment is correct because

B works on a more general version of its assigned cube. The possibly found failed

assumptions q28+1 or q28+2 would therefore always be a subset of the assigned cube.

We show multiple reassignments in Fig. 6.4.

• If B �nishes �rst by proving the formula � 9 to be unsatis�able under the partial

assignment given by 38 , it extracts the failed assumptions q8 and uses them to prune

cubes in �G . This means it removes all dynamic cubes 3 ∈ �G with q8 ⊆ 3 , guaran-

teeing the removal of 38 . When 6 subsequently completes the extension procedure,

it recognizes that 38 is no longer in �G and discards its results.

All access to the local dynamic collection must be exclusive. Otherwise race-conditions

may lead to the duplication of dynamic cubes or their disappearance.

37

6 Second Approach: Dynamic Cube&Conquer

s0s3 s1

s0

s0

s0

s1

s2s1

p0

p1

p3

p2
D3

D1

D0
D2

p4 p5

s5

Figure 6.4: Illustration of the reassignments of the cube solver thread BG from the job

node ?G because of a extension of the same cube. Each red edge represents a

reassignment. The example is a continuation of the example from Fig. 6.3.

6.3 Completeness

The completeness of this approach relies on the redundancy due to the virtual solver

reassignments. This results in the root job node ?0(9) always containing a cube solver

thread on the empty cube 20 and therefore the unmodi�ed formula � 9 . The thread is started

when the job is adopted and runs as long as the job is in the system. Completeness then

follows from the thread internal usage of an instance of a complete solver. All additional

work is done to try a complementary approach based on solving sub-spaces.

6.4 The cube solver threads

Each job node contains one or multiple solver threads that work on locally available cubes.

The amount is given by the number of cores per processing element. This is done in order

to use the full computing power of each PE in solving. All solver threads are created

and started during start" . In the following we will go over the solving loop of a cube

solver thread B= from job node ?G (9) which is depicted in Fig. 6.5. We will also go into

how B= a�ects and is a�ected by the distribution of the failed clauses. The distribution

process is explained in detail in Section 6.5. We will explain how B= supports malleability

in Section 6.8, after covering the generating loop of the generator thread 6 in Section 6.6.

The �rst step of B= is to add the formula � 9 to the local instance of an IPASIR based solver.

Then the scope of the solver thread is exited and the wrapping solving engine is queried

for a cube to work on. This is achieved by requesting exclusive access to �G . When access

is granted and there is a dynamic cube 38 that is not assigned to any solver, assign it to

B= . Otherwise, the thread is put to sleep until a noti�cation is received. A noti�cation for

38

6.4 The cube solver threads

a sleeping solver thread has one of the following three sources and invokes it to retry

getting a cube:

1. The local cube generating thread 6 has successfully extended a local cube.

2. The request for cubes @G was ful�lled and new cubes were received.

3. suspend" or terminate" was called.

After a dynamic cube 38 is assigned to B= , all in the meantime asynchronously received

failed clauses are added to the solver instance from Ψ(B=). Then the formula � 9 is solved

under the partial assignment given by 28 . If this results in SAT or UNSAT with q8 = ∅, the

job is marked as solved and B= is terminated. Otherwise, q8 is transformed tok8 and stored

in Ψ(G). These new failed clauses are then taken into account in the next aggregation. The

failed assumptions q8 are also used to prune cubes in �G . Pruning again requires exclusive

access to �G which is then also used to assign a new cube to B= , thus repeating the loop.

39

6
Second

A
pproach:D

ynam
ic
C
ube&

C
onquer

[UNSAT]

[SAT]

Solve cube ci

suspendM

Cube solver thread sn

Add formula Fj

Solving engine in κj of px(j)

Mark job j as
solved

Extract failed
assumptions φi

Store in Ψ(sn)

Unassign di from
solver thread sn

Interrupt solver
thread sn

resumeM

terminateM

suspendM

[φi = ∅][else]

Exclusive

Sleep until
notification

[no assignable cube]

Prune cubes
in Dx using φi

[else]

Filter

Notify generator
thread g and

assign di from Dx

to solver thread sn

terminateM

handleCommM

Broadcast of the failed clauses
Store failed

clause ψi in Ψ(x)

Add all failed
clauses in Ψ(g),

then clear it.

Figure 6.5: Illustration of the solving loop of a cube solver thread B= in the solving engine of a job node ?G (9). Each smaller rectangle

represents an action, each edge denotes a transition following the completion of the action. Dotted edges denote the start of

concurrent actions or transitions to and from un�nished actions, in case of preemption. All of these cases are dependant on

an asynchronous call of a method of the Mallob interface. Diamond shapes represent decisions. All actions in the exclusive

block require the acquisition of an exclusive access right.

4
0

6.5 The distribution of failed clauses

6.5 The distribution of failed clauses

In the following, we explain the distribution of failed clauses over the job tree. We do this

using a graphical example given in the Figs. 6.6 and 6.7 and by explaining each possible

behavior of a job node ?G on the left side.

(1) The aggregation of failed clauses is period-

ically initiated by the leaf nodes. Each leaf

node ?G sends its locally accumulated set

of failed clauses Ψ(G) to its parent.

(2) If an inner node ?G has received a set of

failed clauses from each direct child node,

it merges them with its locally accumulated

set Ψ(G) and sends the result to its parent.

(3) The root node ?0 stores the merge result

of the received sets and the locally stored

failed clauses in Ψ(0) to maintain a local

record of all ever aggregated failed clauses.

It then starts the broadcast procedure using

Ψ(0).

The broadcast procedure consists of two ac-

tions on a set of failed clauses. The root node

performs them on its local record. Every

other node performs them on the received

set of failed clauses of the broadcast.

• Filter the failed clauses for new ones

and store these in Ψ(B=) of each local

cube solver thread and in Ψ(6) of the

local generator thread 6.

• Send the un�ltered set of failed clauses

to all direct child nodes.

The broadcast then fades at the leaf nodes.

Ψ(3) Ψ(4)

⋃
i∈{1,3,4} Ψ(i)

⋃
i∈{2,5} Ψ(i)

p0

p1 p2

p3 p4(1)

(2)

(3)

Ψ(0) =
⋃

i∈{0,1,2,3,4,5} Ψ(i)

(1)

Ψ(5)

p5

(2)

(1)

Figure 6.6: Aggregation of failed clauses.

p0

p1 p2

p3 p4 p5

Ψ(0) Ψ(0)

Ψ(0) Ψ(0)

Ψ(0)

Figure 6.7: Broadcast of failed clauses.

6.6 The generator thread

Each job node ?G (9) contains an additional thread for cube generation. The additional

work reduces the CPU time of the threads that do the actual solving. However, it is

expected to be negligible since only a few cubes are to be generated at a time. Similar to

the solver threads, the generator thread is created and started on the call to start" . It has

the following two tasks:

1. Extend local cubes to generate new and more specialized cubes that can then be

processed by the local cube solver threads or used to ful�ll received requests. This is

41

6 Second Approach: Dynamic Cube&Conquer

done as long as there are cubes in �G and until there are more than twice as many

cubes in �G than there are local cube solver threads.

2. If there are no cubes in �G , the local control thread must be informed to send a

request @G for new cubes.

In the following we will go over the loop of the generator thread 6 of job node ?G (9) which

is depicted in Fig. 6.8. The generator thread 6 is based on a local instance of an IPASIR

solver that contains the lookahead procedure lookahead� in its interface. So its �rst step

is also to add the formula � 9 to this instance. Then exclusive access to �G is requested.

This is required to assign a dynamic cube 38 from �G to 6. If �G is empty and there is no

pending request @G , the wrapping solving engine is informed to request cubes. Then 6

sleeps until it is noti�ed. If there are enough cubes in �G or size(�G) = 0 and there is

a pending request @G , 6 is directly put to sleep. A noti�cation to the sleeping generator

thread is caused by one of the following four reasons:

1. A local cube solver thread tries to assign a dynamic cube to itself.

2. The controlling thread of ?G (9) attempts to ful�ll a received request for cubes.

3. The request for cubes @G was ful�lled and new cubes were received.

4. suspend" or terminate" was called.

After receiving a noti�cation, 6 resumes to query �G for an assignable cube. Eventually a

dynamic cube 38 is assigned to 6. This is followed by the addition of all newly received

failed clauses to the local solver instance from Ψ(6). Then 6 searches for a splitting literal

;8+1 for the assigned cube 28 of 38 . When ;8+1 is found, exclusive access to �G is requested

which is then used to check whether 38 ∈ �G . If this is the case, replace the old cube with

the two new ones and adjust a potential assignment to a cube solver thread. Then, or if

38 ∉ �G , repeat the loop by attempting to assign a new cube to 6.

42

6.6
The

generator
thread

Solving engine in κj of px(j)

Exclusive

[else]

[true]

Sleep until
notification

[false]

Check if di ∈ Dx

Replace di using
li+1 with d2i+1 and
d2i+2 then notify
all solver threads

Assign di from Dx to
generator thread g

suspendM

Add formula Fj

Add all failed
clauses in Ψ(g),

then clear it.

Store in Ψ(g)

Interrupt generator
thread g

terminateM

Cube generator thread g

Unassign di from
generator thread g

Find splitting
literal li+1

Insert received cubes
into Dx then notify all
solver threads and g

Request qx was fulfilled

handleCommM

FilterhandleCommM

Broadcast of the failed clauses

[too many cubes or
already requesting]

[Dx is empty
and there is no

pending qx]

Inform solving engine
to request cubes

resumeM suspendM

terminateM

Fulfill as many requests
as possible using cubes
from Dx then notify g

Received one or multiple
request for cubes

handleCommM

Figure 6.8: Illustration of the work�ow of the cube generation thread 6 in the solving engine of a job node ?G (9). Each smaller rectangle

represents an action, each edge denotes a transition following the completion of the action. Dotted edges denote the start of

concurrent actions or transitions to and from un�nished actions, in case of preemption. All of these cases are dependant on

an asynchronous call of a method of the Mallob interface. Diamond shapes represent decisions. All actions in the exclusive

block require the acquisition of an exclusive access right.

4
3

6 Second Approach: Dynamic Cube&Conquer

6.7 Handling of requests for cubes

In the following, we will explain the �ow and handling of all types of cube requests over

the job tree. We do this using a graphical example given in the Figs. 6.9 and 6.10 and by

explaining each possible behavior of a job node ?G on the left side.

(1) The aggregation of cube requests is period-

ically initiated by the leaf nodes. If a leaf

node ?G does not contain cubes and has no

pending request, it sends @G to its parent.

Otherwise, it sends an empty set.

(2) If an inner node ?G has received a set of re-

quests from each direct child node, it tries

to ful�ll as many as possible without ex-

hausting �G . Any unful�lled requests are

passed to its parent node. If ?G does not con-

tain any cubes and has no pending request,

@G is also passed.

(3) The root node ?0 never passes requests that

it could not ful�ll. Instead, it stores them

and tries to ful�ll them at the end of the

next aggregation.

(4) If the root node ?0 does not contain any

cubes, it sends the request @0 to both direct

child nodes.

(5) Is a receiving node ?G unable to ful�ll the

the request of the root, it passes @0 to its di-

rect children. If ?G is a leaf, @0 is discarded.

(6) Is a receiving node ?G able to ful�ll the re-

quest of the root, it does so by sending local

free cubes from �G to the root.

The root nodes repeats the broadcast periodi-

cally until its @0 has been ful�lled by at least

one job node.

{q3} {q4}

{q4} {q2}
fulfill

p0

p1 p2

p3 p4(1)

(2)

(3)

{q4}

(2)

(1)

{}

p5(1)

fulfill

Figure 6.9: Aggregation of@G with G > 0.

p0

p1 p2

p3 p4 p5

(4) fulfill

(6)

(6)

(5)

(5)

q0 q0

q0 q0

fulfill

Figure 6.10: Broadcast of @0.

6.8 Malleability

The job node ?G (9), G > 0 may at any time be forced to pause its work on job 9 by a call to

suspend" . This is then achieved by all solver threads and the generator thread exiting their

loop. This is possible if they are currently trying to assign a cube from �G to themselves

or are in the process of solving a cube or searching for a splitting literal respectively. In

44

6.9 Handling of delayed messages

the second case, the solving or searching process is interrupted using terminate� and the

assigned cube is unassigned. If a thread is currently performing a di�erent action, its loop

continues until one of the two mentioned actions is reached. All sleeping threads are

noti�ed on a call to suspend" . After every thread of ?G (9) has exited its solving loop, all

local cubes in�G and all newly accumulated failed clauses in Ψ(G) are sent to the root node

?0(9). This is done to guarantee that all existing cubes are always contained by active job

nodes. This also requires the termination of each solver thread to happen synchronously

to the control thread’s call to suspend" . The local cubes and clauses are then sent as a

parting message at the end of the method. This suspension procedure forces a resumed

job node ?G (9) to request new cubes and to restart each contained thread.

When terminate� is called, each working thread exits its loop in the same way as on a

call to suspend" . However, since the job has reached the end of its life cycle no cubes or

clauses are sent.

6.9 Handling of delayed messages

A PE can leave the job it is currently working on at any time. Therefore, it must be able to

correctly handle delayed messages from a previous job 9 even if it has already �nished its

work 9 . Delayed messages can be received if they were sent shortly before the PE left the

job. Their correct handling is necessary to prevent the loss of sent failed clauses or cubes.

If a PE A receives aggregated failed clauses of a suspended job 9 , they are sent to the root

node ?0(9). This is necessary to not lose the solving result of a now pruned cube. Any

received broadcasts are ignored. This is correct even if A later continues work on 9 , since a

subsequent broadcast will contain the missed failed clauses.

If A receives the ful�llment of a previously sent request for cubes of a now suspended job

9 , it sends the received cubes to the root node ?0(9). This guarantees that the cubes are

not lost. Every received requests is discarded. This is possible for aggregated requests,

since all former child nodes must now also be suspended. Root requests can always be

discarded because they are not unique.

45

7 Evaluation

In this chapter we do an evaluation of our two approaches. This is done by passing a set of

SAT problems to the Mallob framework which then malleable schedules the work on them

using the speci�ed approach. Note that in this mode one PE takes over the role of the client

and therefore does not participate in the solving algorithm. In addition, the randomized

scheduling and load balancing paradigm of Mallob requires to keep at least one PE idle at

all times to ensure quick adaptation of a new job request. Further, we control the degree of

parallelization on each formula by limiting the number of active jobs � . All other options

of Mallob that a�ect the load balancing and scheduling are kept at their default value.

For the evaluation, the benchmark set from the SAT Competition 2020 is used which

consists of 400 problems. However, we removed the formula

sv-comp19_prop-reachafety.queue_longer_false-unreach-call.i-witness.cnf

because the solver working on it became unresponsive by not allowing termination. The

time limit per problem is set to 1000 seconds. This corresponds to the con�guration of

the Cloud Track of the SAT Competition 2020. In the following, we exclusively use the

state-of-the-art SAT solver Cadical for cube generation and solving.

7.1 Hardware

All benchmarks were done on a machine that uses an AMD EPYC™ 7702P with 1024GB

main memory. This processor features 64 real cores that support 128 threads via hyper-

threading. Each core uses a base clock of 2.0GHz that can boost up to 3.35GHz. Each

thread has its own level one cache, each core has a personal level two cache and 4 cores

share a level three cache. The cache layout is important because we use it later to partition

the processor into several identical virtual processing elements to simulate a distributed

computing environment for Mallob.

7.2 Static Cube&Conquer

In the following, our �rst approach is evaluated. We begin by comparing some of the

parameters used and conclude with an evaluation of its scalability. We do not evaluate

any run-time characteristics since we assume that each worker always receives work due

to the used work distribution strategy.

47

7 Evaluation

0 250 500 750 1000

run time in s

0

50

100

150

200

#
s
o

l
v
e
d

p
r
o

b
l
e
m

s
i
n
≤
C

s

random

not random

(a) Number of solved problems in the given

time.

28 7126

random
not random

(b) Intersection of solved problems.

0 100 200 300 400

problems

0

125

250

375

500

#
s
e
n

t
c
u

b
e
s

p
e
r

p
r
o

b
l
e
m

random

not random

(c) Number of sent cubes per problem in as-

cending order.

0 100 200 300 400

problems

0

100

200

300

#
r
e
t
u

r
n

e
d
q

p
e
r

p
r
o

b
l
e
m

random

not random

(d) Number of returned sets of failed assump-

tions per problem in ascending order.

Figure 7.1: Performance of Static Cube&Conquer using the con�guration from section 7.2.1

with randomization activated and disabled.

7.2.1 Randomization

We start evaluating the �rst approach by testing the randomization assumption from

Section 5.3.3. This is done using the following con�guration: Each core represents a single

PE. Each worker therefore only contains a single solver thread. If we subtract the client

and the idle PE, we get 62 active workers. They work on � = 4 active jobs at a time. We can

therefore expect each job to eventually contain 15-16 workers. The height ℎ of the cube

tree is set to 7. This forces the manager to generate 2
7 = 128 cubes. These are distributed

to the workers in batches of maximum 4 cubes (cubes-per-worker = 4).

In the Figs. 7.1a and 7.1b we see that the random con�guration solves more problems in

the same time. One possible reason for this is that each solver works on more relevant

cubes, as Fig. 7.1c shows less cubes being sent per problem, and in Fig. 7.1d we see that less

failed assumptions are returned. The problems where no cubes were sent were interrupted

by a timeout during the cube generation step. Since randomization performs better, we

will always randomize in the following benchmarks.

48

7.2 Static Cube&Conquer

7.2.2 Height of the cube tree

As the next step, we evaluate the e�ect of di�erent cube tree heights. A higher cube tree

should result in more and easier cubes, but increases the run time of the �rst phase of the

algorithm. We will do this using the following three con�gurations:

1. ℎ = 4→ 16 cubes, cubes-per-worker = 1

2. ℎ = 7→ 128 cubes, cubes-per-worker = 4

3. ℎ = 10→ 1024 cubes, cubes-per-worker = 64

Everything else is set identical to the con�guration from Section 5.3.3 with enabled ran-

domization.

0 250 500 750 1000

run time in s

0

50

100

150

200

#
s
o

l
v
e
d

p
r
o

b
l
e
m

s
i
n
≤
C

s

ℎ = 4

ℎ = 7

ℎ = 10

(a) Number of solved problems in the given

time.

28

1148

50

4

91

ℎ = 4 ℎ = 7

ℎ = 10

(b) Intersection of solved problems.

0 250 500 750 1000

run time in s

0

100

200

300

400

g
e
n

e
r
a
t
e
d

c
u

b
e
s

i
n
≤
C

s

ℎ = 4

ℎ = 7

ℎ = 10

(c) Number of problems whose cubes were

generated in the given time.

GEN SAT UNSAT

ℎ = 4 379 103 64

ℎ = 7 327 94 60

ℎ = 10 242 57 43

(d) Results per con�guration. GEN repre-

sents the number of problems for which

the cube generation process was �nished.

Figure 7.2: Performance of Static Cube&Conquer using di�erent cube tree heights and

batch sizes.

In Fig. 7.2a we see that the extra e�ort required to generate more cubes is generally not

useful in a time-limited scenario. The Fig. 7.2c and the Table in 7.2d show that a larger

cube tree drastically increases the duration of the �rst step of the algorithm. This leads to

a reduction of the remaining solving time and for numerous of problems to not even reach

49

7 Evaluation

the cube solving phase. This results in the remaining solving time being shortened and

many problems not even reaching the cube solving phase. Fig. 7.2b shows that forming

simpler cubes only leads to the solving of 5 + 4 + 11 = 20 additional problems that were

not solvable with a tree height of 4.

7.2.3 Scaling

The last evaluation of the �rst approach addresses its scalability. We do this by varying the

limit of active jobs in the system � while using the best con�guration from Section 7.2.2.

However, we will adjust ℎ to � to avoid generating fewer cubes than workers per job in a

balanced scenario. We chose the following three con�gurations:

1. � = 2→ 31 workers per job, ℎ = 5→ 32 cubes

2. � = 4→ 15-16 workers per job, ℎ = 4→ 16 cubes

3. � = 8→ 7-8 workers per job, ℎ = 3→ 8 cubes

0 250 500 750 1000

run time in s

0

50

100

150

200

#
s
o

l
v
e
d

p
r
o

b
l
e
m

s
i
n
≤
C

s

� = 2

� = 4

� = 8

Cadical

(a) Number of solved problems in the given

time.

13
4

10

15

6

5

150

� = 2 � = 4

� = 8

(b) Intersection of solved problems.

0 250 500 750 1000

run time in s

0

100

200

300

400

g
e
n

e
r
a
t
e
d

c
u

b
e
s

i
n
≤
C

s

� = 2

� = 4

� = 8

(c) Number of problems whose cubes were

generated in the given time.

Total Extra

SAT UNSAT SAT UNSAT

� = 2 114 65 40 4

� = 4 104 65 31 3

� = 8 106 70 28 4

(d) Results per con�guration. The two

right-most columns contain the problems

solved by the con�guration, but not by

Cadical.

Figure 7.3: Performance of Static Cube&Conquer using di�erent active jobs limits.

50

7.3 Dynamic Cube&Conquer

In Fig. 7.3a we see that � = 2 outperforms Cadical. The next best con�guration is � = 8.

� = 4 is occasionally surpassed by Cadical. So we can say that the approach is not

guaranteed to scale by adding workers and increasing the cube tree accordingly. One

possible reason for this is that the simplicity of the cubes does not scale linearly with their

size. It is therefore not guaranteed that the resulting solving speedup outweighs the extra

work required to generate the additional cubes. The required extra work time to generate

the cubes is shown in Fig. 7.3c. Working on di�erent cubes also changes the set of solved

problems. This is shown in Fig. 7.3b.

However, overall we can say that we found a con�guration in which our �rst approach

outperforms the internally used SAT solver Cadical. In Fig. 7.3d we compare the solved

problems of our three con�gurations and Cadical. It is noticeable that our approach works

better on problems that are satis�able. This can be explained by its termination scenarios.

7.3 Dynamic Cube&Conquer

In this section we evaluate our second approach. As the approach is not based on parame-

ters, we directly focus on its scalability. To increase the number of solver threads relative

to the generator threads, we de�ne each PE to consist of four cores of the CPU. We bundle

the cores according to their level three cache. Each job node therefore possesses four cube

solver threads and a single cube generation thread. Subtracting the client and the idle PE,

we expect 14 simultaneously active PEs. We chose the following three con�gurations:

1. � = 2→ 7 job nodes per job

2. � = 4→ 3-4 job nodes per job

3. � = 8→ 1-2 job nodes per job

In Fig. 7.4a we see that all three con�gurations outperform Cadical. Also the approach

scales well from � = 8 to � = 4. From � = 4 to � = 2 however, the number of solved

problems only increases by a single instance and the run times stay at a similar level. This

can be explained by Fig. 7.4c. It shows that for � = 2 the wait time of each solver thread

drastically increases. Also, Fig. 7.4d shows that the generator threads of � = 2 are the most

often idle. Probably because they also lack cubes to create new cubes. One could therefore

argue that not enough cubes are generated. However, in Fig. 7.4e we see that for � = 2

many more cubes are generated than for � = 4. Another possible cause for the bad scaling

could therefore be that the generator threads produce ine�ective cubes that fail to split the

problem into relevant sub-problems. This is further supported by Fig. 7.4f, which shows

that the average cube processing time of the solver threads decreases sharply from � = 4

to � = 2.

In total this approach outperforms the �rst one from Section 7.2.3 for any number of active

cubes. Comparing the venn diagram in Fig 7.4b with the one in Fig. 7.3b, we can see that

this approach has a lower variance of solved problems per con�guration.

51

7 Evaluation

0 250 500 750 1000

run time in s

0

50

100

150

200

#
s
o

l
v
e
d

p
r
o

b
l
e
m

s
i
n
≤
C

s

� = 2

� = 4

� = 8

Cadical

(a) Number of solved problems in the given

time.

8
6

16

3

3
4

184

� = 2 � = 4

� = 8

(b) Intersection of solved problems.

0 100 200 300 400

problems

0

25

50

75

100

t
i
m

e
s
p

e
n

t
w

a
i
t
i
n

g
i
n

%

� = 2

� = 4

� = 8

(c) Sum of the time each solver thread of a

job spent waiting for cubes, relative to

their total run time in ascending order.

0 100 200 300 400

problems

0

25

50

75

100

t
i
m

e
s
p

e
n

t
g

e
n

e
r
a
t
i
n

g
i
n

%

� = 2

� = 4

� = 8

(d) Sum of the time each generator thread of

a job spent generating new cubes, relative

to their total run time in ascending order.

0 100 200 300 400

problems

0

10
1

10
2

10
3

10
4

#
c
r
e
a
t
e
d

c
u

b
e
s

� = 2

� = 4

� = 8

(e) Number of cubes generated per job in log-

arithmic scale and ascending order.

0 100 200 300 400

problems

0

10
1

10
2

10
3

a
v
e
r
a
g

e
c
u

b
e

p
r
o

c
e
s
s
i
n

g
t
i
m

e

� = 2

� = 4

� = 8

(f) Average cube processing time of each

solver thread of a job in logarithmic scale

and ascending order.

Figure 7.4: Performance of Dynamic Cube&Conquer using di�erent active job limits.

52

7.4 Comparison with the portfolio-based solving engine

Total Extra

solved on 20 on 28, 8 > 0 Ψ = ∅ Ψ ≠ ∅ SAT UNSAT SAT UNSAT

� = 2 211 129 82 142 69 129 82 39 7

� = 4 210 123 87 157 53 129 81 39 6

� = 8 194 98 96 157 37 116 78 27 4

Table 7.1: Number of solved problems per con�guration. The number is further divided

into the number of problems that were solved using the root cube 20 or on a

sub-formula and if the solver did add any failed clausesk . The solved problems

are also divided into the two possible results and into the problems that were

not solved by Cadical on its own.

In the Table 7.1 we see the success of this approach. About two �fths to half of the problems

were solved using a generated cube. For these problems, the approach is better suited than

an unmodi�ed Cadical. Also, a non-negligible amount was solved with the help of added

failed clauses. In comparison with the table in Fig. 7.3d, we see that the con�gurations

� = 2 and � = 4 of this approach both solve more extra problems than the best one of

our �rst approach. However, since the di�erence is marginal, we can conclude that this

approach performs better because it also solves the problems that were previously only

solved by standalone Cadical. It therefore combines the advantages of Cube&Conquer and

the state-of-the-art SAT solver Cadical. It also scales much better for � = 4.

7.4 Comparison with the portfolio-based solving engine

Finally, we compare the three best con�gurations of both approaches with the malleable

SAT solving engine based on HordeSat included in Mallob. To ensure comparability

we also add the performance of standalone Cadical. In Fig. 7.5a we compare our �rst

approach. It shows that all con�gurations are outperformed by the better scaling portfolio-

based solution. In Fig. 7.5b we see that Dynamic Cube&Conquer with � = 2 and � = 4

outperforms the portfolio-based solution with � = 8. The other two con�guration are not

surpassed because they scale much better.

53

7 Evaluation

0 250 500 750 1000

run time in s

0

50

100

150

200

250

#
s
o

l
v
e
d

p
r
o

b
l
e
m

s
i
n
≤
C

s

Sta. C&C � = 2

Sta. C&C � = 4

Sta. C&C � = 8

Portfolio � = 2

Portfolio � = 4

Portfolio � = 8

Cadical

(a) Comparison with Static Cube&Conquer.

0 250 500 750 1000

run time in s

0

50

100

150

200

250

#
s
o

l
v
e
d

p
r
o

b
l
e
m

s
i
n
≤
C

s

Dyn. C&C � = 2

Dyn. C&C � = 4

Dyn. C&C � = 8

Portfolio � = 2

Portfolio � = 4

Portfolio � = 8

Cadical

(b) Comparison with Dynamic Cube&Conquer.

Figure 7.5: Comparison with the portfolio-based solution in Mallob.

54

8 Conclusion and Future Work

In this chapter, we give a conclusion of our accomplishments and propose possible future

work.

8.1 Conclusion

To expand the �eld of malleable SAT solving, we speci�ed two strongly di�ering parallel

SAT solving methods based on the search-space splitting approach that allow for malleabil-

ity. Both were implemented using Mallob to further diversify its SAT solving capabilities.

The methods are designed around a solver that implements the IPASIR interface. This

allows them to be used with various sequential solvers.

Classic Cube&Conquer requires an initial step to generate a prede�ned set of cubes. This

is done in our static approach after problem adoption in a sequential manner. The demand-

based scheduling is used to ensure that only a single processing element is occupied at this

stage. We then incorporate malleability into the highly parallel cube solving process by

not strictly binding the generated cubes to solvers. Instead, we present a cube distribution

strategy that distributes each unsolved cube evenly and repeatedly until it is solved. This

allows each solver to leave the method at any time without a�ecting its completeness. We

tested this method to work best if the cubes are distributed in a random order. Also, we

concluded that its main limiting factor in a time-critical solving scenario is the additional

step that is required to generate the cubes. This hinders scaling, since providing a workload

that can be balanced across a large number of solvers requires an even larger number

of cubes. However, we found con�gurations that allow this method to outperform the

internally used SAT solver in standalone mode. Using these, we noticed that the method

works well in solving additional problems that are satis�able.

Allowing for malleability in our dynamic method based on distributed and continuous cube

generation was signi�cantly more di�cult. Since we decided against a designated manager

to avoid a communication bottleneck, each assigned processing element must carefully

manage its held cubes and solving results. This is achieved through interleaved invariants

and specialized communication procedures. Edge cases due to preemption are handled

via fallback strategies. To enable collaborative SAT solving, we introduce a new approach

based on sharing clauses from failed assumption literals. It allows passing insights about

solved sub-problems. We also use it to improve the quality of the generated cubes. In

the evaluation, we have shown that the dynamic approach signi�cantly outperforms the

internally used solver and the �rst approach even with a low degree of parallelization. It

therefore makes better use of the given resources. However, it did not scale well for a larger

55

8 Conclusion and Future Work

number of processing elements in our test. By looking at several run-time characteristics,

we conclude that this is caused by a sharp decrease in the quality of the generated cubes.

Because of this, the approach is outperformed by the well-scaling portfolio-based SAT

solving method included in Mallob.

8.2 Future work

In this section, we propose future work that builds on the approaches of this work.

Improve the cube generation step of Static Cube&Conquer In the evaluation of

our �rst approach, we saw that its main limiting factor is the sequential initial step. In a

timed scenario, only a few cubes may be created. Otherwise, the actual parallel SAT solving

time is immensely reduced. This is a major disadvantage because the number of cubes

determines the maximum achievable degree of parallelization. A possible solution would

be to expand this step to also make use of the massively parallel distributed environment.

Another idea would be to interleave both steps and to set the demand according to the

already generated workload. Falling back to an easier heuristics is also a possible solution.

Improve the cube quality of Dynamic Cube&Conquer The bad scaling of our sec-

ond approach is most likely caused by the shortage of good cubes that split the problem

into reasonably sized sub-problems. There are several ideas how to approach this problem:

By increasing the number of cube generators, more cubes will be created. Heuristically,

this should increase the number of found good cubes. Another idea is to support the

cube generators with learned clauses from the solver threads. This should allow them to

simplify the formula and thus increase the quality of their generated cubes. We could also

introduce lookback heuristics by evaluating the state of a solver that has been working on

a cube for a long time and use it to generate cubes.

Periodically test the cubes in Dynamic Cube&Conquer A current imperfection of

our second approach is that a solver continues to work on a cube 2 even if the formula was

proven to be unsatis�able for a subset of the assumptions in 2 . This could be addressed by

periodically testing whether this is the case and, if so, interrupting the solver. This would

also add a new termination scenario when the solver on the root cube is interrupted.

56

Bibliography

[1] Gilles Audemard et al. “An adaptive parallel SAT solver”. In: International Conference
on Principles and Practice of Constraint Programming. Springer. 2016, pp. 30–48.

[2] Gilles Audemard et al. “An e�ective distributed D&C approach for the satis�ability

problem”. In: 2014 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. IEEE. 2014, pp. 183–187.

[3] Tomáš Balyo, Peter Sanders, and Carsten Sinz. “HordeSat: A massively parallel

portfolio SAT solver”. In: International Conference on Theory and Applications of
Satis�ability Testing. Springer. 2015, pp. 156–172.

[4] Tomáš Balyo et al. “Proceedings of SAT Competition 2020: Solver and Benchmark

Descriptions”. In: (2020).

[5] Tomáš Balyo et al. “SAT race 2015”. In: Arti�cial Intelligence 241 (2016), pp. 45–65.

[6] Armin Biere. “Cadical, lingeling, plingeling, treengeling and yalsat entering the sat

competition 2018”. In: Proceedings of SAT Competition (2017), pp. 14–15.

[7] Armin Biere, Marijn J. H. Heule, and Hans van Maaren. Handbook of satis�ability.

Vol. 185. IOS press, 2009.

[8] Koen Claessen et al. “SAT-solving in practice”. In: 2008 9th International Workshop
on Discrete Event Systems. IEEE. 2008, pp. 61–67.

[9] Stephen A Cook. “The complexity of theorem-proving procedures”. In: Proceedings
of the third annual ACM symposium on Theory of computing. 1971, pp. 151–158.

[10] Martin Davis, George Logemann, and Donald Loveland. “A machine program for

theorem-proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

[11] Martin Davis and Hilary Putnam. “A computing procedure for quanti�cation theory”.

In: Journal of the ACM (JACM) 7.3 (1960), pp. 201–215.

[12] Travis Desell, Kaoutar El Maghraoui, and Carlos A Varela. “Malleable applications for

scalable high performance computing”. In: Cluster Computing 10.3 (2007), pp. 323–

337.

[13] Armin Biere Katalin Fazekas Mathias Fleury and Maximilian Heisinger. “CaDiCaL,

Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020”.

In: SAT COMPETITION 2020 (2020), p. 50.

[14] Richard L Graham et al. “Open MPI: A high-performance, heterogeneous MPI”. In:

2006 IEEE International Conference on Cluster Computing. IEEE. 2006, pp. 1–9.

[15] Jun Gu et al. Algorithms for the satis�ability (SAT) problem: A survey. Tech. rep.

Cincinnati Univ oh Dept of Electrical and Computer Engineering, 1996.

[16] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. “ManySAT: a parallel SAT solver”.

In: Journal on Satis�ability, Boolean Modeling and Computation 6.4 (2010), pp. 245–

262.

57

Bibliography

[17] Maximilian Heisinger, Mathias Fleury, and Armin Biere. “Distributed Cube and

Conquer with Paracooba”. In: International Conference on Theory and Applications of
Satis�ability Testing. Springer. 2020, pp. 114–122.

[18] Marijn J. H. Heule et al. “Cube and conquer: Guiding CDCL SAT solvers by looka-

heads”. In: Haifa Veri�cation Conference. Springer. 2011, pp. 50–65.

[19] Marijn J. H. Heule et al. “March_eq: Implementing additional reasoning into an e�-

cient look-ahead SAT solver”. In: International Conference on Theory and Applications
of Satis�ability Testing. Springer. 2004, pp. 345–359.

[20] Matti Järvisalo et al. “The international SAT solver competitions”. In: Ai Magazine
33.1 (2012), pp. 89–92.

[21] Daniela Kaufmann et al. “Arithmetic veri�cation problems submitted to the SAT

Race 2019”. In: Proc. of SAT Race 2019 (2019).

[22] Ludovic Le Frioux et al. “Modular and e�cient divide-and-conquer SAT solver on

top of the painless framework”. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer. 2019, pp. 135–151.

[23] Joao Marques-Silva. “Practical applications of boolean satis�ability”. In: 2008 9th
International Workshop on Discrete Event Systems. IEEE. 2008, pp. 74–80.

[24] Ruben Martins, Vasco Manquinho, and Inês Lynce. “An overview of parallel SAT

solving”. In: Constraints 17.3 (2012), pp. 304–347.

[25] Dominik Schreiber. “Engineering HordeSat Towards Malleability: mallob-mono in

the SAT 2020 Cloud Track”. In: Proceedings of SAT competition 2020, p. 45.

[26] Dominik Schreiber and Peter Sanders. “Scalable SAT Solving in the Cloud”. In:

Proceedings of SAT competition 2021. (under revision).

[27] The International SATCompetitionWeb Page. Feb. 2021.url: http://www.satcompetition.

org/.

58

http://www.satcompetition.org/
http://www.satcompetition.org/

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Approach
	Structure of this thesis

	Preliminaries and Related Work
	Definitions
	The Boolean satisfiability problem
	SAT solving algorithms
	SAT solver completeness
	Davis–Putnam–Logemann–Loveland algorithm
	Conflict driven clause learning
	Incremental SAT solving
	Lookahead solver
	Search-space splitting
	Cube&Conquer
	Divide&Conquer with work stealing

	Related work
	Paracooba
	Ampharos

	The Mallob Platform
	Basic concept
	Designing a malleable job
	Mallob in the domain of SAT solving

	Design Decisions
	On finding splitting literals

	First Approach: Static Cube&Conquer
	The concept
	Pruning
	The manager
	Workflow of the manager
	Completeness
	Randomization

	The worker
	Extending IPASIR to suspend solvers
	Workflow of the worker

	Second Approach: Dynamic Cube&Conquer
	The concept
	Dynamic cubes
	Completeness
	The cube solver threads
	The distribution of failed clauses
	The generator thread
	Handling of requests for cubes
	Malleability
	Handling of delayed messages

	Evaluation
	Hardware
	Static Cube&Conquer
	Randomization
	Height of the cube tree
	Scaling

	Dynamic Cube&Conquer
	Comparison with the portfolio-based solving engine

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography

