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Abstract

Hypergraph partitioning is an important tool for optimizing electric circuits and
improving the parallelization of sparse matrix-vector multiplications in scientific
computing. The goal of hypergraph partitioning is to distribute nodes to a fixed
number of blocks while maintaining a balance constraint on the block size. The most
common heuristic for hypergraph partitioning is the multi-level paradigm. It consists
of three phases: coarsening, initial partitioning and refinement. The coarsening
phase aims to construct successively smaller and structural similar hypergraphs
by contracting pairs of nodes that will likely end up in the same partition. These
contractions are usually performed using rating functions that only incorporate the
direct neighborhood of the node. Therefore, the recently introduced community-
aware coarsening algorithm restricts contractions to densely coupled regions of the
hypergraph. The current approach first transforms the hypergraph into the bipartite
graph representation and then evaluates its community structure. Such a projection
on a dyadic graph representation loses some of the higher-order structure we want to
capture.
Therefore, in this work, we present different approaches to community detection on
hypergraphs directly and evaluate them as a preprocessing step for the coarsening
phase. We present a modularity maximization approach that optimizes a modularity
formulation that we derived by incorporating the connectivity of hyperedges. We
optimize this hypergraph modularity using the parallel Louvain method. Additionally,
we present formulations for the map equation on hypergraphs based on different
random walk models. We integrate our hypergraph community detection algorithms
into the parallel shared-memory hypergraph partitioner Mt-KaHyPar. Finally, we
evaluate different optimizations and heuristics we used to speed up the hypergraph
modularity method and compare our different approaches as well as the current
graph-based approach in extensive experiments.
In our experiments involving 488 hypergraphs from its different applications, our
approach produced better partitions than the current configuration Mt-KaHyPar-D on
61% of the instances. However, our approach is slower by a factor of 5.4 on average.
Additionally, we evaluate our algorithm on instances that are an order of magnitude
larger than used in other publications.

Deutsche Zusammenfassung

Die Hypergraph-Partitionierung ist ein wichtiges Werkzeug zur Optimierung von
elektrischen Schaltungen und Verbesserung der Parallelisierung von dünnbeset-
zten Matrix-Vektor-Multiplikationen im wissenschaftlichen Rechnen. Das Ziel der
Hypergraph-Partitionierung ist die Knoten auf eine feste Anzahl an Blöcken zu
verteilen, sodass die Blöcke möglichst gleich groß sind. Die wichtigste Heuristik
für die Hypergraphen-Partitionierung ist das Multi-Level-Paradigma. Es besteht
aus drei Phasen: der Vergröberungs-, der Partitionierungs- und Verbesserungsphase.
Die Vergröberungsphase zielt darauf ab, sukzessiv kleinere und strukturell ähnliche
Hypergraphen zu konstruieren, indem Knotenpaare, die wahrscheinlich in der gleichen
Partition enden werden, kontrahiert werden. Diese Kontraktionen werden üblicher-
weise mit Bewertungsfunktionen durchgeführt, die nur die direkte Nachbarschaft
des Knotens einbeziehen. Daher beschränkt der kürzlich eingeführte Community-
Aware Coarsening-Algorithmus die Kontraktionen auf dicht gekoppelte Regionen
des Hypergraphen. Der aktuelle Ansatz transformiert zunächst den Hypergraphen
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in einen bipartiten Graphen und wertet dann die Community-Struktur auf diesem
Graphen aus. Bei einer solchen Projektion auf eine dyadische Graphendarstellung
geht ein Teil der Struktur höherer Ordnung, die wir einbeziehen wollen, verloren.
Daher stellen wir in dieser Arbeit verschiedene Ansätze zur Community-Erkennung
auf Hypergraphen vor und evaluieren sie als Vorverarbeitungsschritt für die Ver-
gröberungs Phase. Wir stellen einen Ansatz vor, der eine modularity Formulierung
optimiert, die wir durch Einbeziehung der Konnektivität von Hyperkanten abgeleitet
haben. Wir optimieren diese Hypergraphen-modulairity mit Hilfe der parallelen
Louvain-Methode. Zusätzlich präsentieren wir Formulierungen für die map equation
auf Hypergraphen, basierend auf verschiedenen Random-Walk-Modellen. Wir integri-
eren unsere Community-Erkennungs-Algorithmen in den parallelen Shared-Memory-
Hypergraphen-Partitionierer Mt-KaHyPar. Schließlich evaluieren wir verschiedene
Optimierungen und Heuristiken, die wir zur Beschleunigung der Hypergraphen-
modularity eingeführt haben und vergleichen unsere verschiedenen Ansätze, sowie
den aktuellen graphbasierten Ansatz in umfangreichen Experimenten.
In unseren Experimenten mit 488 Hypergraphen aus den verschiedenen Anwendungs-
bereichen, produzierte unser Ansatz bessere Partitionen als die aktuelle Konfiguration
Mt-KaHyPar-D für 61% der Instanzen. Allerdings ist unser Ansatz im Durchschnitt
um den Faktor 5,4 langsamer. Zusätzlich evaluieren wir unseren Algorithmus auf
Instanzen, die um eine Größenordnung größer sind als in anderen Publikationen.
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1. Introduction

Hypergraphs are a generalization of graphs, where each (hyper)edge can connect an arbitrary
number of nodes. The k-way hypergraph partitioning problem is a direct generalization
of the graph partitioning problem. Here we try to find a partition of the node-set of
the hypergraph into k disjoint, non-empty blocks of roughly equal size while minimizing
an objective function defined on the hyperedges. The partition must satisfy the balance
constraint that each block is smaller than (1 + ε) times the average block size.
Hypergraph partitioning is used in a wide range of problem domains. In VLSI design, it is
used to partition a circuit into smaller modules such that the length of connecting wires
is minimized [KAKS99]. Since a wire can connect more than two gates, hypergraphs are
a more suitable model than graphs. In SAT Solving, hypergraph partitioning is used as
a preprocessing step to decompose formulas into smaller sub-formulas [DK04]. Another
area of application is scientific computing, where it is used to reduce the communication
volume for sparse matrix-vector multiplications [VB05].
Since hypergraph partitioning is NP-hard [Len90, Fel19], heuristics are used in practice to
keep up with the growing problem sizes from its many different applications. The most
popular heuristic used in state-of-the-art partitioners is the multilevel-paradigm. It consists
of three phases: First, the hypergraph is coarsened by contracting clusters of vertices while
maintaining its underlying structure (coarsening phase). In the second phase, an initial
partition is computed on the coarsest hypergraph. This partition is improved, during
uncoarsening of the hypergraph, using local search heuristics.
The goal of the coarsening phase is to reduce the problem size while maintaining the struc-
ture of the hypergraph. To achieve this goal, coarsening schemes try to merge naturally
existing clusters of vertices. This is done using rating functions which often only incorporate
the direct neighborhood of a node. As Heuer and Schlag showed [HS17], incorporating the
structure found by community detection algorithms is highly beneficial to the quality of
partitions. They introduce community aware coarsening, where the coarsening algorithm
only contracts nodes within the same community, previously found by a community detec-
tion algorithm.
Many of the current approaches for community detection on hypergraphs include projecting
it to its bipartite- or clique-expansion and then using graph-based community detection algo-
rithms to find community structure [EERR21, HS17, AJZM+05, BGL16, LM18, KVA+18].
While this is a viable approach, using a graph-based representation of a hypergraph loses
some of its higher-order structure [IWW93]. Especially using the clique-expansion is not
feasible in practice, since projecting each hyperedge e onto |e| · (|e| − 1) edges causes a
combinatorial explosion. Others are limited to k-uniform hypergraphs or are more theoretic
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1. Introduction

in nature and do not scale well to large instances. There is a lack of approaches working
on arbitrary hypergraphs that scale well to large instances.

1.1. Problem Statement
This thesis aims to exploit the community structure of hypergraphs by using community
detection directly on hypergraphs as a preprocessing step in the coarsening phase of the
multilevel paradigm. Therefore different approaches to graph-based community detection
should be transferred to the more general case of hypergraphs. Parallel algorithms should
be developed to optimize the generalized metrics. These algorithms should be integrated
into the shared-memory hypergraph partitioner Mt-KaHyPar. The goal is to improve the
solution quality of the partitioner while not compromising too much on the running time.

1.2. Contribution
In this work, we present, to the best of our knowledge, the first parallel shared- memory
community detection algorithms for hypergraphs: First, we derive a hypergraph modularity
formulation based on the connectivity of hyperedges, which is the number of different
communities contained in a hyperedge. We optimize this objective function by implement-
ing the parallel Louvain method and presenting multiple optimizations, such as pruning
rules and a data structure to efficiently look up connected communities of hyperedges.
Second, we derive different formulations for the map equation on hypergraphs, which we
optimize using our implementation of the parallel RelaxMap algorithm. We integrate our
hypergraph community detection algorithms in the parallel shared memory hypergraph
partitioner Mt-KaHyPar and use them as a preprocessing step to the community aware
coarsening algorithm. The results show that our modularity approach is better suited for
this application than the map equation approaches. Compared to the current configura-
tion Mt-KaHyPar-D, the new configuration using hypergraph modularity produces better
partitions on 61% of the benchmark instances. Unfortunately, our preprocessing step is
slower by a factor of 5.4 on average.

1.3. Outline
We begin by introducing the basic concepts and notation in Section 2. We take a look at
hypergraphs and different methods for community detection we will transfer to hypergraphs.
We also take a brief look at hypergraph partitioning. After that, we summarize related
work concerning community detection and hypergraph partitioning in Section 3. In the
following Section 4 we derive a modularity metric directly on hypergraphs. The algorithm
and optimizations used to optimize this metric are described in Section 5. In Section 6 we
transfer the map equation to hypergraphs and describe its implementation. We present
the experimental evaluation in Section 7 and conclude our work in Section 8.
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2. Preliminaries

In this chapter, we will introduce the basic concepts and notation used in this work. We
will start by introducing hypergraphs and graphs in Section 2.1. After that, we will briefly
define random walks in 2.2 and take a look at two community detection methods on graphs
(see Section 2.3): modularity and map equation. Finally, we will give a short introduction
to hypergraph partitioning in Section 2.4.

2.1. Hypergraphs and Graphs

An undirected weighted hypergraph H = (V,E, c, ω) consists of a set of n hypernodes
V and m hyperedges/nets E, as well as the vertex weights c : V → R≥0, and the edge
weights ω : E → R>0. We extend these weights to sets, i.e. for V ′ ⊆ V and E′ ⊆ E
c(V ′) = ∑

v∈V ′ c(v) and ω(E′) = ∑
e∈E′ ω(e). We dedicate W = ω(E) to the sum of

all edge weights and Wd = ω(Ed) to the accumulated weight of all edges of size d. A
hyperedge e ∈ E is defined as a set of nodes v ∈ V . We call a single occurrence of a
node v ∈ e a pin. In this work we will also allow multipins, i.e. a node can appear
more than once in an edge. Therefore we add multiplicities mv ∈ N to the definition
of a hyperedge, i.e. e = {(v,mv)|v ∈ V }. The size of e is its cardinality |e| or in other
words the sum of multiplicities ∑v∈emv. Ed denotes the set of hyperedges of size d and
D = {d : |Ed| > 0} represents the set of different edge sizes occurring in the hypergraph.
We define Φ(e, v) = mv for (v,mv) ∈ e for net e ∈ E and node v ∈ V as the pin count of
v ∈ e. We extend this definition to sets of nodes. For the subset C ⊆ V the cumulative pin
count of C in e is defined as Φ(e, C) = ∑

v∈C Φ(e, v).
A vertex v ∈ V is incident to a hyperedge e if v ∈ e and mv > 0 respectively. I(v) denotes
the set of incident nets of v, which we extend to sets of nodes as the set of unique edges with
Φ(e, C) > 0, in other words I(C) = {e ∈ E|Φ(e, C) > 0}. With these definitions in mind
we define the volume (or weighted degree) of a node v as vol(v) = ∑

e∈I(v) Φ(e, v) ·ω(e), we
naturally extend this definition to sets as vol(C) = ∑

e∈I(C) Φ(e, C) · ω(e). A hypergraph
H ′ = (V ′, E′) is called a subgraph of H = (V,E) if V ′ ⊆ V and E′ ⊆ E. We call a subgraph
node-induced if it contains the nodes V ′ and only the edges, for which all pins are in V ′, or
more formally E′ = {e ∈ E|e ⊆ V ′}. Just like we call a subgraph edge-induced if it consists
of the edges E′ and all nodes which are incident to at least one of the edges in E′, more
formally V ′ = {v ∈ V |∃e ∈ E′ : Φ(e, v) > 0}. A graph, also called dyadic graph, is a special
case of a hypergraph, where all edges are exactly of size two. Therefore all definitions from
above also apply to them.
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2. Preliminaries

A technique often employed, is to represent a hypergraph as a dyadic graph. The clique/2-
section representation Gx = (V,Ex) of the hypergraph H = (V,E), replaces each hyperedge
with a clique between its pins. In the bipartite graph representation G∗ = (V ∪E,E∗), the
nodes and hyperedges make up the vertex set. E∗ contains edge (e, v) if e is incident to v
in H. Figure 2.1 illustrates these projections.

e1

e2

e3

e4

e5

e6
v1

v2

v3
v4

v5
v6

v7

v8 v9

v10

v11

v12

v1 v2

v3
v4

v5 v6

v7

v8 v9

v10

v11

v12

e1

e2

e3

e4

e5

e6
v1

v2

v3
v4

v5 v6

v7

v8 v9

v10

v11

v12

Figure 2.1.: An example of a hypergraph with 12 nodes, 6 hyperedges and 18 pins (left)
along with its clique (center) and bipartite (right) graph representations.

Clusterings A clustering C = {C1, . . . , Ck} of a hypergraph H = (V,E) is a partition of
its nodes V , where the individual clusters/communities Ci are non-empty and disjoint.
The set NC(v) = {Ci ∈ C|∃e ∈ E{u, v} ⊆ e ∧ u ∈ Ci ∧ v 6∈ Ci} denotes the community
neighbors of v, excluding its own community. Given a cluster Ci and its node-induced
subgraph G(Ci) = (Ci, E(Ci), ω), where E(Ci) = {{u, v} ∈ E|v, w ∈ Ci} is the set of
intra-cluster edges of Ci. We can then define the set of intra-cluster edges of the whole
clustering as E(C) = ⋃k

i=1E(Ci) and E \E(C) denotes the set of inter-cluster edges, where
|E(C) = m(C)| and |E \ E(C)| = m(C). We call a clustering a singleton clustering if all
communities contain only one element, i.e., every node is in its own community.
These definitions naturally generalize to weighted graphs by using the edge weights ω(e)
instead of 1. ω(C) is the sum of the weights of all intra-cluster edges, while ω(C) denotes
the sum of the weights of all inter-cluster edges.

2.2. Random Walks
The mathematical model for random walks we will use to formulate the map equation
are Markov Chains. A Markov Chain is a stochastic model which describes a sequence of
possible events. It consists of a (in this work always finite) set of states S and a transition
matrix P of size |S| × |S|. An entry Pij is the probability to transition from state i to state
j in one discrete time step. Note that this probability is solely dependent on the states
i and j. A state i is called recurrent if an infinite random walk that starts in i visits i
infinitely often. The period di of a state i is the greatest common divisor of the number
of transitions by which i can be reached, starting from i. If di is equal to 1 it is called
aperiodic. A state is called ergodic if it is aperiodic and recurrent. If all states of a Markov
Chain are ergodic it is called ergodic. The stationary distribution π of an ergodic Markov
Chain is given by π = πP .

2.3. Community Detection on Graphs
The goal of community detection on a graph G is to find the underlying structure of
G by dividing the set of nodes V into disjoint subsets, so-called communities, so that
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2.3. Community Detection on Graphs

nodes within a community are densely, but different communities are sparsely connected
[Sch07, For10]. Since there is no universally agreed-upon definition on how to judge the
quality of such a clustering, there are multiple different quality functions one can optimize,
such as modularity [NG04] and map equation [RAB09]. Which we are going to look into
in the following sections.

Coverage. The simplest way to model the goal of community detection is the so called
coverage. The coverage cov(C) of a clustering C is defined as the fraction of intra-cluster
edges m(C) (or their weight ω(C)) within a Graph:

cov(C) := m(C)
|E|

= m(C)
m

covω := ω(C)
W

(2.1)

Since the goal is to have dense intra-cluster connections, large coverage values correspond
to a clustering of good quality. The problem with coverage is that this is not necessarily
true because if there is only one cluster, which contains all nodes, then coverage takes on
its maximum value of 1.

Modularity. Modularity, as proposed by Newman and Girvan [NG04], tries to tackle the
problem of coverage by subtracting the expected fraction of intra-cluster edges in a graph
with the same clustering but random connections between its nodes. This translates to:
Given a Graph G = (V,E) and a clustering C = {C1, . . . , Ck}

mod(C) := 1
2m

∑
ij

(
Aij −

deg(i) · deg(v)
2m

)
δ(C(i), C(j)) (2.2)

where A is the adjacency matrix of G and Aij represents the edge (i, j). Therefore
m = 1

2
∑
ij Aij is the number of edges |E| and C(i) is the community of node i. δ(C(i), C(j))

is the Kronecker delta, which is one exactly when C(i) = C(j) and zero otherwise. We can
reformulate this equation to emphasize the presence of coverage:

mod(C) := m(C)
m
− 1

4m2

∑
Ci∈C

∑
v∈Ci

deg(v)

2

(2.3)

In the latter formulation we can see the inherent trade off of modularity. On the one hand
we want to have as many edges as possible inside of communities to maximize coverage, on
the other hand we want to minimize the probabilistic term and therefore splitting the graph
into equally sized communities of rather balanced total degree. We can also generalize the
formula to the weighted case as proposed by Newman [New04]:

modω(C) = ω(C)
W
− 1

4W 2

∑
Ci∈C

∑
v∈Ci

ω(v)

2

(2.4)

The values of modularity reside in [−0.5, 1], while the smallest values are obtained by
bipartite graphs, the largest are obtained by disjoint cliques [Gö10].
We can quickly take a look at the previously discussed problem of coverage. If there is
only one cluster containing all nodes, the modularity value is 0 since the coverage and
expected coverage are both 1. While this issue has been solved, there are still known issues
of modularity, such as the resolution limit [FB07]. Nevertheless, modularity is one of the
most widely used quality functions for partitioning large graph data.
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2. Preliminaries

Map Equation. The map equation is an information-theoretic quality function for com-
munity detection first proposed by Roswall et al. in [RAB09]. The map equation describes
the shortest possible encoding of a random walker’s path on a given graph with a given
community structure.
The encoding process works as follows: There are two codebooks, which work like lookup
tables for codes. The first one, the index codebook, specifies the codes for the community
codebooks. The second one, the community codebook, specifies the codes for each node in
this community. We use an exit code word every time the random walker exits a community.
The lengths of the codes in the index codebook are derived by looking at the relative rate
at which the random walker visits each community. Thus short codewords are used for
frequently visited communities and longer ones for rarely visited communities. The lengths
of code words in the community codebook are derived from the relative probability of
visiting each node of the community accordingly.
The map equation now uses the duality between encoding this random walk and finding
regularities in the structure of a graph. Since by minimizing the encoding of the random
walk, we simultaneously tackle the problem of partitioning the graph into communities
with respect to the relative visit frequencies.
To condense this all into one formula we use Shannon’s source coding theorem [Sha48],
it implies that the average length of code words to describe the n states of a random
variable X, occurring with frequency pi, can’t be less than the entropy of X, which is
H(X) = −∑n

1 pi log(pi). The map equation is the following:

L(M) = qyH(Q) +
m∑
i

pi�H(P i) (2.5)

where H(Q) is the average length of the index codebook weighted by its frequency of use.
It is used every time the random walker exits a community. The length of a codeword is
derived from the probability to leave the community qiy in comparison to the probability
to leave any community at all. Therefore

H(Q) = −
m∑
i=1

qi y∑m
j=1 qjy

log
(

qi y∑m
j=1 qjy

)
.
The second part of the sum models the code lengths inside a community. Where H(P i)
is the frequency weighted average length of a code word in the community codebook. A
codebook of community Ci is used when visiting any node of this community or leaving it.
Let pv be the probability to visit node v ∈ V then this translates to pi� = ∑

v∈Ci
pv + qiy.

The resulting entropy for the community codebooks is:

H(P i) = − qiy
qiy +∑

u∈Ci
pu

log
(

qiy
qiy +∑

u∈Ci
pu

)
(2.6)

−
∑
v∈Ci

pv
qiy +∑

u∈Ci
pu

log
(

pv
qiy +∑

u∈Ci
pu

)
(2.7)

2.4. Hypergraph Partitioning
The practical results of this work will be tested and evaluated in the hypergraph partitioning
framework Mt-KaHyPar, therefore we first define what a k-way partition is and then introduce
the k-way hypergraph partitioning problem which the framework is trying to solve.
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2.4. Hypergraph Partitioning

k-way Partition. A k-way partition of a hypergraph H is a partition of its vertex set
into k disjoint blocks Π = {V1, . . . , Vk} such that ⋃ki=1 Vi = V , Vi 6= ∅ ∀i ∈ {1, . . . , k}.
A k-way partition is ε-balanced if each block Vi ∈ Π satisfies the balance constraint:
c(Vi) ≤ (1 + ε)d c(V )

k e. We define the connectivity set Λ(e) := {Vi|Φ(e, Vi) > 0} for each
edge e ∈ E and its cardinality λ(e) := |Λ(e)| is called the connectivity of a hyperedge e. A
net e, whose nodes are in more than one block and therefore with connectivity λ(e) > 1, is
called cut net and E(Π) := {e ∈ E|λ(e) > 1} denotes the set of all cut nets.

k-way Hypergraph Partitioning Problem. The k-way hypergraph partitioning problem
is to find an ε-balanced k- way partition of a hypergraph H(V,E,c,ω) that minimizes an
objective function for a given ε ≥ 0. The two most popular objective functions are the
cut-net metric, which sums the weights of all cut nets: cut(Π) := ∑

e∈E(Π) ω(e) and the
connectivity( also km1- or (λ − 1)-) metric: (λ − 1)(Π) := ∑

e∈E(Π)(λ(e) − 1)ω(e). The
latter one additionally takes into account the number of different blocks cut by each edge.
While both metrics revert to the edge-cut metric on dyadic graphs, we will, in this work,
focus on the connectivity metric since our definition of modularity is also based on it.
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3. Related Work

In this chapter we give a concise overview over the work most relevant to ours. In Section 3.1,
we present different results regarding community detection, including community detection
using different modularity approaches in Section 3.1.1 and random walks on hypergraphs
related to the map equation in Section 3.1.2. Finally, in Section 3.2, we introduce the
multilevel-paradigm as well as the hypergraph partitioning framework Mt-KaHyPar.

3.1. Community Detection
An approach for community detection aside from modularity maximization (see Sec-
tion 3.1.1) and map equation is spectral clustering. Here clustering is performed based on the
eigenvalues of a hypergraph Laplacian. One approach of generalizing the graph Laplacian to
hypergraphs, is to project the hypergraph onto a dyadic graph [AJZM+05, BGL16, LM17].
Other approaches include p-Laplacian operators [LM18] or different tensor-based methods,
like spectral clustering using Laplacian tensors [CCQY20] or regularized tensor power iter-
ation [KSX20]. Although many possibilities have been tried, there is a lack of approaches
that can perform community detection on arbitrary hypergraphs and also scale well to
large data sets. Many previous approaches are limited to k-uniform hypergraphs or are
more theoretic in nature and do not scale well to large instances.

Louvain Method. The Louvain algorithm was first introduced by Blondel et al. [BGLL08].
It is a community detection algorithm on graphs maximizing the modularity metric. Ini-
tially, every node is placed into its own singleton community. The algorithm then improves
this initial assignment by alternating between the following two phases:

• local moving. In this phase, the algorithm iterates over all nodes of the graph, moving
the node into the neighboring community that increases modularity the most. This
is repeated until no single move improves the objective.

• contraction. In this phase, the communities are contracted into single nodes. Emerging
parallel edges are also contracted by adding up their weights. Therefore decreasing
the size of the graph significantly. This has the effect that the next local moving
phase is significantly faster and also executes moves on a bigger scale, i.e., each node
move corresponds to moving a group of nodes into a neighboring one.

A significant part of the efficiency of the Louvain method lies in the computation of the
change in modularity for each neighboring community of a node. This modularity delta

9
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can be calculated in O(deg(v)) time using appropriate data structures. The difference in
modularity by moving node v from community C to D is given by [SM16]:

∆mod(u,C → D) = ω(u,D \ {v})− ω(u,C \ {v})
W

+(vol(C \ {v})− vol(D \ {v})) · vol(u)
2 ·W 2

Parallel Louvain Method (PLM). The parallel Louvain method first presented by
Staudt and Meyerhenke [SM16], speeds this approach up by parallelizing both the local
moving phase, as well as the coarsening phase. In the first phase, the moves are evaluated
and executed in parallel. Therefore one has to pay attention to keep data structures
consistent, e.g., by updating stored values atomically. A significant difference to the
sequential Louvain method is that, since local moving occurs in parallel, an executed
move might not be the best local decision. While evaluating a move for one node, other
threads might have performed a move that affects the change in modularity ∆mod for this
very node. This can result in moves decreasing modularity. However, it seems to only
slightly impact solution quality because these non-optimal local moves may be corrected in
later iterations. In particular, randomizing the order in which nodes are accessed helps to
mitigate the effect.

Parallel Louvain Methods for Map Equation. When executing a move in the mod-
ularity approach, we have to update the volumes of the corresponding communities. This
is possible since the change is solely dependent on the moved node, which is only looked at
by one thread per iteration. For the map equation on the other hand, we have to update
the exit probabilities, which are also dependent on the number of pins a community has
in each edge. Because of this, a calculated delta can be wrong if another move has been
executed in the meantime. This can lead to cyclical movements of nodes and premature
convergence. As Bae et al. [BHW+17] showed, taking the same approach for parallelization
as for modularity is not competitive with its sequential implementation.
Instead, the authors suggest the RelaxMap algorithm. Here a thread has to acquire a global
lock to execute a move and update the information. Because of this, when a subsequent
thread tries to perform a move, it sees all changes corresponding to previous moves. Al-
though one might think waiting for the lock may become a major bottleneck, it has been
shown to work well in practice. Another approach by Hamann et al. [HSWZ18] involves a
procedure they call synchronous local moving. The idea is to split one local moving round
into multiple sub-rounds, where each node is assigned a random sub-round. Then for all
nodes of a sub-round, the best move is calculated based on the data of the previous sub-
round and stored in parallel. After all threads finish, all moves are executed synchronously.
The idea is that by splitting the nodes into sub-rounds, the probability of cyclical moves
is reduced. The synchronous movement then ensures that all updates are visible at once.
Therefore no wrong moves can be made based on partially updated data.

3.1.1. Hypergraph Modularity

There are multiple ways to translate the modularity definition on graphs to hypergraphs.
For example, hyperedges can count towards the coverage if either all pins belong to the
same community, the majority belong to the same community, or we simply count the
number of different communities spanned by the hyperedge. Additionally, different null
models can lead to different probabilistic terms for the expected coverage. Depending on
the specific application, certain translations may be more suitable than others. In this
section, we will provide a concise overview of recent work on hypergraph modularity.
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Modularity directly on Hypergraphs. Modularity on graphs compares the intra-
cluster edges of a community structure with the expected number of intra-cluster edges on
a null model. For graphs, this is the Chung-Lu model [CL04], which describes how edges
are independently sampled while preserving the degree distribution of the original graph.
Kaminski et al. generalized this model in [KPP+19] to hypergraphs:

Let Fd be the family of multisets of size d, representing all possible edges of size d in the
hypergraph H; that is,

Fd =
{
{(vi,mi) : 1 ≤ i ≤ n} :

n∑
i=1

mi = d

}

We can now calculate the probability to generate edge e ∈ Fd by independently drawing d
nodes, with the probability to draw a node v ∈ V of deg(vi)/ vol(V ), and then repeating
this process |Ed| times.

PH(e) = |Ed| ·
(

d

m1, . . . ,mn

)
n∏
i=1

(
deg(vi)
vol(V )

)mi

The authors note that this process does not only result in the expected node degrees
matching the node degrees in H, but also preserves the number of edges of a particular
size |Ed|.

Let
(
X

(d)
1 , . . . , X

(d)
n

)
be the random vector following a multinomial distribution with

parameters d, pH(1), . . . , pH(n), where pH(i) = deg(vi)/ vol(V ) and ∑n
i=1 pH(i) = 1; that is,

sH(e) = P
((
X

(d)
1 , . . . , X(d)

n

)
= (m1, . . . ,mn)

)
=
(

d

m1, . . . ,mn

)
n∏
i=1

(pH(i))mi

Using their generalized Chung-Lu model, Kaminski et al. [KPP+19] define the edge
contribution as the (weighted) number of edges entirely contained in a community. This
very strict approach leads to the following definition of the edge contribution for a given
community Ci ⊆ V :

e(Ci) = |{e ∈ E; e ⊆ Ci}|

which results in the definition of strict modularity:

mod(C) = 1
|E|

∑
Ci∈C

e(Ci)−
∑
d≥2
|Ed|

∑
Ci∈C

(vol(Ci)
vol(V )

)d
Additionally, they define a majority modularity, where edges contribute to the edge contri-
bution of a community if the majority (more than half) of its pins belong to the community.
Which looks like this:

mod(C) = 1
|E|

∑
Ci∈C

e(Ci)−
∑
d≥2
|Ed|

∑
Ci∈C

P
(
Bin

(
d,

vol(Ci)
vol(V )

)
> d/2

)
The authors propose a heuristic greedy algorithm based on the algorithm by Clauset et
al. [CNM04]. It iterates over all edges connecting at least two communities and selects
the edge, which, when merging all connected communities, increases modularity the most.
In their most recent work [KPT21], they propose an algorithm consisting of three phases.
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First, they cluster the graph using graph-based modularity. After that, they merge the
clusters found in step 1 based on their hypergraph modularity measure and finally, they
refine this clustering by running a single Louvain pass.

Another method of receiving a modularity objective apart from comparing against a
null model, like Kaminski et al. [KPP+19] do, is statistical inference. Chodrow et al.
[CVB21] generalize the degree corrected stochastic block model (DCSBM) from graphs
to hypergraphs and then use maximum-likelihood inference to derive a parameterized
modularity objective. In their model, the probability that a given hyperedge e exists not
only depends on the size of the edge and the degree of its nodes but additionally on an
affinity function Ω. Such an affinity function influences the probability based on the clusters
of the pins of e. The authors present four different classes of affinity functions. They
focus on the All-Or-Nothing affinity function, which only differentiates between edges fully
contained in one community and all others. The strict-modularity objective by Kaminski
et al., for example, is obtained by choosing a special case of the All-Or-Nothing function.
They also mention that by choosing the affinity function to be exp(λ(e)− 1), the first part
of their modularity objective corresponds to the connectivity metric.
The authors propose a very general sequential symmetric hypergraph maximum-likelihood
Louvain algorithm to optimize the modularity metric. In principle, it works just like the
Louvain algorithm by Blondel et al. [BGLL08] with the major drawback, as mentioned by
the authors that clusters of nodes cannot be collapsed into super-nodes, and therefore it is
slow even on relatively small hypergraphs. Although they also propose the all-or-nothing
hypergraph maximum likelihood Louvain, which is specially designed for their all-or-nothing
approach and, due to the much simpler affinity function is able to properly execute the
contraction phase of the original Louvain algorithm.

Modularity on Graph Representations. Another common approach for community
detection, which is used in the KaHyPar [AHSS17, HS17, HSS19] and Mt-KaHyPar [GHSS20]
frameworks, is to use a graph-based representation of the hypergraph and then perform
(graph-based) community detection on it. The two common models are the clique and
bipartite representations.
This technique may have several problems. The first one being that the hypergraph has to
be projected onto the graph first, which may cause additional work and increased memory
requirements. Additionally, approaches projecting the hypergraph onto its clique-graph
representation may result in a combinatorial explosion since every hyperedge e is projected
onto |e| · (|e| − 1) edges in the corresponding graph.
Let G∗ = (V ∪ E,E∗) be the bipartite graph representation of the hypergraph H = (V,E).
We will call the nodes representing edges E-nodes and the ones representing nodes V-nodes.
Performing community detection on this representation of the hypergraph results in a
partition of the V- and E-nodes, since we are only interested in the partition of the V-Nodes,
Heuer and Schlag model the weights of the edges in E∗ according to the density d := m

n
of the hypergraph [HS17, Sch20]. If d ≈ 1, the degree of V- and E-nodes is roughly the
same and uniform edge weights are used. If d � 1 then there are a lot more E- than
V-nodes. To prevent the community structure from being dominated by the E-Nodes the
edge weights are chosen as d(v)

|e| , to promote the formation of communities around high
degree nodes v ∈ V by strengthening the connection between E-nodes and high degree
V-nodes. If the density is low, i.e., d� 1, the authors choose the edge weights as 1/ |e| to
ensure that high-degree E-nodes do not attract too many V-nodes and therefore dominate
the community structure.
Kumar et al. [KVA+18, KVA+20] expand upon the approach of projecting a hypergraph to
its clique graph representation with their Iteratively Reweighted Modularity Maximization
(IRMM) algorithm. It takes turns between running the Louvain algorithm on the clique-
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graph representation of the hypergraph and reweighing the edges of the graph by applying
a cut penalty, with the aim of favoring balanced cut edges.

3.1.2. Random Walks on Hypergraphs
Chitra and Raphael [CR19] formulate a two step process for random walks on hypergraphs:
The random walker chooses an incident hyperedge e of node v with probability ω(e)

ω(I(v))

and then chooses a node u from this hyperedge with probability γe(u)
δ(e) . Where γe(u) is

the edge dependent vertex weight of u and δ(e) the sum of all edge dependent vertex
weights of that edge. In the recent work of Eriksson et al. [EERR21], the authors model
random walks on hypergraphs in a couple of different ways. They project the hypergraph
onto its bipartite and clique-representation as well as a multi-layer representation and
then define a random walk using hyperedge-dependent node weights. The authors use
the infomap [EBR17] algorithm to optimize the community structure on each of these
dyadic representations. They additionally suggest an extension to the random walk on
hypergraphs, where the probability of picking a hyperedge is not only proportional to its
weight but also its similarity to the previously picked hyperedge.

3.2. Hypergraph Partitioning
In practice, heuristic algorithms are used for hypergraph partitioning since the problem is
known to be NP-hard [Len90, Fel19]. We will first present the multilevel paradigm, which
is the most successful approach used in many state-of-the-art-partitioners [KAKS99, Sch20,
CA99], including the Mt-KaHyPar framework which we introduce after.
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Figure 3.1.: Partitioning a Hypergraph via the multilevel paradigm

Multilevel Paradigm. The multilevel paradigm (see Figure 3.1) consists of three phases,
the coarsening phase, the initial partitioning phase and the uncoarsening/refinement phase.
The goal of the first phase is to provide a sequence of successively smaller hypergraphs
while maintaining its structural similarity. This is achieved by contracting clusters of
vertices of the hypergraph, which is done until the size of the coarsest hypergraph reaches
a predefined contraction limit. The second phase, the initial partitioning phase, computes
a k-way partition of the smallest hypergraph. This can be done using more sophisticated
algorithms, which provide better quality since the hypergraph is small. The final phase,
the uncoarsening or refinement phase, successively projects the partition onto the next
finer hypergraph in the hierarchy. Moreover, at each uncoarsening step, the solution is
refined, using local search heuristics.
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Mt-KaHyPar. The Mt-KaHyPar framework is a shared-memory multilevel hypergraph
partitioning system [GHSS20]. Mt-KaHyPar, uses an additional preprocessing phase which
was originally proposed in the sequential hypergraph partitioner KaHyPar. In this prepro-
cessing phase, community detection is used to identify densely connected regions of the
hypergraph, which are then used in the coarsening phase to restrict contractions to vertices
within the same community. The community detection algorithm currently used is the
parallel Louvain method (PLM) proposed by Staudt and Meyerhenke [SM16] for modularity
maximization on the bipartite graph representation of the input hypergraph. The coarsening
algorithm contracts the hypergraph with respect to the community structure obtained in the
preprocessing phase. It preserves the global community structure of the input hypergraph
by prohibiting contractions between nodes of different communities and therefore only
coarsening by executing intra-community contractions based on rating functions developed
for the hypergraph partitioning problem. The initial partitioning is performed via parallel
multilevel recursive bipartitioning with work-stealing. To compute an initial bipartition of
the coarsest hypergraph, Mt-KaHyPar uses a portfolio of initial bipartitioning algorithms
for a detailed overview we refer to the original papers [GHSS20, SHH+15]. For the third
phase, the refinement phase, a parallel label propagation algorithm called size-constrained
label propagation in ParHIP [MSS15] and Mt-KaHIP [ASS18] is used, as well as a parallel
version of the classical FM local search [FM82].
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4. Hypergraph Modularity

Most modularity methods for community detection on hypergraphs transform the hyper-
graph into a dyadic graph to then use graph-based modularity maximization approaches
to find a community structure of the hypergraph. This approach has several problems:
The first one is that, as Ihler et al. [IWW93] showed, projecting a hypergraph onto a
dyadic graph loses some information about the higher-order structure of the hypergraph.
Therefore we expect to find more accurate clusterings by employing modularity optimization
on hypergraphs directly. Additionally, projecting the hypergraph onto a dyadic graph
causes additional work and memory overheads. E.g., approaches projecting the hypergraph
onto its clique-graph representation may result in a combinatorial explosion, since every
hyperedge of size d is projected onto d · (d− 1) edges in the corresponding graph.
To define modularity on hypergraphs, we need an appropriate null model. We use the
proposed model by Kaminski et al. [KPP+19]. The purpose of the null model is to simulate
the hypergraph with edges randomly rewired while preserving the general structure of the
hypergraph, in particular the vertex degrees. It promotes balanced communities and thus
prevents that the optimal solution is just a single community.
The general procedure of deriving the modularity objectives is as follows: Firstly we
formulate the edge contribution for a community C, which is the contribution of C to the
overall coverage. We then use this initial definition of the edge contribution to define the
coverage and then continue to derive the expected coverage according to the null model.
We do this by defining the family of multisets Fd(C) ⊆ Fd, which contains all edges of size
d contributing to the edge contribution of C. We can then calculate the expected coverage
by summing over the expected edge contribution of each community, which is the chance
to randomly generate the edge multiplied by its contribution, of each edge e ∈ Fd(C) for
all d ∈ D. We derive our modularity objectives for the weighted case, since that is the
formulation needed for our implementation using the parallel Louvain method, but will
point out the differences to the unweighted case.
In Section 4.1 we aim to tackle the problem that when using a graph representation of
a hypergraph, some higher-order information may be lost. Therefore we will define the
modularity objective directly on the hypergraph based on the connectivity of hyperedges.
We will use this definition of modularity throughout the rest of the work and for our
experiments.
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4.1. Coverage defined by Connectivity

The connectivity λ(e) of a hyperedge e, is the number of communities contained in e. We
use λ(e) to model the basic idea of coverage, that communities are sparsely connected
and connections inside a community are dense, by defining the edge contribution of a
community C as the cumulative weight of the edges connected with C. Note, that from
now on we will refer to the edge contribution as connectivity.

∀C ∈ C : eH(C) =
∑
e∈E

Φ(e,C)>0

ω(e) (4.1)

Based on that, we define the coverage of a cluster C as follows:

cov(C) = 1
W

∑
C∈C

eH(C) = 1
W

∑
e∈E

λ(e)ω(e) (4.2)

A hyperedge e contributes to the coverage function of a community C, if at least one pin
of e belongs to C. In order to define Fd(C) ⊆ Fd as the family of multisets of size d with
at least one member in C, recall that an edge is a set of tuples (v,mv), where v ∈ V is a
node and mv is its multiplicity in e.

Fd(C) =

{(vi,mi) : 1 ≤ i ≤ n} |
∑

1≤i≤n
mi = d ∧

∑
i:vi∈C

mi ≥ 1


We calculate the expected connectivity as follows:

EH′∼H [eH′(C)] =
∑
d∈D

Wd

(
1−

(
1− vol(C)

vol(V )

)d)
(4.3)

The full derivation is given in Appendix A. More generally, we draw Wd edges of size d at
random. An edge e contributes to the connectivity of C, only if e ∈ Fd(C) and therefore
only if at least one pin belongs to C. The probability to draw such an edge is the same
as one minus the probability to draw an edge which does not connect to C, which is
(vol(C)/ vol(V ))d. We repeat this process for each d ∈ D and count the number of edges
e ∈ Fd(C) for a d ∈ D.

In summary, the modularity function defined by connectivity can be formulated as follows:

mod(C) = 1
W
·

∑
C∈C

eH(C)−
∑
d∈D

Wd

∑
C∈C

1−
(

1− vol(C)
vol(V )

)d (4.4)

The corresponding optimization problem tries to minimize mod(C)∗. The rationale behind
this is that we want edges to connect as few communities as possible, which corresponds
to a low connectivity, therefore a low coverage score, and consequently a high expected
connectivity.
We can directly transfer the above formulas to the unweighted case, since edges in an
unweighted hypergraph have weight 1. This translates to counting the number of edges
instead of accumulating their weight, replacingW with |E| and instead of using the volumes
vol(C), vol(V ) using the pin counts ∑e∈I(C) Φ(e, C) and ∑e∈E Φ(e, V ) = ∑

e∈E |e|.

16



4.1. Coverage defined by Connectivity

Change in Modularity. The Louvain method moves a vertex to an adjacent cluster C
that maximizes the modularity function. Recalculating modularity after each move from
scratch would not be feasible for large graphs. Therefore, the algorithm computes the local
change in modularity based on the neighborhood of each vertex. When moving a vertex v
from Community C to D, the change in modularity ∆mod (v, C → D) consists of two parts.
The change in connectivity ∆eH of C and D and the change in the expected connectivity
∆E of C and D.

∆mod (v, C → D) = 1
W

(∆eH + ∆E)

Let C− := C \ v and D+ := D ∪ v. We can calculate the change in connectivity by
subtracting the old values, i.e. before moving the node (eH(C), eH(D)), from the new ones
(eH(C−), eH(D+)).

∆eH = eH(C−)− eH(C) + eH(D+)− eH(D)
= ω

({
e ∈ E | Φ(e, C−) > 0

})
− ω ({e ∈ E | Φ(e, C) > 0})

+ ω
({
e ∈ E | Φ(e,D+) > 0

})
− ω ({e ∈ E | Φ(e,D) > 0})

= ω ({e ∈ I(v) | Φ(e,D) = 0})− ω
({
e ∈ I(v) | Φ(e, C−) = 0

})
(4.5)

We do the same for the change in expected connectivity:

∆E = −EH′∼H
[
eH′(C−)

]
+ EH′∼H [eH′(C)]− EH′∼H

[
eH′(D+)

]
+ EH′∼H [eH′(D)]

=
∑
d∈D

Wd ·
[
−1 +

(
1− vol(C)− vol(v)

vol(V )

)d
+ 1−

(
1− vol(C)

vol(V )

)d

−1 +
(

1− vol(D) + vol(v)
vol(V )

)d
+ 1−

(
1− vol(D)

vol(V )

)d]

=
∑
d∈D

Wd

vol(V )d
[
(vol(V )− vol(C) + vol(v))d − (vol(V )− vol(C))d

+ (vol(V )− vol(D)− vol(v))d − (vol(V )− vol(D))d
]

(4.6)

As we can see in Equation (4.5) and Figure 4.1 only edges incident to v, for which v was
the only node belonging to one of the communities C and D, change the connectivity.
More specifically, there are two distinct cases:

1. If v ∈ e is the last pin of e part of cluster C, then the connectivity λ(e) of that edge
is reduced by one.

2. If e does not contain any pin of cluster D before, then its connectivity is increased
by one.

In the unweighted case, instead of summing the weights of edges in the respective sets, we
simply count them.

Contraction. The main goal of this procedure is to reduce the number of structures
(vertexes and edges) we have to keep track of while preserving the structure of the
hypergraph and the current modularity value. To achieve this, we have to preserve the
overall weight of all edges (W ), the weight of edges of size d (Wd), as well as the volume of
each community (vol(C)). We achieve this by doing the following: First, we collapse all
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Figure 4.1.: A hypergraph where the shape of the node denotes the community it is currently
part of. If we try to move node v6 from the square-community to the circle-
community, we can observe all three cases for the change in connectivity. e5
currently connects to the square-community only via v6 (case 1). e4 currently
doesn’t connect to the circle-community at all, but will after moving v4 (case
2). For e3 the connectivity doesn’t change at all, since it will connect two
communities before and after the move is executed.

vertexes v ∈ C into a single super-vertex vC . This also means replacing all occurrences
of v ∈ C in all edges e ∈ E by vC . Both is done without changing the values we have an
eye on. After that we can reduce the number of single-node edges, which only contain vC .
Let EC = {e | e ∈ E,∀vi ∈ V : mi = 0,mvC 6= 0} be the set of these edges. By merging all
e ∈ EC of size d into a single edge ed with weight ω(ed) = ∑

e∈EC∧|e|=d ω(e) we reduce the
amount of edges while preserving the volume as well as the overall weight W, since no
edge weight is lost. Finally, we can also remove parallel edges, i.e. edges which contain
the same pairwise vertexes as well as multiplicities. More formally: two edges e, f ∈ E are
mergeable if and only if ∀v ∈ V : (v,mv) ∈ e, (v, wv) ∈ f : mv = wv. Figure 4.2 illustrates
the contraction of an example hypergraph.

e1

e2

e3

e4

e5

e6
v1

v2

v3
v4

v5
v6

v7

v8 v9

v10

v11

v12 e1

e2,3 e4,6

e5

Figure 4.2.: An example of a hypergraph before (left) and after (right) contraction. Note,
that in the right hypergraph there are only three nodes left V =

{
e, �, `

}
.

The multiple occurrences of the different nodes just depict the multiplicities in
the corresponding edge. Additionally ω(e2,3) = ω(e2) + ω(e3) and ω(e4,6) =
ω(e4) + ω(e6).
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5. Modularity Optimization on
Hypergraphs

In Section 4.1, we presented a modularity formulation for hypergraph based on the con-
nectivity of hyperedges. In this section, we explain how we adapt the well-known Louvain
algorithm to optimize the hypergraph modularity function. The Louvain algorithm pro-
ceeds in rounds. Each round, it iterates over the set of active vertices and moves them
to the community that maximizes the change in our objective function. This makes the
computation of the deltas the most running time intensive part of the algorithm. Compared
to modularity optimization on graphs, the computation of the deltas is significantly more
complex on hypergraphs. We will present different techniques to speed up this process in
Sections 5.2 and 5.3.

5.1. Algorithm Outline
Algorithm 5.1 gives an overview over the structure of our hypergraphLouvain imple-
mentation. It is the same as for the standard Louvain algorithm (see Section 3.1). Initially,
every node belongs to its own singleton community. We then improve upon this initial
assignment by executing the localMoving subroutine (see Algorithm 5.2). Here we iterate
over all nodes of H in random order and move them to an adjacent community which yields
the largest improvement of the modularity metric. We do this by evaluating the change
in connectivity and expected connectivity for each adjacent community of a node and
choosing the community with the lowest score < 0. If there is no local move that improves
the modularity objective, the node remains in its community. We repeat this process as
long as at least 1% of the nodes were moved in the previous round or the maximum number
of iterations lmax is reached. We call one complete run of the localMoving function a
Louvain pass. After a pass – if the clustering changed – the hypergraph is contracted (see
Section 5.4) and we recursively call the hypergraphLouvain algorithm. Afterward, we
project the clustering computed on the coarsest hypergraph to the input hypergraph.

5.2. Tuning the Connectivity Delta Calculation
To calculate the connectivity deltas for a node v, we need to know the weights of hyperedges
incident to v, for which v was the only node belonging to the source or the destination
community (see Equation (4.5)). A naive approach to compute ∆eH would be to iterate
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Algorithm 5.1: hypergraphLouvain

Input: Hypergraph H = (V,E, ω)
Output: Clustering C
// Initializations

1 C ← singleton clustering
// Local Moving Contract Recurse

2 C’ ← localMoving(H, C) // See Algorithm 5.2
3 if C 6= C’ then
4 H ′ ←contract(H, C’) // See Section 5.4
5 C’ ←hypergraphLouvain(H ′)
6 C ←prolong(H,C’)
7 return C

Algorithm 5.2: localMoving (Louvain pass)

Input: Hypergraph H = (V,E, ω), Clustering C
Output: Clustering C

1 while #nodes moved ≥ 0.01 · n ∧#iterations < lmax do
2 forall v ∈ V in random order do // ∆eH in Section 5.2
3 D ← argmin{∆eH + ∆E|D ∈ NC(v)} // ∆E in Section 5.3
4 if D 6= C(v) then
5 moveNode(v,D)

6 return C

over all pins for each of its incident nets to find all adjacent communities and hence, the
corresponding change in connectivity. For our connectivity-based modularity metric, we
are only interested in whether a hyperedge connects to a community or not. Therefore
iterating over all pins is especially problematic in later iterations of a Louvain pass since
they might be part of the same community and we gain no additional information by
iterating over each of them. This results in an overall running time of ∑e∈I(v) |e|, which is
in O(deg(v) ·maxe |e|). The easiest way to improve the running time would be to store each
adjacent community for every node. Since this would take O(n2) memory, it is not feasible
even for medium-sized hypergraphs. Instead, we look for a data structure that allows us to
find all connected communities of an edge e in time O(λ(e)), i.e. all communities C ∈ C
with C ∩ e 6= ∅. Additionally, this data structure must also store the number of different
nodes it contains for each of these communities, since we are interested in whether v is the
last pin of a community C in a hyperedge e ∈ I(v) to compute ∆eH .

Community Count Data Structure. To store the communities contained in each
hyperedge, we propose the community count data structure. It allows us to iterate over
all its connected communities in O(λ(e)). It realizes updates in O(|e|) and requires O(|e|)
space.
The data structure consists of an array of size |e|, which contains all communities C with
|C ∩ e| = 1. Additionally, we use a hash map to store communities with |C ∩ e| > 1. We
use a combination of an array and a hash map because initially, there are |e| entries in the
community count data structure. If we were to insert all of these into the hash map, we
would need significantly more space to reduce hash collisions.
We can now iterate over all communities of a hyperedge e by enumerating all communities
contained in the vector and hash map. Therefore we achieve our desired running time of
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Algorithm 5.3: connectivity ∆eH (naive)

Input: Hypergraph H = (V,E, ω), Clustering C, Node v ∈ V
Output: ∆eH for every D ∈ NC(v)

1 NC(e)← ∅; NC(v)← ∅; ∆eH ← 〈0, . . . , 0〉
2 forall e ∈ I(v) do // Θ(d(v))
3 forall pins u ∈ e, u 6= v do // O(n)
4 NC(e)← C(u)
5 if C(v) 6∈ NC(e) then
6 ∆eH (C(v))← ∆eH (C(v))− ω(e)
7 forall D ∈ NC(e) do
8 NC(v)← D
9 ∆eH (D)← ∆eH (D)− ω(e)

10 NC(e)← ∅
11 ∀D ∈ NC(v) : ∆eH (D)← ∆eH (D)−∆eH (C) + ω(I(v))
12 return ∆eH

Θ(λ(e)).
We update the community count data structure of an edge e ∈ I(v) when moving a node v
from community C to D, as follows: First, we have to check whether C is stored in the
array or the hash map. We can check if it is in the hash map in expected constant time. If
it is contained, we simply update the value. If the corresponding value decreases to 0, we
remove the element from the hash map, which can also be done in constant time. Note
that if the value decreases to 1, we do not remove it and reinsert it in the array.
If the community C is not contained in the hash map, it must be contained in the array.
We search for community C by iterating over all its entries. Note that we do not keep the
array sorted and use binary search to find elements since an update would also require
maintaining the sorting order, which would also require O(|e|). We can then remove the
entry from the array by swapping it with the last element and decrement the size of the
array. If the count increases (in the case of D), we additionally have to add it to the hash
map, which we can do in expected constant time.
We use this data structure to improve the performance of the connectivity delta calculation
as follows. We store a pointer to a community count data structure for each edge e. Since
initially all nodes belong to their own community, the array contains all the pins of the
edge. We initialize the hash map to be of size |e| since we expect up to |e| /2 elements to
be inserted, and we do not want the linear probing to become too slow. This is initially as
slow as the naive variant but will become significantly faster when the community structure
starts to form, as we expect λ(e)� |e|. To update it after a move, we have to iterate over
each incident edge of the node and make two calls to the update function.

Caching Threshold While the previously presented data structure significantly speeds
up the calculation for larger edges; it is not worth using for edges of size smaller than 16.
Therefore we use the naive approach as a fallback strategy for small edges. This also avoids
the additional memory required for the community count data structure. We evaluate this
threshold in Section 7.2.

5.3. Tuning the Expected Connectivity Delta Calculation
The second part of the change in modularity ∆mod(v, C → D) is the change in the
probabilistic term. As we can see in Equation (4.6), we have to recalculate the expected
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Algorithm 5.4: connectivity ∆eH (improved)

Input: Hypergraph H = (V,E, ω), Clustering C, Node v ∈ V
Data: Sparse map ∆eH

Data: Community count for every edge L
Output: ∆eH for every D ∈ NC(v)

1 c← 0 // ω ({e ∈ I(v)|Φ(e, C \ v = 0})
2 forall e ∈ I(v) do // Θ(d(v))
3 forall D ∈ L(e) do // Θ(NC(v))
4 if D = C(v) ∧ L(e)(D) = 1 then
5 c← c+ ω(e)
6 ∆eH (D)← ∆eH (D)− ω(e)

7 ∀D ∈ ∆eH : ∆eH (D)← ∆eH (D)− c+ ω(I(v))
8 return ∆eH

Algorithm 5.5: expectedConnectivity ∆E (naive)
Input: Hypergraph H = (V,E, ω)
// Initializations

1 ∆best ← 0
2 Dbest ← C

// Main Loop
3 forall communities D ∈ NC(v) do
4 forall edge sizes d ∈ D do
5 ∆E ← ∆E +Wd ·[(

1− vol(C−)
vol(V )

)d
−
(
1− vol(C)

vol(V )

)d
+
(
1− vol(D+)

vol(V )

)d
−
(
1− vol(D)

vol(V )

)d]
6 ∆mod ← ∆eH + ∆E
7 if ∆mod < ∆best then
8 ∆best ← ∆mod

9 Dbest ← D

connectivity for both the source and the destination community.
To determine the best neighboring community, we have to calculate the change in expected
connectivity. Therefore, for each community in the neighborhood and each unique edge size
d ∈ D we have to raise four terms to the d-th power, which takes O(log(d)) for arbitrary
edge sizes d. The overall running time of this procedure results in O (|NC| · |D| · log(dmax)),
where dmax is the largest edge size occurring in the hypergraph. We illustrate this naive
algorithm in Algorithm 5.5. In this chapter, we present the techniques which we introduce
to improve the running time in practice.

Pruning One significant factor in the running time of the algorithm is the number of
communities for which we have to compute the expected connectivity. Therefore reducing
this number is crucial to improve the performance. Given a neighboring community D of v,
the idea is to determine whether the resulting change in modularity ∆mod(v, C → D) will be
better than the value for the currently best destination community. We will introduce the
following three rules for pruning that allow us to efficiently skip neighboring communities
without calculating the expected connectivity:

• if vol(C) = vol(D+) we know that ∆E will be 0, therefore we can skip its calculation
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• if the change in connectivity ∆eH ≥ 0 and vol(C) ≤ vol(D+) and therefore ∆E ≥ 0
we can skip the calculation of ∆E since the overall change in modularity will not be
negative and therefore will not result in an improvement.

• let ∆best be the best change in modularity found so far for a given community C and
a node v. If ∆eH ≥ ∆best and vol(C) ≤ vol(D+) we can skip calculating ∆E.

We will prove the correctness of these rules in the Lemma 5.1. Let C ∈ C be a community
in the clustering C and v ∈ Ci then we define Ed(C−) = (vol(V )− vol(C) + vol(v))d > 0
and Ed(C) = (vol(V )− vol(C))d ≥ 0.

We make the following observation, which will be used in the proof of Lemma 5.1: For a
fixed d

∀C ∈ C : f(Ci) = Ed(C−)− Ed(C) < 0

is strictly monotonically decreasing for vol(C) ∈ [vol(v), vol(V )]. Note that we can also
formulate this for the destination community D:

∀D ∈ C : Ed(D+)− Ed(D) = Ed(D+)− Ed(D+ \ v) = − f(D+)

This leads to the observation that the bigger a community, the bigger the absolute change
in expected connectivity for this community when moving a node from or to it.

Lemma 5.1. Sign of the change in expected connectivity

1. vol(C) = vol(D+)⇒ ∆E = 0

2. vol(C) > vol(D+)⇒ ∆E < 0

3. vol(C) < vol(D+)⇒ ∆E > 0

Proof. We can write the formula for the expected connectivity from Equation (4.6) as
follows:

∆E =
∑
d∈D

Wd

vol(V )d
[
Ed(C−)− Ed(C) + Ed(D+)− Ed(D)

]
Since Wd, vol(V ) > 0 for all edge sizes d ∈ D we can ignore these factors of ∆E because
then don’t change the sign of the result. If we can now prove that the partial sums

Ed(C−)− Ed(C) + Ed(D+)− Ed(D) = fd(C)− fd(D+)

all have the same sign or, in the first case, are all zero, we are done.

1. Let vol(C) = vol(D+), then

∀d : fd(C)− fd(D+) = fd(C)− fd(C) = 0

2. Let vol(C) > vol(D+), then

∀d : fd(C)− fd(D+) < fd(C)− fd(C) = 0

3. Let vol(C) < vol(D+), then

∀d : fd(C)− fd(D+) > fd(C)− fd(C) = 0
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5. Modularity Optimization on Hypergraphs

Speedup Heuristics The calculation of the probabilistic term takes up a significant part
of the running time of our algorithm. To counteract this, we introduce the heuristic to only
evaluate the expected connectivity for the s best neighboring communities based on their
connectivity. We conduct an experiment on what to choose for s in Section 7.2, which will
show that s = 100 the algorithm is significantly faster while maintaining the quality. In
the following, we will take a look at why this is the case.
During early experiments, we investigated the impact of the probabilistic term on the
choice of the neighboring community. More precisely, we calculated the connectivity for all
communities D ∈ NC(v) and then sorted these in increasing order (a value < 0 corresponds
to an improved modularity score) according to their connectivity. Then we calculated the
probabilistic term for each of them and sorted the communities according to their final
change in modularity. As a result, we could look at the initial ranking of the community
corresponding to the best modularity delta, based on connectivity. We can then use this
information to determine the number of neighboring communities in NC(v) sorted by
connectivity, we would have to calculate the probabilistic term for, in order to find the
move with the biggest improvement. To illustrate this, we collected the initial rankings of
all best moves for each instance. The x-axis in Figure 5.1 shows the ranking per instance,
while the y-axis shows the fraction of instances for which the 92nd percentile was equal or
less than the x-value.
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Figure 5.1.: 92nd percentile of the ranking of the best move based on the connectivity

As we can see in Figure 5.1 when only choosing the best 100 communities based on their
connectivity, we also select the best possible community in 92% of the cases for 90% of the
instances. This does not mean that if the actual best adjacent community is not among
the 100 selected, the calculated move is significantly worse. We will see in Section 7 that
this indeed does not impact the performance negatively. Another reason for this is that
we only calculate locally optimal moves. Therefore another move might lead to a series of
moves that yield a bigger improvement of the modularity objective.
Additionally, preliminary experiments showed that only a tiny part of the best moves
worsens the coverage score, i.e., the change in connectivity ∆eH is greater than zero.
Therefore we also skip the calculation of ∆E for communities that increase the connectivity.

Reducing the cost of Exponentiation. We can reduce the cost of exponentiation in
line 5 of Algorithm 5.5 in two ways. Firstly, since the first two summands

(
1− vol(C−)

vol(V )

)d
−(

1− vol(C)
vol(V )

)d
only incorporate the source community C, we can precalculate these terms.

Note that we don’t have to calculate the terms including C at all, if all neighboring
communities D ∈ NC(v) are sorted out by the previously discussed pruning methods. We
iterate through D in ascending order. By storing the result of Edprev (x) =

(
1− vol(x)

vol(V )

)dprev
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Algorithm 5.6: expectedConnectivity ∆E (improved)
Input: Hypergraph H = (V,E, ω)
// Initializations

1 ∆best ← 0
2 Dbest ← C

// Main Loop
3 forall D ∈ NC(v) do
4 ∆E ← 0
5 if ∆eH ≥ ∆best ∧ vol(C) ≤ vol(D+) then
6 continue
7 if vol(C) 6= vol(D+) then
8 forall d ∈ D do // Initialize only once

9 Ed ←
(

vol(C−)
vol(V )

)d
−
(

vol(C)
vol(V )

)d
10 forall d ∈ D do
11 ∆E ← ∆E +Wd ·

[
Ed +

(
1− vol(D+)

vol(V )

)d
−
(
1− vol(D)

vol(V )

)d]
12 ∆mod ← ∆eH + ∆E
13 if ∆mod < ∆best then // if equal → tie-breaking strategy
14 ∆best ← ∆mod

15 Dbest ← D

for the previous edge size dprev and for each x ∈
{
C,C−, D,D+}, we can instead calculate

Ed(x) = Edprev · Ed−dprev (x).

5.4. Contraction
To contract a clustering, we use the parallel contraction algorithm already implemented in
the Mt-KaHyPar framework [GHSS20]. It internally uses a parallelization of the InrSrt
algorithm by Aykanat et al. [ACU08, DKC13] for identical net detection. In the following,
we will only highlight the features important to our work here and refer to the corresponding
paper for more details. The algorithm remaps the contracted communities to a consecutive
range in [1, |C|]. We explicitly store the volumes vol(C) for every community C ∈ C and the
accumulated edge weights Wd for each d ∈ D. This allows us, in contrast to the contraction
described in Section 4.1, to remove duplicate pins in edges as well as edges only containing
a single pin. We illustrate this difference in Figure 5.2.
Additionally to contracting the hypergraph, we have to update our data data structures
accordingly. We remap the volumes according to the mapping calculated in the contraction
algorithm. Instead of remapping each entry of every community count data structure we
construct a new one for each edge in the coarse hypergraph.

5.5. Parallelization
To parallelize the presented algorithm, we iterate over all nodes in random order in parallel
(see Line 2 in Algorithm 5.2). We use two different kinds of thread-local hash maps to store
the connectivity ∆eH for each neighboring community of a node. We roughly estimate
the number of neighbors as ∑e∈I(v) |e|. If this estimate is small enough, we use a cache
efficient fixed-size hash map, which is roughly 1 MB, and otherwise, we use a sparse map
[BT93] using the number of nodes n as size. To update the data structures when moving a
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Figure 5.2.: An example of a hypergraph before (left), after theoretical contraction (middle)
and optimized contraction (right).

node in parallel, we have to pay special attention to keep them consistent. We do this by
atomically updating the volumes and using spinlocks whenever we update a community
count data structure. Additionally, we parallelize the projection of the communities to
the finer hypergraph, as well as the volume remapping and construction of the community
count data structures in the contraction algorithm.

5.6. Implementation Details
In this section, we will briefly go over some relevant implementation details. Before running
the community detection algorithm, we remove all large hyperedges e with |e| > 0.01 · n.
We do not expect them to contain any information about the community structure and
they can impact the running time significantly, since both the number of different edge
sizes |D| and the maximum edge size dmax are a factor in the running time of the delta
calculation.
We implement the speedup heuristic, to only select the best s neighboring communities
based on their connectivity, using the std::nth_element procedure. It partitions the
neighboring communities so that the change in connectivity of the first s communities is
smaller than of the rest of the neighboring communities while not sorting it.
The hash map we use in the community count data structure needs up to 3 · |e| space. It
consists of a dense vector where we store the positions of corresponding entries in the sparse
part. The sparse part is accessed via a hash function, and hash collisions are resolved
using linear probing. It is an array of size 2 · |e| and stores a tuple (D, c, p) consisting
of community D, the number of nodes c in e belonging to D, and the position of its
corresponding dense element p. This allows us to update, insert and delete any element
from the hash map in expected constant time. Additionally, we can iterate over all entries
of the hash map by simply iterating over the dense vector.
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In contrast to the topological approach of modularity, we will take a look at an information-
theoretic approach to community detection in this chapter. The map equation, which
was originally presented by Rosvall et al. [RAB09], aims to use the duality between the
minimum description length of a random walk through a graph and its community structure.
Therefore when optimizing the map equation, we minimize the encoding of the random
walk by partitioning the graph into communities using their relative visit frequencies.
Additionally, its resolution limit is less restrictive in practice [KR15], and in contrast to
modularity, the detected communities do not tend to favor balance as much. Therefore the
community structure found by the map equation approach may differ significantly from
the one found by a modularity approach.
In this chapter, we will first take a brief look at the definition of the map equation to then
formulate a random walk model on hypergraphs. We will use this model to define the map
equation on hypergraphs in Section 6.1. In Section 6.2 we will calculate the change in
the objective function when moving a node from one community to another. This change,
called delta, is needed to optimize the map equation using the Louvain algorithm, which
repeatedly evaluates this delta for each neighboring community of a node. Finally, we
will briefly highlight the differences in the implementation to the hypergraph modularity
approach in Section 6.3.

6.1. Formulating the Hypergraph Map Equation
We can use the same definition for the map equation as originally proposed by Rosvall et
al. [RAB09] since its general formulation is solely based on the average description length
to encode a random walk. We will quickly refresh its definition:
Given a community clustering C, the map equation is defined as

L(C) = qyH(Q) +
∑
Ci∈C

pi�H(Ci)

where qy is the probability to leave any community and pi� is the probability to be in
community i plus the probability to leave it.

qy =
∑
Ci∈C

qiy and pi� =
∑
u∈Ci

pu + qiy
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H(Q) = −
∑
Ci∈C

qiy
qy

log
(
qiy
qy

)

H(Ci) = −qiy
pi�

log
(
qiy
pi�

)
−
∑
u∈Ci

pu
pi�

log
(
pu
pi�

)

We will use the following formulation, which can be obtained by plugging in the definitions
and some algebra in the rest of this section. Let plogp(x) = x · log(x):

L(C) = plogp

 ∑
Ci∈C

qiy

− 2
∑
Ci∈C

plogp (qiy)

+
∑
Ci∈C

plogp

qiy +
∑
u∈Ci

pu

−∑
u∈V

plogp (pu)

(6.1)

We omit the last part of the formula since it is constant throughout the whole optimization
process. In Equation (6.1), we can see which parts we will have to define for hypergraphs
in order to use the map equation for community detection: The exit probabilities qiy for
each community Ci and stationary distribution pu, i.e the average node visit frequency for
every node u ∈ V .

Random walks on Hypergraphs To define a random walk, we first have to define the
transition probabilities. That is, the probability for the random walker to move from one
node to another in a single time step. In the dyadic case, one simply chooses an incident
edge of the node the random walker is currently on, uniformly at random. Since, in this
case, edges are only of size two, choosing an edge directly determines the next node for the
random walker. In the hypergraph case, there are edges of arbitrary sizes, and nodes can
be connected by more than one hyperedge. Additionally, a node can be contained in an
edge multiple times, which we also need to consider. Therefore we first have to choose an
edge with respect to the number of occurrences of our current node in it and then choose
the node for the next time step among the pins of said hyperedge. We can formalize this
in the following two-step process: If the random walker currently resides on node u ∈ V :

1. Choose an edge e from the incident edges of u I(u), with probability Φ(e,u)·ω(e)
vol(u) .

2. Choose a node from all pins of edge e, with probability 1
|e| . In the case that there are

multiple pins of a node v ∈ V , the probability would be relative to its pin count in e,
like Φ(e,v)

|e| . Note that this means a walker can stand still.

In this formulation, the same node u that the random walker is currently on can be chosen
as the node for the next time step. This is called a lazy walk. Note that this process is
similar to the random walk process described by Chitra and Raphael [CR19] when choosing
the edge dependent vertex weights γe(u) as the relative number of pins of the node in the
edge Φ(e,v)

|e| . The difference is in the way we choose an edge: While Chitra and Raphael
choose the edge only dependent on its relative weight ( ω(e)

ω(I(u))), we also take the pin count
of the node in edge e into account (Φ(e,u)·ω(e)

vol(u) ).

We will also take a look at a less-lazy random walk, where the random walker must not
stand still on the same pin but can move to another pin of the same node. In this case
the probability to choose a node is Φ(e,v)

|e|−1 . The resulting formulas are identical to the
lazy-random walk when replacing |e| with |e− 1|, except for the deltas, where the last
equality is not true. See Appendix C for the complete calculations.
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Another possibility is to look at non-lazy random walks. Here a random walker can only
move to a different node and cannot stand still at all. in this case the probability for the
second step ends up as Φ(e,v)

|e|−Φ(e,u) . We leave this formulation for future work.

Stationary Distribution Additionally, we want to know the probability for the random
walker to be on any given edge at any given time. This is the average frequency a random
walker visits a node in a random walk of infinite length. A random walk on a hypergraph
is a Markov chain on V with the transition probabilities between nodes u and v:

Puv =
∑
e∈I(u)

Φ(e, u)ω(e)
vol(u) · Φ(e, v)

|e|

We can now calculate the transition probability between two communities Ci and Cj , as
the sum of probabilities to be on any node u ∈ Ci and move to any node v ∈ Cj :

Pij =
∑

e∈I(Ci)

∑
u∈Ci

vol(u)
vol(Ci)

∑
v∈Cj

Φ(e, u)ω(e)
vol(u) · Φ(e, v)

|e|

=
∑

e∈I(Ci)

∑
u∈Ci

Φ(e, u)ω(e)
vol(Ci)

· Φ(e, Cj)
|e|

=
∑

e∈I(Ci)

Φ(e, Ci)ω(e)
vol(Ci)

· Φ(e, Cj)
|e|

If the Markov chain starts with a distribution of average node visit frequencies and this
distribution stays the same at any given time step, it is called a stationary distribution. In
community detection, we are only interested in strongly connected graphs since we can
otherwise perform community detection on each of the strongly connected components.
This makes the Markov chain M representing our random walk recurrent. Since we need
M to be aperiodic, we also have to exclude bipartite graphs because a Markov Chain
representing such a graph would have period 2. With this in mind, our Markov chain is
aperiodic and recurrent and thus ergodic. Therefore p is the stationary distribution exactly
when

(pP )v = pv ∀v ∈ V

Lemma 6.1. For every node v ∈ V the stationary distribution p of M is given by

pv = vol(v)
vol(V )

Proof.

(pP )v =
∑
u∈V

puPuv

=
∑
u∈V

vol(u)
vol(V )

∑
e∈I(u)

Φ(e, u)ω(e)
vol(u) · Φ(e, v)

|e|

(6.2)

Taking a look at the inner sum, we can see that a summand is zero exactly when either
u or v aren’t in the edge e, which corresponds to mu or mv = 0. Therefore only edges
e ∈ E with Φ(e, u) > 0 ∧ Φ(e, v) > 0 contribute to the sum. We can now use that
I(u) ∩ I(v) = {e ∈ E|Φ(e, u) > 0 ∧ Φ(e, v) > 0}, so every edge that contributes to the sum
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6. Hypergraph Map Equation

has to be in both I(u) and I(v). Therefore it is equal to iterate over all incident edges of v
instead of u.

(pP )v = 1
vol(V )

∑
u∈V

∑
e∈I(v)

Φ(e, u) · ω(e) · Φ(e, v)
|e|

= 1
vol(V )

∑
e∈I(v)

Φ(e, v)ω(e) 1
|e|
∑
u∈V

Φ(e, u)

= 1
vol(V )

∑
e∈I(v)

Φ(e, v)ω(e)

= vol(v)
vol(V )

(6.3)

Finally we define the exit probability qiy, which is the probability, that the next move of
the random walker is to leave community Ci. In other words, it is the probability for the
random walker to be in community Ci and moving to any other community Cj in the next
step. Again, we give the full derivation in Appendix B.

qiy =

∑
u∈Ci

pu

 · ∑
Cj∈C

Pij

= 1
vol(V )

∑
e∈I(Ci)

Φ(e, Ci) · ω(e)
|e|

· (|e| − Φ(e, Ci))
(6.4)

6.2. Change in Map Equation
We have now fully defined all parts of the hypergraph map equation. Since we will use
the Louvain algorithm, which uses local moving, we want to know how much the map
equation changes if we move a node v from its current community Ci to another neighboring
community Cj . To calculate this, we have to look at the components of the map equation
that change. The only ones that change are the exit probabilities qiy and qjy for the
participating communities.
To calculate the change in exit probability for a community Ci we first subtract the previous
contributions of the incident edges of v and then add the contributions of these edges if v
was removed from Ci.

∆qiy = 1
vol(V )

∑
e∈I(v)

−

old contribution︷ ︸︸ ︷
Φ(e, Ci)ω(e) |e| − Φ(e, Ci)

|e|
+

new contribution︷ ︸︸ ︷
Φ(e, Ci \ v)ω(e) |e| − Φ(e, Ci \ v)

|e|

= 1
vol(V )

 ∑
e∈I(v)

ω(e)Φ(e, v)2Φ(e, Ci)− Φ(e, v)
|e|

− vol(v)


(6.5)

For the destination community Cj , this results in:

∆qjy = 1
vol(V )

∑
e∈I(v)

−

old contribution︷ ︸︸ ︷
Φ(e, Cj)ω(e) |e| − Φ(e, Cj)

|e|
+

new contribution︷ ︸︸ ︷
Φ(e, Cj ∪ v)ω(e) |e| − Φ(e, Cj ∪ v)

|e|

= 1
vol(V )

 ∑
e∈I(v)

ω(e)Φ(e, v)−2Φ(e, Cj)− Φ(e, v)
|e|

+ vol(v)


(6.6)
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For more details on the derivations, see Appendix B. To calculate the change in map
equation, we then evaluate all parts of the formula affected by the particular communities,
once with the old exit probabilities qiy and once with the updated probabilities and
subtract them from each other. Let

Lold(C, i, j, v) = plogp

 ∑
Ck∈C

qky

− 2 · (plogp (qiy) + plogp (qjy))

+ plogp

qiy +
∑
u∈Ci

pu

+ plogp

qjy +
∑
u∈Cj

pu

 (6.7)

be the parts of L(C) affected by moving node v from community Ci to community Cj
before executing the move and

Lnew(C, i, j, v) =

− plogp

∆qiy + ∆qjy
∑
Ck∈C

qky

− 2 · (plogp (qiy∆qiy) + plogp (qjy∆qjy))

+ plogp

qiy + ∆qiy − pv +
∑
u∈Ci

pu

+ plogp

qjy + ∆qjy + pu +
∑
u∈Cj

pu


(6.8)

the same parts calculated with the updated values.
We can then calculate the final change in Map Equation by subtracting Lnew(C, i, j, v)
from Lold(C, i, j, v).

∆L(C, i, j, v) = Lold(C, i, j, v)− Lnew(C, i, j, v) (6.9)

Since we want to minimize the map equation and we subtract the new (hopefully smaller
value) from the old value, we choose the biggest change in Map Equation ∆L(C, i, j, v) > 0
as the best possible move.

6.3. Implementation
To optimize the hypergraph map equation, we implement the RelaxMap algorithm by
Bae et al. [BHW+17], which is a parallelization of the Louvain algorithm with some
adaptation to fit the map equation. Therefore the structure of the algorithm stays the
same: We alternate the local moving and contraction algorithms until the clustering can
not be improved and then map the clustering of the coarse hypergraph to the original
hypergraph. We will briefly highlight the differences to the modularity approach, including
the delta calculation, the updates needed when making a move and the difference in the
contraction. Note that our implementation is not optimized. We use it as a comparison
to our modularity approach when integrating them into the Mt-KaHyPar framework as a
preprocessing step.

Delta Calculation To calculate the change in map equation, we store the sum of exit
probabilities ∑Ci∈C qiy, the exit probability for each community qiy in an array of size
n as well as the volume for each community vol(Ci) and node vol(v). In contrast to the
modularity approach, we need to know the exact number of pins Φ(e, v) for each node
v in an edge e. Therefore we store pins of an edge as tuples (v,mv), we call multipins,
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6. Hypergraph Map Equation

where v is a node contained in e and mv is its multiplicity in e. We calculate the deltas for
the source community and each neighboring communities from Equations (6.5) and (6.6),
by iterating over each incident edge e ∈ I(v) and each multipin of that edge. Therefore
the running time of this procedure is in ∑e∈I(v) |e|. The evaluation of Equation (6.9) is
straight forward. We break ties by always choosing the community with the smaller ID.

Moving a Node When moving a node v from community Ci to community Cj , we
have to update our data structures. Before making any updates, we acquire a lock for
community Ci and Cj each. We then recompute the change in the exit probabilities ∆qiy
and ∆qjy and reevaluate the change in map equation to make sure this move is actually
an improvement. After that, we update the vol(Ci) and vol(Cj) by subtracting or adding
the volume of v respectively as well as the exit probabilities qiy, qjy and the sum of exit
probabilities via the calculated deltas. This introduces an error produced by the limited
precision of floating-point numbers. We try to compensate for this by recalculating all exit
probabilities in parallel after iterating over all nodes once.

Contraction While we still use the same algorithm to contract the hypergraph as in
the modularity approach, we have to make some restrictions on what to contract. Since
we need the multiplicities of pins for each edge, we can not remove duplicate pins from
edges. As a result, the number of edges decreases significantly less than in the modularity
approach.
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First, we present the experimental setup in Section 7.1, which we used to conduct our
experiments. After that, we will evaluate different configurations and optimizations of our
algorithm using hypergraph modularity based on connectivity in Section 7.2, as well as
its scalability in Section 7.3. In Section 7.4 we will compare our algorithm to the current
implementation of Mt-KaHyPar-D, which uses modularity based on the bipartite graph
representation. Finally, we briefly compare the modularity approach with the map equation
approach in Section 7.5.

7.1. Setup and Methodology
We implemented the algorithms described in Section 5 and 6.3 in the shared memory
partitioning framework Mt-KaHyPar. The code is written in C++ and compiled using g++-
9.2 with the flags -O3 -mtune=native -march=native. We parallelized our implementation
with work-stealing using the TBB library [Phe08]. We refer to the original algorithm as D,
our hypergraph modularity version as HM and the hypergraph map equation versions as
HME and HME-1 respectively.

Instances. To evaluate the performance of our algorithm, we use two different benchmark
sets. Table 7.1 provides an overview. Set A consists of 488 hypergraphs, with unit net and
vertex weights, by Heuer and Schlag [HS17]. It consists of instances from the ISPD98 VLSI
Circuit Benchmark Suite (ISPD98) [Alp98], the DAC2012 Routability-Driven Placement
Contest (DAC)[VAS+12], sparse matrix instances from the SuiteSparse Matrix Collection
(SPM) [DH11] and SAT formulas from the 2014 SAT Competition (Literal, Primal and
Dual) [BDHJ]. We interpret the sparse matrices as hypergraphs using the row-net model
[CA99], where each row corresponds to a net, and each column corresponds to a node in
the hypergraph. We derive three different hypergraphs from each SAT instance. In the
literal model proposed by Papa and Markov [PM07], each boolean literal is represented
by a node and each clause by a hyperedge. Papp and Mann [MP14] proposed two more
representations: primal and dual. For the primal model, we interpret each variable as a
node and each clause as a hyperedge. For the dual model, it is the other way around, i.e.,
each variable is represented by a hyperedge, and clauses translate to nodes. We will use this
benchmark set to compare our algorithm to the current implementation of Mt-KaHyPar-D.

We use a subset of 100 instances as a parameter tuning subset, containing instances from
all different types, chosen by Schlag [Sch20] to produce the same qualitative result as the
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Table 7.1.: Composition of the used Sets
Class Set A Set B Set C
DAC2012 10 10 4
ISPD98 18 0 10
SAT14 - Primal 92 14 18
SAT14 - Dual 92 14 18
SAT14 - Literal 92 14 18
SPM 184 42 32∑ 488 94 100

whole set A. We will call it set C in the following. Additionally we use a set of 94 large
hypergraphs by Gottesbüren et al. [GHSS20] to conduct scalability experiments. We call
this set of larger instances set B. It consists of a random sample of 42 instances from the
SuiteSparse Matrix Collection with more than 15 million non-zero entries, as well as all
DAC instances, the 24 largest SAT instances from set A and an additional 18 larger SAT
instances from the 2014 SAT Competition.

Systems. Due to availability issues, experiments involving parameter tuning and evalua-
tion of the optimizations are performed on a machine consisting of two Intel Xeon E5-2683
16 core processors clocked at 2.1 GHz. The machine runs Ubuntu 18.04, has 512 GB of
main memory and 40 MB of Cache.
We perform the experiments involving set B on a different machine. It consists of an AMD
EPYC Rome 7702P with 64 cores clocked at 2.0 - 3.35 GHz. The machine runs Ubuntu
20.04, has 1024 GB of main memory and 256 MB of L3-Cache.
To compare our hypergraph modularity approach with the current graph-based approach,
we use a machine consisting of 2 Intel Xeon Gold 6230 processors. A single processor has
20 cores and runs at 2.1 GHz with 96GB RAM.

Performance Profiles. To visualize the performance of different algorithms, we use
a measure called performance profiles, which was first introduced by Dolan and Moré
[DM02]. We compare the quality of the results produced by the different algorithms using
the (λ − 1)-metric. In the plots, each colored line represents a different algorithm or
configuration. The x-axis displays the quality τ relative to the best result of all algorithms
in the graph, which we call performance ratio. The y-axis displays the fraction of instances
for which the quality, compared to the best partition, is worse by a factor of τ or less. For
example, an algorithm with the value of 0.75 on the y-axis for a value of 2 on the x- axis,
i.e. the performance ratio τ = 2. This means that the quality of the resulting partitions of
the algorithm are worse than the best by a factor of up to 2 on 75% of the instances. The
y-axis for τ = 1 shows the fraction of instances the algorithm produced the best results
out of all the algorithms in the plot. Therefore, when comparing two algorithms, if the
fraction of instances is 0.5 for τ = 1, both algorithms produce the best partition on an
equal amount of instances. Generally speaking, an algorithm performs better than others if
its line in the plot is above the others. If needed, we divide the x-axis into three parts. The
first part goes up to 1.1, showing the fraction of instances where the algorithm is within
10% of the best algorithm. The second one goes up to 2, showing instances of medium
quality in comparison. The last section, displaying the worst instances, uses a logarithmic
scale for all remaining instances.
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7.2. Configuring the Algorithm

7.2. Configuring the Algorithm
In this section, we evaluate different configurations of our hypergraph modularity algorithm
on our parameter tuning benchmark subset. We need to evaluate the following configurations
and tuning parameters:

• The maximum number of iterations per Louvain pass lmax
• Caching threshold for edges c

• Number of selected neighboring communities s

• Threshold t on the number of neighboring communities, when to start selecting
neighboring communities

• (P)runing

• (P)runing communities with (p)ositive connectivity

• Different tie-breaking rules (random, smallest ID, hybrid)

We evaluate each configuration for k ∈ {2, 8, 16, 64}, 5 different seeds and an imbalance
parameter ε = 3%. When comparing different configurations, we first calculate the
arithmetic mean over all seeds to summarize the results.

To tune the different parameters we run the experiments with p = 16 threads and the
following configuration: (lmax = 5, c = 16, s = 100, t = 100, +P, +Pp, hybrid). Where a
(+) denotes that the technique is enabled and a (-) that it is disabled. The abbreviations
are explained in the listing above; see the letters in parentheses. We vary each parameter
in a separate experiment, where the remaining parameters are set as in the baseline
configuration.

Maximum Number of Iterations per Louvain Pass We set an upper limit lmax to
the number of iterations per Louvain pass. The reasoning behind this is that iterating
over all nodes of the fine hypergraph is very expensive. Therefore we want to contract
the hypergraph as soon as possible to reduce the number of nodes. Our default value of
5 is very low in comparison to other Louvain implementations where this limit is usually
between 16 and 32. This works for our specific application because, in later iterations,
fewer nodes are moved, which only affects the community structure on a microscopic level.
We are more interested in the macroscopic structure of the hypergraph. Therefore we
prefer to merge too many nodes into a community rather than too few. If we merge too
many nodes into a community, the coarsening algorithm can still decide not to contract
them into a single node. On the other hand, since we restrict contraction to nodes of
the same community, the contraction algorithm cannot correct the mistake if we merge
too few nodes into a community. By allowing the algorithm to contract early, i.e. after
five iterations, we promote node moves on the macroscopic level since a single move after
a contraction corresponds to moving a whole set of nodes at a time. As we can see in
Figure 7.1 the quality of the results is very similar for all lmax except for lmax = 1. We
can also see on the right that increasing lmax to 16 does not improve the performance of
the resulting partitions over lmax = 5. In Figure 7.2, we can see that the running time
saved by reducing the number of passes is not proportional to the number of passes. This
is because the first iteration takes the longest, and each subsequent iteration over all nodes
is faster due to the decreased number of communities and improving moves.

Caching Threshold for Edges We presented a data structure in Section 5.2 to speed
up the calculation of the connectivity. The overhead introduced by the data structure
outweighs its benefits for smaller edges. We will refer to using the data structure for an
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Figure 7.1.: Comparing the quality for lmax = {1, 2, 3, 4, 16} and the baseline algorithm
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Figure 7.2.: Comparing the relative running times in comparison to the baseline configura-
tion for lmax = {1, 2, 3, 4, 16}

edge as caching the edge in the following. Therefore we introduce a threshold c, which
decides whether to cache the edge or calculate the connectivity naively. Figure 7.3 shows
the results, in comparison to the baseline configuration, which uses c = 16. As we can
see on the left, caching every edge is significantly slower because of the overhead the data
structure introduces. We can also see that it is worth caching edges of size < 128 since not
caching at all and only caching edges greater than 128 or 256 show a significant slowdown
in comparison to the baseline configuration. On the right, we can observe that c = 64 is
also too large for a threshold, and c = 8 is too low. Therefore we decide between 16 and
32. We can see that c = 32 and the baseline configuration are very close in the right plot,
but the baseline configuration is faster for slightly more than half the instances. Therefore
we conclude that the optimal value is closer to 16 than 32. Although the speedup by
using the data structure is not as high as hoped, we expect it to be more efficient on
larger hypergraph instances since most instances in the parameter tuning benchmark set
contain relatively small hyperedges. One instance that demonstrates the use of the data
structure is "opt1.mtx.hgr", which has a minimum edge size of 44 and a maximum edge size
of 243. Therefore the baseline configuration caches all edges. When comparing the baseline
configuration to not caching any edges at all, we observed a speedup of almost 50%.

Number of selected neighboring Communities. This parameter is based on the
observation we made in Section 5.3, that the average distance between the ranking before
and after the expected connectivity has been calculated is much lower than the actual
number of neighboring communities |NC(v)|. Therefore we introduce this parameter to
select the best s communities based on their connectivity for which we will choose the best
community based on the fully calculated modularity delta. The results are illustrated in
Figure 7.4. As we can see, selecting only 16 or 32 instances slightly impacts the solution
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Figure 7.3.: Slowdown for caching thresholds c = {0, 8, 16, 32, 64, 128, 256,∞}. Note that
c = 0 corresponds to caching every edge and c =∞ to not caching any edge.

quality. Since the quality for s = 128 is also slightly better than for s = 64 but slower we
chose a compromise of s = 100. As we can see in the right graph, choosing s = 100 does
not negatively impact the performance compared to calculating the whole modularity delta
for all neighboring communities (s =∞). Finally, as we can see in Figure 7.5 this yields a
speedup of up to 4.5.
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Figure 7.4.: Comparing the quality for s = {16, 32, 64, 128, 256,∞} and the baseline al-
gorithm. Note that s = ∞ corresponds always considering all neighboring
communities.

0 50 100 150 200 250 300 350 400
instances

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

re
la

ti
ve

sl
ow

d
ow

n
to

b
as

el
in

e

0 50 100 150 200 250 300 350 400
instances

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

re
la

ti
ve

sl
ow

d
ow

n
to

b
as

el
in

e

baseline s=16 s=32 s=64 s=128 s=256 s =∞

Figure 7.5.: Running times relative to the baseline configuration
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When to start selecting neighboring Communities. Since we are choosing the 100
best neighboring communities based on their connectivity, we need to partition them.
This introduces overhead, which we would like to prevent when it is not necessary, i.e.,
when there are less than 100 neighboring communities or only slightly more than 100.
Figure 7.6 illustrates the results. As we can see, it is always worth partitioning the
neighboring communities when there are at least 100 neighbors and selecting the best 100.
For t = 110, 120 the slowdown on 50% of the instances is only slightly worse than the
speed up for the other half. For all other t, it is slower. Therefore the overhead of sorting
does not outweigh the time needed to compute the expected connectivity for additional
communities.
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Figure 7.6.: Relative slowdown to the baseline configuration of the algorithm when only se-
lecting 100 neighbors if there are at least t = {110, 120, 150, 200, 300} neighbors
to choose from.

Pruning We introduced three rules for pruning in Section 5.3. As we can see in Figure 7.7,
implementing the three rules for pruning is faster on virtually all instances. Applying them
yields a speedup of up to 6. This also illustrates the significant impact of the calculation of
the probabilistic term on the overall running time.
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Figure 7.7.: Slowdown of the algorithm when turning off the pruning

Pruning positive connectivity. The main assumption is that the algorithm almost
exclusively performs moves that reduce the connectivity, i.e., reduces the overall number of
connections between communities. By sorting out all other moves, we can greatly reduce
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the number of communities for which we have to calculate the second part of the modularity
delta. Figure 7.8 shows the results. As we can see, it does not have a negative effect on the
quality while yielding a significant speedup of up to 2.25. This works in our specific case
for the same reason as the limit on iterations per Louvain pass lmax. Since we generally
prefer merging too many nodes into communities over too few, restricting node moves to
only reduce the number of connections between communities promotes this behavior.
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Figure 7.8.: Comparing the quality without pruning communities with positive connectiv-
ity(left) and the running time relative to the baseline configuration (right).

Tie-Breaking Rules While using random tie-breaking, we noticed that our algorithm
produces substantially more communities than the algorithm based on the bipartite
representation. This difference is especially noticeable on the dual-instances, which have
significantly more nodes than edges. A possible reason for this is that initially, there are
many neighboring communities for which the modularity delta is equal. By randomly
choosing a neighbor, the algorithm produces many small but very similar communities.
Instead, if there is a choice, we want to always move the node to the same communities
and therefore reduce the number of communities. We do this by breaking ties by choosing
the community with the smallest ID. Since we want to only apply this rule for dual -
instances or similar ones, we decide which rule we apply based on the density of the initial
hypergraph since the dual-instances stand out by having a low density < 1. The density
of a hypergraph is the ratio of hypernodes to hyperedges m

n . We choose the threshold as
1, i.e., if there are fewer edges than nodes, we choose the community with the smaller
ID. Otherwise, we apply random tie-breaking. As we can see in Figure 7.9 this slightly
improves the quality overall, especially in comparison to the random tie-breaking rule. If
we look at the different instance classes in Figure 7.10, we can see the improvement of
the smaller ID tie-breaking rule over the random tie-breaking rule on the dual-instances.
While the quality stays very close for most other instance classes, the hybrid tie-breaking
performs the worst on the ISPD98 instances. This is due to these instances being close to
1 in density, which results in the hybrid rule to use random tie-breaking for some instances
and the smaller ID one for others – though the difference in quality stays within 4%.
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Figure 7.9.: Comparing the overall quality for different tie-breaking rules
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Figure 7.10.: Comparing the quality of different tie-breaking rules per instance class

7.3. Scalability
We ran the following scalability experiments with p ∈ {4, 16, 64} threads on the benchmark
set B. Due to time constraints, we had to exclude the five hypergraphs in Table D.1. We
illustrate the speedups of preprocessing step in Figure 7.11. In the plot, points represent
the speedup for a single instance and lines the cumulative harmonic mean speedup over
all instances with a single-threaded running time ≥ x. Our approach achieves a harmonic
mean speedup of 3.4 for p = 4, 11.1 for p = 16 and 23.8 for p = 64. If we only consider
instances with a running time ≥ 100s, the harmonic mean speedup is 3.5 for p = 4, 12.5
for p = 16 and 32.6 for p = 64. For p = 4 we achieve a speedup of at least 3 for more than
84% of the instances.

As we can see in comparison to the graph-based approach (on the right), our algorithm
exhibits a slightly better scaling behavior, especially for p = 64. The graph-based approach
achieves a harmonic mean speedup of 3.3 for p = 4, 9.6 for p = 16 and 18.2 for p = 64. If
we again, only consider instances with a running time over ≥ 100s, the harmonic mean
speedup is 2.9 for p = 4, 10.4 for p = 16 and 27.5 for p = 64. For p = 4 it achieves a
speedup of at least 3 for only 75% of the instances. Although the reason for this might
be the overall lower running time of Mt-KaHyPar-D, therefore sequential parts and the
overhead of multiple threads take up a bigger fraction of the running time than in the case
of Mt-KaHyPar-HM.
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7.4. Comparison to Community Detection via Bipartite Graph Representation
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Figure 7.11.: Arithmetic mean speedup (points) and cumulative harmonic mean speedup
(lines) of the preprocessing step of HM (left) and D (right) with p ∈ {4, 16, 64}
for each instance of set B.

7.4. Comparison to Community Detection via Bipartite Graph
Representation

We compare our hypergraph modularity (HM) to the current approach based on the bipartite
graph representation (D) on the whole benchmark set A. We use k ∈ {2, 4, 8, 16, 32, 64, 128},
an imbalance parameter of ε = 0.03, ten different random seeds as well as p = 10
threads. Additionally, we compare both approaches on the whole benchmark set B. We use
k ∈ {2, 8, 16, 64}, an imbalance parameter of ε = 0.03, five different random seeds as well
as p = 64 threads.

Figure 7.12 shows the results for benchmark set A. Our hypergraph modularity approach
produces the best results for 61% of the instances. Looking at the different instance classes
in Figure 7.13, we can see that our approach significantly improves the quality on the
sparse matrix instances (bottom right). On these instances, we produce the best partitions
on 77.6% of the instances. Additionally, we notice that for over 0.8% of the instances, we
produce partitions better by a factor of 100 or more, which comes down to the hypergraphs
"Trec14", "Chebyshev4" and "us04". Our approach also performs better on the literal SAT
instances, producing the best partition for 58% of the instances. On the primal SAT
instances, the two approaches perform equally. The graph-based approach performs better
on the ISPD98 and the dual SAT instances, computing the best partition on 55.3% and
54.8% of the instances, respectively. Although we would like to mention that there is one
of the dual instances where our approach performs better by a factor of over 326. The
most significant difference between the two approaches is visible in the bottom left for the
DAC VLSI instances. Here our approach is worse since the graph-based approach produces
the best partition for 90% of the instances. We also append more detailed insight for the
different k, as well as a comparison of the absolute running times in Appendix E.

As we can see in Figure 7.14, our approach is unfortunately significantly slower, especially
on the dual SAT instances. Comparing the geometric mean running times in Appendix E,
we can see that the preprocessing step using our hypergraph modularity is slower by a
factor of 5.4. Overall, integrating our hypergraph based approach into the partitioner
results in a slowdown by a factor of 1.5.

Figure 7.15 shows the overall results on benchmark set B. Both approaches compute
the best quality partition on 50% of the hypergraphs, although our approach performs
slightly worse overall. Looking at the different instance classes in Figure 7.16, we see that

41



7. Experimental Results
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Figure 7.12.: Comparing the overall quality to the current graph based approach
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Figure 7.13.: Comparing the quality of the hypergraph modularity approach with the
current graph based approach per instance class
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Figure 7.14.: Comparing the relative slowdown of the community detection step for both
configurations. On the right dual SAT instances are excluded.

our approach slightly improves the results on the literal and primal SAT instances by
computing the best quality partition on 53.6% and 58.9% of the instances, respectively.
Additionally, HM produces the best quality partition on 62.5% of the SPM instances. On
the dual SAT instances, we were not able to improve the quality of partitions. Here our
approach produces the best quality partitions on only 35.8%. The DAC instances are the
same as in set A. Therefore there is no change in comparison to set A. The geometric mean
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7.5. Comparing Hypergraph Map Equation and Modularity

running times of the preprocessing step are 0.82s for the graph-based approach and 6.1s
for our hypergraph-based approach (see Appendix E). Therefore our approach is slower by
a factor of 7.5. This slows down the overall running time of the partitioner by a factor of
1.84. Further optimizations are needed to make the running time competitive.
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Figure 7.15.: Comparing the overall quality to the current graph based approach on set B
(left) and the running time of the preprocessing step (right)
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Figure 7.16.: Comparing the quality of the hypergraph modularity approach with the
current graph based approach per instance class on set B

7.5. Comparing Hypergraph Map Equation and Modularity
We tried out two different random walk models for the map equation. The lazy random
walk model (HME), which allows the random walker to stand still, and the model where the
random walker cannot stand still on the same pin but can move to different pins of the
same node (HME-1). We compare the quality of both approaches on the left in Figure 7.17.
The right plot shows the quality in comparison to the modularity approach. As we can see,
the less-lazy random walk model produces better results on 58% than its lazy counterpart.
Therefore we use it to compare the map equation approach to the modularity approach on
the right. The modularity approach produces the best result on 63% of the instances and
therefore significantly outperforms our RelaxMap implementation as a preprocessing step
to the coarsening phase.
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7. Experimental Results
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Figure 7.17.: Comparing the quality of the map equation approaches to the modularity
approach
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8. Conclusion

In this work, we derived a modularity definition directly on hypergraphs using the general-
ized Chung-Lu model [KPP+19]. The modularity formulation based on the connectivity
compares the number of communities connected by hyperedges to the expected number
of communities connected by hyperedges if edges were randomly rewired. To optimize
this modularity function, we implemented the parallel Louvain method (PLM) [SM16]
and introduced many optimizations to reduce the running time while maintaining solution
quality. We presented the community count data structure to determine connected com-
munities of edges more efficiently for large hyperedges. Additionally, we presented three
pruning rules, which allow us to skip the calculation of the probabilistic term solely based
on the connectivity and volume of a community. We introduced multiple heuristics, such
as ignoring moves that increase the number of connected communities and only considering
the 100 best neighboring communities of a node based on their change in connectivity,
which we validated in extensive experiments on a large real-world benchmark set.
In addition to the modularity approach, we derived formulations for the map equation on
hypergraphs based on lazy random walks and less-lazy random walks. We optimize these
approaches using our implementation of the RelaxMap algorithm [BHW+17].
All approaches are integrated into the parallel shared-memory partitioner Mt-KaHyPar
and used as a preprocessing step to the community aware coarsening algorithm. Our
experiments showed that our modularity approach is significantly better suited for this
application than the map equation approaches. It produces better results on 63% of the
benchmark instances.
The new configuration HM using hypergraph modularity produces significantly better results
on the sparse matrix instances and the literal SAT instances, producing the best partition in
77.6% and 58% of the instances, respectively. Since the sparse matrix instances have many
large hyperedges, it shows that our approach, incorporating the higher-order structure of
the hypergraph, can significantly improve the solution quality. On the other hand, VLSI,
primal- and literal- SAT instances are often similar to graphs, and therefore we expect
less improvement on hypergraphs from these application domains. Our approach performs
significantly worse on instances from the DAC2012 Routability-Driven Placement Contest,
where it only produces the best partition for 10% of the instances. Although it produces
the best partition for 61% of the instances overall. However, the preprocessing step using
hypergraph modularity is slower by a factor of 5.4 on average.
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8. Conclusion

8.1. Future Work
While our hypergraph modularity approach was able to improve the quality of partitions
for the SPM and literal SAT instances, it computes significantly worse results for the
DAC instances. Hypergraphs from the DAC2012 Routability-Driven Placement Contest
are similar to graphs except for a small subset of large hyperedges. It is unclear why
our hypergraph approach performs significantly worse on them. Further experiments are
needed to examine these differences in quality. However, our algorithm still is significantly
slower due to the more complex calculation of the probabilistic term. Therefore further
optimizations are needed to make our approach feasible. First of all, we are calculating the
change in connectivity for all neighboring communities of a node and then only select 100
of them to evaluate the whole modularity delta. The running time could be significantly
improved by not calculating this change for each neighboring community. Additionally,
as we already mentioned in 5.2 instead of using our community count data structure, we
could store each adjacent community for every node in later iterations. The required O(n2)
memory is feasible due to the hypergraph being sufficiently small.

Although we could significantly improve the running time of the delta calculation for the
probabilistic term, it is still roughly as slow as the delta calculation for the connectivity.
One approach that could improve the running time is to calculate a lower bound on ∆E,
which can then be used as a pruning rule to skip the actual calculation of the delta. We,
for example, tried to approximate it using the geometric series, which unfortunately was
not tight enough to be useful. This approach would also have the advantage of eliminating
some of the inaccuracy introduced by the floating-point operations.

On the other hand, there are still plenty of different modularity approaches to explore: One
possible addition to the null model by Kaminski et al. [KPP+19] could be to make sure only
nodes which are in an edge of size d in the hypergraph H = (V,E, ω) are considered when
randomly choosing nodes to add to an edge of size d in H ′. This can be modeled by using
dvol(u) instead of vol(u), where dvol(u) = ∑

e∈I(u)||e|=d ω(e) and dvol(V ) = ∑
u∈V dvol(u).

This results in a model even closer to the original hypergraph since it preserves even more
information about the structure of H.
As we have already seen, there are plenty of definitions for modularity on hypergraphs,
which could be integrated into Mt-KaHyPar and evaluated as a preprocessing step to the
coarsening phase. We also mentioned a formulation for the map equation in Section 6,
which uses non-lazy random walks. This is also an approach worth exploring in the future.

Although we introduced methods for community detection, we did not evaluate them
as such since our primary goal was to improve the preprocessing step of the partitioner.
Additionally, current approaches to synthetic benchmark hypergraphs for community
detection are limited to small edges and k-uniform hypergraphs. There remains a need for
synthetic benchmark instances for community detection on hypergraphs, which resemble
arbitrary real-world hypergraphs.
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Appendix

A. Derivation of the Expected Connectivity

We calculate the expected connectivity as follows:

EH′∼H [eH′(C)] =
∑
d∈D

∑
e∈Fd(C)

PH(e)

=
∑
d∈D

Wd

∑
e∈Fd(C)

sH(e)

=
∑
d∈D

Wd · P

 ∑
i:vi∈C

X
(d)
i ≥ 1


=
∑
d∈D

Wd

1− P

 ∑
i:vi∈C

X
(d)
i = 0


=
∑
d∈D

Wd

(
1−

(
1− vol(C)

vol(V )

)d)

(8.1)

B. Calculations for Hypergraph Map Equation

Derivation of Exit Probabilities Given the transition probabilities

Pij =
∑

e∈I(Ci)

Φ(e, Ci)ω(e)
vol(Ci)

· Φ(e, Cj)
|e|

and the stationary distribution

pv = vol(v)
vol(V )

We derive the exit probability qiy from Equation (6.4), which is the probability for the
random walker to be in community Ci and moving to any other community Cj in the
following step:

53



8. Appendix

qiy =

∑
u∈Ci

pu

 · ∑
Cj∈C

Pij

= vol(Ci)
vol(V )

∑
Cj∈C

∑
e∈I(Ci)

Φ(e, Ci)ω(e)
vol(Ci)

· Φ(e, Cj)
|e|

= 1
vol(V )

∑
Cj∈C

∑
e∈I(Ci)

Φ(e, Ci) · ω(e) · Φ(e, Cj)
|e|

= 1
vol(V )

∑
e∈I(Ci)

∑
Cj∈C

Φ(e, Ci) · ω(e) · Φ(e, Cj)
|e|

= 1
vol(V )

∑
e∈I(Ci)

Φ(e, Ci) · ω(e)
|e|

∑
Cj∈C

Φ(e, Cj)

= 1
vol(V )

∑
e∈I(Ci)

Φ(e, Ci) · ω(e)
|e|

· (|e| − Φ(e, Ci))

(8.2)

Derivation of Change in Exit Probabilities To calculate the change in exit probability
for a community Ci, we first subtract the previous contributions of the incident edges of v
and then add the contributions of these edges if v was removed from Ci.

∆qiy = 1
vol(V )

∑
e∈I(v)

−

old contribution︷ ︸︸ ︷
Φ(e, Ci)ω(e) |e| − Φ(e, Ci)

|e|
+

new contribution︷ ︸︸ ︷
Φ(e, Ci \ v)ω(e) |e| − Φ(e, Ci \ v)

|e|

= 1
vol(V )

∑
e∈I(v)

ω(e)

·
(
−Φ(e, Ci)

|e| − Φ(e, Ci)
|e|

+ (Φ(e, Ci)− Φ(e, v)) · |e| − (Φ(e, Ci)− Φ(e, v))
|e|

)
= 1

vol(V )
∑
e∈I(v)

ω(e) ·
(
−Φ(e, Cj)

|e| − Φ(e, Cj)
|e|

+ Φ(e, Cj)
|e| − Φ(e, Cj)

|e|

+Φ(e, Cj)Φ(e, v)
|e|

− Φ(e, v) |e| − Φ(e, Cj) + Φ(e, v)
|e|

)
= 1

vol(V )
∑
e∈I(v)

ω(e) ·
(Φ(e, Ci)Φ(e, v)

|e|
− Φ(e, v) |e| − Φ(e, Ci) + Φ(e, v)

|e|

)

= 1
vol(V )

∑
e∈I(v)

ω(e)Φ(e, v)2Φ(e, Ci)− Φ(e, v)− |e|
|e|

= 1
vol(V )

 ∑
e∈I(v)

ω(e)Φ(e, v)2Φ(e, Ci)− Φ(e, v)
|e|

− vol(v)


(8.3)
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C. Calculations for the less-lazy Hypergraph Map Equation

For the destination community Cj , this results in:

∆qjy = 1
vol(V )

∑
e∈I(v)

−

old contribution︷ ︸︸ ︷
Φ(e, Cj)ω(e) |e| − Φ(e, Cj)

|e|
+

new contribution︷ ︸︸ ︷
Φ(e, Cj ∪ v)ω(e) |e| − Φ(e, Cj ∪ v)

|e|

= 1
vol(V )

∑
e∈I(v)

ω(e)

·
(
−Φ(e, Cj)

|e| − Φ(e, Cj)
|e|

+ (Φ(e, Cj) + Φ(e, v)) · |e| − (Φ(e, Cj) + Φ(e, v))
|e|

)
= 1

vol(V )
∑
e∈I(v)

ω(e) ·
(
−Φ(e, Cj)Φ(e, v)

|e|
+ Φ(e, v) |e| − Φ(e, Cj)− Φ(e, v)

|e|

)

= 1
vol(V )

∑
e∈I(v)

ω(e)Φ(e, v)−2Φ(e, Cj)− Φ(e, v) + |e|
|e|

= 1
vol(V )

 ∑
e∈I(v)

ω(e)Φ(e, v)−2Φ(e, Cj)− Φ(e, v)
|e|

+ vol(v)


(8.4)

C. Calculations for the less-lazy Hypergraph Map Equation

We will take a look at a less-lazy random walk, where the random walker must not stand
still on the same pin but can move to another pin of the same node. In this case the
probability to choose a node is Φ(e,v)

|e|−1 .

Therefore the transition probability between nodes becomes:

Puv =
∑
e∈I(u)

Φ(e, u)ω(e)
vol(u) · Φ(e, v)

|e| − 1

With this in mind, we can also formulate the transition probabilities between communities
by replacing |e| with |e| − 1 in the formulation for the lazy random walk:

Pij =
∑

e∈I(Ci)

Φ(e, Ci)ω(e)
vol(Ci)

· Φ(e, Cj)
|e| − 1

The stationary distribution stays the same as for the lazy-random walk:

Lemma 8.1. For every node v ∈ V the stationary distribution p of M is given by

pv = vol(v)
vol(V )
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Proof.

(pP )v =
∑
u∈V

puPuv

=
∑
u∈V
u6=v

vol(u)
vol(V )

∑
e∈I(u)

Φ(e, u)ω(e)
vol(u) · Φ(e, v)

|e| − 1 + vol(v)
vol(V )

∑
e∈I(v)

Φ(e, v)ω(e)
vol(v) · Φ(e, v)− 1

|e| − 1

= 1
vol(V )

 ∑
e∈I(v)

Φ(e, v)ω(e)
|e| − 1

Φ(e, v)− 1 +
∑
u∈V
u6=v

Φ(e, u)




= 1
vol(V )

 ∑
e∈I(v)

Φ(e, v)ω(e)
|e| − 1 (|e| − 1)


= vol(v)

vol(V )
(8.5)

From line 2 to 3, we use the observation that we can sum over the incident edges of v
instead of u, since if either of the two nodes is not contained in the edge, the summand is
zero. Therefore, summing over the incident edges of u or v is equivalent.

The exit probability also only changes in a minor way, in comparison to the lazy random
walk version. We can again just exchange |e| for |e| − 1:

qiy =

∑
u∈Ci

pu

 · ∑
Cj∈C

Pij

= vol(Ci)
vol(V )

∑
Cj∈C

∑
e∈I(Ci)

Φ(e, Ci)ω(e)
vol(Ci)

· Φ(e, Cj)
|e| − 1

= 1
vol(V )

∑
Cj∈C

∑
e∈I(Ci)

Φ(e, Ci) · ω(e) · Φ(e, Cj)
|e| − 1

= 1
vol(V )

∑
e∈I(Ci)

∑
Cj∈C

Φ(e, Ci) · ω(e) · Φ(e, Cj)
|e| − 1

= 1
vol(V )

∑
e∈I(Ci)

Φ(e, Ci) · ω(e)
|e| − 1

∑
Cj∈C

Φ(e, Cj)

= 1
vol(V )

∑
e∈I(Ci)

Φ(e, Ci) · ω(e)
|e| − 1 · (|e| − Φ(e, Ci))

(8.6)

To calculate the change in exit probability for a community Ci, we first subtract the
previous contributions of the incident edges of v and then add the contributions of these
edges if v was removed from Ci.
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∆qiy = 1
vol(V )

∑
e∈I(v)

−

old contribution︷ ︸︸ ︷
Φ(e, Ci)ω(e) |e| − Φ(e, Ci)

|e| − 1 +

new contribution︷ ︸︸ ︷
Φ(e, Ci \ v)ω(e) |e| − Φ(e, Ci \ v)

|e| − 1

= 1
vol(V )

∑
e∈I(v)

ω(e)

·
(
−Φ(e, Ci)

|e| − Φ(e, Ci)
|e| − 1 + (Φ(e, Ci)− Φ(e, v)) · |e| − (Φ(e, Ci)− Φ(e, v))

|e| − 1

)
= 1

vol(V )
∑
e∈I(v)

ω(e) ·
(
−Φ(e, Cj)

|e| − Φ(e, Cj)
|e| − 1 + Φ(e, Cj)

|e| − Φ(e, Cj)
|e| − 1

+Φ(e, Cj)Φ(e, v)
|e| − 1 − Φ(e, v) |e| − Φ(e, Cj) + Φ(e, v)

|e| − 1

)
= 1

vol(V )
∑
e∈I(v)

ω(e) ·
(Φ(e, Ci)Φ(e, v)

|e| − 1 − Φ(e, v) |e| − Φ(e, Ci) + Φ(e, v)
|e| − 1

)

= 1
vol(V )

∑
e∈I(v)

ω(e)Φ(e, v)2Φ(e, Ci)− Φ(e, v)− |e|
|e| − 1

(8.7)

For the destination community Cj , this results in:

∆qjy = 1
vol(V )

∑
e∈I(v)

−

old contribution︷ ︸︸ ︷
Φ(e, Cj)ω(e) |e| − Φ(e, Cj)

|e| − 1 +

new contribution︷ ︸︸ ︷
Φ(e, Cj ∪ v)ω(e) |e| − Φ(e, Cj ∪ v)

|e| − 1

= 1
vol(V )

∑
e∈I(v)

ω(e)

·
(
−Φ(e, Cj)

|e| − Φ(e, Cj)
|e| − 1 + (Φ(e, Cj) + Φ(e, v)) · |e| − (Φ(e, Cj) + Φ(e, v))

|e| − 1

)
= 1

vol(V )
∑
e∈I(v)

ω(e) ·
(
−Φ(e, Cj)Φ(e, v)

|e| − 1 + Φ(e, v) |e| − Φ(e, Cj)− Φ(e, v)
|e| − 1

)

= 1
vol(V )

∑
e∈I(v)

ω(e)Φ(e, v)−2Φ(e, Cj)− Φ(e, v) + |e|
|e| − 1

(8.8)

D. Excluded hypergraphs from set B
Due to time constrains, we had to exclude the slowest five hypergraphs out of the 94 total
hypergraphs for the scaling experiments, which we listed in Table D.1.
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Table D.1.: Excluded hypergraphs from set B
Class Hypergraph

SAT14 - Dual
sv-comp19_prop-reachsafety.barrier_3t_true-unreach-call.i-witness.dual

zfcp-2.8-u2-nh.dual
velev-npe-1.0-9dlx-b71.dual

SPM it-2004
sk-2005

E. Detailed Comparison to Mt-KaHyPar-D
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Figure E.1.: Comparing the quality of the hypergraph modularity approach with the current
graph based approach for k = {2, 4, 8, 16, 32, 64, 128} on set A.
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Figure E.2.: Comparing the quality of the hypergraph modularity approach with the current
graph based approach for k = {2, 8, 16, 64, } on set B.
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Figure E.3.: Comparing the absolute running time of the current configuration of
Mt-KaHyPar (D) to the version with hypergraph modularity as a preprocessing
step (HM) on benchmark set B. The top plots show the running times on set A
and the bottom plots show the running times on set B. The left plot displays
the total running time of the algorithm, while the right plots display the
running time of the preprocessing step. The number below the box plot is the
geometric mean running time.
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