
Master’s Thesis

Scalable Decentralized Fault-Tolerant
MapReduce for Iterative Algorithms

Charel Mercatoris

Date: 01.09.2021

Reviewer: Prof. Dr. Peter Sanders
Advisor: M.Sc. Demian Hespe

M.Sc. Lukas Hübner

Institute of Theoretical Informatics, Algorithm Engineering
Department of Informatics

Karlsruhe Institute of Technology

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, 30.08.2021

Zusammenfassung
Mit der Zunahme von parallelen Rechenknoten in Hochleistungsrechnersystemen

steigt die Wahrscheinlichkeit von Hardwareausfällen für Anwendungen, welche auf
Millionen von Knoten laufen. Aus diesem Grund müssen zukünftige Anwendungen
Knotenausfälle erwarten, erkennen und behandeln.

Im Ramen dieser Arbeit entwickeln wir ein dezentrales, fehlertolerantes MapRe-
duce Framework für iterative Algorithmen, das mit Knotenausfall umgehen kann.
Unser Framework folgt dem Bulk Synchronous Parallel Modell (BSP) und verwen-
det eine zufällige statische Lastverteilung während der Shu�e Phase. Wir stellen
einen Fehlertoleranzmechanismus vor, welcher während der Shu�e Phase zusätzliche
Selbstnachrichten austauscht und im Speicher ablegt. Im Gegensatz zu bisherigen
Ansätzen speichern wir keine Checkpoints auf einem fehlertoleranten Dateisystem.

Darüber hinaus stellen wir ein rein MPI basiertes MapReduce Framework, sowie
eine hybride Parallelisierung mit mehreren OpenMP Threads pro Prozess vor. Wir
beweisen die erwartete Laufzeit der verschiedenen MapReduce Phasen und Fehler-
toleranzmechanismen.

Wir implementieren die "Word Count", "Page Rank", "Connected Component"
und R-Mat Algorithmen in unserem Framework und führen Laufzeitexperimente
durch. Wir beobachten einen superlineare Speedup für das Abspeichern und Senden
der Selbstnachrichten. Die anderen Phasen, außer die Shu�e Phase, haben optimale
Speedups, wenn die Eingabe im Vergleich zu der Anzahl an Prozessen und der
Flaschenhals Last groß genug ist.

Abstract
The increase in parallel compute nodes in a high-performance computing (HPC)

system is followed by an increase in hardware failures for applications running on
millions of nodes. Therefore, future large-scale parallelized applications need to
expect, detect and handle compute node failure.

We provide a decentralized fault-tolerant MapReduce framework for iterative al-
gorithms designed to handle a HPC node failure. Our framework follows the bulk
synchronous parallel model (BSP) by using random static load balancing during the
shu�e phase. We propose a fault-tolerance mechanism, which exchanges additional
self-messages during the shu�e phase and saves them in memory. In contrast to
previous approaches, we do not save checkpoints on a fault-tolerant file system.

Furthermore, we provide a purely MPI based MapReduce framework, as well as
a hybrid parallelization using multiple OpenMP threads per process. Moreover,
we prove the expected runtime of the di�erent MapReduce phases and the fault-
tolerance mechanism.

Finally, we implement the word count, page rank, connected component, and
R-Mat algorithms in our framework and perform runtime experiments. We can
observe super linear speedups for the save self-message phase. The other phases of
our framework, except the shu�e phase have optimal phases if the input is large
enough compared to the number of processes and the bottleneck workload.

Contents

Contents

1. Introduction 1

1.1. Motivation . 1
1.2. Contribution . 1
1.3. Structure of Thesis . 2

2. Fundamentals 3

2.1. High-Performance Computing (HPC) Systems 3
2.2. MapReduce . 4
2.3. Graph Theory . 6
2.4. Balls in Bins . 6

3. Related Work 7

3.1. Fault-Tolerant MPI . 7
3.2. Theoretical Models . 9
3.3. MapReduce Libraries . 11

3.3.1. Google MapReduce . 11
3.3.2. Iterative Hadoop . 13
3.3.3. MR-MPI and Mimir . 14
3.3.4. Fault-Tolerant MapReduce-MPI for HPC Clusters 16
3.3.5. Twister . 18
3.3.6. Thrill and Spark . 19

3.4. Aggregation: Hashing vs. Sorting . 20
3.5. In-place Parallel Super Scalar Radix Sort . 21
3.6. Randomized Static Load Balancing . 22

4. MapReduce Benchmark Algorithms 23

4.1. Word Count . 23
4.2. PageRank . 23
4.3. Connected Components . 25
4.4. Recursive Matrix Model (R-MAT) . 27

5. Fault-Tolerant MapReduce 29

5.1. General . 29
5.2. Single Node Fault-Tolerance . 31

5.2.1. Single MPI Process Failure . 31
5.2.2. Single Node Failure . 34

6. MPI Parallelized MapReduce 37

6.1. Map . 37
6.1.1. Algorithm . 37
6.1.2. Complexity . 39

6.2. Reduce . 40
6.2.1. Algorithm . 40
6.2.2. Complexity . 41

6.3. Fault-Tolerance . 42
6.3.1. Redistribute Algorithm . 42
6.3.2. MergeBu�er Algorithm . 44
6.3.3. Complexity . 45

vii

Contents

7. Hybrid Parallelized MapReduce 47

7.1. Shared Memory Parallelized Map . 47
7.1.1. Algorithm . 47
7.1.2. Complexity . 50

7.2. Shared Memory Parallelized Reduce . 52
7.2.1. Algorithm . 52
7.2.2. Complexity . 54

7.3. Shared Memory Parallelized Fault-Tolerance . 55
7.3.1. Redistribute Algorithm . 55
7.3.2. MergeBu�er Algorithm . 57
7.3.3. Complexity . 59

8. Experimental Setup 61

8.1. Hardware . 61
8.2. Software and Compilation . 62
8.3. Parameters Used and Failure Generation . 62
8.4. Timing . 63
8.5. Benchmark Sets . 64

8.5.1. Text Data Sets . 64
8.5.2. Graph Data Sets . 65

8.6. Statistics . 66

9. Experimental Results 67

9.1. Word Count . 67
9.2. Page Rank . 72
9.3. Connected Components . 79
9.4. R-MAT . 85
9.5. Summary . 90

10.Discussion 93

10.1. Conclusion . 93
10.2. Future Work . 93

A. Fundamentals: Balls in Bins i

B. MapReduce Benchmark Algorithms: PageRank i

C. Experimental Evaluation iii

C.1. Word Count . iii
C.2. PageRank . v
C.3. Connected Components . vi

viii

List of Figures

List of Figures

1. Generalized HPC system structure . 3
2. High-level illustration of a MapReduce operation 5
3. Example of ULFM workflow . 8
4. Illustration of the steps in the BSP MapReduce algorithm 10
5. Illustration of the Google MapReduce master worker MapReduce algorithm . . . 12
6. Illustration of a MR-MPI MapReduce application 15
7. Illustration of the FT-MRMPI architecture . 16
8. Illustration of the Twister architecture . 18
9. Examples for the large star and small star MapReduce algorithm 26
10. R-MAT: choosing a random edge . 27
11. High-level illustration of our iterative MapReduce algorithm 30
12. Illustration of process failure during an iterative MapReduce algorithm 32
13. Illustration of 2 successive node failures . 34
14. Illustration of saving self-messages for single node failure 35
15. Illustration of the purely MPI parallelized map phase 37
16. Illustration of the purely MPI parallelized reduce phase 40
17. Illustration of the hybrid parallelized map phase 47
18. Illustration of the hybrid parallelized reduce phase 52
19. Illustration of the hybrid parallelized redistribution phase 55
20. General structure of the SuperMUC-NG supercomputer 61
21. Word occurrences for the english, yelp, and gutenberg data sets 64
22. Outgoing vertex degrees of orkut and twitter . 66
23. Word Count strong scaling experiments comparing MapReduce configurations . 67
24. Word Count strong scaling experiments showing the runtime of the di�erent

MapReduce phases on gutenberg . 68
25. Word Count weak scaling experiments comparing MapReduce configurations . . 70
26. Word Count weak scaling experiments showing comparing the runtime of the

di�erent phases . 71
27. Word Count save self-message overhead and comparison to MPI-MR 71
28. PageRank strong scaling experiments comparing di�erent MapReduce configu-

rations . 72
29. PageRank strong scaling experiments showing the speedups and runtime of the

di�erent phases for twitter . 73
30. PageRank strong scaling experiments showing the speedups and runtime of the

di�erent phases for orkut . 74
31. PageRank weak scaling experiments comparing di�erent MapReduce configurations 75
32. PageRank weak scaling experiments showing the runtime of the di�erent phases

for rhg-d8-g3 . 76
33. PageRank save self-message and recovery overhead 77
34. CC size histogram of Erd�sRényi-d0.25-n228 computed with HYB-MR 78
35. CC strong scaling experiments comparing di�erent MapReduce configurations . 79
36. Two Phase cc strong scaling experiments showing the times of the di�erent phases 81
37. Two Phase CC strong scaling experiments showing the times of the recovery phase 82
38. Alternating CC weak scaling experiments comparing di�erent MapReduce con-

figurations . 82
39. Alternating CC weak scaling experiments showing the execution times of the

di�erent phases . 83

ix

Algorithmenverzeichnis

40. CC save self-message and recovery overhead . 84
41. R-MAT strong scaling experiments comparing the di�erent MapReduce libraries 85
42. R-MAT strong scaling experiments showing the di�erent MapReduce phases . . 86
43. R-MAT strong scaling experiments showing the times of the recovery phase . . . 87
44. R-MAT weak scaling experiments comparing the di�erent MapReduce libraries . 88
45. R-MAT weak scaling experiments showing the runtime of the di�erent phases . . 89
46. R-MAT save self-message and recovery overhead 90
47. Summary of save self-message and recovery overheads 91
48. Word Count strong scaling experiments showing the runtime of the di�erent

MapReduce phases on english and yelp . iii
49. Word Count strong scaling experiments showing the speedups of the di�erent

MapReduce phases on english and yelp . iv
50. PageRank weak scaling experiments showing the runtime of the di�erent phases

for Erd�sRényi-d38 . v
51. Alternating cc strong scaling experiments showing the times of the di�erent phases vii
52. Alternating CC strong scaling experiments showing the times of the recovery phase viii
53. Two Phase CC weak scaling experiments comparing di�erent MapReduce con-

figurations . viii
54. Two Phase CC weak scaling experiments showing the execution times of the

di�erent phases . x

List of Tables

1. MapReduce framework configurations used during our experiments 62
2. Labels used to determine the runtime of the di�erent MapReduce phases during

our experiments . 63
3. Text benchmark sets used during our experiments 64
4. Graph benchmark sets used during our experiments 65
5. Relative time of MapReduce phases for Word Count on gutenberg 69
6. Relative time of MapReduce phases for Word Count on randtext-gutenberg . 70
7. 10% failure generation overheads over all experiments 91
8. Summary of save self-message and recovery overheads 92
9. Relative time of MapReduce phases with MPI-MR-ft iii
10. Relative time of MapReduce phases with HYB-MR-ft iv
11. PageRank increase in runtime of the MapReduce phases for rhg-d8-g3 v
12. PageRank increase in runtime of the MapReduce phases for Erd�sRényi-d38 . vi
13. CC large star/small star operations for Erd�sRényi-d0.25-n228 vi
14. CC large star/small star operations for Erd�sRényi-d0.25-nx ix

Algorithmenverzeichnis

1. High level map reduce application . 5
2. User-defined map function: Word Count . 23
3. User-defined reduce function: Word Count . 23
4. User-defined map function: PageRank . 24
5. User-defined reduce function: PageRank . 24
6. Large star MapReduce operation of the connected component algorithm 25

x

Algorithmenverzeichnis

7. Large star MapReduce operation of the connected component algorithm 25
8. Two Phase Connected Component Algorithm . 26
9. Alternating Connected Component Algorithm . 26
10. User-defined map function: R-MAT . 28
11. User-defined reduce function: R-MAT . 28
12. MapReduce: overview execution on process j of MRi 29
13. Fault-Tolerant Shu�e of MapReduce operation MRi on process j 32
14. Save Messages Single Process Failure: during MRi on process j 33
15. Recover: during MRi on process j . 33
16. Save Messages Single Node Failure: during MRi on process j 35
17. Purely MPI parallelized map phase executed on process j 38
18. Reduce phase executed on process j . 41
19. Redistribute: shared memory . 43
20. MergeBu�er: MPI algorothm (execution on process j) 44
21. Shared memory parallelized Map . 49
22. Reduce: shared memory . 53
23. Shared memory parallelized Redistribute on process j 57
24. Shared memory parallelized MergeBu�er on process j 58
25. PageRank: Edge List Implementation . ii

xi

Algorithmenverzeichnis

xii

1 Introduction

1. Introduction

1.1. Motivation

High-Performance Computing (HPC) systems are designed to solve computationally intensive
tasks by large-scale parallelization. In the future, the number of compute nodes in a HPC
system is predicted to further increase. The exascale computing project suggests for instance
to employ up to 106 nodes with 1000 cores each to achieve more than 1018 floating point oper-
ations per second [37, 67].
The probability of a failure during an execution on a HPC system increases with the number of
used nodes and cores [38, 92]. The mean time between failures (MTBF) is a metric indicating
the average time between two successive failures. Cappello et al. [92] predict that a conser-
vative MTBF of 100 years for a compute node implies a failure every 53 minutes on average
for an execution on 106 nodes. Furthermore, hardware failures are expected to become more
frequent [91, 92]. The transistors and wires get smaller, which are more likely to fail. Moreover,
they age more rapidly, which further increases their failure rate. Therefore, future large-scale
parallelized applications need to expect, detect and handle compute node failure.
Processing large amounts of data requires a distribution of the computation between multi-
ple machines [35]. Hence, software engineers need to take data distribution, parallelization,
fault-tolerance, and load balancing into account. This led to the introduction of MapReduce
libraries, which provide these functionalities [35]. Due to its simplicity and scalability, MapRe-
duce is popular for ’big data’ applications [63, 86].
Many MapReduce frameworks follow the master/worker design pattern and are designed to run
on commodity hardware. Moreover, they do not employ the message passing interface (MPI)
mostly used on high-performance computing (HPC) systems [16, 34, 35, 39]. While most MPI
based implementations [46, 77] do not support fault-tolerance, the FT-MRMPI
library [52] employs ULFM [23] to handle failures. The user-level failure mitigation (ULFM)
MPI implementation provides tools to detect and recover from process failures. FT-MRMPI
uses checkpoints saved on a fault-tolerant file system to continue after failure.
To the best of our knowledge, no in-memory decentralized fault-tolerant MPI based MapReduce
framework for iterative algorithms without checkpoints to a fault-tolerant file system exists.

1.2. Contribution

In the following thesis we engineer a decentralized, in-memory, and fault-tolerant MapReduce
framework for iterative algorithms running on high-performance computing (HPC) systems.
We introduce a fault-tolerance mechanism for single process failures, which we generalize for
compute node failures. Contrary to previous approaches, we do not save periodic checkpoints
on a fault-tolerant file system. The messages send between processes on the same node (self-
messages) are saved in-memory on a di�erent node. Our MapReduce framework uses these
self-messages and the data sent during the previous shu�e phase to recover the data lost by a
process failure.
We implement an MPI based MapReduce framework using the bulk synchronous parallel model,
with random static load balancing, and supporting single node failures for iterative algorithms.
Furthermore, we prove their expected runtime of O

1
m+w

p

2
, where m is the number of machine

words, w the total work load, and m as well as w are large enough (Section 6). Moreover, we
implement a hybrid MPI version of our fault-tolerant MapReduce framework using multiple
OpenMP threads on each process and prove their expected runtime.
Additionally, we implement a Word Count, a PageRank, a connected component, and a R-MAT

1

1 Introduction

MapReduce algorithm in our framework. We use these algorithms as a benchmark to perform
strong and week scale experiments on real world data sets. We conclude that saving self-
messages scales well with increasing number of processes and is faster than the other phases.

1.3. Structure of Thesis

In Section 2, we introduce a theoretical model for high-performance computing and MapRe-
duce operation as well as some general definitions. Furthermore, we describe the Word Count,
PageRank, connected component, and R-MAT MapReduce algorithms (Section 4), which we
use as benchmark during our experiments. Section 5 contains the general overview of our
MapReduce framework as well as a single process and node fault-tolerance mechanism. We
describe the di�erent phases of our purely MPI based algorithm (Section 6) and prove their
runtime. Moreover, Section 7 contains our hybrid MapReduce algorithm and its expected
execution times. We explain our experimental setup in Section 8, which we use during our run-
time experiments in Section 9. We conclude our thesis in Section 10. Finally, Sections A to C
contain additional information and figures.

2

2 Fundamentals

2. Fundamentals

We design a parallel library for execution on high-performance computing systems. We de-
scribe a theoretical parallel model in Section 2.1. Our algorithm is based on the MapReduce
programming paradigm introduced in Section 2.2. Section 2.3 contains some general graph
definitions used in di�erent benchmark algorithms in Section 4. Section 2.4 describes the balls
in bins model.

2.1. High-Performance Computing (HPC) Systems

High-Performance Computing (HPC) Systems are designed to solve computationally intensive
tasks by large-scale parallelization. As a large network of interconnected machines, HPCs are
able to process large amount of data in parallel. Figure 1 illustrates their general structure.
A HPC consists of compute nodes linked by a communication network. For simplicity, we will
use the term node instead of compute node in this thesis. Each node has its own local memory,
therefore we can model HPC systems by using a distributed memory model [86].
The compute nodes in the HPC we use follow the Non-Uniform Memory Access (NUMA)
principle [64]. A compute node can be divided into multiple NUMA nodes, which possess
their own local memory and a fixed number of cores. Cores can access the local memory on
another NUMA node on the same compute node. To access the local memory of a di�erent
NUMA node a core needs to request and transfer the data over a network. This is slower than
the memory access its own NUMA node, which we have to take into consideration during the
implementation of an algorithm.
To execute a parallel program and communicate between processes on di�erent cores we use
the Message Passing Interface MPI [29]. MPI starts p MPI processes on di�erent cores and
provides operations to send messages between them. In this thesis we use the term processes
for MPI processes. Each process has its own unique rank between 1 and p, where call n its size.
To execute an MPI program on a HPC we have to specify the number of nodes n and tasks t

per node. Then the batch system starts p = n · t processes, which can be bound to a specific
core. This prevents the process to switch its execution to another core, which could lead to
performance loss.

C C C. . .

local memory

numa node
compute node

C C C. . .

local memory

numa node
...

C C C. . .

local memory

numa node
compute node

C C C. . .

local memory

numa node
...

. . .

communication network

N0 Nn≠1

M0

Mm
n ≠1

Mm≠m
n

Mm≠1

Figure 1: General simplified structure of a high-performance computing systems and illustration
of the thoeretical HPC model.

3

2 Fundamentals

An algorithm using a hybrid parallelization starts an MPI processes per node and parallelizes
locally using a shared memory library like OpenMP. Then each node can use t parallel threads,
which have random access to their local shared memory. This approach can reduce the MPI
communication and achieve a speedup compared to pure MPI parallelization. Since the shared
memory access time of a thread at another NUMA node is slow, we can start an MPI processes
per NUMA node.
We model a HPC sytsem (Figure 1) as tuple S = (C, M, N), where C is a set of cores, M is a
set of m NUMA nodes and N a set of n compute nodes. Each NUMA node Mi œ M is a set
of t cores. The set M partitions C into equally sized and pairwise disjoint sets. The compute
nodes N partition the NUMA nodes M into equally sized and pairwise disjoint sets.
We represent an MPI execution on a HPC system S = (C, M, N) as tuple (S, P, “), where
P = {1, ..., p} is the set of p MPI processes. The function “ : P æ 2C maps each process to
a set of unique cores. Each core corresponds to at most one process and each process has the
same nonzero number of cores. We call “ the process binding of an MPI execution. This process
binding allows us to allocate physical resources to MPI processes and address the non-uniform
memory access problem of HPC compute nodes.

2.2. MapReduce

A MapReduce [35, 86] framework or library is used to apply user-defined functions to a list or
multi-set A ™ I of input elements. We are interested in sequences of MapReduce operations,
especially iterative algorithms, where input and output of two successive operations are the
same.
A MapReduce algorithm is a sequence < MR1, ..., MRj, ..., MRl > of l MapReduce operations
MRi. Let Ai ™ Ii be a multi-set, where Ai are the input elements of MRi and Ii represents
the input type. We define Ki as the set of keys and Vi the set of values. Let Di ™ Oi be the
multi-set of output elements, where Oi is the output type. Each MapReduce operation MRi is
a tuple (µi, fli, si, hi), consisting of the following functions:

• A user-defined map function µi to produce multiple key-value pairs from an input element:

µi : Ii æ 2Ki◊Vi

• A user-defined reduce function fli to map the key-values pairs to output elements:

fli : (Ki, list < Vi >) æ Oi

• A bijective serialization function si to transform keys and values to and from a byte
sequence:

si : Ki fi Vi æ list < bytes >

• A function to hash keys with a seed in N:

hi : Ki ◊ N æ N

Let MRi and MRi+1 be two successive MapReduce operations with i œ {1, ..., l ≠ 1}. To ensure
fault-tolerance we require that the output of MRi is equal to the input of MRi+1:

Di = Ai+1.

We omit the indices for readability if we consider only a single MapReduce operation MR.
Algorithm 1 and Figure 2 illustrate the application of a user-defined map and reduce function.
We can divide a MapReduce operation into three di�erent phases:

4

2.2 MapReduce

1) map phase: First, the user-defined map function µ produces for each input element e œ A

zero or multiple key-value pairs as intermediate data

B =
€

eœA

µ(e) ™ K ◊ V,

where K is a set of keys, V a set of values and B a list or multi-set.
2) shu�e phase: During the shu�e phase we group the intermediate key-value pairs by their

keys and produce key-values pairs (k, X) œ C, where

C = {(k, X) : k œ K · X = {x : (k, x) œ B} ”= ÿ}.

Note that the shu�e phase in a parallel MapReduce framework requires communication
to gather all pairs with the same key on the same process.

3) reduce phase: The reduce phase applies the user-defined reduce function fl to all key-values
pairs and produces the output elements

D =
€

(k,X)œC

fl(k, X) ™ O.

The set O represents the possible output elements, while D is the multi-set or list of
output elements.

All in all, Lines 2 and 5 in Algorithm 1 represent the map and reduce phase. Line 3 corresponds
to the shu�e phase. In the following sections, we will discuss di�erent MapReduce frameworks
with slightly di�erent user-defined map and reduce functions, but the general phases and ideas
remain the same.
During our runtime analyses, we use the following parameters of the MRC

+ complexity class
(Section 3.2,[86]). Let MR=(µ, fl, s, h) be a MapReduce operation. Let w be the total time
needed to apply the user-defined map µ or reduce fl functions on all input elements A sequen-
tially. This includes serializing and deserializing all key-value pairs as well as hashing their
keys. The term w̄ indicates the maximum time to apply a user-defined map µ or reduce fl

function. Let m bet the number of machine words needed to save the input A, output D and
intermediate elements B. The user-defined map or reduce functions produce or consume at
most m̄ machine words.

Algorithm 1: High level map reduce application
Input: A, µ : I æ list(K, V),

fl : (K, list(V)) æ list(O)
1 B : list(K, V)
2 foreach e œ A do B = B fi µ(e)
3 C = shu�e(B)
4 D : list(O)
5 foreach (k, X) œ C do D = D fi fl(k, X)
6 return D

map phase

shu�e

reduce phase

A ™ I

B = t
eœA µ(e) ™ K ◊ V

C = {(k, X) : k œ K·
X = {x : (k, x) œ B} ”= ÿ}

D = t
(k,X)œC fl(k, X) ™ O

Figure 2: Illustration of the phases in a
MapReduce operation [86].

5

2 Fundamentals

2.3. Graph Theory

In this section we list our graph theory related definitions and notations, which we use in our
benchmark algorithms in Section 4. Let G = (V, E) be a directed graph, with a vertex set V

and a edge set E ™ V ◊ V . We call v œ V a vertex and (x, y) œ E an edge. The vertices
x and y are called endpoints of edge (x, y). In this thesis we do not allow the synonym node
for a vertex, since this term is reserved for compute nodes in a HPC system. We define the
set of out-neighbors of a vertex v œ V as O(v) = {u|(v, u) œ E} and the set of in-neighbors
as I(v) = {u|(u, v) œ E}. We define O+(v) = O(v) fi {v} as the outgoing neighbors of v œ V

including v. Similar we set I+(v) = I(v) fi {v} for v œ V . Let S ™ V be a subset of vertices of
the graph G. The induced subgraph G[S] = (S, E

Õ) of G is the graph with vertices S and edges
E

Õ = {(u, v) œ S ◊ S|(u, v) œ E} containing the edges of e œ E with endpoints in S. A path
in G is a sequence (v1, v2, ..., vn) of pairwise distinct vertices vi œ V , with (vi, vi+1) œ E. The
length of a path is the number of edges connecting its vertices. For a vertex set S and graph G,
the induced subgraph G[S] = (S, E

Õ) is a connected component if each distinct vertices u, v œ S

are connected by a path from u to v and v to u.

2.4. Balls in Bins

The balls in bins model analyzes the action of sequentially assigning m balls into n bins. We
chose each bin interdependently and uniformly at random. We are interested in the expected
maximum number b(m, p) of balls in a single bin, where m indicates the number of balls
and p the number of bins. In the context of random static load balancing b(m, p) indicates
the maximum number of subproblems allocated to a process. We use m for the number of
subproblems and p for the number of processes.
The analysis of algorithms online load balancing use the balls in bins model [78]. While using
hash tables, we assign elements to locations according to a hash function. This function should
distribute elements with an equal probability. We can use the balls in bins model to analyze
hash conflicts, which occur if multiple elements are mapped to the same location. During
random online load balancing, a network of n servers handles m requests. If we assign requests
randomly between the servers, we can analyze the problem using the balls in bins model.
Our MapReduce library combines hashing and random static load balancing. We use the balls
in bins model to analyze the time complexity (Section 7). In particular, we require Theorem 2.1
to get a bound for the expected maximum number b(m, p). Raab et al. [78] prove Theorem 2.1,
the for us relevant case of their Theorem 1.

Theorem 2.1. Let M be the random variable counting the maximum number of balls in a bin.
We consider the balls in bins model with m balls and p bins. Then P (M > k–) = o(1) if – > 1
and

k– =

Y
_]

_[

m

p
+ –

Ò
2m

p
log(p) if p log(p) π m Æ p polylog(p)

m

p
+ –

Ú
2m log(p)

p

1
1 ≠

1
–

log log(p)
2 log(p)

2
if p log3(p) π m

.

Proof. Raab et al.[78] prove this theorem.

During our run time analyzes in Sections 6 and 7 we require Lemma 2.2.

Lemma 2.2. Given the balls in bins problem with m balls and p bins with expected maximum
occupancy b(m, p), m œ N and p œ N \ {1, 2}. If m œ �(p log(p)), then b(m, p) œ O

1
m

p

2
.

Proof. This Lemma follows directly from Theorem 2.1. We perform a more detailed proof in
Section A.

6

3 Related Work

3. Related Work

In Section 3.1 we discuss how MPI applications can be made fault-tolerant using di�erent
mechanisms. In particular, this section introduces the User-Level Failure Mitigation library
(ULFM). We design our framework with ULFM in mind. We present a theoretical analysis of
MapReduce computations using realistic machine models in Section 3.2. Section 3.3 introduces
six MapReduce frameworks designed for multiple platforms and di�erent optimization goals.
Section 3.6 provides us with a worst-case analysis for randomized static load balancing used in
our MapReduce library.

3.1. Fault-Tolerant MPI

The Message Passing Interface (MPI) is a library used to e�ciently parallelize applications
running on high-performance computing (HPC) systems [29]. An MPI program starts multiple
processes in parallel on multiple cores, which can be situated on di�erent compute nodes. This
library provides operations to communicate between these MPI processes. MPI can detect if
a communication between processes was unsuccessful, but does not provide any functions to
recover in case one of the parallel processes fails and crashes. Standard MPI programs need to
abort the execution in the presence of a failure. The current state of an MPI implementation
is saved in a communicator, which is damaged in case of a failure.
One approach to recover MPI applications from failures is to rely on a rollback recovery strat-
egy [23]. In case of a process failure the application aborts and restarts. By saving checkpoints
during execution, the restarted MPI program can resume from a later state and does not need
to recompute from the beginning. An example of this approach is the detect/restart fault-
tolerance mechanism of FT-MRMPI described in Section 3.3.4.
The CoCheck MPI implementation [93] provides fault-tolerance by performing periodical syn-
chronous checkpoints. During an execution of an application using CoCheck MPI, the library
makes and saves the state of the entire application automatically. In case a failure occurs,
CoCheck MPI can roll back to the last saved state and resume its execution. CoCheck MPI
performs the checkpoints synchronously to save a consistent state of all processes at once. A
major drawback of this approach is the synchronization overhead and saving the entire applica-
tion state can be expensive depending on the application [93]. Libraries like Starfish MPI [14]
and MPICH-V [26] have a similar approach and perform checkpoints or log the sent messages
in order to recover from a global saved state in case of a failure.
Reinit [28, 47] is a fault-tolerant MapReduce framework following the bulk synchronous parallel
(BSP) paradigm. The user has to periodically save synchronous checkpoints. In case a failure
occurs, the application restarts from the last checkpoint. The major di�erence between this
framework and CoCheck MPI is that the user has to manage the checkpoints. Depending on
the use case, this does not require to save the entire application state. This can be more time
and space e�cient depending on the application [28]. Note that Reinit does not abort the
current MPI execution, but respawns new processes to replace the lost ones.
fault-tolerant MPI libraries like FT-MPI [41, 42] and ULFM [23] on the other hand provide
functions to detect the failed processes and recover the communicator of the MPI library. This
means we do not have to create expensive checkpoints. FT-MPI and ULFM provide the tools
for the library user to detect and resolve failures on its own. Therefore, the user can choose the
fault-tolerance mechanism, which he wants to implement. This can increase the e�ciency of
fault-tolerant applications. This allows each algorithm to define its own fault-tolerance strat-
egy. For instance, a program which reads a large data set into memory from a file has a large
execution state. The algorithm does not need to include this data set into its checkpoints if it

7

3 Related Work

is not modified. In case of a failure the data can be reread from the file.
The fault-tolerant MPI library FT-MPI [41, 42] provides three di�erent operations to handle
and recover from process failures. These procedures produce a new functioning communicator,
similar to the standard MPI_Comm_{create, split, or dup} functions. A call to shrink removes
the failed processes from the communicator and renames the processes consecutively. This re-
quires to use MPI_Comm_rank to get the new rank of the current process. The blank operation
keeps the rank of the remaining processes, but a communication with a failed process is invalid
and results in an error. The rebuild operation spawns new MPI processes equal to the number
of failed processes.
Since we use ULFM [23] in our implementation, we are going to explain this framework in more
detail. ULFM stands for user-level failure mitigation, which implies that the fault-tolerance
and failure handling are left to the library user. Similar to FT-MPI, ULFM provides operations
to detect failures and receive a functioning communicator. We use a shrink procedure, which
removes the failed processes. ULFM restores MPI objects and enables communication after a
failure.
ULFM notifies a failure to the user on a per operation bases. Only processes which participate
in a communication with a failed process get notified. Other processes do not notice the failure.
Non-communicating processes can continue their execution. Furthermore, it is possible that
during a failed collective operation only part of the processes receive an error message. This can
happen for instance during an MPI_Broadcast operation. A part of the processes can receive
their message successfully, while the rest could not receive their data.
ULFM’s error handling is called a non-uniform error reporting, since failures are known only
locally. An advantage of this approach is that failures do not have to be propagated to all MPI
processes. This has performance advantages compared to notifying each process [23]. If we
want to propagate the error to all processes, then we need to send heartbeat messages between
each process to test if a process is still alive. Unfortunately, this results in a large amount of
system noise by small messages, which is ine�cient in MPI.
Note that this non-uniform error reporting is not viable for all algorithms, therefore ULFM
provides the collective non-synchronizing MPI_Comm_revoke operation. It has a similar behav-
ior than MPI_Abort and does not require a symmetric call on all processes. This means at
least one process has to call MPI_Comm_revoke and the remaining processes get notified. After
detects an error, a process can use revoke if failure requires all processes to participate during
the recovery. The following MPI communication functions will return a revoke error message.
Note that a process has to perform a communication to determine whether another process
called MPI_Comm_revoke.

Failure

Recv 1
detect
Failure

Revoke0

1

2

3

4 Recv 3

Recv 3

Recv 0
Revoked

Revoked

time

processes:

Figure 3: Illustration of the ULFM workflow to detect and notify failures [23]. The horizontal
lines represent the execution of a process. The operations on each process are executed
from left to right.

8

3.2 Theoretical Models

Figure 3 illustrates the failure detection workflow at the user side. Process 1 crashes and
cannot participate in the communication with process 0, whose receive operation returns an
error. Meanwhile, processes 3 and 4 can communicate even though the process already failed.
After receiving the error message process 0 performs the revoke operations, which is noticed
by processes 2 and 3 during their next communication. Note that process 2 gets a revoke error
although it’s a communication with process 3 and not 0 or 1. Furthermore, process 4 continues
its execution without noticing that process 1 failed.
After a process has called the MPI_Comm_revoke operation, no successful communication is pos-
sible. Therefore, the user has to call the MPI_Comm_shrink command, which produces a new
functioning communicator by removing the failed processes. This command can be compared to
the MPI_Comm_dup or MPI_Comm_split operations, which produce a new communicator. During
a call of MPI_Comm_shrink, the processes are renamed and get ranks from 0 to pnew, where pnew

is the number of remaining processes. If a failure occurs during shrinking the communicator,
the additionally failed processes are removed too.
Revoking and shrinking are time expensive operations and not all algorithms require to syn-
chronize for recovery. Thus, ULFM provides point-to-point communication to test if a process
has failed or not. These are the only communication operations, which can be used if a com-
municator has been revoked.
The MPI_Comm_agree operation computes the logical and of all boolean values provided by each
process. This operation is costly and should be used sparsely to get a consistent view of the
status of a communicator. If a process has failed and is contained in the communicator, then
ULFM uses false as input for this process. This operation competes successfully even if the
communicator contains failed processes.
To sum up, ULFM provides operations to detect failures and restore a functioning MPI com-
municator. The user has to implement the error handling and needs to resort lost data. ULFM
allows to send messages between functioning processes by using a communicator containing
failed processes. The user can use a revoke operation to notify all processes that a failure
occurred.
MATCH [51] is a benchmark suit to compare fault-tolerant MPI implementations, especially
ULFM and Reinit. MATCH implements six di�erent proxy applications from the ECP [81] and
LLNL ASC [71] application suits using both frameworks. The benchmark algorithms are often
used in high-performance computing, for instance iterative solvers, multi-grid and molecular
dynamics. Proxy applications are simplified benchmark algorithms used to quickly test key
features of di�erent frameworks. MATCH performs the checkpoints by using the fault-tolerant
interface (FTI) [21]. FTI is a framework allowing the user to make and manage checkpoints ef-
ficiently. The MATCH [51] tests conclude that Reinit outperforms ULFM for their benchmark
algorithms.
Unfortunately, our application cannot use the Reinit interface easily. Our fault-tolerant MapRe-
duce implementation does not save checkpoints on disk, but exchanges additional messages.
Therefore, ULFM provides a good interface for our use case.

3.2. Theoretical Models

Karlo� et al.[55] propose two complexity classes to analyze theoretical MapReduce algorithms,
the MapReduce Class (MRC) and the Deterministic MapReduce Class (DMRC). DMRC

contains the MapReduce algorithms consisting of a polylogarithmic amount of map mj and
reduce rj operations executed as sequence < m1, r1, ..., mk, rk >. Let n be the input size and
‘ > 0 be a constant. The map mj and reduce rj operations have a polynomial time complexity
and require sub-linear space: O(n1≠‘). The memory requirement of the key-value pairs pro-

9

3 Related Work

duced by a map operation mi must be sub-quadratic: O(n2≠2‘). MRC is a DMRC, which
allows randomization. The final output of a MapReduce algorithm in MRC has a probability
of 3

4 to be correct.
The complexity class N C contains parallel algorithms, which require O(logi

n) time by using
O(nj) parallel processors, where i, j > 0. P is the class containing algorithms that can be
solved in polynomial time. Karlo� et al.[55] prove that DMRC ™ P and if P ”= N C, then
DMRC (N C. The authors suspect but could not prove that P (DMRC.
These theoretical MapReduce classes have disadvantages arising from a gap between theory
and practice [86]. First, MRC algorithm do not have to attain a speedup compared to the best
sequential algorithm. Furthermore, they can use O(n2≠2‘) space, which can lead to memory
ine�cient algorithms or even algorithms that exceed the available storage space. The com-
plexity class MRC

+ solves these problems by applying a more realistic machine model [86].
MRC

+ introduces four new parameters. The term w indicates the total time needed to apply
the user-defined map µ and reduce fl function on the input data sequentially. The maximum
time over all user-defined map or reduce functions applied on all input elements is w̄. MRC

+

uses m to express the total memory used to save the input, output and intermediate key-value
pairs. The term m̄ describes the maximum number of machine words produced or consumed
during a user-defined map or reduce function call.
Let’s execute a MapReduce algorithm on a distributed memory computing system with p pro-
cesses and the input data being distributed so that each process stores O(m

p
+ m̄) words.

Then the MapReduce algorithm can be implemented so that each expected local work is
�(w

p
+ w̄ + log p) and has a communication bottleneck volume of �(m

p
+ m̄ + log p). The local

work is the number of clock cycles and waiting rime needed by a process and bottleneck volume
is the maximum number of machine words communicated by a process.
Figure 4 gives an overview of a bulk synchronous parallel (BSP) based algorithm to achieve the
theoretical complexity. The MapReduce algorithm starts with the input data distributed evenly
between the di�erent processes. Then each process applies the user-defined map function. The
static load balancing by distributing the input evenly can lead to imbalanced execution. There-
fore, we can use distributed work stealing to redistribute work during the map and reduce phase
if the initial partitioning was imbalanced.

Map Map Map

workstealing

Reduce

workstealing

Reduce Reduce

Prefixsum
Shu�e

ensure postcondition

. . .

. . .

µ

fl

Figure 4: Illustration of the steps in the BSP MapReduce algorithm [86]. It consists of a map
phase, followed by a prefix sum to determine the destination of key-value pairs and
then a shu�e phase. Furthermore, the BSP MapReduce algorithm uses work stealing
during the reduce phase followed by a random redistribution of output elements.

10

3.3 MapReduce Libraries

The main goal during the shu�e phase is to get the key-value pairs produced by the map phase
with the same keys to the same process. Furthermore, the algorithm should distribute the data
evenly so that each process receives O(m

p
+ m̄) words. Mapping the hashed keys to processes as

done in previous sections can produce an imbalanced distribution. By computing a prefix sum
over the hashed keys and determining the send data per hash value, the key-value pairs can be
better distributed. Finally, during the reduce phase one call to a user-defined reduce function
can produce multiple elements. From the second produced element onward, the elements are
sent to a random process. This procedure ensures that the output data is distributed evenly
and a potential new MapReduce operation can be performed.

3.3. MapReduce Libraries

In the following sections, we introduce multiple parallel MapReduce libraries for big data pro-
cessing. In Sections 3.3.1 and 3.3.2 we introduce the first MapReduce framework developed by
Google, as well as Hadoop, its open source implementation. Section 3.3.3 describes MR-MPI
and Mimir, two MPI based MapReduce libraries designed to run on HPC systems. Section 3.3.4
contains a fault-tolerant MapReduce library using MPI and ULFM for communication and
parallelization. In Section 3.3.5 we explain Twister, a fault-tolerant framework for iterative
MapReduce algorithms. We introduce Thrill and Spark in Section 3.3.6. Moreover, we describe
the interfaces of these frameworks as well as their map, reduce and shu�e phase algorithms. If
provided, we explain how their fault-tolerance mechanisms work.

3.3.1. Google MapReduce

Dean et al. [34, 35] present a MapReduce framework in order to facilitate parallel comput-
ing, while ensuring fault-tolerance. Google introduces this framework to analyze large data
collections such as crawled documents and web request logs. These algorithms and data ma-
nipulations are usually straightforward and requires the application of same simple functions.
To finish the computation in a reasonable time, Google requires parallelization on thousands
of machines. Therefore, programmers need to ensure load balancing, fault-tolerance and data
distribution. For instance, the PageRank algorithm introduced in Section 4.2 is conceptually
simple, but the introduction of fault-tolerance and parallelization results in longer design time.
The Google MapReduce library facilitates the implementation of large-scale parallel algorithms,
by abstracting from load balancing, fault-tolerance and data distribution.
The user of the Google MapReduce framework defines a map function µ and a reduce
function fl. In contrast to the interface introduced in Section 2.2, the input and output are
key-value pairs.
Dean et al. [34] designed the Google MapReduce framework to run on the computing hardware
used at Google. Especially MapReduce is optimized for a large cluster consisting of thousands
of dual-processor x86 machines running Linux and connected by a 1 GB/s Ethernet connec-
tion network. A MapReduce algorithm accesses the input and output date from a distributed
fault-tolerant file system (GFS) [48]. This file system saves the data redundantly to prevent a
data loss in case of a failure.
Figure 5 illustrates the Google MapReduce implementation. The user program defines the map
and reduce functions and invokes the MapReduce framework. This spawns one master process
and multiple worker threads on di�erent machines of the cluster. The master assigns work and
ensures load balancing, while the worker apply the user-defined map and reduce functions. The
input files are saved on the GFS file system, which MapReduce divides into M splits with a size
of 16 ≠ 64 MB. These splits correspond to M di�erent map tasks. The master assigns a map

11

3 Related Work

User Program

Worker

Worker

Worker

Master

Worker

Worker

split 0
split 1
split 2
split 3
split 4
split 5
split 6
split 7
split 8

file 0

file 1

input files map intermediate files reduce output files

forkforkfork

assign map assign reduce

read

local write

remote read

write

Figure 5: Illustration of the Google MapReduce master worker implementation [35].

task to a worker, which loads the corresponding split from the distributed file system. Then the
mapper applies the map function µ to each element and saves the intermediate key-value pairs.
The local disk of a map worker is divided into R partitions, where each partition corresponds
to a reduce task. The mapper saves the intermediate pairs (k, v) periodically into partition
(h(k) mod R), where h is a hash function. The map workers pass the partition locations back
to the master, who waits until the map phase has processed all pairs of a partition p and assigns
them to a reduce worker. This worker first acquires the corresponding intermediate key-value
pairs and sorts them according to their key. MapReduce uses an external sorting algorithm if
the key-value pairs do not fit into memory.
After sorting, the reduce worker iterates over the intermediate pairs and determines for each
unique key the list of corresponding values. Then the reducer applies the user-defined reduce
fl function and saves the outputs to a file on the GFS file system. Finally, if no work remains
the master terminates and the execution of the user program resumes.
Google MapReduce does not support in-memory iterative MapReduce algorithms. This is be-
cause the input and output have to be read from and saved to files on the distributed file
system GFS. Nevertheless, the user can chain multiple MapReduce executions. In Section 3.3.2
we discuss how the Google MapReduce algorithm can be extended to in-memory MapReduce.
Google MapReduce provides fault-tolerance for worker failures. The master process pings the
workers periodically. If the master receives no response after a certain time, it considers the
worker to have failed. The intermediate key-value pairs are saved on the local disk of the map
worker. Therefore, if the mapper fails, its produced data is lost. The master marks the tasks
executed by the failed worker as uncompleted and redistributes it to a free worker. Similarly,
the uncompleted map and reduce tasks have to be rescheduled. Finally, the master updates the
data location for the reduce worker requiring data from unavailable local disks. The completed
reduce tasks do not have to be rescheduled, because corresponding results are not saved locally
but on a distributed file system.
Currently Google MapReduce does not support the failure of the master process. In case of its
failure, we have to restart the MapReduce execution. We can resolve the failure of the master
process by using periodic checkpoints [34]. The authors consider master failures unlikely and
rescheduling the entire MapReduce computation more e�cient.

12

3.3 MapReduce Libraries

3.3.2. Iterative Hadoop

Apache Hadoop [16] is an open source MapReduce implementation deriving the principles of
Google MapReduce [75, 98]. While the Google library has a C++ interface, Hadoop provides a
Java API and uses the Hadoop Distributed File System (HDFS) [87] instead of the GFS file
system. Similarly to GFS, HDFS provides fault-tolerance. Hadoop requires the same definition
of the user-defined map function µ and reduce function fl, as given by Dean et al. [34, 35] and
described in Section 3.3.2.
The basic Hadoop implementation follows the same logic as described in Section 3.3.1. This
includes storing the intermediate data on local disks and all its implications for fault-tolerance.
The input and output data have to be saved on the HDFS file system between MapReduce
operations. Condie et al. [32] propose a pipeline system to exchange data between workers
immediately, as well as between di�erent MapReduce operations.
The general idea of the pipeline system is that a map worker sends its produced key-value pairs
directly to the corresponding reducer. This does not require the storage of the intermediate
data on the local disk. Therefore, each map thread opens a TCP connection to each worker who
needs to receive the key-value pairs. This approach has two major disadvantages [32]. First,
the mapper may need to send data to a reduce task which the master has not yet scheduled.
Secondly, even if we could schedule each reduce task, we would need to maintain a TCP connec-
tion between nearly every map and reduce workers. This would come with serious scalability
and performance issues.
To solve these problems, the mapper saves part of the intermediate key-value pairs on their
local disk. Therefore, the mapper saves the pairs locally for unscheduled reducers. If the master
schedules a reduce task, it pulls the necessary data as described in Section 3.3.1. To limit the
number of TCP connections, each map worker has only a connection to a limited number of
reduce workers. The mapper saves key-value pairs destined to not connected workers to the
local disk. Furthermore, if a map worker cannot send data immediately over a TCP connection
Hadoop bu�ers it locally. This prevents map workers to wait for reduce workers.
Iterative Hadoop has to modify the fault-tolerance mechanism of Google MapReduce to address
the intermediate data coming through a pipeline. Each reduce worker receiving data through a
pipeline keeps track of the incoming data. The reducer processes it without merging it with the
final output. So if a failure interrupts the transmission of a map task, then the reduce task dis-
cards the non-complete data and waits for the master to reschedule the map task. The master
thread reschedules failed reduce tasks, which have to receive the intermediate data again from
each map task. If the map and reduce workers would only communicate through pipelines, this
would require the mapper to recompute nearly every task. Therefore, the map worker saves
the data send over pipelines additionally on their local disk. In case a reduce worker fails, the
new reduce task can request their corresponding intermediate key-value pairs again.
An additional problem of the Google MapReduce algorithm is that a reduce task has to wait
until each map worker has sent the corresponding key-value pairs. This requires the reduce
worker to store the intermediate data on a local disk instead of the map worker. Therefore,
Condie et al.[32] introduce snapshots and the partial execution of reduce tasks. The general
idea is to apply the user-defined reduce function immediately on the available data and save
the results as snapshots. If a reduce task receives new data, then it completes the snapshot.
Hadoop assigns each snapshot a progression status, which estimates their progression.
Hadoop uses these snapshots to construct a pipeline between two successive MapReduce oper-
ations mr1 and mr2. If mr1 produces a snapshot, the corresponding reduce worker pipelines
it immediately to a map task in mr2. Additionally, the reducer saves the snapshot to the
HDFS file system in case the worker containing the snapshots fail. The reduce worker sends
new updates to the snapshot to the corresponding map worker and replaces it on the HDFS

13

3 Related Work

file system. Note that the user-defined reduce function interface is changed to allow a partial
execution.
By allowing pipelines between di�erent MapReduce operations, we have to ensure the fault-
tolerance. Hadoop handles failures inside a MapReduce operation as described above. If a map
task in mr2 fails, then the master reschedules it and the new mapper can load the snapshots
with the highest progression from the distributed file system. The tasks in mr2 cache the re-
ceived snapshots and their progression. They wait for a new snapshot with higher progression
if the corresponding reduce task in mr1 fails.
All in all, the pipeline system enables a faster communication inside a MapReduce operation
and between two successive operations. But the fault-tolerance and the limitation of TCP
connections still requires to save data on the local disks and the HDFS file system. Finally,
the introduction of snapshots enables the execution of reduce tasks without waiting for the
completion of each map task.

3.3.3. MR-MPI and Mimir

The map reduce library MapReduce-MPI (MR-MPI) provides a similar functionality to Google
MapReduce introduced in Section 3.3.1. This small and portable C++ framework only requires
a C++ compiler and an MPI library installed on the target system [46, 77]. Plimpton et al. [77]
developed MR-MPI to realize large-scale graph algorithms [77] on HPCs: random graph gen-
erator R-MAT [27], page rank [73], triangle enumeration [30], single-source shortest path and
maximal independent set.
MR-MPI has a simple C++, C and Python interface providing functions to compute the map,
shu�e and reduce phase. The library user needs to define a map function µ and reduce
function fl. Similar to Google MapReduce and Hadoop the input and output are key-value
pairs as described in Sections 3.3.1 and 3.3.2. The main di�erence between this and previous
frameworks is the type of the in and output parameters of the user-defined functions. MR-MPI
requires the user to serialize and deserialize the inputs and outputs during the function defini-
tion. This may have performance advantages but makes it more di�cult to use the framework.
MR-MPI allows the user to access a user-defined object during the map and reduce phase. This
object is local for each process. It is the same for each user-defined function executed on the
same process.
MR-MPI requires an MPI environment therefore, the user has to call the map and reduce
phases between an MPI_Init and MPI_Finalize command. This allows to combine MR-MPI
with ordinary MPI commands. To allow this interleave of MPI and MR-MPI functions, the
map reduce library synchronizes all processes after each of its functions with an MPI_Barrier.
Note that the MR-MPI framework does not ensure fault-tolerance and does not provide data
redundancy as Hadoop and Google MapReduce with their fault-tolerant file system. Since
MR-MPI uses an ordinary MPI and not a fault-tolerant version like ULFM, we cannot detect
faults and the application aborts in case of a process failure.
A map reduce operation in MR-MPI illustrated in Figure 6 consists of a map, reduce and shu�e
phase, where the shu�e phase includes an aggregation and a convert phase. The MPI process
applies the user-defined map function locally. MR-MPI divides the input and output key-value
pairs into fixed-sized pages, which it distributes between the di�erent processes. These pages are
not related with the operating system pages, but are preallocated chunks of memory, which the
library uses to avoid memory fragmentation. We can compare pages to the split files and tasks
in Google MapReduce. Pages represent a collection of input elements to which the user-defined
map function is applied at once. The page size is an optimization parameter with a default size
of 64 MB. During the reduce phase MR-MPI applies the user-defined reduce function.

14

3.3 MapReduce Libraries

(key,value)

page

map

...
...

...

...

aggregate

send 0

send 1

hash

...

...

recv 0

recv 1

all

to all

partitions HT

...

(key,values) (key,value)

...

convert reduce

shu�e

Figure 6: Illustration of a map and reduce phase executed by the MR-MPI library [77]. This
figure presents the execution on one MPI process. The shu�e phase divides into the
aggregate and convert phase. During the aggregate phase, the intermediate key-value
pairs are sent between processes. The convert phase groups the key-value pairs on
the same process by their key.

The aggregation phase distributes the key-value pairs to the di�erent MPI processes by us-
ing a 32-bit hash function. The key-value pair is sent to process (h(key) mod n), where n

is the number of MPI processes. After partitioning the pairs into send bu�ers, MR-MPI uses
MPI_All_to_allv commands to exchange the pairs and ensures that each pair with the same
key is on the same process.
During the convert phase, each MPI process groups the key-value pairs by their key. This
algorithm uses a hash table of fixed size, which does not necessarily fit all keys. Therefore, the
convert phase divides the pairs into partitions. First, MR-MPI fills the hash table and assigns
each key to the first partition. After the hash table is full, MR-MPI scans over the remaining
pairs and estimates the number and size of partitions. The algorithm assigns pairs, whose keys
are already in the hash table to the first partition. By using the estimated partition number
and size, MR-MPI assigns the remaining keys to a partition according to their hashed key. By
using a hash table, the convert phase groups each partition by key and saves keys followed by
their value in pages.
The advantage of this two phase shu�e is that the user can call the aggregate and convert
functions individually. For instance, the user may need all key-value pairs on the same process
but does not need to apply a reduce function. Furthermore, the user may need to group the
key-value pairs locally without shu�ing the pairs.
The main problem of MR-MPI is its memory e�ciency [46]. On the one side, the shu�e phase
allocates the send and receive bu�er each time. On the other side, allocating pages of fixed size
statically leads to more memory usage than needed. The map reduce library Mimir based on
MR-MPI addresses these problems.
To avoid allocating large save and receive bu�ers for the aggregation phase, Mimir combines
both phases into a MapReduce operation similar to the Google library. Mimir allocates a send
and receive bu�er of equal fixed size for each MPI process. After applying the user-defined map
function, the algorithm saves the produced key-value pairs into the correct send bu�er and de-

15

3 Related Work

termines the destination process for each pair as described above. The map phase stops if one
of the send bu�ers is full and exchanges the bu�ers by using an MPI_All_to_all operation.
After exchanging the messages, Mimir copies the key-value pairs into a list, which is the input
for the convert phase. After copying the pairs Mimir resumes the map phase.
This approach prevents to save all key-value pairs after the map phase before sending. Fur-
thermore, Mimir requires only fixed sized send and receive bu�ers. Moreover the MapReduce
framework exchanges the pages for a dynamic memory management system, which prevents
allocating too much memory. Note that Mimir still saves all intermediate key-value before
applying the reduce phase, but it does no longer require a large send bu�er.

3.3.4. Fault-Tolerant MapReduce-MPI for HPC Clusters

Yanfei et al.[52] developed a fault-tolerant MapReduce framework (FT-MRMPI) to combine
the MPI based implementation of MR-MPI in Section 3.3.3 and fault-tolerance of Google
MapReduce in Section 3.3.1. FT-MRMPI provides two types of fault-tolerance. First, this
framework uses the error handler of standard MPI libraries to abort the MapReduce execution.
This permits a resubmission of the MapReduce job, which uses checkpoints to speedup the
recovery and re-execution. Secondly, FT-MRMPI can use a fault-tolerant MPI implementation
like ULFM to recover from failures without scheduling the MapReduce job again.
As for the previous frameworks, the user has to define a map function µ and reduce function fl

function. Similar to previous frameworks, the input and output types are key-value pairs. In
contrast to MR-MPI, FT-MRMPI accepts data types instead of serialized elements as key-
value pairs. Therefore, the user has to provide the serialization separately. In contrast to all
previous frameworks FT-MRMPI allows the user to emit only one key-value pair during an
application of µ or fl.
Figure 7 illustrates the architecture of FT-MRMPI, which uses MPI or ULFM as communication
library. FT-MRMPI saves the input, output and intermediate key-value pairs on the local disk
or the shared HPC file system. This library does not allow in memory MapReduce like the
Hadoop extension introduced in Section 3.3.1. Each process runs the same program using a
distributed master and load balancer. The master divides the input data into small chunks
which are distributed between the di�erent processes using a hash function, similar to MR-
MPI. Furthermore, the master takes track of the processed chunks by using a local and global
task table. We can compare chunks to the MR-MPI pages or Google MapReduce splits.

Task

Runner

Distributed

Master

Load

Balancer

Failure

Handler

Local Task

Table

Global Task

Table

Map Reduce Process

.

MPI/ULFM

Map

Reduce

Jobs

Figure 7: Illustration of the FT-MRMPI architecture [52]. This figure shows one of the p

identical programs executed by the MPI library in parallel.

16

3.3 MapReduce Libraries

The task runners apply the user-defined map and reduce functions to the di�erent data chunks.
The local task table takes track of the chunks locally processed by the task scheduler and saves
its completion state. The global task table contains information about chunks processed by
other processes. Note that while the local task table is always updated, the global table may
not contain all finished chunks. Each distributed master periodically broadcasts the state of
their local task table, which allows each process to update their global task table. During the
execution of a task, FT-MRMPI makes periodical checkpoints and tracks them with the task
tables.
As soon as a task finishes, the task runner saves the resulting data on the global file system of the
HPC. Checkpoints are usually small, while the HPC file systems are designed and optimized to
handle large I/O operations. FT-MRMPI gathers the checkpoints on a local disk or in memory
and transfers them together to the file system to minimize small I/Os. Note that usually a HPC
nodes have no local disks and can therefore gather the checkpoints in memory. The algorithm
needs to save the checkpoints directly on the shared file system if the memory is too small,
which results in small ine�cient I/O operations.
FT-MRMPI initially uses a static load balancing strategy by distributing the intermediate key-
value pairs according to their hashed keys. A new load balancing problem arises during the
recovery. The load balancer needs to redistribute the remaining work of a failed process equally.
While unprocessed chunks should have similar execution times, the distributed scheduler does
not know the remaining time for partially executed tasks, whose checkpoints are located on
the shared file system. To estimate the remaining time, the load balancer takes track of the
execution times of the di�erent tasks and estimates the running time for the di�erent chunks
and checkpoints. FT-MRMPI uses this estimation to redistribute the remaining tasks during
a recovery.
The FT-MRMPI failure handler distinguishes between a checkpoint/restart and detect/resume
fault-tolerance. The former requires only a standard MPI implementation, which needs to
detect failures and aborts the MapReduce execution. By using the saved results of the tasks
during the map and reduce phase, as well as the additional checkpoints the failure handler can
detect the remaining work, which the load balancer distributes. Note that this approach requires
the user to manually resubmit the MapReduce job to the HPC, since FT-MRMPI aborted the
entire execution. The input, intermediate and output data as well as the checkpoints are saved
on the distributed file system of the HPC. Therefore, the data is still available even if a compute
node crashes during the execution.
The detect/resume fault-tolerance relieves the user from having to resubmit the MapReduce
job by using ULFM. In case of a failure, the ULFM library gathers the remaining processes
and indicates which processes have crashed. By using the global task table, the load balancer
can redistribute the remaining task of the failed processes. The algorithm then reloads the
checkpoints from the file system and restores part of the lost data. FT-MRMPI suggests
an alternative version, where the task runner makes no checkpoints. In case of a failure, the
failure handler recomputes all tasks of the crashed processes. This requires no overhead to make
checkpoints during the map and reduce phase, but leads to longer recovery times. Furthermore,
the map tasks do not need to save the intermediate key-value pairs to the file system.
One advantage of the detect/resume compared to the checkpoint/restart method is that FT-
MRMPI has to reload only the checkpoints of the failed processes. The checkpoint/restart
method requires to reload the checkpoints of each MPI process, since the failure handler aborts
the execution. This reduces the number of I/O operations and therefore the execution time.

17

3 Related Work

3.3.5. Twister

Twister [39] is a fault-tolerant iterative MapReduce framework similar to the iterative Hadoop
extension and using the Google MapReduce design. Ekanayake et al. [39] designed Twister
to run on multiple compute nodes connected by a broker network. The target systems have
a local disk per node, which contains the input and output data evenly distributed. Twister
provides commands to manage this distributed file system composed of the local disks. For
instance, Twister provides a function to partition files over multiple nodes. This files system is
similar to GFS and HDFS but does not provide all their functionality. This MapReduce library
provides fault-tolerance only for iterative algorithms. This means the data produced during
one MapReduce operation is lost in case of a failure. The Twister framework requires the user
to define a map and reduce function with the same signature as in Google MapReduce.
Twister uses NaradaBrokering [74]: a message interface following the publish–subscribe mes-
saging pattern. The sender in a broker network does not specify the destination of the message,
but divides the message into classes. In this case, Twister chooses the classes, so that the key-
value pairs produced during the map phase are in the same class. A participant in a broker
network can choose which class he wants to receive and subscribes to this class. Therefore, a
node can receive all key-value pairs in a class and perform the reduce phase on this class.
Figure 8 illustrates the architecture of Twister. A user program starts the Twister library on
the main node, which spawns a deamon process on each compute node. This MapReduce li-
brary distributes the input data for the map phase statically, evenly and randomly between
the di�erent nodes and saves it on their local disks. Each node has a worker pool for the map
and reduce phase. These workers apply the user-defined map functions and push the resulting
intermediate key-value into the broker network.
The reduce worker on the di�erent nodes subscribe to a class of key-value pairs and receive
the data as soon as the map worker classifies them. The reducer bu�ers the intermediate key-
value pairs until all pairs for the reduce task are gathered. If the memory is not su�cient,
then the intermediate can be stored temporarily on the local disk. During the reduce phase,
Twister applies the user-defined reduce function and saves the results to the local disk. The

Memory
m m m

r r. . .
. . .

Twister Deamon

workers
intermediate data

Local Disk

Memory
m m m

r r. . .
. . .

Twister Deamon

workers
intermediate data

Local Disk

B
B

B
B

. . .

. . .

Master Node
Main

Program

Broker Network

Figure 8: Illustration of the Twister architecture [39]. Each compute node starts a Twister
Deamon consisting of multiple map and reduce workers. Twister exchanges messages
through the broker network.

18

3.3 MapReduce Libraries

next MapReduce operation can use this output.
Furthermore, this library provides two new functions, to facilitate the programming of iterative
algorithms. The Twister user can use these functions in their program to send data to the map
and reduce tasks or get information from the output data. First, Twister has a broadcast oper-
ation, which sends the same data object to all twister deamon processes. The user can access
this object in the user-defined functions. Secondly, Twister provides a combine function, which
the user program can call after a MapReduce operation. This function computes a reduction
over all output key-value pairs and provides a result that can indicate whether an iterative
algorithm should stop. Note that the user has do define a reduction function for all output
elements of the MapReduce operation.
In contrast to FT-MRMPI in Section 3.3.4, Twister does not save checkpoints during the map
and reduce phase. Twister’s approach at fault-tolerance is to save the application state between
MapReduce iterations. Note that if checkpointing is expensive, then Twister does not have to
save its state after each iteration. The number of MapReduce operations between checkpoints
is a tuning parameter. This approach only works if it is possible to save the necessary infor-
mation redundantly. If the computation system only provides a local disk per node and no
global fault-tolerant file system, the checkpoints cannot be saved safely. If during a failure the
non-redundant checkpoints are lost, then the recovery fails.
Twister has to save the data send by the user program directly to the map and reduce phase
by the broadcast method. If a failure occurs, these data and the saved key-value pairs are
su�cient to roll back to the last saved MapReduce operation and recompute all steps. Twister
restarts the computation on a new set of compute nodes.
Furthermore, Twister provides fault-tolerance during the message exchange by using a fault-
tolerant network interface. It assumes that no irreversible failures occur during the communi-
cation. Finally, this framework does not provide fault-tolerance in case the master node with
the user program fails. The reasoning is that master failures are unlikely and if it occurs the
user can restart the program.

3.3.6. Thrill and Spark

Apache Spark [100] is a library that came up to satisfy a larger set of algorithms than a map
reduce framework. The main goal is still to provide an automatic work parallelization, data
distribution and fault-tolerance for big data algorithms on large computer systems. While
still implementing the map and reduce functions, Spark provides more operations which do
not have to be necessarily parallel. The filter function, for instance removes elements that do
not satisfy a certain condition. Furthermore Spark provides a machine learning library MLlib,
which facilitates the design and implementation of scalable machine learning algorithms and
pipelines [84].
Spark functions operate on resilient distributed datasets (RDD). These read-only data struc-
tures divide into multiple partitions distributed between multiple processes. If a RDD partition
is lost, then Spark can recompute the lost data from other RDDs.
The Thrill library [22] is similar to Spark with three major di�erences. Thrill is C++ imple-
mentation and by exploiting template meta programming achieves faster execution times. The
basic data structures of Thrill are arrays, which allows additional operations, for instance sort-
ing, prefix sums, window scans, and zipping. Note that Thrill does not support fault-tolerance.
The main Thrill data structure is a distributed immutable array (DIA) comparable to Spark
RDDs. We can compare a DIA to a large array, which is distributed evenly over the compute
nodes of a cluster. The user cannot modify this array manually but has to use the by Thrill
provides operations. These operations can be divided into four categories. Source operations

19

3 Related Work

create a DIA object, for instance by reading a file. Local operations have one or more DIAs
as input and output and require no communication, for example a map phase which applies a
user-defined map function. Distributed operations have DIAs as input and output and require
communication between the di�erent compute nodes, for instance a reduce phase or sorting.
Finally, actions take a DIA as input but do not produce no new DIA., for instance getting the
maximum element.
Moreover, Thrill provides a flat map operation, which correspond to a map phase and applies
a user-defined map function µ. Furthermore, Thrill implements an associative reduce opera-
tion, which combines the shu�e and reduce phase in MapReduce frameworks. Note that in
Thrill the user-defined reduce function has to be associative, which is not necessarily the case
in MapReduce frameworks. Similar to FT-MRMPI in Section 3.3.4, the reduce phase of Thrill
allows the user to crate only one key-value pair in the user-defined reduce function. Since Thrill
does not require to perform the map and reduce phase with one operation, we can execute a
map phase after a reduce phase to get the same functionality as Google MapReduce.
Furthermore, Thrill allows the user to chain di�erent functions and create a pipeline. Due to
the template meta programming, the compiler merges multiple local operations into a single
operation without performance loss. This can reduce the total number of operations and the
data flow between local operations.
We describe a MapReduce execution in Trill more precisely. First, the Thrill map phase consists
of simply applying the user-defined map function. The Thrill reduce phase combines shu�ing
and reduction. First, Thrill divides the space of keys into w equally sized partitions, where
w is the total number of workers distributed over the cluster. Each worker gets a partition.
Each Thrill worker iterates over their DIA and streams the key-value pairs immediately to
their corresponding worker. This framework uses MPI or TCP for the communication between
workers. Each worker stores the received data in an in-memory vector. If this bu�er is full, it
is sorted and saved to the disk. After sorting all key-value pairs, Thrill merges them with a
multiway merge algorithm. After sorting, we can apply the user-defined reduce function and
save the results in a new DIA. Note that we need to define compare operation for the keys.

3.4. Aggregation: Hashing vs. Sorting

During the reduce phase of a MapReduce algorithm, we apply the user-defined reduce function
to all keys and their corresponding values. We thus have to gather all key-value pairs with the
same key and pass them to the user-defined reduce function (Algorithm 1 Line 5). Aggregating
elements according to a key is a well-studied problem in relation with query algorithms in large
database and SQL operations like JOIN and GROUP BY [15, 20, 49, 56, 65, 69].
In literature two major techniques are used to realize aggregation: hashing and sorting. The
core of a hashing based technique is a hash table, which gathers the values of each key. The
advantage of aggregation with hashing is the expected O(1) access time of hash tables [56].
The disadvantage is a performance loss with increasing number of table entries [56, 69]. To
limit comparisons during hash table accesses, the table size should be two times larger than
the number of input elements. This increases the memory requirement. For large hash tables,
an operation can access memory whose page entries are not cached in the translation lookaside
bu�er (TLB). Increasing the number of TLB misses leads an increased runtime. Furthermore,
duplicated keys lead to collisions in the hash table. Finally, poor hash functions decrease the
viability of the hash table method drastically [49]. To avoid these disadvantages of hashing
based aggregation, a common approach is to divide the input into partitions according to their
hash value. Then we construct a hash table on each partition [20, 56, 69]. We chose the size of
each partition so that their corresponding hash table fits into the cache.

20

3.5 In-place Parallel Super Scalar Radix Sort

Sorting based aggregation techniques sort the elements according to their key. After sorting,
the elements with the same key are situated next to each other. A popular sorting algorithm
for aggregation is a merge sort with a running time in O(n log n), where n the number of input
elements [15, 20, 56]. The input elements can be sorted using a radix sort to achieve linear
running times [56].
The optimal aggregation technique seems to depend on the used hardware [15, 20, 56]. On
Intel Core i7 from 2009, hash-based aggregation outperforms the sorting algorithm [56]. The
authors [56] claim that future hardware will be more suited for merge sort aggregation, because
of the increasing number of cores, decreasing memory bandwidth, and wider SIMD. A parallel
aggregation executed on a NUMA architecture performs best with a version of the merge sort
algorithm [15]. Furthermore, hardware with su�ciently wide SIMD instructions performs best
with sorting based aggregation [20]. Geafe [20] claims that no technique outperforms the other
in all situations and therefore the aggregation algorithm should be chosen depending on the
use case.
An important optimization metric is the number of cache misses [69]. By e�ciently using the
CPU caches, we can speed up the aggregation process [65, 69]. In the case of cache e�cient
aggregation, the sorting and hashing approach are equivalent [69]. The external memory model
consists of four parameters characterizing the cache and input. Let N be the amount of input
rows, K the number of groups in the input, M the number of rows fitting into the cache
and B the number of rows per single cache line. Aggregation with a cache e�cient sorting
algorithms, like the radix sort IPS

2Ra [17], requires roughly 2 ·
N

B

Ï
log M

B
min

1
N

B
, K

2Ì
+ N

B
+ K

B

cache line transfers [69]. Aggregation with a single hash table is e�cient if the table fits
into the cache (K < M) with N

B
+ K

B
cache line transfers. This approach performs worse

with N

B
+ 2 · (1 ≠

M

K
) · N cache line transfers if the hash table does not fit into the cache

(K Ø M). Finally, the authors [69] propose and optimized sorting and hashing aggregation
with 2 ·

N

B

1Ï
log M

B

N

B

Ì
≠ 1

2
+ N

B
+ K

B
cache line transfers.

3.5. In-place Parallel Super Scalar Radix Sort

To group all intermediate key-value pairs, our MapReduce implementation uses sorting based
aggregation as introduced in Section 3.4. We employ IPS

2Ra, an in-place cache e�cient parallel
MSD radix sort [17]. IPS

2Ra provides best results for near-uniform input distribution, small
keys, or a sequential execution. A most significant digit (MSD) radix sort is a non-comparative
sorting algorithm [17, 44] for unsigned integer data types. The authors of [89] extend radix sort
for floating point data types.
Radix sort is related to bucket sort and recursively divides input elements into buckets. IPS

2Ra
uses the bits of integer input elements to determine the buckets during sorting. A MSD radix
sort starts with the most significant bit and proceeds to the least significant bit. IPS

2Ra starts
with the most significant bit i. We distribute the input elements into two buckets, one where
all elements have 0 as bit i and one for 1. We recursively partition each bucket according
to bit i ≠ 1. The input elements are sorted if we have partitioned according to the least
significant bit.
IPS

2Ra is based on an in-place parallel sample sort algorithm IPS
4o [17]. Sample sort is a

generalization of quicksort for multiple pivots. IPS
2Ra reuses the highly optimized, in-place,

parallel, and cache e�cient distribution operation of IPS
4o to divide elements into two buckets

according to their bits. We can divide this operation into four phases. During sampling, the
algorithm determines the bucket boundaries. The classification divides the input into blocks
so that each element in a block belongs to the same bucket. During permutation the blocks
belonging to the same bucket are gathered and placed in the correct order. The clean-up

21

3 Related Work

phase handles partially filled blocks and blocks which cross bucket boundaries.
IPS

2Ra combines multiple sorting algorithms to optimize its runtime. For buckets with more
than 212 elements IPS

2Ra uses the distribution operation of IPS
4o. If a bucket has less than 212,

then IPS
2Ra uses a sequential in-place MSD radix sort [89] as base case. This sequential radix

sort uses quick sort for fewer than 27 elements, which falls back to insertion sort if less than 25.

3.6. Randomized Static Load Balancing

In our MapReduce algorithms (Sections 6 and 7), we use randomized static load balancing to
distribute the input and intermediate key-value pairs between di�erent parallel processes and
threads. We adopt the abstract static load balancing model [85]. We distribute m subproblems
with sizes s1, ..., sm Ø 0 among p parallel processes. The total work is represented by w = q

i si

with maximum work load w̄ = maxi si. The sizes of subproblems are unknown to the load
balancing algorithm. An adversary chooses the sizes si in order to maximize the running time.
The di�erent subproblems are independent of each other and can be scheduled in any order. A
randomized static load balancing strategy distributes the subproblems si interdependently and
uniformly between p processes at random.
Let Si be the subproblems assigned to process i. We denote Li = q

s

sœSi
the random variable

representing the workload at process i. The adversary tries to maximize the maximum load
Lmax = maxi Li. This corresponds to the worst-case for the scheduling algorithm. The goal of
a scheduling technique is to achieve an execution with Lmax Æ (w + Á)/p for Á > 0, while an
adversary tries to maximize the expected running time.

Lemma 3.1. Let m be the total number of subproblems. The worst-case for random static
load balancing occurs if the total work w is divided into Áw/w̄Ë subproblems with maximum
subproblem size w̄. The remaining m ≠ Áw/w̄Ë subproblems have a size of 0.

Proof. This Lemma is proven in Lemma 1. [85].

Random static load balancing algorithm can compete with dynamic load balancing for a large
number of subproblems [85]. This method can even outperform dynamic load scheduling tech-
niques when the parallel machines have slow inter-process communication. In our runtime
analyzes (Sections 6 and 7) we require Lemma 3.1 to prove their expected runtime.

22

4 MapReduce Benchmark Algorithms

4. MapReduce Benchmark Algorithms

In order to test the correctness and performance of our MapReduce implementation, we im-
plement four MapReduce algorithms. We introduce the word count algorithm in Section 4.1.
We study three iterative MapReduce algorithms: Page rank in Section 4.2, and connected
component in Section 4.3, and R-MAT in Section 4.4.

4.1. Word Count

The word count algorithm computes the number of occurrences of each word in a text. This
algorithm finds applications in data analytics, for instance to analyze research data. Sa-
hane et al. study the research focus in the zoology and botany department by performing
the word count algorithm on a collection of research papers [83]. Word count is a pop-
ular benchmark algorithm to test, improve, and compare the performance of MapReduce
implementations [52, 79, 80, 82, 83].
The input for the map phase is a text, usually contained in one or more files. The word count
MapReduce algorithm then saves each word followed by its occurrence count into one or multi-
ple output files. The user-defined map function is illustrates in Algorithms 2 and takes a string
as input. We split the input by space and emit each word w as key with 1 as value. This
key-value pair corresponds to one occurrence of w in the input text. The user-defined reduce
function shown in Algorithm 3 has a word key and list of ones as input. For each word key

in the input, the list values contains a 1. Therefore, the sum of over all elements in values

correspond to the occurrence count of key. For each key we emit itself and its occurrence during
the reduce phase.
Algorithm 2: User-defined map function: Word Count
Input: text : String // the words in text are delimited by " "

1 foreach w œ split(text, ” ”) do // iterate over all words in the text

2 emit(w, 1) // emit the word w as key and 1 as value
3 end

Algorithm 3: User-defined reduce function: Word Count
Input: key : String, values : list< N > // key is a word

1 emit((key,sum(values))) // sum up the elements in values to get the number of occurrence

4.2. PageRank

Google developed PageRank [73] as part of their search engine to rank di�erent web pages
according to their importance. This algorithm takes the world wide web (WWW) as input and
provides a metric to determine the human interest of certain pages. The general idea behind
PageRank is to use the topology of the WWW and relations between web pages to determine
if a page is important for a user. In addition to its importance in search engines, PageRank
has a MapReduce reduce implementation which is commonly used as a benchmark algorithm
to test and compare di�erent libraries [39, 52, 58, 22].
In our implementation and to facilitate notations, we represent the WWW as directed un-
weighted graph G = (V, E). We represent each web page by a unique vertex a œ V and an
edge (a, b) œ E represents a link from page a to b œ V . This allows us to represent pages with
integer data types and we do not require long strings for links. If the input is a web graph with
string links, we can map each link to a unique integer value in a preprocessing step.

23

4 MapReduce Benchmark Algorithms

PageRank determines the rank by using the web structure and links between web pages. Intu-
itively PageRank simulates a person clicking random links on the WWW. This corresponds to
a random walk through the web, where the surfer clicks on successive links randomly and has
a probability of – œ [0, 1] to visit a random web page instead. Let a œ V be a web page, then
the surfer visits each linked page b œ O(a) next with a probability of

(1 ≠ –) 1
|O(a)| .

PageRank determines for each page a œ V the probability p(a) œ [0, 1] of a random surfer to
visit it. In other words, if a lot of web pages refer to a or if an important page links to a, then
it is likely a random surfer would visit it. Since the ranks p(a) of a page is a probability we
have ÿ

aœV

p(a) = 0.

We can calculate the page rank iteratively by using the following formula [54]:

pn+1(a) = 1 ≠ –

N
+ –

ÿ

bœI(a)

Rn(b)
|O(b)| , (4.1)

where a is a web page, pn(a) is the rank of a at iteration n, N = |V | the number of pages in the
web, I(a) the pages which contain a link to page a, O(a) the pages to which u has a link and –

a dampening constant. Note that the dampening constant corresponds to the probability of
the random surfer to visit a random page.
We can implement PageRank using an iterative map reduce framework. The input for this
MapReduce application is a graph G = (V, E) representing a network of pages. We illus-
trate the user-defined map function µ : (N,R, 2N) æ list < N, (R, 2N) > and reduce function
fl : (N, list < (R, 2N) >) æ (N,R, 2N) in Algorithms 4 and 5. The input of the map and output
of the reduce functions is a triple containing a page a, its current rank p(a) and its outgoing
neighbors O(a). The keys are pages and the values are pairs consisting of a rank and a list of
nodes.
During the map phase, we iterate over the outgoing neighbors b œ O(a) of a page a and emit b

as key and a pair as value. This pair consists of p(a)
|O(a)| and an empty set. Finally, we emit a as

key and (Œ, O(a)) as value. We have to send the outgoing neighbors to reduce phase because
we need them again in the next map phase. During the reduce phase, we calculate the new

Algorithm 4: User-defined map function: PageRank
Input: (a, p(a), O(a))

1 foreach b œ O(a) do // iterate over all outgoing links
2 emit(b, (p(a)

|O(a)| , ÿ)) // emit the current rank divide by the number of outgoing links
3 end
4 emit(a, (Œ, O(a))) // emit the outgoing links for future iterations

Algorithm 5: User-defined reduce function: PageRank
Input: b, values

1 p(b) = 1≠–

N
+ – ·

q
(x,·)œvalues·x ”=Œ x // calculate the new rank according to Equation 4.1

O(b) = O with (x, O) œ values · x = Œ // extract the outgoing links
2 emit(b, p(b), O(b)) // emit the page, new rank and outgoing links for the next iteration

24

4.3 Connected Components

rank according to Equation 4.1 and gather the outgoing links for the next iteration. The triples
emitted by the reduce phase are the input triples with updated page rank p(a).
We repeat the map phase followed by the reduce phase for a fixed number of iterations. It is
possible to implement PageRank so that the algorithm stops after the ranks between iterations
di�er only by a small constant ‘ > 0. We initialize the ranks with 1

N
, where N is the total

number of pages.
A common idea of the parallel MapReduce libraries introduced in Section 3.3 is to send the key-
value pairs

1
a, (Œ, O(a))

2
to process i = (hash(a) mod p), where p is the number of parallel

processes. The pairs containing O(a) have a larger serialization and the shu�e phase does not
need relocate them. In Section B we introduce an alternative PageRank MapReduce algorithm
with 3 consecutive MapReduce operations.

4.3. Connected Components

Connected component (CC) algorithms are basic tools to analyze and use large graphs in
social, communication, and information networks [57]. An example is the use as a subroutine
in clustering algorithms [33, 36]. Vitali et al.[96] use CC algorithms to analyze the structure
of a corporate control network to determine the ownership between transnational corporations.
Marina et al. [66] analyze the routing performance of unidirectional links in multi-hop wireless
networks by calculating CCs.
Let G = (V, E) be a directed graph. A strongly connected component [72, 24] is a maximum
vertex set C ™ V so that G[C] is a connected component. For each distinct vertices u, v œ V

there is a path between u and v. There is no path form x œ V \ C and u. A CC algorithm
partitions V into pairwise disjoint vertex sets {U1, ..., Uc}, where G[Ui] is strongly connected
for i œ {1, ..., c}.
Kiveris et al. [57] implement an iterative connected component algorithm using a MapReduce
framework. The inputs to the following algorithms are a graph G = (V, E) represented as an
edge list and a unique label lv for each vertex v œ V . The output is a set of tuples (v, cv),

Algorithm 6: Large star MapReduce operation of the connected component algorithm
1 Map(u, v) // use the vertex with larger label as key
2 if lv Æ lu then emit(u, v)
3 else emit(v, u)
4
5 Reduce(u, Ns = {x œ O(u) | lv Æ lu})
6 m = argmin

vœNsfi{u}lv // determine the vertex with minimal label m

7 foreach v œ Ns do emit((v, m)); // emit an edge for each value v pointing to m

8

Algorithm 7: Large star MapReduce operation of the connected component algorithm
1 Map(u, v) // emit both edges (u, v) and (v, u)
2 emit(u, v) and emit(v, u)
3
4 Reduce(u, N = O(u) fi I(u))
5 m = argmin

vœNfi{u}lv // determine the vertex with minimal label m

6 foreach v œ N · lv > lu do emit((v, m)); // emit edges for each value v œ Nl

7

25

4 MapReduce Benchmark Algorithms

(a) small star (b) large star

Figure 9: Figures 9a and 9b illustrate the application of the small and large star to vertex v = 3.
We represent the outgoing neighbors O+(3). The vertex u corresponds to its label lu.
The small star algorithm connects lower labeled neighbors to m(3) = 0. The large
star algorithm connects higher labeled neighbors to m(3) = 0.

where cv is the vertex with minimal label in the strongly connected component containing v.
The alternating and two phase cc Algorithms 8 and 9 are composed of the small and large star
MapReduce Algorithms 6 and 7.
Let u œ V be a vertex and m(u) = argmin

vœO+(u)lv the neighbor with minimal label. The small
start Algorithm 6 replaces edges (u, v) with (v, m(u)), where v œ Ns = {x œ O(u) | lv Æ lu}. The
large star Algorithm 7 replaces edges (u, v) with (v, m(u)), where v œ Nl = {x œ O(u) | lv > lu}.
We illustrate both algorithms applied to the vertex v = 3 (Figure 9a). A vertex’s id corresponds
to its label. The small star connects the neighbors of 3 with smaller label to the neighbor with
minimal label 0. We apply the large star Algorithm 7 to vertex v = 3 in Figure 9b. The
algorithm connects the neighbor with greater label 4 to the vertex with minimal label 0.
During the two phase cc Algorithm 8 we repeat the large star algorithm until convergence,
followed by the small star. This procedure repeats until the large and small star algorithms
stop changing the edge list. The two phase algorithm converges after O(log2(n)) MapReduce
operations, where n is the number of vertices [57]. The alternating Algorithm 9 repeats the
large and small star until convergence. This algorithm needs O(n) iterations.
Both algorithms finish if during a consecutive call to the large and small star the edge list does
not change. The large star algorithm does not modify the edge list if during the reduce phase
the key u has the minimal label. Furthermore, the small star does not change the edge list if
during the reduce phase the number of values |N | is smaller or equal to 2.

Algorithm 8: Two Phase Connected Component Algorithm
Input: edge list, unique label lv for each node

1 repeat
2 repeat
3 large star
4 until convergence
5 small star
6 until convergence

Algorithm 9: Alternating Connected Component Algorithm
Input: edge list, unique label lv for each node

1 repeat
2 large star
3 small star
4 until convergence

26

4.4 Recursive Matrix Model (R-MAT)

Note that, the large star algorithm results in star graphs and high degree vertices, which
leads to imbalance during the MapReduce execution [96]. The user-defined reduce function
in the large star Algorithm 7 receives the entire neighbor hood as value list. During the final
stages, this represents the entire connected component for a representative vertex v œ V .
This leads to load balancing problems, especially for graphs with unevenly sized connected
components. Therefore, the load balance depends on the number and size of the di�erent
connected components.

4.4. Recursive Matrix Model (R-MAT)

Chakrabarti et al. [27] develop R-MAT: a random graph generator for graphs with power-law
degree distributions. This algorithm produces graphs with a community structure similar to
those of complex real-world networks [53]. R-MAT can generate real world graphs by speci-
fying the number of vertices n, number of edges m and the parameters a, b, c, d > 0 summing
up to 1. We discuss the R-MAT algorithm for n a power of two. R-MAT wit parameters
a = 0.57, b = 0.19, c = 0.19 and d = 0.05 is part of the Graph 500 benchmarks [70]. Graph
500 is a list of large graphs to test and optimize large-scale graph algorithms, especially in
high-permanence computing.
Let G = (V, E) be a graph with adjacency matrix A = (ai,j)i,j œ {0, 1}

n and n = |V |. A tuple
(x, y) œ V ◊ V is part of G if and only if ax,y = 1. The R-MAT algorithm generates G by
successively computing and adding a random edge. R-MAT recursively divides the adjacency
equally matrix into four (Figure 10). Each partition is associated with a probability a, b, c or
d of an edge to be placed into a partition. The algorithm recursively assigns an edge into
partitions and determines its in-and outgoing vertex. Note that generating an edge requires
log2(n) time. By using an alias table, it is possible to generate edges in constant time [53]. To
keep our MapReduce algorithm simple we use the log2(n) time version.
Plimpton et al. [77] propose a MapReduce algorithm to generate R-MAT graphs, which we
modify to fit our framework. The general idea of this algorithm is to construct the random
graph incrementally. During the map phase, we generate R

p
random edges, where R is the

number of remaining edges and p is the number of parallel processes. During the reduce phase,
we remove duplicated edges. We repeat this procedure until all m distinct edges are generated.
We have to modify the algorithm since we are unable to determine the number of remaining
edges R. Algorithms 10 and 11 illustrate the user-define map reduce functions of our MapRe-

a
b

b

c

c

c d

d

d

from
to

Figure 10: Illustration of the random edge generation of R-MAT [27]. The figure contains the
adjacency matrix A of a graph G = (V, E). We represent the in-vertices vertically
and out-nodes horizontally. The figure illustrates the recursive subdivision of A

according to the probabilities a, b, c and d.

27

4 MapReduce Benchmark Algorithms

Algorithm 10: User-defined map function: R-MAT
Input: e œ E

1 emit(e, 1) // emit the edge e as key and a value 1

Algorithm 11: User-defined reduce function: R-MAT
Input: e œ E, A // edge e as and a list A of ones

1 c = q
aœA a // compute the occurences of e

2 emit(e) // emit edge e

3 repeat c ≠ 1 times // emit random edges for each duplicated e

4 emit random edge
5 end

duce implementation of R-MAT. We generate m

p
random edges on each process, which our

MapReduce operation takes as input. During the map phase, we emit the edge e as key and 1
as value. The user-defined reduce function takes an edge e and a set of ones A as input. For
each edge e emitted during the map phase, A contains a 1. By summing um all values in A

we get the number of duplicated edges e. First we emit the edge e (Line 2). Then we generate
and emit a new random edge for each duplicated edge (Line 4). We repeat this MapReduce
operation until no duplicated edge is identified during the reduce phase. To generate random
edges, we use the log2(n) time algorithm by Chakrabarti et al. [27].

28

5 Fault-Tolerant MapReduce

5. Fault-Tolerant MapReduce

In Section 5.1 we describe the general structure of our MapReduce library. We introduce an
in-memory fault-tolerance mechanism to recover from a single process or compute node failures
in Section 5.2.

5.1. General

We design our MapReduce library for executions on high-performance computing (HPC) sys-
tems, while employing a large number of compute nodes. Our library handles multiple consec-
utive MapReduce operations in memory without saving each output to the file system.
In contrast to Google, Hadoop, and Twister MapReduce (Section 3.3) we do not adopt the
master worker design pattern. We do not employ a single master process, which distributes
and manages the entire workload. The communication between master and worker processes
represents a bottleneck, which may lead to performance issues if we use a large number of
processes.
We design our MapReduce library according to the Bulk Synchronous Parallelism (BSP)
model [90, 95]. An algorithm following the BSP principle consists of three consecutive repeat-
ing phases. First, the algorithm executes locally without communication on multiple parallel
processes. During the second phase, the processes exchange data between each other. Finally,
all processes synchronize and start a new local execution phase.
Our implementation uses the message passing interface (MPI) for communication and paral-
lelization. The map and reduce phases correspond to the local execution of the BSP model.
The shu�e phase provides the inter-process exchange and synchronization. We adopt a similar
approach to MRMPI, Mimir and FT-MapReduce-MPI (Section 3.3), where the libraries dis-
tribute the workload statically by using hash functions.
We use the definitions and notations introduced in Section 2. In the following sections, we use
indices i to indicate the MapReduce operation MRi to which an object corresponds. We use
superscripts j or l to indicate the MPI processes. Objects without superscript are distributed
between multiple processes and represent the entire state of a MapReduce operation.
Let’s consider a sequence of l successive MapReduce operations < MR1, ..., MRi, ..., MRl >,
where the output of MRi equals the input of MRi+1 for i œ {1, ..., l ≠ 1}. Figure 11 illustrates
the application of MapReduce operations MRi = (µi, fli, si, hi) and MRi+1 with MPI execution
(S, P, “), with HPC system S, processes P and bindings “ using p processes. Each MPI process
j œ P has a local multi-set of elements A

j

i as input, where Ai = tp

j=1 A
j

i is the input multi-set
for MRi. During the computation of MRi, each MPI process j œ P executes Algorithm 12.
This pseudo-code summarizes the three main phases: map, shu�e, and reduce phase.
During the map phase in Line 2, each process j œ P applies the user-defined map function µi

Algorithm 12: MapReduce: overview execution on process j of MRi

Input: A
j

i ™ Ii, MRi = (µi, fli, si, hi)
1 save MRi for fault-tolerance
2 SBj

i = map(Aj

i) // applay map µi and serialize (si) each element in A
j

i

3 RB
j

i = shu�e(SBj

i) // gather the same keys at the same process
4 D

j

i = reduce(RB
j

i) // deserialize (s≠1
i) and reduce (fli)

5 return D
j

i µ Oi = Ii+1

29

5 Fault-Tolerant MapReduce

map µi

serialize si

deserialize s≠1
i

reduce fli

map µi+1

A1
i ™ Ii

shu�e

MRi

process 1

. . .

. . .
D1

i = A1
i+1

map µi

serialize si

deserialize s≠1
i

map µi+1

A2
i ™ Ii

process 2

D2
i = A2

i+1

map µi

serialize si

deserialize s≠1
i

map µi+1

Ap
i ™ Ii

process p

Dp
i = Ap

i+1

reduce fli reduce fli

MRi+1

Figure 11: High-level illustration of our iterative MapReduce algorithm. This figure shows the
three di�erent phases during execution of the MapReduce operation MRi: map,
shu�e and reduce. We execute the MapReduce frame work on p MPI processes.

to each element in the multi-set A
j

i and gathers the local key-value pairs:

B
j

i =
€

eœA
j
i

µi(e) ™ K ◊ V.

Note that the union over all local key-value sets B
j

i corresponds to the multi-set of all key-value
pairs Bi in MRi (Section 2.2). We serialize the keys and values by apply si and save them into
send bu�ers SBj

i = {SBj,1
i , ..., SBj,l

i , ..., SBj,p

i }. We save the serialized key-value pairs with key k

into bu�er SBj,l

i , where (hi(k, x) mod p) = l and x œ N the same seed on each process. During
the shu�e phase (Line 3) each MPI process j sends the send bu�er SBj,l

i to process l œ P .
After the shu�e phase, process j has received a set of receive bu�er RB

j

i , containing messages
SBl,j

i from each process l œ P . We use the MPI_All_to_allv function to exchange the serialized
key-value pairs. The reduce phase (Line 4) first applies s

≠1
i to deserialize the key-value pairs.

Note that no two di�erent processes j, l œ P contain key-value pairs with the same key. Each
process j groups their key-value pairs by their key and creates a set of local key-values pairs

C
j

i = {(k, X) : k œ K · X = {x : (k, x) œ B
Õj
i
} ”= ÿ}.

The union of all local key-values sets C
j

i equals the list of key-values pairs Ci of MRi (Section 2.2).
Finally, we apply the user-defined reduce function fli and produce local output multi-sets

D
j

i =
€

(k,X)œC
j
i

fli(k, X).

The output of the MapReduce operation MRi is Di = tp

j=1 D
j

i and is distributed between
the di�erent processes. These local output sets are the input sets for the next MapReduce
operation MRi+1.

30

5.2 Single Node Fault-Tolerance

During the shu�e phase in Line 3 we send the key-value pair (k, v) œ Bi to process
(hi(k, x) mod p) for a seed x. In Section 7 we use an alternative method to determine the
process for each pair. Let hmax = maxkœK hi(k, x) be the maximum hash value and s = hmax

p
.

Then we send (k, v) œ Bi to process
Íhi(k, x)

s

Î
.

This method divides the range of hash values into p equally sized partitions.
Since the map and reduce phase require no communication, we detect and handle process fail-
ures during the shu�e phase. We provide a fault-tolerant pseudo-code for the shu�e phase
(Section 5.2). In case of a failure we need to recompute di�erent map and reduce steps, there-
fore we save the user-defined functions in Line 1.
In Section 6 we discuss map and reduce algorithms that run sequentially on each MPI process.
We introduce a hybrid parallelization in Section 7, where we use an OpenMP parallelization
per MPI process.

5.2. Single Node Fault-Tolerance

In Section 5.2.1 we present a fault-tolerance mechanism to handle single process failures for
iterative MapReduce algorithms. Instead of saving checkpoints on a fault-tolerant file system,
we send additional messages between processes. We generalize this approach for compute node
failures in a HPC system (Section 5.2.2). A goal is to optimize our algorithm for low-overhead
in case of no failure occurring and fault recovery in case of a failure.

5.2.1. Single MPI Process Failure

In this section we introduce a fault-tolerance mechanism for single process failures, which we
extend to node or rack failures in Section 5.2.2. Let’s consider two consecutive MapReduce
operations MRi and MRi+1, where the output Oi of MRi equals the input Ii+1 of MRi+1. Let
(S, P, “) be the MPI execution of the MapReduce algorithm. Figure 12 illustrates an MPI
process failure during the reduce phase of MRi or the map phase of MRi+1. During the shu�e
phase of MRi, MPI exchanges the messages successfully. During the following reduce or map
phase process f œ P fails. MPI detects this during the shu�e phase of MRi+1. We handle this
failure restoring the lost data at process f and continue the execution of MRi+1.
To recover the lost data, we need the messages sent to process f during the shu�e phase
in MRi:

RBf

i = {SB1,f

i , ..., SBf,f

i , ..., SBp,f

i }.

For this, we save the sent messages SBj

i from each process j œ P to other processes during the
shu�e phase of MRj

i . Additionally, we still need the message which process f sends to itself
(SBf,f

i). We call this message a self-message, which we cannot recover in case of a failure. Since
the data saved at the failed process is lost, its self-message is no longer available. We therefore
save the self-message SBf,f

i at another process, for instance at process ((f +1) mod p). In case
of a failure at process f , each process j œ P \ {f} has saved message SBj,f

i . Process ((f + 1)
mod p) additionally contains SBf,f

i . Therefore, we can reconstruct the receive bu�er RBf

i of
process f .
Algorithm 13 describes the shu�e phase of MapReduce operation MRi and illustrates how we
provide fault-tolerance. Line 3 of Algorithm 12 calls this algorithm to exchange the messages
provided by the map phase. Each MPI process j œ P executes this shu�e phase. The input
is a set of messages SBj

i , one message for each process. In Line 4 we use an MPI_all_to_allv

31

5 Fault-Tolerant MapReduce

map

reduce

Mi

Mi+1

. . .

. . .

map

reduce

map

reduce

map. . .

. . .
map map map

shu�e self
message

failure
process 1 process j process p

SB1,j
i

SBj,j
i SBp,j

i

Figure 12: Illustration of a failure at process j during MapReduce operation MRi+1. The imple-
mentation runs p processes. The process failure results in a loss of the self-message
SB

j,j

i .

to sent exchange all messages at once. For each processes j, l œ P , we send message SBj,l

i from
process j to process l. The MPI call in Line 4 requires the size of each receiving message, which
we acquire with an all to all operation in Line 2. As indicated above, we save the send messages
SBj

i in Line 7 and exchange self-messages SBj,j

i by applying Algorithm 14.
The MPI calls in Lines 2 and 4 represent global synchronization steps, in which each MPI
process participates together. During these calls, we can detect whether an MPI process has
failed during a previous map or reduce step. We use ULFM (Section 3.1) to detect failures and
restore the MPI functionality. We use Algorithm 15 in case of a detected failure in Lines 3 or 6.
For each process j œ P , this recovery algorithm takes the current messages SBj

i as input,
recomputes the lost data by using previous messages and executes the shu�e phase again.
Algorithm 14 illustrates the save message algorithm. First we save all messages sent during
the last shu�e phase SBj

i in Line 1. We send the self-message SBj,j

i of process j to process
((j + 1) mod p), where p is the number of processes and save it there. We have to schedule
the send and receive operations carefully to avoid deadlocks. We delete the old messages if
no longer needed to decrease memory consummation. If the shu�e phase of the MapReduce
operation MRi has completed, we no longer need the saved messages of the previous MapReduce
operation.
Algorithm 15 recomputes the data lost due to a process failure. Let MRi, with i > 0, be the

Algorithm 13: Fault-Tolerant Shu�e of MapReduce operation MRi on process j

Input: SBj

i = {SBj,1
i , ..., SBj,l

i , ..., SBj,p

i } // send bu�ers: Line 3 in Algorithm 12
1 sizes : list<int> // sized of the receive bu�ers required for AllToAllv
2 e = AllToAll(SBj

i .sizes(), sizes) // exchange the size of SBj,i

i and SBi,j

i with process i

3 if e = ERROR then return Recover(SBj

i) ; // apply Algorithm 15
4 e = AllToAllv(SBj

i , sizes, RBj

i) // exchange SBj,i

i and SBi,j

i with process i

5 RBj

i = {SB1,j

i , ..., SBl,j

i , ..., SBp,j

i } // messeges received during Line 4
6 if e = ERROR then return Recover(SBj

i) ; // apply Algorithm 15
7 SaveMessage(SBj

i) // apply Algorithm 14
8 return RBj

i

32

5.2 Single Node Fault-Tolerance

Algorithm 14: Save Messages Single Process Failure: during MRi on process j

Input: SBj

i = {SBj,1
i , ..., SBj,l

i , ..., SBj,p

i } // messages send during the last shu�e phase
1 save(SBj

i) // save the messages in case a failure occures
2 send SBj,j

i to ((j + 1) mod p) // send self-message
3 r = (j ≠ 1) mod p // process from which to recive the self-message
4 SBr,r

i = receive the self-message from r

5 save(SBr,r

i) // save the self-message in case a failure occures

MapReduce operation in which we detect the failure of process f œ P . This means process f

failed during the reduce phase of MRi≠1 or the map phase of MRi. First, we determine the
failed process and recover the MPI communicator with ULFM. If more than one process has
failed, we cannot recover and refer to Section 5.2.2, where we handle some types of multi-process
failures. ULFM modifies the MPI execution by removing the failed process. The MapReduce
framework continues with a shrank MPI execution (S, P

Õ
, “

Õ) (Section 5.2.2).
We determine the messages, which MPI has sent during MRi≠1 to the failed process (Line 2).
Furthermore, we redistribute the saved messages equally between the remaining processes P

Õ

(Line 7). We construct redistribute send bu�ers RSBj

i≠1 for each remaining process j œ P
Õ.

The algorithm sends the serialized key-values pairs with key k to process l = h(k, y) mod p
Õ,

where y is another seed as used during the map phase. For each processes j, l œ P
Õ, we send

message RSBj,l

i≠1 from process j to process l (Line 8). This message exchange is similar to a
shu�e during a successful MapReduce operation.
We reapply the reduce phase from MRi≠1 (Line 9) and the map phase from MRi (Line 10) as
described in Section 5.1 (Algorithm 12). We merge the send messages SBj

i with the recovered
messages SBÕj

i
into new send messages NewSBj

i , where message NewSBj,l

i is sent from process j

to process l œ P
Õ. After merging, the message NewSBj,l

i contains the serialized key-value pairs
with key k and l = (h(k, y) mod p

Õ). This corresponds to a valid map phase output of MRi

on the shrank MPI execution. Finally, we perform the shu�e of MRi again and exit the error
state (Line 12).
The MergeBu�er and Redistribute algorithms depend on the implementation of the map and
reduce phase. We describe them in the Sections 6 and 7. If a process failure occurs during

Algorithm 15: Recover: during MRi on process j

Input: SBj

i = {SBj,1
i , ..., SBj,l

i , ..., SBj,p

i } // messages of the shu�e phase from MRi

1 f = identify the failed process
2 if f = (j ≠ 1) mod p then // process j has saved the self-message of f

3 S
j

i = {SBj,f

i≠1 fi SBf,f

i≠1} // messages to failed process
4 else
5 S

j

i = {SBj,f

i≠1} // messages to failed process
6 end
7 RSBj

i≠1 =Redistribute(Sj

i) // distribute saved messages evenly
8 RRBj

i≠1 =shu�e(RSBj

i≠1) // exchange distribute saved messages evenly
9 RDi≠1 = reduce(RRBj

i≠1) // deserialize (s≠1
i≠1) and reduce (fli≠1)

10 SBÕj
i

= map(RDi≠1) // applay map µi and serialize (si) each element in A
j

i

11 NewSBj

i = MergeBu�er(SBj

i , SBÕj
i
) // merge send messages

12 return shu�e(NewSBj

i)

33

5 Fault-Tolerant MapReduce

map

reduce

Mi

Mi+1

. . .

. . .

map

reduce

map

reduce

map. . .

. . .
map map map

shu�e

failure
process 1 process j process p

SB1,j
i

SBj,j
i SBp,j

i

reduce

map

map
failure

process k

SBk,k
i

. . .

. . .

. . .

. . .

SBj,k
i SBk,j

i

Figure 13: Illustration of a failure at process j during MapReduce operation MRi+1. The imple-
mentation runs p processes. The process failure results in a loss of the self-message
SB

j,j

i .

this recovery phase, then we cannot recover. Lets consider an MPI execution (S, P, “), with
|P | > 2 and two di�erent process failures j, k œ P as illustrated in Figure 13. If the failure
k occurs during the recovery of failure j, we miss at least message SBj,k

i , since the saved
messages at process j are no longer available. Furthermore, we would need to send at least
the entire p messages SBj

i to another process instead of the self-message, because the second
failure is arbitrary.This would double the communication volume of the fault-tolerant shu�e
Algorithm 13. In Section 5.2.2 we propose a mechanism to recover from certain multi-process
failures.

5.2.2. Single Node Failure

The single process failure fault-tolerance has limitations. On an HPC system, a failure usually
implies that more than one MPI process fails. For instance, a compute node failure stops the
execution of all MPI processes on this node. Since our fault-tolerance model only handles single
process failures, we can only start one process per node. To make use of all cores on a node,
we have to parallelize the execution locally by using a shared memory model (Section 7). This
local parallelization is di�cult because we have to take the NUMA architecture of the nodes
into consideration (Section 2.1). We need to minimize memory access across di�erent NUMA
nodes. To avoid this problem we want to start one MPI process per NUMA node and parallelize
locally.
We modify the single process fault-tolerance mechanism (Section 5.2.1) to allow single node
failures. Therefore, we start the same number of processes on each compute node. We expand
the definition of a self-message to include the messages, which MPI sends between processes
on the same node. The following fault-tolerance mechanism saves all messages send between
processes on the same compute node at a di�erent node.
Let us consider a MapReduce operation MRi with MPI execution (S, P, “), with processes
P , HPC system S = (C, M, N), and bindings “. First, we modify the save self-message
Algorithm 14 and save all messages send on the same node (Algorithm 16). The input at
process j are the messages produced by the map phase and exchanged during the shu�e phase
SBj

i (Algorithm 13). We save the messages send by j (Line 1). Then we determine the processes
P

j bound to the same node as process j (Line 2). We gather the message S
j send between

processes on the same node (Line 3).

34

5.2 Single Node Fault-Tolerance

Algorithm 16: Save Messages Single Node Failure: during MRi on process j

Input: SBj

i = {SBj,1
i , ..., SBj,l

i , ..., SBj,p

i }, (S, P, “) // messages of the shu�e phase from MRi

1 save(SBj

i)
2 P

j = {p œ P |Nj œ N : “(p) µ Nj · “(j) µ Nj} // detrmine processes on same node as j

3 S
j = {SBj,l

i | l œ P
j
} // detrmine messages send to processes on same node as j

4 send S
j to process –k(j) on the successive node

5 receive RS
j = S

l from process –
≠1
k≠1(j) = l on the proceeding node

6 save(RS
j) // save the self-messages received from process –

Õ
k≠1(j)

Lets number the nodes N = {N0, ..., Nn} number consecutively and let Nk be the node hosting
process j (“(j) ™ Nk). Each process in Nk sends its local messages to a unique process on the
successive node in N . We determine a bijection –k : Nk æ NkÕ , where k

Õ = ((k+1) mod n+1).
This function –k assigns each process a unique process in NkÕ . We send S

j to the corresponding
process –k(j) (Line 4). Finally, we receive (Line 5) and save (Line 6) the self-message from a
process on the proceeding node. Each process saves the self-messages from exactly one process
on a di�erent node. We have to schedule the message exchange in Lines 4 and 5 carefully to
avoid deadlocks.
Figure 14 illustrates this procedure. On each node we run four processes. The self-message of
process 0 contains the message send to itself as well as the message sent to the other processes
on node i: 1, 2 and 3. These messages are sent to process 4 on node i+1. We sort the processes
on each node by their identifier. We send the self-messages to the next node to the process
with the same index in the sorted process list. In case node i fails, we have saved all messages
send between processes on node i at node i + 1.
Note that the save message Algorithm 16 has a super linear speedup and depends on the size
of the serialized key-value pairs as shown in Lemma 5.1.

node i node i + 1

0 1

2 3

4 5

6 7

Figure 14: Illustration of saving self-messages for single node failures with more than one process
per node. This figure shows the messages, which process 0 sends on the same
node during the shu�e phase. These messages are sent to process 4. This ensures
no data lost in case node i fails. We save the self-messages of a node j at node
(j + 1 mod p), where p is the process count.

35

5 Fault-Tolerant MapReduce

Lemma 5.1. Let’s consider the save message Algorithm 16 performed after the shu�e phase
on p processes and k processes per node. Let m be the number of machine words to save all
key-value pairs and m̄ the maximum number of machine words consumed by a user-defined
reduce function. Then the expected runtime of Algorithm 16 is

O

3
km̄b

39
m

m̄

:
, p

2
44

.

The value b(x, y) indicates the maximum expected number of balls in one bin, where x is the
number of balls and y the number of bins. We place balls interdependently at random. Further-
more, if m œ �(m̄p

2 log(p)), then the algorithm has a time complexity of:

O

A

k
m

p2

B

.

Proof. As described in Section 5.1 the map phase distributes the key-value pairs uniformly by
their hashed key. If we assume that the used hash function is a truly random mapping, then
the pairs are distributed uniformly at random into p messages on each MPI process. All in all
the pair are distributed between p

2 messages. A user-defined reduce function processes at most
m̄ machine words and therefor at most m̄ pairs. Since the pairs are distributed uniformly at
random by key, we can employ the random static load balancing Lemma 3.1. The worst case for
random static load balancing occurs if Ám/m̄Ë user-defined reduce function process m̄ key-value
pairs. The remaining functions process no pairs. This results in a memory distribution which
is as sewed as possible [86].
Hence, the expected maximum number of pairs in one of p

2 messages lies in O

1
m̄b

1Ï
m

m̄

Ì
, p

2
22

.

Each process sends and receives exactly k self-messages. This results in an expected runtime
of O

1
km̄b

1Ï
m

m̄

Ì
, p

2
22

for Lines 2 to 6.
Furthermore, since we do not need the send messages after the shu�e phase we do not need
to copy the MPI_All_to_allv send bu�ers in Line 1. We can perform this save operation in
constant time. All in all Algorithm 16 has an expected runtime of

O

3
km̄b

39
m

m̄

:
, p

2
44

.

If m œ �(m̄p
2 log(p)), then O

1
m̄ · b

1Ï
m

m̄

Ì
, p

2
22

= O

1
m

p2

2
(Lemma 2.2) and Algorithm 16 has

an expected runtime of

O

A

k
m

p2

B

.

We have to modify the recover Algorithm 15 only slightly. Instead of determining only one
failed process in Line 1 we have to find all processes Nf œ N on the failed node. The messages
we need for recovery include SBj,l

i≠1 destined to each failed process l œ Nf . Furthermore, we
determine the processes saving the self-messages send on the failed node. We can execute the
recover algorithm from Line 7 as for the single process failure case (Section 5.2.1).
We can expand the single node failure fault-tolerance to rack or even HPC failures. HPC racks
group multiple compute nodes together. A rack failure causes multiple nodes to fail. We can
employ a similar technique by saving all messages send between nodes on one rack to another.
This allows us to handle rack failures. Furthermore, we can use the same approach if we want
to execute on multiple HPC systems together and an entire HPC cluster fails. We study only
single node failures as a proof of concept. We do not have the resources to test the approach
on multiple racks.

36

6 MPI Parallelized MapReduce

6. MPI Parallelized MapReduce

In the following sections, we introduce algorithms for the map (Section 6.1), reduce (Section 6.2),
and recovery (Section 6.3) phases for our MapReduce framework with a single node fault-
tolerance of Section 5. We parallelize our MapReduce algorithm with MPI by starting p parallel
processes.

6.1. Map

6.1.1. Algorithm

As described in Section 5.1, the map phase applies the user-defined map function, serializes the
key-value pairs and saves the results in an MPI_All_to_allv send bu�er. We parallelize the
map phase by using MPI. Each process processes a subset of the input elements. We illustrate
the general idea of our map phase in Figure 15. On each process, we apply the user-defined map
function and sort the resulting key-value pairs according to their hashed key. Then we group
the pairs according to their key. We determine the destination process of each aggregated pair
by its hashed key and save the serialized keys followed by its values in a send message.
Algorithm 17 illustrates the map phase executed one process. Let MR= (µ, fl, s, h) be a MapRe-
duce operation with user-defined map function µ, serialization function s, and hash function h

(Section 2.2). The MapReduce operation runs on an MPI execution (S, P, “) with HPC system
S, processes P and bindings “ (Section 2.1). We execute Algorithm 17 on each process j œ P

in parallel. The inputs at process j are a subset of input elements A
j

™ I and the map reduce
operation MR. First, we iterate over the elements in A

j and apply the user-defined map func-
tion µ. For each resulting key-value pair (k, v), we save the key-serialized value pair (k, s(v))

. . .Input Aj

. . .key-value
pairs KV j (k1, v1)(k2, v2)(k3, v3)(k4, v4)(k2, v3)(k2, v4)

1) apply user-defined map function µ

. . .(k1, v1)(k1, v2)(k3, v3)(k4, v4)(k1, v3)(k3, v4)

h(k1, z) = h(k3, z) = h(k4, z)

. . .

.
h(·, z) < < h(·, z)

2) sort by hashed key h(k, z)

. . .(k1, {v1, v2, v3}) (k4, {v4}) (k3, {v3, v4})
3) group pairs by key

sorted KVj

send messages
SBj

. . .
SBj,1

. . .
SBj,l

. . .
SBj,p

(k, X). . .

|X|s(k)s(X)

4) serialize grouped key-value pairsl = Âp·h(k,z)
hmax

Ê + 1

grouped
pairs C

Figure 15: Illustration of the map phase executed on MPI process j. Let z be the same seed
for the hash function on all processes. (1) First, we apply the user-defined map
function. (2) Secondly, we sort the pairs according to their hashed key. (3) For all
pairs with the same hashed key, we gather all values with the same key. (4) Finally,
we save the size of values, followed by the serialized key and values at a send message
destined for the corresponding process.

37

6 MPI Parallelized MapReduce

Algorithm 17: Purely MPI parallelized map phase executed on process j

Input: A
j

™ I, MR = (µ, fl, s, h) // multiset of input elements A
j, MapReduce operation MR

1 KV, HI = ÿ // initialize an empty list of key-value pairs and hash-index pairs
2 foreach e œ A

j do // iterate over the input elements
3 foreach (k, v) œ µ(e) do // apply the user-defined map function
4 HI += (h(k, z), |KV|) // save the hashed key h(k, z) and the index of (k, s(v)) in KV
5 KV += (k, s(v)) // save the key k and the seralized value s(v)
6 end
7 end
8 sort HI by the first pair element
9 SBj = {SBj,1

, ..., SBj,l
, ..., SBj,p

} // initialize p empty send messages
10 while |KV| > 0 do
11 h = min(k,·)œKV h(k, z) // determine the minimum hash value

// determine the key-value pairs with minimal hashed key and group them by key
12 C = {(k, X)|k œ K · h(k, z) = h · X = {s(v)|(k, s(v)) œ KV}}

13 l = Â
p·h

hmax
Ê + 1 // determine destination process l for pairs with hash h

14 foreach (k, X) œ C do
15 SBj,l += |X| + s(k) // add the size of values and the serialized key
16 foreach s œ X do SBj,l += s // add the serialized values
17 end
18 KV = KV \ {(k, s)|(k, X) œ C · s œ X} // remove the processed pairs
19 end
20 return SBj // return a message for each node

in KV. Let z be the same seed on each process and i the index of (k, s(v)) in KV. We save the
pair of hashed key h(k, z) and index i in HI.
To avoid cache e�ciency problems, we group the key-value pairs by key with a cache e�cient
sorting algorithm (Section 3.4). We use the IPS

2Ra radix sort (Section 3.5) to sort the pairs
according to their hashed key and achieve a linear time complexity (Section 6.1.2). Note that
we sort the hash-index pairs HI to avoid the reevaluation of hash functions during sorting and
prevent problems with large keys and values (Line 8). We can use the sorted index sequence
of HI to get sorted key-value pairs.
Let hmax be the maximum possible hash value plus one. During the shu�e phase, we send a
key-value pair (k, v) with hashed key h(k, z) œ [(l ≠ 1) · Âhmax/pÊ, l · Âhmax/pÊ) to process l.
The map phase at process j saves all serialized key-value pairs destined to process l in message
SBj,l. Finally, we iterate over the sorted hash-index pairs HI (Line 10). We process the key-
value pairs with current minimal hash value h (Lines 11-12). We add the pairs in a hash table
according to their key. This allows us to gather all values with the same key. Note that we
have to choose a di�erent seed for the hash function used in the hash table. I we would choose
the same hash function this would result in hash collisions since all keys have the same hash
value with seed z. The algorithm iterates over all pairs (k, X) œ C, where k is the key and X

the set of all serialized values with key k. We save the size of all serialized values |X|, followed
by the serialized key s(k) and its serialized values X in message SBj,l (Line 14). We determine
the destination process l by computing Âp · h(k, z)/hmaxÊ + 1 (Line 13). Note that we still
have to concatenate the send messages into a continuous send bu�er for the MPI_All_to_allv
operation performed during the shu�e phase.

38

6.1 Map

6.1.2. Complexity

We adopted the general structure of the BSP MapReduce algorithm introduced in [86] and
achieve the same expected running time (Lemma 6.1). We use the MapReduce runtime param-
eters w, w̄, m, m̄ introduced in Section 2.2 and balls in bins model of Section 2.4.

Lemma 6.1. The input elements A are distributed randomly between p processes. Then we
can implement the map phase (Algorithm 17) with an expected runtime of

O

3
w̄ · b

39
w

w̄

:
, p

4
+ m̄ · b

39
m

m̄

:
, p

44
.

If w œ �(w̄p log(p)) and m œ �(m̄p log(p)), then we have an expected time complexity of:

O

A
w + m

p

B

.

Proof. We follow the proof of Theorem 4.1 in [86]. We assume that the input elements A are
chosen randomly between the di�erent processes. During the map phase, each process applies
the map function once for each input element (Line 3). For each intermediate key-value pair,
we apply the serialization function once for each key and value (Lines 5 and 15). We compute
and save the hash value of each key once in Line 4. Since the input elements are distributed at
random, we can apply the static load balancing Lemma 3.1. Therefore, the worst case occurs,
if the execution time is zero for all input elements except for Áw/w̄Ë elements, which require w̄

time. Randomly assigning Áw/w̄Ë elements between p processes corresponds to the balls in bins
problem (Section 2.4). Then let b (Áw/w̄Ë , p) be the maximum expected number of elements
per process.
Hence, Applying the user-defined map function requires O (w̄ · b (Áw/w̄Ë , p)) time. Each user-
defined map function can produce at most w̄ pairs. By using the same reasoning as above,
the maximum expected number of key-value pairs per process lies in O (w̄ · b (Áw/w̄Ë , p)). We
use a linear time radix sort algorithm (Section 3.5) in Line 8, which results in a runtime of
O (w̄ · b (Áw/w̄Ë , p)). In Line 10 we iterate over the hash-index pairs and process the key-value
pairs in ascending order of their hashed key. For all pairs with the same hashed key, we group
the pairs with the same key by using a hash table, which requires linear time. All in all,
Lines 10 to 19 require O (w̄ · b (Áw/w̄Ë , p)) time.
Finally, we have to copy the send messages SBj into a single MPI_All_to_allv send bu�er.
Since the input elements are distributed randomly between the di�erent processes, the m ma-
chine words produced during the map phase are distributed randomly and we can use Lemma
3.1. Hence, the worst case occurs if the machine words are divided into Ám/m̄Ë elements with
a size of m̄. This results in an expected runtime of O (m̄ · b (Ám/m̄Ë , p)) for the send bu�er
construction. All in all, we have an expected runtime of

O

3
w̄ · b

39
w

w̄

:
, p

4

¸ ˚˙ ˝
Lines (2≠7),8,(10≠19)

+ m̄ · b

39
m

m̄

:
, p

4

¸ ˚˙ ˝
construct send bu�er

4
(6.1)

If w œ �(w̄p log(p)) and m œ �(m̄p log(p)), then we can apply Lemma 2.2 and receive an
expected runtime of

O

A
w + m

p

B

.

39

6 MPI Parallelized MapReduce

6.2. Reduce

6.2.1. Algorithm

As described in Section 5.1 the reduce phase receives key-value pairs from the shu�e phase.
During the map phase, we ensure that the shu�e phase sends the key-value pairs with the same
key to the same process. The reduce phase then gathers all values for a given key and applies
the user-defined reduce function. In Figure 16 we illustrate the general idea of our reduce phase.
First we have to deserialize the keys and values received from the shu�e and map phase. We
call the key followed by a set of values produced during the map phase key-values pairs. We
sort these pairs according to their hashed key. Then the reduce phase processes the pairs in
increasing order of their hashed key. For all key-values pairs with the same hashed key, we
group the pairs by their key. Finally, we have all values for a given key and we can apply the
user-defined reduce function.
Algorithm 18 describes the reduce phase of our MapReduce library. Let MR= (µ, fl, s, h) be
a MapReduce operation with user-defined map function µ, serialization function s, and hash
function h (Section 2.2). We parallelize the reduce phase with an MPI execution (S, P, “)
with HPC system S, processes P and bindings “ (Section 2.1). Let z be the same seed used
for the hash functions during the previous map phase and hmax the maximum possible hash
value plus one. Let (k, X) be a key-values pair with key k and values X aggregated during
the map phase. The shu�e phase sends (k, X) with hashed key h(k, z) to process l œ P , if
h(k, z) œ [(l ≠ 1) · Âhmax/pÊ, l · Âhmax/pÊ). Therefore, we send the key-values pairs with the
same key to the same process. The messages RBj represent all serialized key-values pairs send
to process j œ P .
Let’s consider the execution of the reduce phase on process j œ P . First, we deserialize the
key-values pairs and save them in an array KV. Similar to the map phase, we save for each

recv messages

RBj . . .SB1,j

. . .SBl,j

. . .SBp,j

. . .(k2, {v1, v2, v3}) (k4, {v4}) (k3, {v3, v4}) . . .(k1, {v1, v2, v3}) (k4, {v4}) (k3, {v3, v4}) . . .
1) deserialize keys and values

key-values

pairs KV j

. . .(k1, {v1, v2, v3}) (k3, {v3, v4}) (k4, {v4}) (k4, {v4})
h(k1, z) = h(k3, z) = h(k4, z)h(·, z) < < h(·, z)

2) sort by hashed key h(k, z)

sorted KVj

. . .(k1, {v1, v2, v3}) (k3, {v3, v4, v3, v4}). . .

(k3, {v3, v4})

(k4, {v4, v4}) . . .
3) group pairs by key

. . .Output Dj

4) apply the user-defined reduce function fl

Figure 16: Illustration of the reduce phase executed on MPI process j. Let z be the same seed
for the hash function as used during the map phase. (1) First, we deserialize the
key-values pairs produced during the map phase. (2) Secondly, we sort the pairs
according to their hashed key. (3) For all pairs with the same hashed key, we gather
all values with the same key. (4) Finally, we apply the user-defined reduce function.

40

6.2 Reduce

Algorithm 18: Reduce phase executed on process j

Input: RBj
, MR = (µ, fl, s, h) // received messages RBj, MapReduce operation MR

1 KV, HI = ÿ // initialize an empty list of key-values pairs and hash-index pairs
2 foreach (s(k), s(X)) œ RBj do // iterate over the received messages
3 HI += (h(k, z), |KV|) // save the hashed key and the index of (k, X) in KV
4 KV += (k, X) // deserialize and save the key-values pairs
5 end
6 sort HI by the first pair element
7 Dj = ÿ // initialize an empty set of output elements
8 while |KV| > 0 do
9 h = min(k,·)œKV h(k, z) // determine the minimum hash value

// determine the key-value pairs with minimal hashed key and group them by key
10 C = {(k, Y)|k œ K · h(k, z) = h · Y = t

{X|(k, X) œ KV}}

11 foreach (k, Y) œ C do
12 Dj = Dj

fi fl(k, Y) // apply the user-defined reduce function
13 end
14 KV = KV \ {(k, s)|(k, X) œ C · s œ X} // remove the processed pairs
15 end
16 return Dj // return the output elements

pair (k, X) the pair (h, i) in HI, where h = h(k, z) is the hash value of key k and i is the index
of (k, X) in KV. Then we sort the hash-index pairs HI according to the hashed key (Line 6).
We use the cache e�cient and linear time radix sort implementation IPS2

Ra (Section 3.5).
In Lines 8 to 15 we gather all values to their corresponding keys and apply the user-defined
reduce function. We iterate over the sorted hash-index list HI and process the key-values pairs
in increasing order of their hashed key. First, we determine all key-values pairs with hashed
key equal to the current minimal hash value determined in Lines 9. By using a hash table and
di�erent hash function, we group the pairs by their key in C. Finally, we have determined all
values for a given key and we can apply the user-defined reduce function (Line 12).

6.2.2. Complexity

We adopted the general structure of the BSP MapReduce algorithm introduced in [86]. We
achieve the same expected runtime (Lemma 6.2). We use the MapReduce runtime parameters
w, w̄, m, m̄ introduced in Section 2.2 and balls in bins model of Section 2.4. Note that if we
assume that the hash function h is a truly random mapping, then our map and reduce phase
distribute the keys interdependently uniformly at random between all processes.

Lemma 6.2. Let the key-value pairs be distributed uniformly at random by their key between
p processes. Then the reduce phase (Algorithm 18) has an expected running time of:

O

3
w̄ · b

39
w

w̄

:
, p

44
.

Furthermore, if w œ �(w̄p log(p)), then the reduce phase has an expected time complexity of:

O

A
w

p

B

.

41

6 MPI Parallelized MapReduce

Proof. We follow the proof of Theorem 4.1 in [86]. Note that the user-defined reduce function
processes key-values pairs, hence the maximum key-value pair size is w̄. The term w indicates
the time needed to apply the user-defined reduce function to all pairs, hence we have at most w

pairs. Since keys are distributed uniformly at random between p processes, we can use the static
load balancing Lemma 3.1. The worst key-values pairs distribution occurs if we have w̄ pairs
of size Áw/w̄Ë. Therefore, the maximum expected number of pairs per process is b (Áw/w̄Ë , p).
We use a linear time radix sort algorithm in Line 6, which results in an expected runtime of
O (w̄ · b (Áw/w̄Ë , p)).
In Lines 8 to 15 we iterate once over all key-values pairs in ascending order of their hashed key.
We can perform the grouping by key in linear time with a hash table. Hence, Lines 8 to 15
without Line 12 have an executed runtime of O (w̄ · b (Áw/w̄Ë , p)).
Since the shu�e phase distributed the keys uniformly at random we can apply Lemma 3.1 for
the user-defined reduce function load balancing. The worst case occurs, if there are exactly
Áw/w̄Ë function calls with a non-zero execution time of w̄. Since w includes deserialization
and hashing, Lines 2 to 5 and 12 have an expected runtime of O (w̄ · b (Áw/w̄Ë , p)). All in all,
Algorithm 18 has an expected runtime of

O

3
w̄ · b

39
w

w̄

:
, p

44
.

If w œ �(w̄p log(p)), then we can apply Lemma 2.2 and receive an expected runtime of

O

A
w

p

B

.

6.3. Fault-Tolerance

6.3.1. Redistribute Algorithm

To realize the fault-tolerance mechanism, we provide an algorithm for the Redistribute opera-
tion used in Algorithm 15 (Section 5). First, each process gathers all messages sent to the failed
compute node during the previous shu�e phase. The algorithm includes the self-messages of the
failed node. We distribute the key-values pairs uniformly between the remaining processes. This
allows us to parallelize the recovery phase. The redistribution returns an MPI_All_to_allv
send bu�er used to exchange the key-value pairs.
Let pold and pnew be the number of processes before and after a node failure. Then k = pold ≠ pnew

indicates the number of failed processes. Let MR = MRi = (µ, fl, s, h) be the previous MapRe-
duce operation with serialization function s and hash function h (Section 2.2). The MapReduce
operation runs on an MPI execution (S, P, “) with HPC system S, processes P and bindings “,
with |P | = pnew (Section 2.1). Let F = {f1, ..., f2} be the list of processes on the failed node,
with |F | = k. The input of the Redistribute Algorithm 19 is a list of messages S send to the
failed processes F this includes the saved self-messages.
During the save message operation after the shu�e phase in Section 5, each process has saved
exactly one message send to one of the failed processes. Furthermore, exactly k processes
have saved the self-messages of one of the failed processes. Therefore, pnew ≠ k processes have
saved k messages and k processes have saved 2 · k messages. The general idea of the redis-
tribution algorithm is to divide each message into pnew buckets and send each bucket to a
di�erent process. Hence, we divide each message between the remaining processes. More pre-
cisely, we partition the serialized key-values pairs according to their hashed key. A message

42

6.3 Fault-Tolerance

S
j,f send from process j to a failed process f contains the key-value pairs with hashed key in

[(f ≠1)·Âhmax/poldÊ, f ·Âhmax/poldÊ), where hmax is the maximum hash value plus one. We divide
S

j,f into pnew buckets b œ {1, ..., pnew}, where bucket b contains the key-values pair (k, X), if

b =

WWWU
h(k, z) ≠ (l ≠ 1)hmax

pold

hmax
pnew

XXXV + 1.

After dividing each message into buckets, we save bucket b into a message RSBj,b for process b

(Lines 10 and 14). We distinguish between two di�erent cases. Process j has saved the self-
messages of a failed process in Line 14 or not in Line 10. If we have saved no self-messages, then
there are no two key-values pairs in di�erent messages. Therefore, we copy the bucket b of each
message S

j,f into the redistribution bu�er RSBj,b destined for process b. If we have saved the
self-messages, then for each failed process f œ F we have two messages S

j,f and S
i,f previously

destined to process f . There may be key-value pairs with the same key in both messages. To
combine the values with the same key we perform a merge for each bucket b in Line 14.
We produced S

j,f and S
i,f during a map phase and are therefore lists of serialized key-values

pairs sorted according to their hashed key. For each bucket b we process the pairs in ascending
order of their hashed key. By using a hash table, we gather for each key with the same hash
value all its corresponding serialized values. We save the resulting key-values pair into the
redistribution message RSBj,b destined for process b as described above.
Note that we have to deserialize the keys once to determine its hash value and to add the key
into the hash table during the merge. We do not need to deserialize the values. During the map

Algorithm 19: Redistribute: shared memory
// saved messages S send to the failed processes {f1, ..., f2}, new and old number of

processes pold, pnew and MapReduce operation MR
Input: S = {S

j,f1 , ..., S
j,f2 , S

i,f1 , ..., S
i,f2}, pold, pnew œ N, MR = (µ, fl, s, h)

1 foreach S
l,f

œ S do // divide each saved message into pnew buckets
2 foreach b œ {1, ..., pnew} do // construct bucket b

3 S
l,f (b) =

I

(s(k), s(X)) œ S
l,f

|k œ K, X ™ V ·

E
h(k,z)≠(l≠1) hmax

pold
hmax
pnew

F

= b ≠ 1
J

4 end
5 end
6 RSBj = {RSBj,1

, ..., RSBj,x
, ..., RSBj,pnew} // initialize messages RSBj,x send from j to x

7 foreach f œ {f1, ..., f2} do // iterate over the failed processes {f1, ..., f2}
8 if S

i,f
/œ S then // process j has not saved the self-message of a failed process

9 foreach b œ {1, ..., pnew} do // iterate over buckets b

10 RSBj,b = RSBj,b
fi S

j,f (b) // copy S
j,f (b) into the new bucket RSBj,b

11 end
12 else
13 foreach b œ {1, ..., pnew} do // iterate over buckets b

// merge buckets S
j,f (b) and S

i,f (b)
14 RSBj,b = RSBj,b

fi

Ó
(s(k), X1 fi X2)|(s(k), X1) œ S

j,f (b) · (s(k), X2) œ S
i,f (b)

Ô

15 end
16 end
17 end
18 return RSBj

43

6 MPI Parallelized MapReduce

phase, we have saved the serialized value size. This allows us to determine the next key-value
pairs in a message S

j,f without deserializing all its values (Section 6.1.1).

6.3.2. MergeBu�er Algorithm

Algorithm 20 performs the merge bu�er operation needed during the single node failure fault-
tolerance mechanism (Section 5.2). During recovery, we recompute the reduce phase and map
phase for the key-value pairs lost during the failure. This results in a recovery send bu�er RSBj

at each process j. The merge bu�er algorithm takes RSBj and the output of the map phase
SBj as input. It merges the sorted key-values pairs of both bu�ers and distributes the resulting
pairs between the still working processes.
Let pnew be the number of remaining processes after recovery and pold be the number of pro-
cesses before failure. Then k = pold ≠ pnew represents the number of processes lost due to
the node failure. Let MR = MRi = (µ, fl, s, h) be the current MapReduce operation with
user-defined map function µ, serialization function s, and hash function h (Section 2.2). The
MapReduce operation runs on an MPI execution (S, P, “) with HPC system S, processes P

and bindings “, with |P | = pnew (Section 2.1). Let SBj be the messages produced during the
map phase and RSBj be the messages produced during the recovery phase at process j. Since
we have produced these messages during the map phase, they are sorted by their hashed key.
Algorithm 20 illustrates the MergeBu�er operation during the recovery phase. We process the
serialized key-values pairs in SBj and RSBj in ascending order of their hashed key (Line 2).
First, we determine the current minimal hashed key h (Line 3). Then we gather all pairs with
the same hashed key and group them according to their keys (Line 4). We perform this ag-
gregation by adding these pairs in a hash table. Similar to the map phase (Section 6.1), we
determine the destination process l = Âp · h/hmaxÊ of each pair by their hashed key (Line 5).
Then we save the merged pairs in a message for process l (Line 6). This results in sorted
key-values pairs inside the new messages NewSBj, which the shu�e phase distributes.
Note that our reduce phase does not necessarily require a sorted list of key-values pairs
(Section 6.2.1), but the redistribution phase does (Section 6.3.1). Since we exchanged the mes-
sages NewSBj during the next shu�e phase, we need to save the send bu�er and self-messages
for our fault-tolerance mechanism. If two node failures occur on to successive MapReduce

Algorithm 20: MergeBu�er: MPI algorothm (execution on process j)
// send bu�er from map SBj and RSBj recovery phase,MapReduce operation MR
Input: SBj

, RSBj
, MR = (µ, fl, s, h)

1 NewSBj =
Ó
NewSBj,1

, ..., NewSBj,l
, ..., NewSBj,pnew

Ô
// initialize pnew empty messages

2 while |SBj
| > 0 · |RSBj

| > 0 do
3 h = min

Aœ{SBj
,RSBj} min(s(k),s(X))œA h(k, z) // determine the current minimum hash value

// group key-values pairs with the same the hased key
4 C = {(s(k), s(Y))|k œ K · h(k, z) = h · Y = t

{X|(s(k), s(X)) œ SBj
fi RSBj

}}

5 l = Â
hpnew

hmax
Ê + 1 // determine the destination process l

// save the grouped key-values pairs into a new send bu�er
6 parallel_foreach (s(k), s(Y)) œ C do NewSBj,l+ = |Y | + s(k) + s(Y)

SBj = SBj
\ {(s(k), s(X)) œ SBj

|h(k, z) = h} // remove processed pairs
7 RSBj = RSBj

\ {(s(k), s(X)) œ RSBj
|h(k, z) = h} // remove processed pairs

8 end
9 return NewSBj

44

6.3 Fault-Tolerance

operations, we require sorted pairs for Algorithm 19.

6.3.3. Complexity

To analyze the complexity of Algorithms 19 and 20, we adopt a similar approach as during
the previous sections. We use the MapReduce runtime parameters w, w̄, m, m̄ introduced in
Section 2.2 and balls in bins model of Section 2.4. Let pold and pnew be the number of processes
before and after a node failure. Then k = pold ≠ pnew indicates the number of failed processes.

Lemma 6.3. The redistribution Algorithm 19 performed after a node failure can be implemented
with an expected runtime of:

O

3
km̄b

39
m

m̄

:
, p

2
old

4
+ kw̄b

39
w

w̄

:
, p

2
old

44
.

If m œ �(m̄p
2
old

log(pold)) and w œ �(w̄p
2
old

log(pold)), then we get an expected runtime of:

O

A

k
w + m

p2
old

B

.

Proof. We perform the redistribution phase after a map phase and each process partitioned
their key-value pairs into pold messages. Hence, after the map phase all intermediate key-values
pairs are distributed between p

2
old

messages. If the hash function h is a truly random mapping,
then the pairs are distributed uniformly at random according to their keys (Section 6.1.1).
Each call of this function processes at most w̄ pairs. According to Lemma 3.1 the worst case
for static load balancing occurs if the workload is skewed and we have Áw/w̄Ë di�erent keys
with w̄ values each. Therefore the maximum expected number of key-value pairs per message
and processed by each process in Line 3 is w̄b (Áw/w̄Ë , p

2
old

). By applying a similar reasoning,
the maximum expected number of machine words per process is m̄b (Ám/m̄Ë , p

2
old

).
Processes which have saved no self-message of a failed node have k messages S. The remaining
processes have 2k input messages. We can determine the buckets in Line 3 with a linear scan
by deserializing keys and applying the hash function. Therefore, Lines 1 to 5 have an expected
runtime of O (kw̄b (Áw/w̄Ë , p

2
old

)). Copying the buckets into the new messages in Line 10 has an
expected runtime of O (m̄b (Ám/m̄Ë , p

2
old

)). Merging messages in Line 14 requires to add each
key-values pair once into a hash table and then copying the grouped pairs into the send message.
This results in an expected runtime of O (m̄b (Ám/m̄Ë , p

2
old

) + w̄b (Áw/w̄Ë , p
2
old

)) . Finally, we
need to gather all messages into an MPI_All_to_allv send bu�er, which requires expected
O (km̄b (Ám/m̄Ë , p

2
old

)) time. The expected overall runtime of Algorithm 19 is

O

3
k w̄b

39
w

w̄

:
, p

2
old

4

¸ ˚˙ ˝
Lines (3),(10),(14)

+k m̄b

39
m

m̄

:
, p

2
old

4

¸ ˚˙ ˝
Lines (10),(14)

construct send bu�er

4
.

If m œ �(m̄p
2
old

log(pold)), w œ �(w̄p
2
old

log(pold)) and by using Lemma 2.2 we get a runtime of

O

A

k
w + m

p2
old

B

.

45

6 MPI Parallelized MapReduce

Lemma 6.4. The merge bu�er Algorithm 20 performed after a node failure has an expected
runtime of:

O

3
w̄b

39
w

w̄

:
, pnew

4
+ m̄b

39
m

m̄

:
, tpnew

44
.

If w œ �(w̄pnew log(pnew)) and m œ �(m̄pnew log(pnew)), then we get an expected runtime of:

O

A
w + m

pnew

B

.

Proof. During the map phase, the input data have been divided into p
2
old

messages, pold messages
for each process. During the redistribution Algorithm 19 the key-values pairs are redistributed
uniformly at random between the remaining processes. After redistribution and before the
merge Algorithm 20 we have no data exchange. Furthermore, the pairs in SBj have been
produced during a map phase initialized with a uniformly and randomly distributed input.
Hence, all key-values pairs t

j SBj
fiRSBj have been distributed uniformly at randomly between

pnew process. The user-defined reduce function consumes the intermediate key-value pairs.
Each call of this function processes at most w̄ pairs. According to Lemma 3.1 the worst case
for static load balancing occurs if the workload is skewed and we have Áw/w̄Ë di�erent keys
with w̄ values each. Therefore, the maximum expected number of key-value pairs per process is
w̄b (Áw/w̄Ë , pnew). By applying a similar reasoning, the maximum expected number of machine
words per process is m̄b (Ám/m̄Ë , pnew).
Lines 2 to 8 result in a linear scan over the pairs in SBj and RSBj. In Line 4 we need to
deserialize the keys, apply the hash function and use a hash table for aggregation. This results
in an expected runtime of O (w̄b (Áw/w̄Ë , pnew)) . In Line 6, we copy the pairs into their new
messages, which requires an expected runtime of O (m̄b (Ám/m̄Ë , pnew)) . Finally, we have to
construct an MPI_All_to_allv send bu�er, which requires expected O (km̄b (Ám/m̄Ë , p

2
old

))
time. The expected overall runtime of Algorithm 19 is

O

3
w̄b

39
w

w̄

:
, pnew

4

¸ ˚˙ ˝
Line (4)

+ m̄b

39
m

m̄

:
, pnew

4

¸ ˚˙ ˝
Line (6)

construct send bu�er

4
.

If m œ �(m̄pnew log(pnew)), w œ �(w̄p
2
new

log(pnew)) and by using Lemma 2.2 we get a runtime in

O

A
w + m

pnew

B

.

46

7 Hybrid Parallelized MapReduce

7. Hybrid Parallelized MapReduce

In Section 6 we introduce a MapReduce algorithm, which applies on each MPI processes the
user-defined map and reduce functions sequentially to the input. We want to design our library
to run on high-performance computers consisting of multiple compute nodes including multiple
processors. We engineer a MapReduce framework, which starts one MPI process per compute
node or NUMA node and parallelizes locally on each node using OpenMP.
For the following sections we use process to indicate an MPI process, node to refer to a compute
node and thread to refer OpenMP threads. Each node contains the same number of processes
k, where each process consists of t parallel threads.
In Section 7.1 we introduce our hybrid parallel implementation of the map phase. We propose
a hybrid parallel algorithm for the reduce phase in Section 7.2. In Section 7.3 we provide the
necessary algorithm to ensure the single node fault-tolerance.

7.1. Shared Memory Parallelized Map

7.1.1. Algorithm

We describe a shared memory parallelization of the map phase taking the NUMA architec-
ture into account. The following algorithm implements Line 2 during a MapReduce operation

Aj

. . .

. . .

. . .
...

key value pairs
. . .

. . .

. . .
...

1) map
serialize values

2) sort by
hash of key

. . .

. . .

0 hmax
tp

...

...
3) divide into

buckets

. . .
Bucket start

4) t-way merge

node 0 node 1t buckets per node

KV0

KV1

KV2

sorted KV0

sorted KV1

sorted KV2

KV0(0) KV0(1)

KV2(0) KV2(1)s

2hmax
tp

hmax
tp 2hmax

tp

B0 B1 B3 Bt Bt+1

Figure 17: Illustration of the parallel shared memory implementation of the map phase. We
follow the following steps: (1) First, we parallelize the application of the user-defined
map function and save the pair in t arrays. (2) Each thread sorts the pairs of one
array according to their hashed key. (3) Each thread divides its array into p·t buckets
according to their hashed key. (4) We parallelize over the buckets and merge them
into the send bu�er.

47

7 Hybrid Parallelized MapReduce

(Algorithm 12). The map phase parallelizes the application of the user-defined map function on
each MPI process using a shared memory model. We follow the general idea of the map phase
introduced in Section 6.1. First, the map phase applies the user-defined map function to the
input elements. Then we group the key-value pairs by their key. The algorithm serialized the
keys and their values and saves the results in an MPI_All_to_allv send bu�er for the shu�e
phase. We illustrate the map phase in Figure 17 and Algorithm 21.
We use aggregation with sorting to avoid the cache e�ciency problems as described in Section 3.4.
To sort the key-value pairs we use a combination of the in-place cache e�cient radix sort IPS

2Ra
(Section 3.5) and multi-way merge.
Let MR= (µ, fl, s, h) be a MapReduce operation with user-defined map function µ, serialization
function s, and hash function h (Section 2.2). The MapReduce operation runs on an MPI exe-
cution (S, P, “) with HPC system S, processes P and bindings “ (Section 2.1). We parallelize
the map phase on process j œ P using t parallel threads, one for each core “(j). Algorithm 21
consists of the following steps on process j:

0 The input is a multi-set A
j

™ I of input elements and the MapReduce operation tuple
MR= (µ, fl, s, h).

1 First, we initialize a list of key-serialized value pairs KVx and a hash-index list HIx. We
distribute the input elements dynamically between the di�erent threads. Each thread x

applies the user-defined map function µ, serializes the value, and saves the key-serialized
value pairs (k, s(v)) in KVx. We associate (k, s(v)) with a hash-index pair (h(k, z), i),
which we save in HIx. The index i indicates the position of (k, s(v)) in KVx. We compute
the hash value of the key h(k, z) with the same seed on each process. (Lines 1-8)

2 On each thread x we sort the hash-index pairs HIx by their hash value in ascending
order. By using the sorted hash-index pairs HIx, we can sort the list of key-serialized
value pairs KVx. (Lines 10)

3 For each thread x we partition the list of key-serialized value pairs KVx according to
their hashed key into t · p buckets. We divide the range of hash values [0, hmax) into t · p.
The bucket KVx(i) contains the pairs with hashed key h(k, z) œ [i ·

hmax
t·p , (i + 1) ·

hmax
t·p),

where hmax is the maximum possible hash value plus one. For a given hash value h we
can determine its bucket i = Â

t·p·h
hmax

Ê. (Line 11)
4 OpenMP distributes the buckets dynamically between the di�erent threads using a paral-

lel for-loop. For each bucket i we gather all buckets KVx(i) from the di�erent threads x.
We perform a t-way merge to gather for each key k all its serialized values. We iterate
over the di�erent buckets KVx(i) and process the keys in ascending order of their hash
value. We save the result of the t-way merge of bucket x in Bx.
First, we determine the minimal hash value hmin and all corresponding key-serialized
value pairs (k, s(v)) with h(k, z) = hmin. These pairs can have di�erent keys with the
same hash value. Therefore, we add these pairs into a hash table, with k as key and s(v)
as value. We save the serialized key s(k), the serialized values and the serialization size
of values into a send bu�er Bx corresponding to bucket x. (Lines 13-25)

5 Finally, the algorithm merges the serialized buckets B = {B0, ..., Bi, ..., Bn·t≠1} into an
MPI send bu�er for an execution of MPI_All_to_allv. For each MPI process i we
construct a send message containing the serialized buckets j, where

Í
j

t

Î
= i. This means

we send the keys with hash values in [i ·
hmax

p
, (i + 1) ·

hmax
p

) to MPI process i during the
shu�ing phase. (Lines 26-30)

During the entire map phase, we do not need the values of the key-value pairs. Therefore, we
do not need to save the value but can save the serialized value instead. We need the keys in
Step 4 (Line 18) to group the key-serialized value pairs by their key. We use hash tables to

48

7.1 Shared Memory Parallelized Map

Algorithm 21: Shared memory parallelized Map executed on process j

Input: A
j

™ I, MR = (µ, fl, s, h) // multiset of input elements A
j, MapReduce operation MR

1 KV = {KV0, ..., KVx, ..., KVt≠1} // initialize an empty list of key-value pairs for each thread
2 HI = {HI0, ..., HIx, ..., HIt≠1} // initialize an empty list of hash-index pairs for each thread
3 parallel_foreach e œ A

j do // iterate parallel over the input data and execute on thread x

4 foreach (k, v) œ µ(e) do // apply the user-defined map function
5 HIx += (h(k, z), |KVx|) // save the hash of k and the index of (k, s(v)) in KVx

6 KVx += (k, s(v)) // save the key k and the seralized value
7 end
8 end
9 parallel // execute in parallel for each thread x

10 sort HIx by the first pair element
// Divide the pairs in KVx into t · n buckets according to the hashed key by using HIx

11 KVÕ
x

= {KVx(i) | 0 Æ i < t · p}, where KVx(i) = {KV[y] | (h, y) œ HIx · Â
túpúh

hmax
Ê = i}

12 end
13 B = {B0, ..., Bl, ..., Bp·t≠1} // initialize p · t empty bu�ers of serialized key-values pairs

// iterate over all buckets in parallel and execute on thread x

14 parallel_for i œ {0, ..., p · t ≠ 1} do
15 KV(i) = t

xœ{0,...,t≠1} KVx(i) // gather all buckets produced by the di�erent threads
16 while KV(i) conatins pairs do
17 hmin = minxœ{0,...,t≠1} min(k,·)œKVx(i) h(k, z) // determine the minimum hash value

// determine the key-value pairs with minimal hashed key and group them by key
18 C = {(k, X)|k œ K · h(k, z) = hmin · X = {s(v)|(k, s(v)) œ KV(i)}}

19 foreach (k, X) œ C do
20 Bi += |X| + s(k) // add the size of values and the serialized key
21 foreach s œ X do Bi += s // add the serialized values
22 end
23 KV(i) = KV(i) \ {(k, s)|(k, X) œ C · s œ X} // remove the processed pairs
24 end
25 end
26 SBj = {SBj,1

, ..., SBj,l
, ..., SBj,p

} // initialize p empty send messages
27 parallel_for i œ {0, ..., p · t ≠ 1} do // iterate over all buckets in parallel
28 l = Â

i

t
Ê // we send buckets y · t to ((y + 1) · t ≠ 1) to node y

29 SBj,l = SBj,l
fi Bl // add the serialized bucket l to the send message

30 end
31 return SBj // return a message for each node

aggregate the serialized values, which require hashed keys. Furthermore, we use a seed z for
the hash function h to determine the process of a key-value pair for the reduce phase. Since
all keys we add to the hash table have the same hash value with seed z, we need to choose a
di�erent seed. Otherwise, the hash table accesses would cause hash collisions.
In Step 2 we use a sequential sorting algorithm to sort the pairs in HIx according to their first
value. This approach has the disadvantage that we cannot perform load-balancing between the
di�erent threads during sorting. Since each thread has mapped an equal number of elements,
the di�erent HIx have similar sizes. An alternative approach is to save all hash-index pairs into
a single list and use a parallel sorting algorithm. This would require to save all HIx into a single
list. This requires additional memory. Furthermore, the NUMA architecture of compute nodes

49

7 Hybrid Parallelized MapReduce

makes copying elements between threads slow.
We sort hash-index pairs HIx instead of key-serialized value pairs KVx on each thread x. The
key and value types are user-defined and can be large. Sorting large elements can lead to
longer sorting times if the algorithm needs to copy or swap large data types. Thus, we do not
sort by key, but by the hashed key. Sorting the pairs in KVx directly requires to evaluate the
hash function multiple times. Therefore, for each key-serialized value pair (k, s(v)) œ KVx we
compute h(k, z) only once and save (h(k, z), i) in HIx. After sorting, we can use the index i of
(k, s(v)) in KVx to sort KVx.
During the application of the user-defined map function, we distribute the input data equally
between the di�erent threads. This should lead to similar execution times for each thread in
Steps 1-3.
Note that we sort and aggregate the key-value pairs during the map phase before shu�ing
through the network. The alternative is to serialize the pairs without aggregation. Our ap-
proach has two advantages. First, we have to serialize each key only once per process (Line 20).
Secondly, serialized keys can be large, for instance during a word count algorithm (Section 4.1).
By aggregating before shu�ing, we have to send each key only once from a process. By sorting
during the map phase, the reduce phase amounts to a multi-way merge to finish the aggregation
(Section 7.2).
From Line 14 to 30 we perform a multi-way merge algorithm and save the serialized buck-
ets B into send bu�ers SB

j. Since we use MPI_All_to_allv calls during the shu�e phase,
we have to save the send messages for the di�erent processes successively into a single bu�er
(Figure 17 Step 4). To minimize memory usage and copy operations we store the serialized
key-values directly into the MPI send bu�er. To determine the start index of each bucket Bi,
we require their sizes. We perform the multi-way merge from Line 14 to 25 twice. During the
first merge, we determine the size of each bucket, by serializing the key and using the already
serialized values. Then we determine the start index of each bucket in the MPI send bu�er by
computing a prefix sum over the bucket sizes. Finally, we merge the serialized key-value pairs
into the send bu�er.
A message SBj,l sent from process j to process i contains the t serialized buckets
{Bt·i, ..., Bt·(i+1)≠1}. The message starts with t + 1 indexes indicating the start and end in-
dex of each bucket. At position x we save the start index of bucket x. Position x + 1 contains
the end index of bucket x and start index of bucket x + 1. Following the bucket start indexes,
we save the serialized buckets consecutively.

7.1.2. Complexity

We adopted the general structure of the BSP MapReduce algorithm introduced in [86]. We
achieve the same expected running time (Lemma 7.1). We use the MapReduce runtime param-
eters w, w̄, m, m̄ introduced in Section 2.2 and balls in bins model of Section 2.4.

Lemma 7.1. The input multi-set A is distributed randomly between p processes. Let t be the
number of threads per process. We assume the hash function h is a truly random mapping.
Then the map phase (Algorithm 21) can be implemented with expected running time:

O

3
w̄ · log(t) · b

39
w

w̄

:
, tp

4
+ m̄ · b

39
m

m̄

:
, tp

4
+ p

4
.

If w œ �(w̄ log(t)tp log(tp)) and m œ �(m̄tp log(tp)), then we get an average complexity of:

O

A
w + m

tp
+ p

B

.

50

7.1 Shared Memory Parallelized Map

Proof. We follow the proof of Theorem 4.1 in [86]. We assume that the input elements A ™ I

are distributed randomly between the di�erent processes. At each process j we use a parallel
for-loop to distribute the local input elements A

j
™ A between the di�erent threads. Therefore,

we can assume that the input elements are distributed randomly between all tp threads.
The running time of applying the user-defined map function (Line 4), evaluating the hash func-
tion (Line 5), serializing values (Line 6), and serializing keys (Line 20) is worst if the work is
as skewed as possible (Lemma 3.1). Therefore, we assume the execution time is zero for all
input elements except for Áw/w̄Ë elements, which require w̄ time. Assigning Áw/w̄Ë elements
randomly between pt threads corresponds to the balls in bins problem [78], where Áw/w̄Ë is
the number of balls and tp the number of bins. The expected maximum number of elements
per thread is b (Áw/w̄Ë, tp). Since each of these elements has a running time of w̄, the expected
running time of Lines 3 to 8 is O (w̄ · b (Áw/w̄Ë, tp)).
The user-defined map function produces the intermediate key-value pairs. Therefore, each map
function can produce at most w̄ keys. In total there are at most w keys, which are distributed
between tp threads. Since the input elements are distributed randomly between all threads, the
key-value pairs are produced randomly.(Line 4). As before we can apply Lemma 3.1. Hence,
the expected maximum number of key-value pairs on each thread is b (Áw/w̄Ë, tp). In Line 10
we sort the pairs according to the hashed key-value. We represent the hash values using 64Bits.
By using a radix sort algorithm [17, 44] we can sort in expected O (64 · b (Áw/w̄Ë, tp)) time.
Dividing the pairs into equally sized blocks (Line 11) requires a linear scan and therefore runs
in expected O (b (Áw/w̄Ë, tp)) time.
On each thread we have divided the key-value pairs into tp buckets. Over all processes we
have tp

2 buckets. We divide the pairs by dividing the hashed key into Âhmax/t/pÊ sized par-
titions, where hmax is the maximum hash value. On each process we assign p buckets to
each thread. Since we assume that the hash function is truly random, each thread processes
expected O (b (Áw/w̄Ë, tp)) pairs (Lines 14-25).
We perform a multi-way merge over buckets KVx(i) for i œ {0, ..., t ≠ 1}, which has a com-
plexity of O (log(t) · b (Áw/w̄Ë, tp)) on each thread. We group the pairs in Line 18 by using
a hash table, which requires linear time. The worst case for saving the serialized pairs in a
bucket (Line 19-22) occurs if the serialized data m is as skewed as possible (Lemma 3.1,[86]).
This means if we have k = Ám/m̄Ë elements with a size of m̄ (Lemma 1 [85]). The expected
maximum serialized data per thread is b(Ám/m̄Ë, tp). All in all Lines 14 to 25 have an expected
running time of O (log(t) · b (Áw/w̄Ë, tp) + m̄ · b(Ám/m̄Ë, tp)).
We save the buckets B into a single send bu�er SBj used by an MPI_All_to_allv command.
We can use a parallel prefix sum to compute the start and end index of each bucket Bx in SBj.
A parallel prefix sum over tp elements running on t parallel threads requires O (p + log(t))
operations [88]. By using the same reasoning as before, the worst case for saving the buckets
Bx in SBj occurs if the expected maximum number of machine words handled by each thread
is m̄ · b (Ám/m̄Ë, tp). Since we have the positions of each bucket in SBj, copying results in a
linear scan, which has an expected running time of O (m̄ · b (Ám/m̄Ë, tp)).
All in all Algorithm 21 has a complexity of:

O

3
w̄ · b

39
w

w̄

:
, tp

4

¸ ˚˙ ˝
Lines 3≠13

+ w̄ · log(t) · b

39
w

w̄

:
, tp

4

¸ ˚˙ ˝
Lines 14≠25

+ m̄ · b

39
m

m̄

:
, tp

4

¸ ˚˙ ˝
Lines 26≠30

+ p
¸˚˙˝

prefix sum

4
.

With Lemma 2.2, w œ �(w̄ log(t)tp log(tp)), and m œ �(m̄tp log(tp)) we get the expected time

O

A
w + m

tp
+ p

B

.

51

7 Hybrid Parallelized MapReduce

receive

bu�er RBj . . .

.

1) merge

buckets

.

2) deserialize

reduce

. . .

3) gather

output elements

Output Dj

SB1,j SB2,j SB3,j

. . .

. . .

SB4,j

Dj
1 Dj

2 Dj
3 Dj

4

Figure 18: Illustration of the parallel shared memory implementation of the reduce phase.
(1) First, each thread x gets the bucket x of each received message and merges
the key-values pairs according to their keys. (2) Each thread deserialized its values
and applies the user-defined reduce function. (3) We gather all output elements into
one large array.

7.2. Shared Memory Parallelized Reduce

7.2.1. Algorithm

The following shared memory algorithm parallelizes the application of the user-defined reduce
function on each MPI process. The general idea is to use the buckets constructed during the
map phase described in Section 7.1. Each thread deserializes and merges the buckets received
from the di�erent MPI processes during the shu�e phase. After aggregation, we apply the
user-defined reduce function.
Let MR = (µ, fl, s, h) be a MapReduce operation with user-defined reduce function fl, serializa-
tion function s, and hash function h (Section 2.2). We execute the MapReduce operation on
p parallel processes. We use a shared memory algorithm to parallelize the reduce phase. We
assign t threads for each process j œ {1, ..., p}. We illustrate this Algorithm 22 in Figure 18.
The algorithm consists of the following steps corresponding to the numbering in Figure 18:

0 The input of the reduce phase at process j are the received messages from the shu�e
phase RBj and the MapReduce operation MR = (µ, fl, s, h). The previous map phase
(Section 7.1) at process l has produced the message SBl,j

œ RBj. This message contains
the serialized key-values pairs sorted in ascended order according to their hashed key
value. (Line 1)

1 The map phase has divided each message M œ RBj into t buckets. At process j the
bucket x œ {1, ..., t} in M contains the key-values pairs (k, X) with:

h(k, z) œ

C

(x ≠ 1)
E

hmax

t · p

F

+ (j ≠ 1)
E

hmax

p

F

, x

E
hmax

t · p

F

+ (j ≠ 1)
E

hmax

p

FB

The seed z is the same as used during the map phase. We assign a thread to a bucket.
Each thread x iterates in parallel over the received messages M œ RBj and deserialize
the key-values pairs in bucket x. We save the resulting from process l in C

l

x
. (Line 6)

52

7.2 Shared Memory Parallelized Reduce

2 Each thread x merges the deserialize buckets Cx = {C
1
x
, ..., C

l

x
, ..., C

p

x
}. We perform a

multi-way merge by scanning over the p buckets simultaneously. We gather the key-values
pairs with the same minimal hashed key value hmin. We group these pairs according to
their key. We apply the user-defined reduce function fl and save the results in a thread-
local output set D

j

x
. We remove the key-values pairs (k, X) with h(k, x) = hmin and

repeat Step 2 until the buckets Cx are all empty. (Lines 8-15)
3 Finally, we gather the thread-local output elements D

j

x
into a single set D

j (Line 17).
During the map phase, we save the start and end index of a bucket x in message SBl,j send
from process j to l. The map phase append these start indexes at the start of SBl,j. This allows
us to determine the bucket boundaries in constant time (Step 1, Line 6).
Note that each thread works exactly on one bucket, which can lead to imbalanced execution
times. We have constructed these buckets by dividing the key-value pairs by their key hash
value. If our hash function maps the keys equally distributed and there are no imbalances in
the key-value pairs, then each thread should get an equal workload. Note that this does not
work if there are some keys with not evenly distributed values, for instance if there is one key
with more values than the rest.
To lower the memory usage we combine the deserialization and merging in Step 1. We perform a
multi-way merge algorithm over the serialized buckets x situated in messages
RBj = {SB1,j

, ..., SBl,j
, ..., SBp,j

}. Thread x scans over the buckets x in the received mes-
sages simultaneously. We deserialize the keys and values with minimal hashed key value hmin

(Line 9). We group the values with the same key (Line 10). For this aggregation, we use a
hash table. We add the key-values pairs with the same hashed key in the table. This allows us
to gather all values of a given key. If we choose a su�ciently large hash value space, then hash
collisions are improbable. Therefore, the number of keys with the same hash values should be

Algorithm 22: Reduce: shared memory
Input: RBj

, MR = (µ, fl, s, h) // output from shu�e phase RBj, MapReduce operation MR
1 RBj = {SB1,j

, ..., SBl,j
, ..., SBp,j

}

2 parallel_foreach x œ {1, ..., t} do // process in parallel on each thread x

3 Cx = {C
1
x
, ..., C

l

x
, ..., C

p

x
} // initialize a set of key-values pairs for each receive message

4 Dj

x
= ÿ // initialize an empty output set for each thread

5 foreach l œ {1, ..., p} do // iterate over received messages RBj

// deserialize the key-values pairs in bucket x and message SBl,j

6 C
l

x
= {(k, X)|k œ K, X ™ V, (s(k), s(X)) œ SBl,j

· (x ≠ 1) ·
hmax

t·p Æ h(k, z) < x ·
hmax

t·p }

7 end
8 while ÷ÿ ”= E œ Cx do
9 hmin = minEœCx min(k,·)œE h(k, z) // determine the minimum hash value

// determine the key-values pairs with minimal hashed key and group them by key
10 C = {(k, X)|k œ K · h(k, z) = hmin · X = t

EœCx
{X|(k, X) œ E}}

11 foreach (k, X) œ C do
12 Dj

x
= Dj

x
fi fl(k, X) // apply the user-defined reduce function

13 end
14 Cx = {E \ C|E œ Cx} // remove the processed key-values pairs
15 end
16 end
17 Dj = {Dj

1, ..., Dj

x
, ..., Dj

p
} // gather the locally reduced output

18 return Dj

53

7 Hybrid Parallelized MapReduce

small. This results in small hash tables, which can fit into the cache. We use another seed for
the hash function than during the map phase. Using the same hash function would ensure hash
conflicts during the group by key in Line 10.
Finally, in Line 17 and Step 3 we use a prefix sum and parallel copy to gather all local output
elements D

j

x
into a single list D

j. We compute the prefix sum over the local thread output list
sizes |D

j

x
|. This provides us with a start and end index for each local list in the final list, as

well as the size of the final list. Each thread x can then copy their elements D
j

x
in parallel into

the final list D
j.

7.2.2. Complexity

We analyze the complexity of Algorithm 22 executed after the shu�e phase and Algorithm 21.
We use the MapReduce runtime parameters w, w̄, m, m̄ introduced in Section 2.2 and balls in
bins model of Section 2.4.

Lemma 7.2. Let the serialized key-value pairs be distributed uniformly at random between tp

buckets. We can implement the reduce phase (Algorithm 22) with expected running time of:

O

3
log(p) · w̄ · b

39
w

w̄

:
, tp

4
+ m̄ · b

39
m

m̄

:
, tp

4
+ log(t)

4
.

If w œ �(w̄tp log(tp)) and m œ �(m̄tp log(tp)), then the algorithm has a time complexity of:

O

A

log(p) ·
w + m

tp
+ log(t)

B

.

Proof. We follow the proof of Theorem 4.1 in [86]. The map (Algorithm 21) and shu�e phase
distribute the workload uniformly at random between tp buckets for the reduce phase. Each
thread processes exactly one bucket in Lines 2 to 16. According to Lemma 3.1 the worst case for
random static load balancing occurs if Áw/w̄Ë subproblems have a size of w̄, while the remaining
sizes are 0. The expected maximum number of subproblems per thread is w̄ · b (Áw/w̄Ë, tp).
In Lines 5 to 7 each thread deserializes the key-value pairs of its corresponding bucket. In
Lines 11 to 13 we apply the user-defined reduce functions. This results in an expected running
time of O (w̄ · b (Áw/w̄Ë, tp)) .

Each thread has to merge its bucket from p messages, each provided by a di�erent process. We
perform a multi-way merge in Lines 8 to 15. The key-value pairs correspond to an application
of the user-defined reduce function. Each reduce function can process at most wi pairs, where
wi Æ w̄ is its runtime. Therefore, we have at most w pairs, where each reduce function consumes
at most w̄ pairs. By applying Lemma 3.1, the worst case expected maximum number of key-
value pairs per thread is w̄ · b (Áw/w̄Ë). In Line 10 we group the key-value pair with the same
hashed key hmin by using a hash table, which results in a linear execution time. Performing
the p≠way merge requires O (log(p) · w̄ · b (Áw/w̄Ë, tp)) time.
In Line 17 we save the output elements into a single array on each process j. We determine
the start and end indexes of each thread-local output elements D

j

x
by performing a parallel

prefix sum over the sizes of D
j

x
. This parallel prefix sum over t elements requires O (log(t))

time. Each thread can now copy its local output D
j

x
into the global output D

j. We can apply
Lemma 3.1 and assume the worst case with Ám/m̄Ë output elements with a size of m̄. Then
the expected copy time lies in O (m̄ · b (Ám/m̄Ë , tp)) . All in all, Algorithm 22 has an expected
running time in

O

3
w̄ · b

39
w

w̄

:
, tp

4

¸ ˚˙ ˝
Lines 5≠7

+ log(p) · w̄ · b

39
w

w̄

:
, tp

4

¸ ˚˙ ˝
Lines 8≠15

+ m̄ · b

39
m

m̄

:
, tp

4
+ log(t)

¸ ˚˙ ˝
Line 17

4
.

54

7.3 Shared Memory Parallelized Fault-Tolerance

By applying Lemma 2.2 with w œ �(w̄tp log(tp)) and m œ �(m̄tp log(tp)) we get an expected
runtime of

O

A

log(p) ·
w + m

tp
+ log(t)

B

.

7.3. Shared Memory Parallelized Fault-Tolerance

The following sections introduce the algorithms needed for the single node fault-tolerance mech-
anism in Section 5. We present a shared memory implementation of the Redistribute algorithm
in Section 7.3.1. Section 7.3.2 presents the MergeBu�er algorithm. We analyze their runtime
complexity in Section 7.3.3.

7.3.1. Redistribute Algorithm

To realize the single node fault-tolerance, we have to provide a shared memory implemen-
tation for the Redistribute operation used in Algorithm 15 (Section 5). The redistribution
algorithm takes the messages send to a process on the failed node during the previous shu�e
phase as input. This algorithm redistributes the key-value pairs contained in these messages
uniformly at random between the remaining pnew processes. The output is a send bu�er, which
an MPI_All_to_allv operation exchanges between all processes. Let pold be the number of
processes before a node failure. During the failure k = pold ≠ pnew MPI processes stop working.
The number of parallel threads per process is t. Let MR= (µ, fl, s, h) be the previous MapRe-
duce operation with user-defined map function µ, serialization function s, and hash function h

(Section 2.2). The MapReduce operation runs on an MPI execution (S, P, “) with HPC system
S, processes P and bindings “, with |P | = pnew (Section 2.1).

messages
1) divide into
buckets Sl,f(b)

2) copy

3) construct
send bu�er

RSBj

Sj,f1

. . .

Sj,f2

. . .

Si,f2

.

.

.
2) merge

. . .

message to 0 message to 1 message to 2

RSBj,1 RSBj,2 RSBj,3 RSBj,4

Figure 19: This figure illustrates the redistribution of the saved messages to reconstruct the
lost data. (0) Gather all messages to processes on a failed node. (1) Divide each
message into pnew ·t buckets. (2) Copy and merge buckets together from all messages.
(3) Construct an MPI_All_to_allv send bu�er.

55

7 Hybrid Parallelized MapReduce

We parallelize the redistribution Algorithm 23 on process j œ P using t parallel threads, one
for each core “(j). Figure 19 illustrates the three main steps:

0 Let F = {f1, ..., f2} be the list of processes on the failed node, with |F | = k. The input is
a list of messages S send to the failed processes F . The map phase (Section 7.1) has con-
structed these messages. Each message S

l,f contains t buckets, where bucket x œ {1, ..., t}

contains the key-value pairs with hashed key in
ËÍ

((l≠1)t+x≠1)hmax

tpold

Î
,

Í
((l≠1)t+x)hmax

tpold

Î2
. The

previous map phase has sorted the serialized pairs according to their hashed key. k di�er-
ent processes contain the self-messages exchanged during the shu�e phase on the failed
node.

1 First, we divide each message S
l,f into tpnew buckets. The algorithm iterates over all

messages in S and each thread processes one of its t buckets in parallel. A thread x

divides the old bucket x œ {0, ..., t ≠ 1} into pnew sub-buckets y œ {1, ..., pnew}. The
new bucket S

l,f (b) in message S
l,f , with b = xpnew + y, contains the key-value pairs

with hashed key in
ËÍ

((l≠1)tpnew+b≠1)hmax

tpoldpnew

Î
,

Í
((l≠1)tpold+b)hmax

tpoldpnew

Î2
. We perform a scan over the

sorted bucket, deserialize their keys and determine the boundaries of the new buckets
S

l,f (b). (Lines 1 to 8)
2 For each saved message S

l,f on process j, we distribute their tpnew buckets S
l,f (b) between

global buckets B = {B1, ..., Bx, ..., Bpnew·t} in parallel. We parallelize over buckets b œ

{1, ..., pnewt}. We distinguish between copying and merging buckets.
a) copy: Process j has not saved self-messages of the failed processes. Two distinct

messages in S have no key-value pairs with the same hashed key in common.We only
need to copy bucket S

l,f (b) into the global bucket Bb (Lines 11 to 15)
b) merging: Process j has saved self-messages of the failed processes. For two distinct

messages S
j,f

, S
i,f

œ S send to the same failed process f , we have to merge their
buckets S

j,f (b) and S
i,f (b). These two buckets contain key-value pairs with the same

keys. We perform a 2-way merge of S
j,f (b) and S

i,f (b), which are sorted according
to their hashed keys. We save the result in the global bucket Bb. (Lines 15 to 19)

3 Finally, we construct a message RSBj,l send from each process j to l. Each message
contains t buckets of B. RSBj,l saves buckets B(l≠1)t+1 to Blt. We parallelize the send
message construction over the buckets in B. (Lines 22 to 25)

In Algorithm 23 in Line 5 we determine the start and end index of each new bucket S
l,f (b)

and save them for later use. For each key-values pair (k, X) we have saved their serialization
size |(k, X)| followed by the serialized key s(k) and the serialized values v œ X. By using the
serialization size and the deserialized key k we can determine their bucket

b =

WWWU
h(k, z) ≠ (l ≠ 1)hmax

pold

hmax
pnew·t

XXXV .

We compute this partitioning with a linear scan over the message. We parallelize over the t

buckets in S
l,f produced during the map phase (Section 7.1). Since we have saved the start

and end index of each bucket in the message during the map phase, each thread can determine
their bucket it constant time.
In Step 2b we parallelize over the buckets determined in Step 1. If process j has saved self-
messages of the failed node, then we need to merge two buckets S

j,f (b) and S
i,f (b). We perform

a linear scan over both buckets, which are sorted according to their hashed key. Then we
determine all key-values pairs with the same hash value and use a hash table to gather all
values with the same key. Note that we have to use a di�erent hash function as during the
map phase. We save the serialized keys followed by their values in S

j,f (b) and S
i,f (b) into the

56

7.3 Shared Memory Parallelized Fault-Tolerance

Algorithm 23: Shared memory parallelized Redistribute on process j

// saved messages S send to the failed processes {f1, ..., f2}, new and old number of
processes pold, pnew and MapReduce operation MR

Input: S = {S
j,f1 , ..., S

j,f2 , S
i,f1 , ..., S

i,f2}, pold, pnew œ N, MR = (µ, fl, s, h)
1 foreach S

l,f
œ S do // divide each saved message into pnew · t buckets

2 parallel_foreach x œ {0, ..., t ≠ 1} do // each thread x divides one of the old buckets
3 foreach y œ {1, ..., pnew} do // divide bucket x into pnew new buckets
4 b = x · pnew + y // determine the new bucket b in message S

l,f

5 S
l,f (b) =

I

(s(k), s(X)) œ S
l,f

|k œ K, X ™ V ·

E
h(k,z)≠(l≠1) hmax

pold
hmax

pnew·t

F

= b

J

6 end
7 end
8 end
9 B = {B1, ..., Bx, ..., Bpnew·t} // initialize pnew · t new empty buckets

10 foreach f œ {f1, ..., f2} do // iterate over the failed processes {f1, ..., f2}
11 if S

i,f
/œ S then // process j does not contain the self-message of a failed process

12 parallel_foreach x œ {1, ..., pnew · t} do // parallelize over the new buckets x

13 Bx = Bx fi S
j,f (x) // copy S

j,f (x) into the new bucket Bx

14 end
15 else
16 parallel_foreach x œ {1, ..., pnew · t} do // parallelize over the new buckets x

// merge buckets S
j,f (x) and S

i,f (x)
17 Bx = Bx fi

Ó
(s(k), X1 fi X2)|(s(k), X1) œ S

j,f (x) · (s(k), X2) œ S
i,f (x)

Ô

18 end
19 end
20 end
21 RSBj = {RSBj,1

, ..., RSBj,x
, ..., RSBj,pnew} // initialize messages RSBj,x send from j to x

22 parallel_foreach Bx œ B do // iterate over buckets Bx in parallel
23 l = Â

x

pnew
Ê + 1 // determine the message l for bucket x

24 RSBj,l = RSBj,l
fi Bx // copy Bx into message RSBj,l

25 end
26 return RSBj

new bucket Bb. Finally, we send the messages with an MPI_All_to_allv command. We use a
prefix sum algorithm to determine the position of each bucket Bx in the MPI send bu�er RSBj

and parallelize over the buckets Bx to construct it.

7.3.2. MergeBu�er Algorithm

Algorithm 24 performs the merge bu�er operation needed during the single node failure fault-
tolerance mechanism (Section 5.2). The merge bu�er algorithm operates on the send messages
produced by the map phase and the messages produced during the recovery. We merge both
bu�ers together and create tpnew buckets which we distribute between the pnew remaining
processes. We can divide Algorithm 24 into the following steps:

0 At process j, the map phase has produced the pold send messages SBj. A message
SBj,l

œ SBj send from process j to l œ {1, ..., pold} contains t buckets. Let hmax be
the maximum possible hash value. The bucket x œ {1, ..., t} in SBj,l contains key-values

57

7 Hybrid Parallelized MapReduce

pairs with sorted hashed key in
ËÍ

((l≠1)t+x≠1)hmax

tpold

Î
,

Í
((l≠1)t+x)hmax

tpold

Î2
. The recovery phase

has produced pnew messages RSBj,l
œ RSBj send from process j to l œ {1, ..., pnew}.

Bucket x œ {1, ..., t} in RSBj,l contains key-values pairs with sorted hashed key inËÍ
((l≠1)t+x≠1)hmax

tpnew

Î
,

Í
((l≠1)t+x)hmax

tpnew

Î2
.

1 Algorithm 24 constructs tpnew new buckets, which the recovery has distributed equally
between the remaining processes. On each process j, we parallelize over the new buck-
ets Bb œ B with t threads. We determine the key-values pairs SBj(b) œ SBj and
RSBj(b) œ RSBj with sorted hashed key in

Ë
b

Í
hmax
tpnew

Î
, (b + 1)

Í
hmax
tpnew

Î2
. (Lines 4 and 5)

2 We perform a 2≠way merge on SBj(b) and RSBj(b) into a new bucket Bb. We group the
values according to their key. The algorithm scans over SBj(b) and RSBj(b). We add the
key-values pairs with the same hash value into a hash table. This allows us to aggregate
the pairs according to their key. We save the serialization size of a merged key-values
pairs followed by the serialized key and serialized values from SBj(b) and RSBj(b) into Bb.
(Line 6)

3 Finally, we construct send messages NewSBj,l send from process j to l, each containing t

buckets Bx. The message NewSBj,l contains the buckets B(l≠1)t to Blt≠1. (Lines 8 to 12)
A map phase (Section 7.1) performed during recovery (Section 5.2.2) constructs the send mes-
sages RSBj. The recovered key-value pairs are distributed uniformly at random between tpnew

buckets. Therefore, we have saved and computed the bucket boundaries needed in Line 5
during the map phase. This is not the case for the messages contained in SBj, which the
previous map phase has partitioned into tpold buckets. We have to determine the start in-
dex of SBj(b) in Line 4. The set SBj(b) contains the key-values with sorted hashed key inË
b

Í
hmax
tpnew

Î
, (b + 1)

Í
hmax
tpnew

Î2
. We determine the bucket x in SBj containing the key-value pairs

with hashed key h = b

Í
hmax
tpnew

Î
, with x =

Í
htpold
hmax

Î
. We scan over bucket x in SBj to determine

the start index of SBj(b).
We do not need to save the buckets B explicitly before saving them into the MPI_All_to_allv
send bu�er. First We perform the merge in Line 6 without saving the merged key-values pairs

Algorithm 24: Shared memory parallelized MergeBu�er on process j

Input: SBj = {SBj,1
, ..., SBj,pold}, RSBj = {RSBj,1

, ..., RSBj,pnew}, MR = (µ, fl, s, h)
1 B = {B0, ..., Bb, ..., Bpnew·t≠1} // initialize pnew · t new empty buckets
2 parallel_foreach b œ {0, ..., pnew · t ≠ 1} do
3 x = Â

b

t
Ê, y = b mod t // determine the new process x and local bucket y of bucket b

// gather the key-values pairs in SBj and RSBj corresponding to the new bucket b

4 SBj(b) =
Ó
(s(k), s(X)) œ M

---M œ SBj
, k œ K, X ™ V,

Í
pnew·t·h(k,z)

hmax

Î
= b

Ô

5 RSBj(b) =
Ó
(s(k), s(X)) œ M

---M œ RSBj
, k œ K, X ™ V,

Í
pnew·t·h(k,z)

hmax

Î
= b

Ô

6 Bb =
Ó
(s(k), X1 fi X2)

---(s(k), X1) œ SBj(b) · (s(k), X1) œ RSBj(b)
Ô

// merge buckets
7 end
8 NewSBj =

Ó
NewSBj,1

, ..., NewSBj,l
, ..., NewSBj,pnew

Ô
// initialize messages from process j to l

9 parallel_foreach Bb œ B do // iterate over buckets Bb in parallel
10 l = Â

b

pnew
Ê // determine the message l for bucket x

11 NewSBj,l = NewSBj,l
fi Bb // copy Bb into message NewSBj,l

12 end
13 return NewSBj

58

7.3 Shared Memory Parallelized Fault-Tolerance

(s(k), X1 fi X2) but we compute the size of each bucket Bx. Then we perform a prefix sum
over the sizes of Bx to determine its position in the send bu�er NewSBj. Finally, we per-
form the merge in Line 6 again and save the results immediately in NewSBj. Note that after
Algorithm 24 the key-values pairs contained in the send messages NewSBj are sorted according
to their hashed key.

7.3.3. Complexity

To analyze the complexity of Algorithms 19 and 20, we adopt a similar approach as during
the previous sections. We use the MapReduce runtime parameters w, w̄, m, m̄ introduced in
Section 2.2 and balls in bins model of Section 2.4. Let pold and pnew be the number of processes
before and after a node failure. Then k = pold ≠ pnew indicates the number of failed processes.

Lemma 7.3. Let’s consider the redistribution Algorithm 23 performed after a node failure. Let
the serialized key-value pairs be distributed uniformly at random by key between tpold buckets
during the map phase (Algorithm 21). We can implement the redistribution Algorithm 23 with
an expected running time of:

O

3
km̄b

39
m

m̄

:
, tp

2
old

4
+ kw̄b

39
w

w̄

:
, tp

2
old

4
+ pnew + log(t)

4
.

If m œ �(m̄tp
2
old

log(tpold)) and w œ �(w̄tp
2
old

log(tpold)), then we get an expected complexity of:

O

A

k
w + m

tp2
old

+ pnew + log(t)
B

.

Proof. Let’s consider Algorithm 23. Processes which have saved a self-message of a failed node
have 2k input messages S. The remaining processes process k messages. Each message consists
of t buckets. Each process in the map phase partitioned their key-value pairs into tpold buckets.
This results in an overall uniform distribution of pairs into tp

2
old

buckets by their keys. In Line 2
each thread processes a bucket. Furthermore, the user-defined reduce function consumes the
intermediate key-value pairs and each call of this function processes at most w̄ pairs. According
to Lemma 3.1 the worst case for static load balancing occurs if the workload is skewed and
we have at most Áw/w̄Ë di�erent keys with w̄ values each. Therefore the expected number of
key-value pairs per bucket and processed by each thread is w̄b (Áw/w̄Ë , tp

2
old

).
In Line 5 each thread scans over the sorted intermediate pairs and divides the bucket into pnew

partitions. Since each process processes at most 2k messages. Lines 1 to 8 require expected
O (kw̄b (Áw/w̄Ë , tp

2
old

)) time.
From Lines 11 to 19 each thread processes pnew buckets generated in the previous step. By
applying Lemma 3.1 and the previous reasoning, each thread processes expected at most
w̄b (Áw/w̄Ë , tp

2
old

) pairs. We use Lemma 3.1 and reason that the maximum expected number of
machine words per thread is m̄b (Ám/m̄Ë , tp

2
old

). If the process does not contain self-messages of
the failed node, we only perform copy operations which results in expected
O (km̄b (Ám/m̄Ë , tp

2
old

)) time for all k messages. Otherwise we perform a 2-way merge and
copy operations which requires expected O (km̄b (Ám/m̄Ë , tp

2
old

) + kw̄b (Áw/w̄Ë , tp
2
old

)) time.
Finally, we compute a prefix sum on each process over the new bucket B sizes to get the start
and end indexes in the MPI_All_to_allv send bu�er. This requires O(pnew + log(t)) opera-
tions. By using the same reasoning as before each thread processes expected m̄b (Ám/m̄Ë , tp

2
old

)
machine words in Line 22. All in all, Algorithm 23 has an expected runtime of

O

3
kw̄b

39
w

w̄

:
, tp

2
old

4

¸ ˚˙ ˝
Lines (1≠8)(9≠20)

+ km̄b

39
m

m̄

:
, tp

2
old

4

¸ ˚˙ ˝
Lines (9≠20)(22≠25)

+ pnew + log(t)
¸ ˚˙ ˝

prefix sum

4
.

59

7 Hybrid Parallelized MapReduce

Furthermore, if m œ �(m̄tp
2
old

log(tpold)), w œ �(w̄tp
2
old

log(tpold)) and by applying Lemma 2.2
we get an expected runtime in

O

A

k
w + m

tp2
old

+ pnew + log(t)
B

.

Lemma 7.4. Let’s consider the merge Algorithm 24 performed after a node failure. Let the
serialized key-value pairs be distributed uniformly at random by key between tp buckets during
the map phase (Algorithm 21) and redistribution (Algorithm 23). We can implement the merge
Algorithm 24 with an expected runtime of:

O

3
w̄b

39
w

w̄

:
, tpnew

4
+ m̄b

39
m

m̄

:
, tpnew

4
+ pnew + log(t)

4
.

If w œ �(w̄tpnew log(tpnew)) and m œ �(m̄tpnew log(tpnew)), then we get an expected runtime of:

O

A
w + m

tpnew

+ pnew + log(t)
B

.

Proof. Over all processes j, the send SBj and recovered messages RSBj contain all serialized
key-value pairs produced during the map phase. In Line 6 we distribute all pairs into tp

2
new

buckets. We use a hash function to assign pairs interdependently and uniformly at random
between these buckets by their key. Each parallel thread processes pnew buckets in Line 6.
During the reduce phase, each user-defined reduce function can process at most w̄ key-value
pairs. By applying Lemma 3.1, the expected number of pairs processed by each thread is
w̄b (Áw/w̄Ë , tpnew) in Line 6. By using a similar reasoning, the expected number of machine
words is m̄b (Ám/m̄Ë , tpnew).
The bucket boundaries in Line 5 can be determined in constant time, since we have saved
them during the recovery map phase. In Line 4 we can determine the start of the new
bucket by scanning an additional bucket in the worst case as described in the previous sec-
tion. Performing the 2-way merge in Line 6 and aggregating pairs with the same key and
hash value can be done in Linear time. Therefore, Lines 2 to 7 have an expected runtime of
O (w̄b (Áw/w̄Ë , tpnew) + m̄b (Ám/m̄Ë , tpnew)).
We perform a prefix sum over the sizes of buckets B to determine their positions in the
MPI_All_to_allv send bu�er. This requires O (pnew + log(t)) operations. By using the same
reasoning as before each thread processes expected m̄b (Ám/m̄Ë , tpnew) machine words in Line 11.
All in all, the expected runtime for Algorithm 24 lies in

O

3
w̄b

39
w

w̄

:
, tpnew

4

¸ ˚˙ ˝
Lines (4≠6)

+ m̄b

39
m

m̄

:
, tpnew

4

¸ ˚˙ ˝
Lines (6)(8≠12)

+ pnew + log(t)
¸ ˚˙ ˝

prefix sum

4
.

Furthermore, if we have w œ �(w̄tpnew log(tpnew)) and m œ �(m̄tpnew log(tpnew)) we can apply
Lemma 2.2 and get a runtime of

O

A
w + m

tpnew

+ pnew + log(t)
B

.

60

8 Experimental Setup

8. Experimental Setup

The following sections contain our experimental setup used to evaluate our MapReduce frame-
work and its fault tolerance mechanism (Section 9). We run all our experiments on the
SuperMUC-NG supercomputer (Section 8.1). Section 8.2 contains the used software, com-
piler and libraries. We describe the failure generation and our MapReduce configurations in
Section 8.3. In Section 8.4 we describe the timing of the di�erent parts of our algorithms. Ad-
ditionally, we list the benchmark data sets used in our experiments (Section 8.5). We use these
sets to run the benchmark algorithms introduced in Section 4. Finally, we give an overview of
our used plots (Section 8.6)

8.1. Hardware

We perform the experiments in the following sections on the SuperMUC-NG high performance
computing system [10]. The Leibniz Supercomputing Center (LRZ) of the Bavarian Academy of
Sciences and Humanities situated in Munich maintains and runs this supercomputer. Figure 20
illustrates the architecture of SuperMUC-NG. This HPC system consists of 6336 thin and 144
fat compute nodes [6]. These two types of nodes only di�er by the available memory. Thin
nodes have 96 GiByte of memory, while fat nodes have 768 GiByte of memory. Each node
consists of two sockets with a total of 48 cores, where each socket is an Intel Skylake Xeon
Platinum 8174 processor [3, 8]. Intel launched this processor in 2017. It consists of 24 cores,
and 48 threads. The processor base frequency is 3.10 GHz, with am maximum turbo frequency
of 3.90 GHz. Each core has a L1 cache of 64 KiByte and L2 cache of 1024 KiByte. All cores
on a possessor share an LLC cache with 33 MiByte. SuperMUC-NG employs four login nodes
through which we can access the compute nodes and start our experiments [1].
SuperMUC-NG groups the thin compute nodes into 8 domains or islands. The remaining fat
nodes constitute the last island. A fast OmniPath network [10, 94] connects the nodes inside an
island. This network consists of a fat tree optimized for highly e�cient communication [76, 99].
Between islands, the supercomputer adopts an OmniPath network topology, which is pruned

2 · 100 GiByte/s

. . .
8 islands of thin nodes island of fat nodes

792 thin nodes

2 ◊ 24 2 ◊ 24. . .

OmniPath fat tree

network (100 GiByte/s)

792 thin nodes

2 ◊ 24 2 ◊ 24. . .

OmniPath fat tree

network (100 GiByte/s)

144 thin nodes

2 ◊ 24 2 ◊ 24. . .

OmniPath fat tree

network (100 GiByte/s)

OmniPath network (100 GiByte/s) with pruning factor 1:4

LRZ Data Center Network

4 Login Nodes

4 · 100 GiByte/s

scratch file system

(16 PiByte)

Figure 20: Illustration of the SuperMUC-NG architecture including the compute nodes, network
typology, file system, and login nodes [2, 3, 4, 10].

61

8 Experimental Setup

with pruning factor 1:4. A pruned OmniPath network omits intermediate switches [12]. The
communication bandwidth over the OmniPath network is 100 Gbit/s. During our experiments
we ensure to perform our tests on one single island. We perform the experiments on the thin
compute nodes with 96 GiByte of memory. We use the base process frequency, disable the
turbo frequency, and disable automatic frequency scaling.
The SuperMUC-NG storage consists of Lenovo DSS-Gs for IBM Spectrum Scale [4]. Note that
compute notes do not have local disks and use the scratch file system to replace the /tmp
directory [4]. Instead, one has to use the parallel scratch file system, which is not situated on
the compute nodes. We can access this file system with an average bandwidth of 200 GiByte/s.
This scratch system handles all temporary data sets and we have access to 1 PiByte of storage.

8.2. Software and Compilation

The login and compute nodes run SUSE Linux Enterprise Server 15 SP1. SuperMUC-NG
schedules the experiments using the Slurm 20.11.7 batch system. We compile our MapRe-
duce frame work with GCC 8.4.0 and use the C++17 standard. We construct the make
files with Cmake 3.16.5. We use the OpenMPI 4.0.4 and OpenMP 4.5 libraries. OneTBB
(branch: master, commit: 9e15720b) [13] is a GitHub project, which we use to include the
Intel oneAPI Threading Building Blocks library [7]. For sorting we use IPS

2Ra (branch: mas-
ter, commit: ee6103c) [68] introduced in Section 3.5. We use xxHash (branch: dev, commit:
4aa3d59) [31] as hash functions in our library. We compile with optimization -O3 and compi-
lation parameter -DNDEBUG.

8.3. Parameters Used and Failure Generation

We designed our framework with ULFM (Section 3.1) in mind, but this library did not run re-
liably on SuperMUC-NG. Periodically, ULFM processes failed without generating any failures.
Therefore, we use OpenMPI 4.0.4 and simulate failures. We chose this MPI implementation,
because ULFM is based on OpenMPI 4.0 [25]. During our experiments testing the failure re-
covery, we simulate the failure of 10% of a jobs compute nodes if not specified otherwise. We
distribute the failures equidistantly and uniformly between all successive MapReduce operations
of a benchmark algorithm. We use the number of MapReduce operations occurring during the
execution without failure generation to distribute failures. Since we detect failures during the
shu�e phase, we simulate them during the MPI_All_to_allv message exchange. We use rand
and srand of the <stdlib.h> with seed 25 to generate the same failed node on all MPI processes,

Table 1: List of MapReduce framework configurations and their designation used during the
experimental evaluation in Section 9. MPI represents the pure MPI algorithm and HYB
the hybrid MPI and OpenMP algorithm. The designation ft indicates that we save
self-messages for fault tolerance and gf specifies that we generate node failures.

Algorithm Description Sections
MPI-MR MPI MapReduce without fault tolerance 6
MPI-MR-ft MPI MapReduce with fault tolerance (save self-messages) 5.2.2+6
MPI-MR-gf MPI MapReduce with fault tolerance and 10% node failure 5.2.2+6
HYB-MR Hybrid MapReduce without fault tolerance 7
HYB-MR-ft Hybrid MapReduce with fault tolerance (save self-messages) 5.2.2+7
HYB-MR-gf Hybrid MapReduce with fault tolerance and 10% node failure 5.2.2+7

62

8.4 Timing

which stop their normal execution. We determine all processes situated on the node provided by
rand and use MPI_Split to remove them from the MPI communicator. All nodes not situated
on the failed node perform the recovery phase . Furthermore, we perform the experiments for
the benchmark algorithms with and without saving self-messages (Section 5) without generat-
ing node failures. In Table 1 we show the designations of the di�erent MapReduce framework
configurations used during our experiments. Note that MPI(HYB)-MR-ft=MPI(HYB)-MR, since
we do not exchange self-messages. Furthermore, MPI(HYB)-MR-ft=MPI(HYB)-MR-gf, because
we start failure generation after 10 nodes.
For our Hybrid Parallelized MapReduce algorithm (Section 7) we pin each MPI process to a
di�erent socket. This results in two processes per compute node. We pin the OpenMP threads
used by an MPI process to the each core on the corresponding socket. Each process has access
to 24 cores and OpenMP threads. For our pure MPI implementation (Section 6) we start a
process for each core, which results in 48 processes per node. We bind each process to a di�erent
core. We do not perform experiments for hyperthreading or MPI overcommitment.

8.4. Timing

Since our MapReduce framework is an in-memory implementation and we are interested in the
performance of the fault tolerance mechanism, we exclude the time spend performing the I/O.
We start monitoring after reading the data from the parallel file system and distributing the
input randomly between the di�erent processes. For all our configurations, each MPI process

Table 2: Designations used to identify the runtime of the di�erent code segments of our MapRe-
duce implementation during the experiments in Section 9. We take the maximum
runtime over all MPI processes performing the di�erent phases in parallel.

Label Description Algorithm

MapReduce time to perform a MapReduce operation
including failure recovery Algorithm 12

map
time to perform the map phase, this

includes the key-value pair serialization
and the local group by key

Algorithm 12 Line 2

shuffle time to exchange all messages
during the shu�e phase Algorithm 12 Line 3

reduce
time to perform the reduce phase, this

includes the key-values pair deserialization
and gathering all values per key

Algorithm 12 Line 4

save runtime to save the send messages and
exchange self-messages Algorithm 16

recovery time to recover from a node failure Algorithm 15

redistribute time to distribute the saved messages
during recovery Algorithm 15 Line 7

recovery shuffle time to shu�e the redistributed
data during recovery Algorithm 15 Line 8

recovery reduce time to perform the reduce phase
during recovery Algorithm 15 Line 9

recovery map time to perform the map phase during recovery Algorithm 15 Line 10
merge buffer time to merge bu�ers during recovery Algorithm 15 Line 11

63

8 Experimental Setup

uses <sys/time.h> to stop the runtime of the di�erent phases: map phase, shu�e phase,
reduce phase, save self-messages time, and recovery time. In our results we only represent
the maximum execution times over all processes. Table 2 lists the labels which we use in our
experiments. Furthermore, we visualize the maximum runtime across all processes per phase
during our experiments.

Figure 21: These tree histograms show the distribution of word occurrences of each text listed
in Table 3. The x-axes contain the word occurrences and the y-axes represent the
number of words in each bucket. We have chosen a logarithmic scale on the y-axes.

8.5. Benchmark Sets

In Section 8.5.1 we introduce four text benchmark data sets used during our Word Count
experiments. Most of our benchmark algorithms (Section 4) require graphs as input, which we
present in Section 8.5.2.

8.5.1. Text Data Sets

We use the texts in Table 3 to perform runtime experiments of our MapReduce framework with
the Word Count algorithm (Section 4.1). We take the english [43] and gutenberg [9] data sets
from the Gutenberg Project [9]. The english text is a concatenation of english text files from
the etext02 to etext05 collections. The Gutenberg Project [9] contains over 60000 free books
in plain text format. The yelp data set is a collection of Yelp reviews [11].
In Figure 21 we illustrate the occurrences of words in each text listed in Table 3. Note that
for english, yelp, and gutenberg most words have a low occurrence. There are few words

Table 3: This table gives an overview of our text benchmark data sets, their sources, and their
sizes. We use these texts to test our MapReduce framework with the Word Count
algorithm (Section 4.1).

Text Description Source Size (GB)
english concatenation of open source english books [43] 2.21
yelp Yelp reviews as json file [11] 6.95
gutenberg Gutenberg bible in text form [9] 22

randtext-y

x GiBytes of random text generated by the
Hadoop RandomTextWriter with words

chosen from the distinct text y

[5] x

64

8.5 Benchmark Sets

with a high occurrence. The text english contains 811 644 distinct words with a maximum
occurrence of 22 804 033 and gutenberg consist of 4 436 574 distinct words with a maximum
word occurrence of 208 499 702 for "the". Additionally, the maximum word occurrence of yelp
is 20 541 926.
The Hadoop random text generator RandomTextWriter [5] is a standard benchmark set for
Word Count experiments [22]. This text generator creates texts by choosing words indepen-
dently and uniformly at random from a list of 1000 distinct words until we reach a given size.
The authors of [22] consider this benchmark bad for the reduce phase in MapReduce algo-
rithms, because of the small word number. In our Word Count MapReduce implementation,
the keys are words. Since we assign each key a process during the reduce phase, this may lead
to imbalances during the shu�e and reduce phase (Section 9.1). The randtext-y text is a text
generated by the RandomTextWriter [5] algorithm, where we choose the words from the unique
words in text y. For instance, the gutenberg data set contains 4436574 distinct words.

8.5.2. Graph Data Sets

During our experiments with PageRank (Section 9.2), cc (Section 9.3), and R-MAT (Section 9.4)
we use the graph datasets listed in Table 4. We use the orkut and twitter graphs provided by
the Stanford Network Analysis Platform (SNAP) [60]. Orkut is a social network, where users
are linked to their friends. We use the orkut friendship social network graph with n = 3072441
vertices and m = 117185083 edges [59]. The twitter graph consists of the follower relations
from a snapshot taken in 2010 [61]. It contains n = 41652230 vertices and m = 1468364884
edges. An edge (x, y) is part of this graph, if y is a follower of x. The histograms in Figure
22 illustrate the distribution of the outgoing vertex degrees of orkut and twitter. Note that
most vertices have a low degree. Most vertex degrees in orkut are smaller then 1 000, but the
graph has one vertex with degree 33 007. Furthermore, most vertices in twitter have a degree
smaller than 100 000, but one vertex has 2 997 487 neighbors.
We use the KaGen random graph generator [45] to generate random hyperbolic graphs [50]
rhg-d8-g3 with an average vertex degree of 8 and a gamma factor of 3. In random hyperbolic
graphs the number of vertices with degree a vertex degree d is proportional to d

“, where “ > 0
is the gamma factor [97]. We can use these random hyperbolic graphs to generate and simu-
late large networks, for instance the World Wide Web. KaGen generates us these graphs for
our week scaling experiments for PageRank. Since KaGen allows us to specify the number of
vertices and edges, we can generate larger graphs by increasing the node number and keeping

Table 4: This table gives an overview of our graph benchmark data sets, their sources, their
number of nodes n and number of edges m. We use these graphs to benchmark our
MapReduce framework with the graph algorithms in Section 4.

Graph Description n m Source
orkut online social network graph 3 · 103 108 [59]
twitter snapshot of Twitter in 2010 4 · 107 1.4 · 109 [61]

rhg-d8-g3
Random Hyperbolic Graph with

n vertices, average degree 8,
and gamma factor 3

n 8 · n [45, 50]

Erd�sRényi-dx-nn
random Erd�s Rényi graph with

n vertices and average degree of x
n x · n [40]

rmat(a,b,c,d)-nn-dx
R-MAT graph with n vertices

and average degree of x
n x · n [27]

65

8 Experimental Setup

Figure 22: These two histograms show the distribution of outgoing vertex degrees of the orkut
(left) and twitter (right) graphs (Table 4). The x-axes contain the word occurrences
and the logarithmic y-axes represent the number of words in each bucket.

an average degree of 8.
A random Erd�s Rényi graph [40] Gn,m is a graph chosen randomly between all graphs with n

vertices and m edges. We use our R-MAT MapReduce implementation (Section 4.4) with pa-
rameters a=b=c=d=0.25 to generate Erd�s Rényi graphs [27]. We use the Erd�sRényi-dx-nn

graph with n vertices and average degree of x during our cc experiments. This allows us to
generate small connected components for small x (Section 4.4). We use rmat(a,b,c,d)-nn-dx

to indicate a R-MAT graph with parameters a, b, c, and d with n vertices and m = x · n edges.

8.6. Statistics

In Section 9 we perform strong and weak scaling experiments to analyze the behavior of our
MapReduce framework with increasing number of compute nodes. For strong scaling exper-
iments we use a single data set as input, while increasing the number of node. We plot the
number of nodes on the x-axes and the runtime on the y-axes. We often need to choose log-
arithmic y-axes to analyze the behavior for large node numbers. An optimal scaling behavior
occurs if the runtime decreases proportionally to the increasing node number. Doubling the
compute nodes should half the runtime.
We use relative speedup plots to visualize the scaling behavior during strong scaling experi-
ments. The y-axis illustrates the speedups t1

t
· n1, where t1 is the time of the execution with

lowest node number n1. The term t is the execution time for the di�erent node numbers il-
lustrated on the x-axis. We achieve an optimal speedup if the data points are situated on the
line y = x. If the di�erent MapReduce phase speedups correspond to a linear function of the
form r(x) = ax + b, we can compute a linear regression. The slope a of this regression repre-
sents the observed speedup [101]. Let D be a set of data points with (n, s) œ D, where n is the
number of nodes and s its speedup calculated as above. Then the linear regression minimizes
the mean square error

e(r, D) = 1
|D|

·
ÿ

(n,s)œD

(r(n) ≠ s)2
.

We use liner or optimal speedup to determine a speedup with slope a = 1 and super linear
speedup for a > 1.
During our weak scaling experiments we increase the input size proportionally to the number
of nodes. We use double the amount of input data if we double the number of nodes. Ideally
this should result in no runtime increase. We represent the number of nodes on the x-axes and
the execution time on the y-axes.

66

9 Experimental Results

9. Experimental Results

We analyze our MapReduce frameworks with and without hybrid parallelization
(Sections 6 and 7) by performing runtime experiments on the MapReduce algorithms intro-
duced in Section 4. We run strong and weak scaling experiments to analyze their scaling
behavior and the overhead of our fault-tolerant mechanism. We perform our experiments on
the Supermuc-NG high performance computing system (System 8.1) and use the experimental
setup described in Section 8.
Section 9.1 shows our results with the Word Count algorithm. Furthermore, we apply the
PageRank and connected components algorithms on di�erent graphs in Sections 9.2 and 9.3
respectively. We illustrate the results of the R-Mat graph generation with our MapReduce
library in Section 9.4. Finally, Section 9.5 gives a brief summary of all our experiments.

9.1. Word Count

We apply the Word Count algorithm implemented in our MapReduce framework as indicated in
Section 4.1 to real world text samples (Table 3). Initially, we distribute the texts uniformly be-
tween the di�erent processes. By increasing the number of compute nodes, we want to analyze
the scaling behavior and the overhead of sending self-messages for our fault-tolerant mechanism
(Section 5). Since Word Count consists of a single MapReduce operation, we cannot test the
recovery from a failed node. Furthermore, we compare the MapReduce implementations with
(HYB-MR(-ft)) and without (MPI-MR(-ft)) hybrid parallelization.
Figure 23 shows the execution times of our MapReduce implementations with and without
fault-tolerance applied on the english, yelp, and gutenberg data sets. First of all, we observe
that increasing the number of nodes decreases the execution time for the hybrid MapReduce im-
plementation. This is also the case for MPI-MR(-ft) until 80 nodes for english and yelp. We
detect an increase from 0.31s on 80 nodes to 0.56s on 160 nodes for english. Fort gutenberg
this increase starts at 128 nodes from 2.04s to 2.51s (256). We analyze this behavior further
in Figure 24a on the gutenberg text, since we have results for a higher number of nodes and

Figure 23: Illustration of strong scaling experiments executed on the texts in Table 3 and
MapReduce configurations listed in Table 1. We apply the Word Count algo-
rithm on english (nodes in {1, 5, 10, 20, 40, 80, 160}, 7 runs), yelp (nodes in
{5, 10, 20, 40, 80, 160}, 7 runs), and gutenberg (nodes in{4, 8, 16, 32, 64, 128, 256},
4 runs). The x-axes show the node number, while the logarithmic y-axes show the
average runtime over all runs.

67

9 Experimental Results

its our largest text data set. The experiments for english and yelp yield the same results and
we illustrate them in Section C.1 (Figures 48 and 49).
The execution time of the shu�e phase starts increasing for MPI-MR(-ft) from 0.39s on 32
nodes to 1.16 on 256 nodes (Figure 24a). Since the time of the other phases does not increase,
the shu�e phase causes the execution time increases for the entire MapReduce operation ob-
served in Figure 23. Let n be the number of nodes, then MPI-MR(-ft) employs 48n MPI
processes, while HYB-MR(-ft) uses 2n (Section 8). Furthermore, the shu�e phase uses the
collective MPI_All_to_allv operation to exchange the key-value pairs between processes. This
MPI operation is part of the irregular MPI collective, which are known to have scaling issues for
large process numbers [18, 19]. Moreover, collective operations require synchronization, which
can lead to significant overheads due to operating system or network noise [18]. Note that the
shu�e phase of our hybrid MapReduce implementation decreases from 0.44s to 0.35s between
32 and 256 nodes.
Additionally, the reduce phase of MPI-MR(-ft) decreases until 32 nodes, after which it remains
constant at 1.22s. On the other hand, the reduce phase of HYB-MR(-ft) keeps decreasing be-
tween 32 and 256 nodes from 1.90s to 1.78s. We can explain this with the word occurrences in

(a) The logarithmic y-axes show the average runtime.

(b) The linear functions ax + b are a linear regression for the map phases (map) and the save self-
message phase of HYB-MR-ft (save). The term e indicates the mean square error. The y-axes
show the average speedups.

Figure 24: We perform 4 runs of each MapReduce configuration (Table 1) executing Word
Count (Section 4.1) on gutenberg with nodes in {4, 8, 16, 32, 64, 128, 256}. The x-
axes show the number of nodes. We illustrate the map phase including grouping by
key and serialization (map), the reduce phase including deserialization (reduce), the
shu�e phase (shuffle), the save self-message time (save), and the entire MapRe-
duce execution (MapReduce)

68

9.1 Word Count

Table 5: This table shows the relative average MapReduce phase times rx = tx
tmr

· 100% during
the Word Count experiments on gutenberg (Figure 24). tx is the average execution
time of phase x and tmr the MapReduce time over all runs and node counts.

MapReduce map(%) reduce(%) shuffle(%) save(%)
MPI-MR-ft 54.33 30.54 14.16 0.97
HYB-MR-ft 67.95 23.16 7.45 1.44

the di�erent texts. As indicated in Figure 21 and Section 8.5, gutenberg has a maximum word
occurrence of 208 499 702 for "the", where 99.99% of all distinct words occur less then 107 times.
This leads to an imbalanced reduce phase, since one process has to handle the key "the". The
entire phase is bound by this slower process. Increasing the number of nodes cannot decrease
the execution time because of this bottleneck workload. Therefore, we see nearly no speedups
for the reduce phase (Figure 24b).
The map phase, on the other hand, decreases with increasing number of nodes (Figure 24a).
We use a linear regression to analyze the speedups of the di�erent map phases (Figure 24b).
This results in a nearly linear speedup for MPI-MR(-ft), which has a slope of 0.92(0.97). The
speedup of our hybrid MapReduce implementation is lower with a slope of 0.78 for HYB-MR. This
matches the theoretical results in Sections 6.1 and 7.1. We only achieve the optimal speedup
with our random static load-balancing strategy, if the problem size is large enough compared
to the number of used processes and parallel threads. In this case, the used data sets may be
too small for HYB-MR. Note that its theoretical runtime has an additional factor p.
Moreover, the execution times with fault-tolerance mechanism are close to those without
(Figure 24a). For MPI-MR-ft saving self-messages constitutes 0.97% of the average execution
time (Table 5), while the save phase of HYB-MR-ft requires 1.44% of its average runtime. Fur-
thermore, we observe a super linear speedup for the save self-message times of HYB-MR-ft
(Figure 24b). The linear regression over the save phase times has a slope 1.38 > 1. This result
corresponds to the theoretical results proven in Lemma 5.1, which proves an expected runtime of
O

1
k

m

p2

2
, where m is the total data send size, p the number of processes, k the process count per

node, m̄ the maximum message size, and m œ �(m̄p
2 log(p)). The speedups of MPI-MR-ft, on

the other hand, are greater than one until 64 nodes and smaller after 128. Note that MPI-MR-ft
employs 24 times more processes than HYP-MR-ft, which requires a larger input data set m to
achieve the optimal runtime.
We illustrate the relative execution times for the di�erent phases during a MapReduce oper-
ation for the yelp and english data sets in Section C.1 in Tables 9 and 10. Additionally,
for both frameworks, the map phase constitutes more than half of the entire MapReduce
operation (Table 5). This can be explained by the group by key performed during mapping
(Section 6 and 7), which transforms pairs into aggregated key-values pairs. Hence, the group
by key performed during the reduce phase works on potentially fewer pairs.
As described above and in accord to the theoretical results our MapReduce frame work may not
scale optimally, if the data set is too small for the number of used nodes or the data set contains
a large bottleneck workload. To test our library in a more favorable environment we perform
weak scale experiments with randomly generated texts. We use the Hadoop random text gen-
erator (Section 8.5), used by Word Count implementations during testing [22]. This generator
creates a text from a pool of 1000 words. Since this number of words is too small for scalability
during the reduce phase, we choose words from the gutenberg data set (Section 8.5).
As during our strong scale experiments we notice that the runtime with and without fault-
tolerance are similar (Figure 25). For HYB-MR-ft the save self-message time constitutes 1.11%
of its total execution time and for MPI-MR-ft 1.41% (Table 8). Furthermore, for both MapRe-

69

9 Experimental Results

Table 6: This table shows the relative average MapReduce phase times rx = tx
tmr

· 100% during
the Word Count experiments on gutenberg (Figure 24). tx is the average execution
time of phase x and tmr the MapReduce time over all runs and node counts.

MapReduce map(%) reduce(%) shuffle(%) save(%)
MPI-MR-ft 68.06 20.68 9.85 1.41
HYB-MR-ft 90.12 1.97 6.8 1.11

duce configurations the execution time of the save time is slower than the other phases and
decreases with increasing number of nodes. The save time decreases from 0.2404s at 2 nodes
to 0.0277s at 256 nodes for HYB-MR-ft and 0.3096s to 0.0033s for MPI-MR-ft. This matches
the theoretical results as described above.
The map phases represent more than 68% of the entire runtime (Table 8), which can be ex-
plained by the fact that it performs the most work as described above. Furthermore, its
execution time remains nearly constant with increasing node number. The map phase of
MPI-MR(-ft) remains between 3.26s and 3.52, while the map phase of HYB-MR(-ft) is be-
tween 5.02s and 5.27s. Moreover, the shu�e phase increases 2.37 times for HYB-MR and 9.36
times for MPI-MR from 1 to 256 nodes (Figure 26). The time of the shu�e phase increases
faster for MPI-MR and MPI-MR-ft. As described above this may indicate scalability issues for
the MPI_All_to_allv operation.
Furthermore, the reduce phase of MPI-MR (avg. 1.04s) is slower than that of HYP-MR (avg. 0.11s)
(Figure 26). The hybrid MapReduce implementation uses a p≠way merge during the reduce
phase, where p is the number of processes, while the MPI-MR(-ft) uses a sorting algorithm.
Note that HYP-MR(-ft) has a worse theoretical execution time due to this merge (Section 7.2.2),
but it consists of a single scan over the data. Whereas the radix sort used by MPI-MR(-ft)
may has a larger constant time factor (Section 6.2.2).
The map phase of MPI-MR (avg. 3.31s) is faster than the map phase of HYP-MR (avg. 5.19s)
even though their general idea remains the same (Figure 26). This may be caused by additional
scans over the data, the t-way merge of buckets, and prefix sum, which we require to enable
the parallel shared memory implementation of HYP-MR(-ft) (Section 7.1).

Figure 25: We apply the di�erent MapReduce configurations with Word Count on the ran-
domly generated text randtext-gutenberg (2GiByte of text per nodes) with seeds
in {0, 1, 2, 3, 4} and nodes in {1, 2, 4, 8, 16, 32, 64, 128, 256}. The x-axis shows the
number of nodes, while the y-axis show the average runtime with error bars illus-
trating the standard deviation.

70

9.1 Word Count

Figure 26: For each seed in {0, 1, 2, 3, 4}, nodes in {1, 2, 4, 8, 16, 32, 64, 128, 256} we apply Word
Count on randtext-gutenberg (2GiByte of text per nodes). We illustrate the map
phase including grouping by key and serialization (map), the reduce phase includ-
ing deserialization (reduce), the shu�e phase (shuffle), the save self-message time
(save), and the entire MapReduce execution (MapReduce). The x-axis shows the
number of nodes, while the y-axis show the average runtime with error bars illus-
trating the standard deviation.

Over all our Word Count experiments saving and sending self-messages requires at most 1.08
times more time for MPI-MR and 1.04 for HYB-MR-ft (Figure 27a). Furthermore, HYB-MR-ft is
◊1.01 lower and MPI-MR-ft ◊1.02 for 19 instances out of 29. As we observe in Figures 25 and 24
HYB-MR(-ft) is slower than MPI-MR. In Figure 27b we compare all MapReduce configurations
with MPI-MR. HYB-MR(-ft) are at most 3.07 times slower and for 15 instances it is less than
1.5 times slower.

(a) The y-axis shows the runtime of the MapRe-
duce configurations divides by MPI-MR-ft. A
value of 1.04 indicates for X-MR-ft that there
is an instance, where HYB-MR-ft is 1.04 times
slower than HYB-MR

(b) The y-axis shows the runtime with saving self-
message divided by the MapReduce without.
A value of 1.04 indicates for HYB-MR-ft that
there is an instance, where HYB-MR-ft is 3.07
times slower than MPI-MR

Figure 27: These plots contain the values of the gutenberg, yelp and english experiments
(Figure 24) as well as the week scaling experiments (Figure 25). The x-axes are Word
Count applied on the di�erent data sets with their corresponding node numbers. We
average over runs. We compare the di�erent configurations to a base line.

71

9 Experimental Results

To sum up, the saving self-messages is at most 1.08 times slower for MPI-MR and 1.04 for
HYB-MR-ft. Furthermore, the map and reduce phase have nearly linear speedups if the pro-
cessed data is large enough compared to the number of nodes and the bottleneck workload. For
a small number of nodes MPI-MR(-ft) is faster, which may change for larger node numbers due
to its shu�e phase. Due to the large node number and scheduling times on the SuperMUC-NG
(Section 8.1) we could not confirm this hypothesis.

9.2. Page Rank

We use the PageRank algorithm (Section 4.2) to analyze the scaling behavior and fault-tolerance
overheads. Hence, we compute the page ranks for the graphs listed in Table 4 with a fixed
number of 100 iterations. We compare our MapReduce libraries with and without hybrid par-
allelization (Sections 6 and 7). We perform the experiments with and without fault-tolerance
mechanisms. Additionally, we generate 10% node failures. We list the corresponding abbre-
viations and configurations in Table 1. During our speedup experiments we compute linear
regressions, to avoid overloading the plots we do not represent them all, but we use their slops
to determine the speedups of the phases (Section 8.6).
The strong scaling experiments in Figure 28 compare the execution times of our MapReduce
libraries with and without hybrid parallelization. First, the execution time decreases with in-
creasing number of nodes but we do not achieve an optimal linear speedup (Figures 29b and 30b).
The linear regression slope of the MPI-MR speedups is 0.09 for twitter (orkut 0.43). The slope
for HYB-MR is 0.3 for twitter (orkut 0.35). Hence the hybrid parallelization has better speedups
for twitter. Furthermore, HYB-MR requires 0.65s on average per MapReduce operation with 256
nodes, while HYB-MR has a runtime of 1.50s. This can be explained by the dynamic scheduling
used during the map phase (Algorithm 21) during the parallel for-loop (Line 3). This allows a
better load balancing during the map phase, since the implementations without shared memory
parallelization only use static load balancing. Note that we have to use static load balancing
during our reduce phase (Section 7.2), which explains its low speedup of 0.08 compared to the
map phase with 0.36.

Figure 28: We perform strong scaling experiments with our MapReduce configurations
(Table 1) for the PageRank algorithm (Section 4.2). We perform 100 iterations
for orkut (left) with nodes in {1, 10, 20, 40, 80} and twitter (right) with nodes in
{8, 16, 32, 64, 128}. The x-axes contain the number of nodes, while the logarithmic
y-axes show the runtime per MapReduce operation.

72

9.2 Page Rank

All in all, we observe smaller speedups as during the Word Count strong scale experiments (Sec-
tion 9.1, Figure 24b). This behavior could be explained by the graph typologies and the bottle-
neck workload. Let v be a vertex, O(v) its outgoing neighbors, and I(v) its incoming neighbors.
The runtime of the user-define map function (Algorithm 4) during PageRank has a time com-

(a) The y-axes show the relative speedups. We plot linear regressions ax + b, e, where e is the mean
square error. We compute the regression for the speedup of MPI(HYB)-MR, the save self-message
phase (save) of MPI(HYB)-MR-ft, and the speedup for the recovery of MPI(HYB)-MR-gf.

(b) The logarithmic y-axes show the average runtime per MapReduce operation.

Figure 29: We execute 100 PageRank iterations (Section 4.2) on twitter implemented in our
MapReduce framework (Table 1) with nodes in {4, 8, 16, 32, 64, 128}. The x-axes
show the number of nodes. We illustrate the map phase including grouping by key
and serialization (map), the reduce phase including deserialization (reduce), the shuf-
fle phase (shuffle), the save self-message time (save), recovery time (recovery),
and the entire MapReduce execution (MapReduce).

73

9 Experimental Results

plexity of O (|O(v)|), while the runtime of the user-defined reduce function (Algorithm 5) lies
in O (|I(v)|). Therefore, the bottleneck workload w̄ lies in O (|O(v)| + |I(v)|). As proven in
Sections 6 and 7, the runtime and scaling behavior of our MapReduce framework depends on
the bottleneck workload w̄. We can only expect an optimal linear speedup if the processed data

(a) The y-axes show the relative speedups. We plot a linear regression ax + b, e, where e is the mean
square error. We compute the regression for the speedup of MPI(HYB)-MR, the save self-message
phase (save) of MPI(HYB)-MR-ft, and the speedup for the recovery of MPI(HYB)-MR-gf.

(b) The logarithmic y-axes show the average runtime per MapReduce operation.

Figure 30: We execute 100 PageRank iterations on twitter implemented in our MapReduce
framework (Table 1) with nodes in {1, 10, 20, 40, 80}. The x-axes show the number
of nodes. We illustrate the map phase including grouping by key and serializa-
tion (map), the reduce phase including deserialization (reduce), the shu�e phase
(shuffle), the save self-message time (save), recovery time (recovery), and the
entire MapReduce execution (MapReduce).

74

9.2 Page Rank

is large enough compared to w̄. In Section 8.5.2 we analyze the vertex degrees of both graphs
(Figure 22) and twitter has a bottleneck vertex with 2 997 487 neighbors and orkut one with
33 007. All processes have to wait that one process computes the results of the high degree
vertex. The maximum vertex degree is larger for twitter. Furthermore, the maximum vertex
degree of orkut is closer to the low vertex degrees (Figure 22). This means the bottleneck
workload w̄ of twitter is larger. This can explain the fact that orkut has a better speedup
(Figures 29b and 30b).
This is a well-known issue for MapReduce algorithms operating on large graphs, especially for
our naive PageRank implementation [62]. Lin and Schatz [62] propose an alternative PageRank
algorithm without these scaling issues. They require additional data structures and MapRe-
duce related operations, which our framework does not support. Implementing those features
into our framework would make our fault-tolerance mechanism insu�cient.
We perform weak scaling experiments on rhg-d8-g3 and Erd�sRényi-d38 (Table 4) to ana-
lyze the behavior of our PageRank implementation for larger data sets and node counts. In
Figure 31, we plot the average execution times per MapReduce operation for both data sets.
Since both experiments have similar results, we analyze rhg-d8-g3 in detail since we have
data for larger compute nodes. We illustrate the results for Erd�sRényi-d38 in Figure 50 in
Section C.2.
First of all, the runtime of all our implementations rises with increasing number of nodes. For
rhg-d8-g3 the execution time of MPI-MR increases from 0.22s at one node to 0.45s at 400 nodes.
The runtime of HYB-MR increases from 0.40s at one node to 0.76s at 400 nodes. To analyze
this behavior further we plot the runtime of the di�erent MapReduce phases (Figure 32). The
map phase of MPI-MR has an increase of 26.0%, while the reduce phase increases by 66.9%
(Figure 11). Furthermore, the shu�e time gets 20.427 times slower from 1 to 400 nodes. Note
that the shu�e time gets only 5.366 times slower from 2 nodes to 400. On one node, processes
do not need to use the network to exchange messages, they can be sent inside the node, which
is faster. The bad shu�e scaling could be caused by scaling issues of the MPI_All_to_allv op-
eration as explained in Section 9.1. We also observe an increase in runtime for the phases

Figure 31: We perform 100 PageRank iterations with our MapReduce configurations (Table 1)
for seeds in {1, 2, 3, 4, 5} on {1, 10, 20, 40, 80, 160, 280, 400} nodes for rhg-d8-g3
(left, 220 vertices per node) and {1, 2, 4, 8, 16, 32, 64, 128} nodes for Erd�sRényi-d38
(right, 218 vertices per node) (Table 4). We generate 10% node failures for
MPI(HYB)-MR-gf. The x-axes show the number of nodes, while the y-axes show
the average runtime per MapReduce operation. We include error bars with stan-
dard deviation.

75

9 Experimental Results

Figure 32: We perform 100 PageRank iterations with our MapReduce configurations (Table 1)
on rhg-d8-g3 (seeds in {1, 2, 3, 4, 5} and nodes {1, 10, 20, 40, 80, 160, 280, 400}). We
generate 220 vertices per node. Furthermore, we generate 10% node failures for
MPI(HYB)-MR-gf. The x-axes show the number of nodes, while the y-axes show the
average runtime per MapReduce operation including error bars with standard devia-
tion. We illustrate the map phase including grouping by key and serialization (map),
the reduce phase including deserialization (reduce), the shu�e phase (shuffle), the
save self-message time (save), recovery time (recovery), and the entire MapReduce
execution (MapReduce).

of HYB-MR (Table 11). Since we use random static load balancing, we only achieve opti-
mal speedups if the data set is large enough compared to the number of used processes
(Sections 6 and 7).
Despite using the same general algorithm, MPI-MR requires on average 0.18s during the map
phase, while the map phase of HYB-MR has an average runtime of 0.37s (Figure 32). We observe
the same behavior during our Word Count experiments (Figure 9.1). The main di�erence be-
tween both map phases is that HYB-MR uses a shared memory parallelization on each process
with t threads. This approach requires additional data structures, a t-way merge and scans
over the data to avoid read/write conflicts (Section 7.2.1). Furthermore, we need to gather all
data into a single send bu�er.
First of all, the additional time needed to send these messages is lower than the other phases
(Figures 29b, 30b, and 32). Figure 33 (left) illustrates the overheads of the save self-message
phase. For instance, the largest data point 1.239 of HYB-MR-ft indicates that over all our
PageRank instances, the largest overhead for saving the self messages was 23.9%. In other
words, HYB-MR-ft was 23.9% slower then HYB-MR. The largest overhead for MPI-MR-ft is 16.0%.
Note that for 21 of all 24 instances, HYB-MR-ft has overheads lower than 12% and an average
overhead of 10.4. MPI-MR-ft, on the other hand, has an average overhead of 4.7%. All in all,
MPI-MR-ft has lower overheads than HYB-MR-ft (Figure 33).
Furthermore, the average and median overhead for rhg-d8-g3 and MPI-MR-ft is approximately
3 times lower than the overhead for HYB-MR-ft. MPI-MR-ft has approximately 1.5 times lower
overheads for Erd�sRényi-d38. Overall, the average overhead of MPI-MR-ft is 2.21 times lower

76

9.2 Page Rank

than that of HYB-MR-ft.
We can explain this phenomenon with the theoretical runtime of the save self-message phase
(Section 5.2.2). Let n be the number of nodes. Each node has 48 cores and we start 2 processes
per node for HYB-MR-ft and 48 for MPI-MR-ft. Therefore, the expected runtime is O

1
m

2n2

2

for HYB-MR-ft and O

1
m

12n2

2
for MPI-MR-ft. The constant factor of our hybrid MapReduce is

6 times larger. In other words HYB-MR-ft has 24 times fewer processes than MPI-MR-ft and
must send 24 times the data volume. We cannot speedup this message exchange with shared
memory techniques, because we send the messages between di�erent nodes with non-shared
memory.
For twitter the save self-message phase has a spear linear speedups with a slope of 1.28 for
MPI-MR-ft and 1.06 for HYB-MR-ft (Figure 29a). According to Lemma 5.1, this phase has an
expected runtime of O(k m

p2), where k is the number of processes and m the size of all messages.
Hence, an even better speedup of 2 is possible if m is large enough compared to the bottleneck
workload. As described above, this is not the case for our strong scale experiments.
In Figure 33 we illustrate the overheads of the 10% failure generation (MPI(HYB)-MR-ft) and
MPI(HYB)-MR-gf. Note that this overhead does not only include the time needed to recover
from a failure and recompute lost data, but also the execution on fewer nodes, since they fail.
For MPI-MR-gf is maximally 1.970 times slower than MPI-MR-ft and has an average overhead
of 12.0%, while for 16 of 19 instances MPI-MR-gf is at most 1.098 times slower. On the other
hand, HYB-MR-gf is at most 1.163 times slower than HYB-MR-ft with a maximum overhead of
8.3%. Notice that the overheads for both configurations are similar (Figure 33).
All in all, the time needed for the recovery is comparable to the other phases. The recovery

Figure 33: These plots contain the values of the orkut and twitter experiments (Figure 28) as
well as the week scaling experiments (Figure 31). The x-axes are PageRank applied
on the di�erent data sets with their corresponding node numbers. We average over
runs. We compare the di�erent configurations to a base line and plot the results in
descending order. In the following definitions we divide the total execution times
of PageRank. The left plot shows the save self-message overheads on the y-axis
(MPI-MR-ft

MPI-MR
and HYB-MR-ft

HYB-MR
). We omit instances with no save self-messages (on 1 node).

The left plot shows the recovery overheads on the y-axis (MPI-MR-gf

MPI-MR-ft
and HYB-MR-gf

HYB-MR-ft
). We

omit instances with no error generation. The right plot compares the MapReduce
implementations with and without hybrid parallelization. The y-axis shows HYB-MR-X

MPI-MR-X
,

where X indicates a configuration in Table 1.

77

9 Experimental Results

phase (recovery) is faster than the map phase (map), but it is slower than the remaining phases
(Figures 29b, 30b, and 32). Furthermore, the recovery time for rhg-d8-g3 with HYB-MR-gf de-
creases with increasing number of nodes. During the recovery, we have to recompute the map
and reduce phase for a p-th of the key-value pairs (Section 7). Hence, the map and reduce
phase should be p-times faster. Note that this is only the case if the data volume is large
enough compared to the number of processes and the bottleneck workload. Furthermore, the
redistribute phase (Section 7.3.1) requires expected O(k w+m

tp2
old

+ pnew + log(t)) time, where k is
the number of processes per node, pold the number of processes before failure, pnew the number
of processes after failure and t the number of threads per process.
Note that the recovery time has a constant runtime for the remaining configurations and graphs
during our week scale experiments (Figures 32 and 50). The expected merge bu�er time during
recovery is O(w+m

tpnew
+ pnew + log(t)) (Section 7.3.2). This is pnew times slower than the remain-

ing operations during the recovery. Moreover, the runtime of the di�erent operation during
recovery depends on the size of the processes data. If the data is too small compared to the
number of used processes and bottleneck workload, we do not observe the optimal speedup, as
discussed in Sections 6 and 7.
As during the Word Count experiments, MPI-MR has mostly the lowest runtime. Therefore,
we compare the di�erent MapReduce configurations to MPI-MR in the right plot in Figure 33.
Notice that HYB-MR is at most 2.215 times slower than MPI-MR and on average 1.584 times. The
configuration including saving self-messages HYB-MR-ft 2.215 times slower than MPI-MR-ft on
average 0.86 times. Moreover, HYB-MR-gf is on average 0.789 times slower. The instances
with negative values correspond to the orkut experiments, where our hybrid implementation
performed better (Figure 28).
To sum up, the runtime of all our MapReduce configurations decreases with increasing number
of nodes. We only see significant speedups if the bottleneck workload is small enough compared
to data size and number of processes. Furthermore, we observe linear and even super linear
speedups for the save self-message phase, while its overhead is larger for our hybrid implemen-
tation. The recovery phase scales if the bottleneck workload is small enough. All in all, the
fault-tolerance mechanisms have faster execution times than the map phase.

Figure 34: This histogram illustrates the number of connected components (logarithmic y-axis)
for the di�erent cc sizes (x-axis). The histogram contains bins with size 5. We apply
the cc alternating MapReduce algorithm with HYB-MR to Erd�sRényi-d0.25-n228

with seed s = 1.

78

9.3 Connected Components

9.3. Connected Components

During the following experiments, we use the connected component (cc) algorithm (Section 4.3)
to test the scalability of our framework and the fault-tolerance mechanism. We could only imple-
ment the two phase and alternating cc algorithms introduced in [57]. We could not implement
the remaining algorithms due to the limitations of our frameworks. An optimized version of
the MapReduce cc algorithm requires the neighbors of each node during the map phase. So
would have to access and save the neighbors on locally on a process, which we would not be
fault tolerant. Alternatively, we could attach the neighbors of a vertex to itself, similar to the
procedure used during PageRank (Section 4.3). This would result in unnecessary data transfer
during the shu�e and send self-message phase.
The main issue with our cc MapReduce implementations is that data sets with skewed nonuni-
form distributions lead to imbalances [57]. The large star MapReduce operation results in large
degree vertices during the graph manipulation. Furthermore, the last small star operation gath-
ers all the vertices of a cc at a representative vertex. This is a problem for many real world data
sets [57]. For instance, the orkut graph (Table 4) consists of a single connected component [59].
Therefore, we generate graphs with a lot of small connected components.
We generate an Erd�sRényi-d0.25-n228 graph (Table 4) with n = 228 and m = 226 edges.
Erd�s-Rényi graphs are a well studied class of random graphs [40]. Let Gn,N(n) be an Erd�s-
Rényi graph with n vertices and N(n) edges. If N(n)

n

næŒ
≠≠≠æ c <

1
2 , then the graph Gn,N(n)

converges to a graph with n ≠ N(n) + o(1) connected components, where the largest cc has a
size in O(log(n)) [40]. For our random graph Erd�sRényi-d0.25-n228, we have m

n
= 1

4 <
1
2 .

Therefore, we expect a graph with small connected components, with which our cc MapReduce
algorithm should scale. Figure 34 illustrates the number and sized of connected components
in Erd�sRényi-d0.25-n228. The graph has a maximum cc with size 55. Most connected
components are simple edges (64.08%) or consist of less than 10 vertices (99.22%). Since the
bottleneck work load of our cc implementations (Section 4.3) is the size of the largest cc, our
MapReduce framework should scale with those graphs.

Figure 35: We execute the the alternating (left) and two phase (right) cc algorithm
(Section 4.3) on Erd�sRényi-d0.25-n228 (Table 4) for seeds s œ {1, 2, 3, 4} and
nodes in {1, 2, 4, 8, 16, 32, 64, 128}. Table 13 illustrates the amount of large star and
small star operations for the two phase cc algorithm. The alternating algorithm
requires exactly 6 iterations. We generate 10% node failures. The x-axes contain
the number of nodes, while the logarithmic y-axes show the runtime for the entire
cc computation.

79

9 Experimental Results

We apply the two phase and alternating cc MapReduce algorithm (Section 4.3) to
Erd�sRényi-d0.25-n228 and perform strong scaling experiments (Figure 35). We compute
the graph with our R-MAT MapReduce implementation (Section 4.4). Since each process re-
quires a random number generator with a di�erent seed, the graphs generated di�er with the
number of used processes. Hence, the number of large star and small star operations performed
during the cc computation may di�er. For the alternating algorithm with MPI-MR(-ft/gf) and
HYB-MR(-ft/gf), each cc computation requires 6 small star and large star operations. The two
phase algorithm requires 14 to 18 large star and 4 or 5 small star MapReduce operations. The
exact values can be found in Section C.3 in Table 13. The R-MAT graph computation required
a single iteration. We first apply the cc algorithms without fault-tolerance and determine the
number of large and small star operations needed during failure generation. This allows us
to generate the failures uniformly. Since the algorithm consists of two di�erent MapReduce
operations, we illustrate the combined runtime instead of the runtime per operation.
Figure 35 illustrates the strong scaling experiments with the alternating and two phase cc
MapReduce algorithms. Since both algorithms show a similar behavior, we add the plots
(Figures 51 and 52) for the alternating algorithm in Section C.3. We consider the two phase
cc algorithm. Note that the runtime decreases with increasing number of nodes until 64 nodes,
while the time for MPI-MR(-ft/gf) increases for 128 nodes it decreases for HYB-MR(-ft/gf).
This is due to the shu�e time increase for MPI-MR, which is 3.423 times slower at node 128
(0.484s) then at node 32 (0.141s) (Figure 36b). We do not observe the same behavior for our hy-
brid MapReduce implementation. This matches the results of our previous experiments, which
indicates that since MPI-MR(-ft/gf) uses 24 times more MPI processes, the MPI_All_to_allv
call during the shu�e phase has scaling issues. Furthermore, the shu�e phase has nearly no
speedup for MPI-MR(-ft/gf) (Figure 36a).
Moreover, the recovery time remains nearly constant for HYB-MR-gf with a speedup of 0.01
(Figure 36). Furthermore, the recovery time for MPI-MR-gf increases with a negative speedup
of ≠0.11. Note that during these experiments, we do not visualize the recovery time for a
single note failure as during our previous experiments. We plot the summed execution times.
Since the number of failures increases linearly with the number of nodes, we would expect that
the recovery time remains constant with increasing node number (Sections 6.3 and 7.3). The
shu�e phase performed during the recovery distributes the saved data uniformly between the
remaining processes. This recovery shuffle phase of MPI-MR-gf constitutes 83.19% of the
total recovery time on 128 nodes (Figure 37). This recovery shu�e phase increases from 0.0038s

on 16 nodes to 0.3400s on 128 nodes. We do not observe the same increase for HYB-MR-gf.
This behavior matches that of the shu�e phase in Figure 36.
As observed during our previous experiments, the save self-message phase is faster than the
other phases (Figure 36). Furthermore, we observe a super linear speedup of 1.15 for MPI-MR-gf
and a near linear speedup of 0.96 for HYB-MR-gf. This matches the results of our previous ex-
periments and the theoretical result in Section 5.2.2.
The following speedups are computed using the linear regression method of Section 8.6. Con-
trary to our previous examples, we observe nearly optimal speedups for the map (0.95) and
reduce phase (0.90) of MPI-MR-ft. HYB-MR-ft has a speedup of 0.97 for the map and 0.57 for the
reduce phase. Note that overall MPI-MR has a worse speedup, because of the bad scaling behavior
of its shu�e phase as described above. Erd�sRényi-d0.25-n228 contains only small connected
components, hence no large bottleneck workload as during the PageRank (Section 9.2) and
Word Count (Section 9.1) experiments. This underlines our theoretical results in Sections 6
and 7, that our MapReduce library achieves linear speedups if the data volume is large enough
compared to the number of processes and bottleneck workload. Large bottlenecks, on the other
hand, lead to no speedup.

80

9.3 Connected Components

(a) The y-axes show the relative speedups. We plot a linear regression ax + b, e, where e is the mean
square error. We compute the regression for the speedup of MPI(HYB)-MR, the save self-message
phase (save) of MPI(HYB)-MR-ft, and the speedup for the recovery of MPI(HYB)-MR-gf.

(b) The logarithmic y-axes show the average runtime per MapReduce operation.

Figure 36: We perform strong scaling experiments with our MapReduce configurations
(Table 1) for the two phase cc algorithm (Section 4.3). We run the experiments on
Erd�sRényi-d0.25-n228 for seeds s œ {1, 2, 3, 4} and plot the averages. We generate
10% node failures. We chose nodes in {1, 2, 4, 8, 16, 32, 64, 128}. The x-axes show
the number of nodes. We illustrate the map phase including grouping by key and
serialization (map), the reduce phase including deserialization (reduce), the shu�e
phase (shuffle), the save self-message time (save), recovery time (recovery), and
the entire MapReduce execution (MapReduce).

81

9 Experimental Results

Figure 37: Illustration of the phases occurring during the recovery (Table 2). We show the
results for our two phase cc algorithm applied on Erd�sRényi-d0.25-n228. We
generate 10% node failures. The x-axes contain the number of nodes, while the
logarithmic y-axes show the runtime. These times correspond to the recovery time
in Figure 36b

Note that the reduce phase of our hybrid parallelization has worse speedups than MPI-MR.
This can be explained by the p-way merge, which we perform during the reduce phase of
HYB-MR(-ft/gf) (Section 7.2). This results in an expected runtime of O

1
log(p)w+m

tp
+ log(t)

2
,

where p is the number of processes, t the number of threads, w the total workload, m the
total memory used by the user-defined functions, w œ �(w̄tp log(tp)), and m œ �(m̄tp log(tp)).
MPI-MR(-ft/gf) have an expected runtime of O

1
w

p

2
, for w œ �(w̄p log(p)). This additional

log(p) factor could explain the speedup of 0.57 for the reduce phase.
Furthermore, we perform weak scaling experiments by generating Erd�s-Rényi graphs with
n = x · 218 vertices and m = x · 216 edges. As discussed above this results in graphs with

Figure 38: We perform weak scaling experiments with our MapReduce configurations (Table 1)
for the alternating cc algorithm (Section 4.3). We run the experiments on
Erd�sRényi-d0.25-nx for seeds s œ {1, 2, 3, 4} and plot the averages and include
the standard deviation as error bar. For each node we generate 218 vertices. Table 14
illustrates the amount of large star and small star operations. We generate 10% node
failures. We chose nodes in {1, 2, 4, 8, 16, 32, 64, 128}. The x-axis shows the number
of nodes, while the y-axis shows the runtime for the entire cc computation.

82

9.3 Connected Components

small connected components. The largest cc produced for our experiments has fewer than 100
vertices. For the alternating algorithm with MPI-MR(-ft/gf) and HYB-MR(-ft/gf), each cc
computation requires 6 small star and large star operations. The two phase algorithm requires
14 to 18 large star and 4 or 5 small star MapReduce operations. The exact values can be
found in Section C.3 in Table 14. Since both algorithms have a similar behavior and the error
bars are larger for the two phase algorithm on 32 node, we analyze the alternating algorithm
in this section. Section C.3 contains the results for the two phase algorithm in Figures 53 and 54.
In Figures 38 and 39, we generally observe the same behavior as during our PageRank
(Section 9.2) and Word Count (Section 9.1) experiments. The fault-tolerance mechanism re-
quires less time than the other phases and the map phase requires most time. Furthermore,
the reduce phase is faster than the map phase and the shu�e time increases with the number
of nodes. Additionally, the MapReduce configuration with no hybrid parallelization is faster
(Figure 38).
The main di�erence between the PageRank and cc weak scaling experiments consists in how
the execution times increase. During the PageRank experiments on Erd�sRényi-d30-nx the
runtime increases from 64 nodes to 128 by 5.98% for MPI-MPI and by 11.25% for HYB-MPI
(Figures 31 and 50). During our alternating cc experiments, on the other hand, we observe an
increase of 44.99% for MPI-MPI and 49.71% for HYB-MPI from 64 to 128 nodes. Furthermore,
the Erd�sRényi-d30-nx for 128 nodes and seed 1 has no connected component with a size
greater than 70. Moreover, the map and reduce phases of MPI-MPI and map phase of HYB-MPI

Figure 39: We perform weak scaling experiments with our MapReduce configurations (Table 1)
for the alternating cc algorithm (Section 4.3). We run the experiments on
Erd�sRényi-d0.25-nx for seeds s œ {1, 2, 3, 4} and plot the averages. For each
node we generate 218 vertices. We generate 10% node failures. We chose nodes in
{1, 2, 4, 8, 16, 32, 64, 128}. The x-axes show the number of nodes, while the y-axes
show the runtime for the entire cc computation. We illustrate the speedups of the
map phase (map), reduce phase (reduce), shu�e phase (shuffle), save self-message
time (save), and recovery time (recovery). MapReduce indicates the speedup of the
entire MapReduce operation.

83

9 Experimental Results

have at most an increase of 15% from 1 to 64 nodes. From 64 to 128 nodes, on the other hand,
we observe a minimum increase of 35%.
During our weak scaling experiments, we increase the input linearly with the number of nodes.
To achieve optimal speedups our MapReduce framework requires that the total workload w lies
in �(w̄p log(p)), where w̄ is the bottleneck workload (Sections 6 and 7). Therefore, we require
a more than linear workload increase to maintain the optimal speedups. We may have reached
this point, where the input data is too small for the number of nodes.
We illustrate the save self-message overheads of MPI(HYB)-MR-ft in Figure 40 on the left. Sim-
ilar to our PageRank experiments (Section 9.2) the overheads of MPI-MR-ft are smaller. For
both configurations the maximum overhead is approximately 15%, where MPI-MR-ft has an av-
erage overhead of 5.6% and HYB-MR-ft n average overhead of 10.4%. Similar to our PageRank
experiments, the overheads are larger for our hybrid parallelized MapReduce implementations.
As described during the previous section, the save self-message phase of MPI-MR-ft has an
expected 6 times faster runtime (Section 5.2.2) on our setup.
The center plot in Figure 40 shows the overheads of the failure recovery. Note that this in-
cludes the execution on fewer processes. For both MPI-MR-gf and HYB-MR-gf, the recovery
has an overhead of 19.1%, while the maximum overhead of MPI-MR-gf is 70.6%. The average
overhead of HYB-MR-gf is 36.7%. Furthermore, the MapReduce implementations with hybrid
parallelization are approximately 2.3 times slower on average than the MapReduce implemen-
tation without (Figure 40). As discussed during the previous chapters, this may be caused

Figure 40: These plots contain the experiments performed in Section 9.3
(Figures 35, 38 and 53). The x-axes are both cc algorithms applied on the
di�erent data sets with their corresponding node numbers. We average over runs.
We compare the di�erent configurations to a base line and plot the results in
descending order. During the following definitions, we use execution times of the
cc algorithm. The left plot shows the save self-message overheads on the y-axis
(MPI-MR-ft

MPI-MR
and HYB-MR-ft

HYB-MR
). We omit instances with no save self-messages (on 1 node).

The left plot shows the recovery overheads on the y-axis (MPI-MR-gf

MPI-MR-ft
and HYB-MR-gf

HYB-MR-ft
). We

omit instances with no error generation. The right plot compares the MapReduce
implementations with and without hybrid parallelization. The y-axis shows HYB-MR-X

MPI-MR-X
,

where X indicates a configuration in Table 1.

84

9.4 R-MAT

by the reduce phase, which does not scale well. Moreover the map phase requires additional
scans over the data and addition shared memory synchronization steps such as prefix sums
(Section 7).
All in all, we achieve optimal speedups during our strong scaling experiments by choosing
favorable graphs for the cc algorithm. The MPI-MR(-ft/gf) achieves faster results than our
hybrid implementation. Moreover, we observe a smaller speedup for the hybrid parallelization,
which may be caused by the p-way merge algorithm. The recovery time during our strong
scale experiments is dominated by the recovery shu�e phase. This leads to a slower runtime
for large number of nodes. We have nearly constant execution times for the map and reduce
phases during our cc weak scale experiments, which increases for larger nodes, which may be
caused ba our random static load balancing strategy. Finally, MPI-MR-ft and MPI-MR-gf have
a lower save self-message overheads than HYB-MR-ft and HYB-MR-gf.

9.4. R-MAT

We test our MapReduce frameworks with an R-MAT MapReduce algorithm (Section 4.4), by
computing random graphs with parameters (a, b, c, d) = (0.57, 0.19, 0.19, 0.05). The Graph500
benchmark includes R-MAT graphs with those parameters [70]. For our strong scaling experi-
ments we chose to generate a graph with n = 222 vertices and m = 30 · 222. These graph sizes
are similar to those generated for cc experiments by Kiveris et al. [57]. Since our R-MAT graph
generator uses a di�erent seed for the random number generator on each process, the graph
generated varies with the number of nodes and processes. Furthermore, generating a failure
results in a di�erent graph than without failure generation. After a failure, the MapReduce
framework redistributes the data and processes and generates the edges new on di�erent pro-
cesses with di�erent seeds. This prevents us from determining the number of iterations before
the execution and from distributing the failures uniformly over all MapReduce operations. We
approximate the number of iterations with those observed during MPI-MR-ft and MPI-MR-gf.
Contrary to the experiments with the cc MapReduce algorithm (Section 9.3), R-MAT repeats
the same MapReduce operation. This allows us to visualize the average runtime of the di�erent
phases over all operations executed during a call of R-MAT.

Figure 41: We generate an rmat(0.57,0.19,0.19,0.05)-n222-d30 graph (Table 22) with
our R-MAT implementation (Section 4.4). We generate the graph on nodes in
{1, 2, 4, 8, 16, 32, 64, 128} and seeds s œ {1, 2, 3, 4}. We plot the average times over
all seeds. The x-axis contains the number of nodes, while the logarithmic y-axis
shows the runtime per MapReduce operation.

85

9 Experimental Results

(a) The y-axes show the relative speedups. We plot a linear regression ax + b, e, where e is the mean
square error. We compute the regression for the speedup of MPI(HYB)-MR, the save self-message
phase (save) of MPI(HYB)-MR-ft, and the speedup for the recovery of MPI(HYB)-MR-gf.

(b) The logarithmic y-axes show the runtime per MapReduce operation averaged over seeds

Figure 42: We generate the rmat(0.57,0.19,0.19,0.05)-n222-d30 graph, by using
the R-MAT algorithm (Section 4.4) for seeds {1, 2, 3, 4} and nodes in
{1, 2, 4, 8, 16, 32, 64, 128}. We generate 10% node failures. The x-axes contain the
number of nodes. We illustrate the map phase including grouping by key and serial-
ization (map), the reduce phase including deserialization (reduce), the shu�e phase
(shuffle), the save self-message time (save), recovery time (recovery), and the
entire MapReduce execution (MapReduce).

86

9.4 R-MAT

We illustrate the results of our strong scaling experiments for R-MAT in Figure 42b. Overall,
we observe the same behavior as during the cc experiments in Section 4.3. The runtime of
or hybrid parallelization decreases with increasing number of nodes. The execution times of
MPI-MR, on the other hand, decreases until 64 nodes and increases for 128 nodes. As during the
cc experiments this is caused by the increase of shu�e time, which increases 4.768 times from
nodes 16 (7.75 · 10≠3

s) to 128 nodes (36.97 · 10≠3
s). As discussed previously, this can be caused

by scaling issues of the MPI_All_to_allv operation (Section 9.2 and 9.3). Note that we do not
have the same issue for our hybrid implementation, which uses 24 times fewer processes.
We use a linear regression to determine the slops of speedups in Figure 42a (Section 8.6). We
have nearly optimal speedups for the map (1.01) and reduce (0.97) phases of MPI-MR, but an
execution time increases after 64 nodes due to the shu�e phase. Our hybrid parallelization,
on the other hand, has an overall speedup of 0.69, it has a lower speedup for the map (0.82)
and reduce (0.63) phases than MPI-MR. As explained in Section 9.3, this may be causes by the
worse expected runtime of the p-way merge algorithm.
Furthermore, the save self-message time has only a speedup of 0.46 for HYB-MR-ft and is slower
than the shu�e phase (Figure 42b). MPI-MR-ft also has a slower save time than shu�e time
for node numbers smaller than 64 and lower speedups (0.97) than during previous experiments.
Let’s consider and edge e during the R-MAT algorithm (Section 4.4). The map phase emits e

and sends it to process i, which is determined by a hash value h(e). During the reduce phase
at process i, the user-defined reduce function generates a random edge for each duplicate of e

and emits e. Since e is already at process i, the next map phase does not have to send e during
the shu�e phase but during the save self-message phase. Therefore, the size of self-messages
increases over time. After each MapReduce operation, we have to exchange large self-messages
and smaller messages during the shu�e phase. This could explain the slower shu�e times
compared to self-message times.
Finally, the recovery time does not decrease with increasing number of nodes, as observed dur-
ing the previous experiments and has no linear speedup (Figure 42a). The time required for
the merge bu�er phase (Section 7.3) of HYB-MR-gf increases (Figure 43). The merge bu�er
phase on 128 nodes constitutes 82.0% of the entire recovery. For MPI-MR-gf the recovery shuf-
fle phase requires most of the execution time followed by the redistribution and merge bu�er

Figure 43: Illustration of the phases occurring during the recovery (Table 2). We show the run-
time of the R-MAT algorithm applied on rmat(0.57,0.19,0.19,0.05)-n222-d30.
We compute the graph with HYB-MR-gf (left) and MPI-MR-gf (right). The x-axes
show the number of nodes, while the logarithmic y-axes show the runtime per re-
covery phase. These times correspond to the recovery time in Figure 42b

87

9 Experimental Results

phases (Section 6.3). Note that the recovery phase works on n times fewer elements than the
other phases, where n is the number of nodes. We have to recover the data lost during the
failure of one node. Since all our algorithms use random static load balancing, we only achieve
the optimal expected runtime, if the total workload is large enough compared to the number
of processes and bottleneck workload (Sections 6 and 7). Scaling issues due to a small total
workload could explain the behavior of the recovery phase.
We perform weak scaling experiments for our R-MAT implementation, by generating a graph
with 218 vertices per compute node, an average degree of 30, and parameters
(a, b, c, d) = (0.57, 0.19, 0.19, 0.05). As explained previously, we cannot set a fixed number
of iterations, hence we display the average runtime per MapReduce operation. Furthermore,
we use the number of iterations needed for MPI-MR-ft or HYB-MR-ft do distribute the node
failures between the MapReduce operations in MPI-MR-gf or HYB-MR-gf.
The MapReduce implementation without hybrid parallelization is faster (Figure 44). As ob-
served during the cc experiments in Section 9.3, the runtime increases slightly with increasing
number of nodes. For our MapReduce framework without hybrid parallelization MPI-MR, the
shu�e time gets 7.97 times slower from 1 to 128 nodes, while the map phase increases by 19.4%
and reduce phase by 27.9% (Figure 45). Our MapReduce framework with hybrid parallelization
HYB-MR, on the other hand, has a slight increase for the map (11.1%) and shu�e (17.5%) phases.
The reduce phase has an increase of 51.5%. As before, the behavior of MPI-MR(-fg/gf) can
be explained by scaling issues of the MPI calls during the shu�e phase. The increasing reduce
phase can be explained by the scaling issues of the p-way merge as described in Section 9.3.
The recovery time is faster than an execution of a MapReduce operation (Figure 45). But
in contrast to previous experiments the recovery phase is slower than the map phase. Fur-
thermore, the runtime of the map phase at 16 nodes for HYB-MR-gf (Figure 45) increases but
remains constant after this first increase. This increase is due to the loss of a compute note.
After the 16 nodes, the number of failures and nodes increase proportionally, which explains
no further rise of the map phase.

Figure 44: We generate a rmat(0.57,0.19,0.19,0.05)-nx-d30 graph (Table 22) with our
R-MAT implementation (Section 4.4). For each node we generate 218 vertices. We
compute the graph on nodes in {1, 2, 4, 8, 16, 32, 64, 128} and seeds s œ {1, 2, 3, 4}.
We plot the average times over all seeds. The x-axis contains the number of nodes,
while the y-axis shows the runtime per MapReduce operation.

88

9.4 R-MAT

Figure 45: We perform weak scaling experiments with our MapReduce configurations
(Table 1) for the R-MAT algorithm (Section 4.4). We run the experiments on
rmat(0.57,0.19,0.19,0.05)-nx-d30 for seeds s œ {1, 2, 3, 4} and plot the aver-
ages. For each node we generate 218 vertices. We generate 10% node failures. We
chose nodes in {1, 2, 4, 8, 16, 32, 64, 128}. The x-axes contain the number of nodes,
while the y-axes show the runtime per operation. We illustrate the map phase
including grouping by key and serialization (map), the reduce phase including dese-
rialization (reduce), the shu�e phase (shuffle), the save self-message time (save),
recovery time (recovery), and the entire MapReduce execution (MapReduce).

Figure 46 (left) shows the overheads of the save self-message phase. Contrary to previous exper-
iments we observe higher overheads for MPI-MR-ft and HYB-MR-ft. For the hybrid MapReduce
implementation, we have an average overhead of 22.86%, which is approximately 2 times slower
than the overheads during our cc experiments (Section 9.3). Furthermore, MPI-MR-ft has an
average overhead of 22.07%, which is approximately 4 times slower than the average overhead
for the cc algorithm. Moreover, the recovery overhead in Figure 46 (center) is lower compared
to our cc experiments. We have an average recovery overhead of 14.81% for MPI-MR-ft and
13.95% for HYB-MR-ft. In Figure 46 (right), we compare our MapReduce implementations with
and without hybrid parallelization. As during our previous experiments, the hybrid implemen-
tation is slower. As explained in Section 9.2 this can be caused the additional time needed to
perform the t-way merge and prefix sum during the map phase (Section 7).
To sum up, we could observe the same shu�e time increase for MPI-MR as during the cc ex-
periments. Furthermore, we have nearly optimal speedups for the map and reduce phase of
MPI-MR and the map phase of HYB-MR. As observed during the cc experiments, the reduce phase
of HYB-MR has no optimal speedup, which may be caused by the p-way merge.

89

9 Experimental Results

Figure 46: These plots contain the experiments performed in Section 9.4 (Figures 41 and 45).
The x-axes are both R-MAT algorithms applied on the di�erent data sets with their
corresponding node numbers. We average over runs. We compare the di�erent
configurations to a base line and plot the results in descending order. During the
following definitions, we use execution times of the R-MAT algorithm. The left plot
shows the save self-message overheads on the y-axis (MPI-MR-ft

MPI-MR
and HYB-MR-ft

HYB-MR
). We omit

instances with no save self-messages. The left plot shows the recovery overheads on
the y-axis (MPI-MR-gf

MPI-MR-ft
and HYB-MR-gf

HYB-MR-ft
). We omit instances with no error generation. The

right plot compares the MapReduce implementations with and without hybrid par-
allelization. The y-axis shows HYB-MR-X

MPI-MR-X
, where X indicates a configuration in Table 1.

9.5. Summary

In this section we summarize our experimental results and observations from Sections 9.1 to 9.4.
First of all, we notice an increase in shu�e time during our strong scaling experiments for Word
Count, cc and R-MAT with MPI-MR(-ft/gf). This increase occurs after 32 nodes and 1536
processes. Note HYB-MR(-ft/gf) employs 24 times fewer processes, executes the same shu�e
method, and does not su�er from an increased shu�ing. This behavior could be explained by
the scaling issues of the collective irregular MPI_All_to_allv operation [18, 19].
Furthermore, we do not observe optimal speedups for our real world data sets during the
PageRank and Word Count experiments. This is due to a large bottleneck workload, which
constitutes a well-known problem for MapReduce algorithms on large graphs [57, 62]. By mod-
ifying and extending the MapReduce frameworks, such problems can be solved. For instance,
process local data structures on which each user-defined map function on the same process has
access could be used to optimize MapReduce algorithms [57, 62]. We could not employ these
techniques, because those data structures are not fault-tolerant.
On the other hand, if the total workload is large enough compared to the number of processes
and bottleneck workload, then the non hybrid parallelization has approximately an optimal
speedup of 1 for the map and reduce phase. We observe this during our R-MAT and cc exper-
iments. Furthermore, the map phase of our hybrid parallelization has the same behavior. This
matches the theoretical expected execution times of Sections 6 and 7. Note that the reduce
phase of HYB-MR has no linear speedups (0.63 for R-MAT and 0.57 for cc). This can be ex-
plained by the p-merge used during its reduce phase, which results in a worse time complexity
(Section 7). Since MPI-MR uses a radix sort for the group by key during the reduce phase we
have a better expected time complexity (Section 6).

90

9.5 Summary

Table 7: Comparison of our MapReduce implementations with and without hybrid paralleliza-
tion. The following values correspond to the minimum, maximum and average values
of Figure 47 (right).

MapReduce minimum maximum average
HYB-MR 0.562 3.634 2.213
HYB-MR-ft 0.566 3.407 2.278
HYB-MR-gf 0.599 3.456 2.184

In Figure 47 (right), we compare HYB-MR(-ft/gf) to its corresponding non hybrid parallelized
MapReduce implementation MPI-MR(-ft/gf). During all our experiments, except for PageR-
ank on twitter (Figure 28), our hybrid parallelization is slower. HYB-MR is at worst 3.634
times slower and at best 1.779 times faster than MPI-MR (Table 8). On average HYB-MR is 2.213
slower. As described in previous sections, this is due to the additional scans, t-way merge and
prefix sums necessary to implement our shared memory parallelization.
We analyze the overheads of 10% failure generation and recovery of MPI(HYB)-MR-gf compared
to MPI(HYB)-MR-ft in Figure 47 (center). MPI-MR-gf has an average overhead of 15.2% and
a maximum of 97.0%, while HYB-MR-gf has an average overhead of 13.4% (Table 8). We have
observed that the shu�e phase necessary to redistribute the key-value pairs during the recovery
phase does not scale for MPI-MR-gf (Section 9.3).
The overheads for our save self-message phase depend on the MapReduce algorithm. For
instance, we observe an average overhead of approximately 2% during our Word Count experi-

Figure 47: These plots contain all experiments performed in Section 9. The x-axes show the
di�erent algorithms executed on di�erent data sets and node counts. We average
over runs. We compare the di�erent configurations to a base line and plot the results
in descending order. During the following definitions, we use execution times of the
R-MAT algorithm. The left plot shows the save self-message overheads on the y-
axis (MPI-MR-ft

MPI-MR
and HYB-MR-ft

HYB-MR
). We omit instances with no save self-messages. The

left plot shows the recovery overheads on the y-axis (MPI-MR-gf

MPI-MR-ft
and HYB-MR-gf

HYB-MR-ft
). We

omit instances with no error generation. The right plot compares the MapReduce
implementations with and without hybrid parallelization. The y-axis shows HYB-MR-X

MPI-MR-X
,

where X œ {"", "ft", "gf"}.

91

9 Experimental Results

Table 8: This table contains the minimum, maximum and average sent self-message and recov-
ery overheads. The following values correspond to the left and center Figures 47.

MapReduce minimum maximum average
MPI-MR-ft 0.909 1.288 1.088
HYB-MR-ft 1.029 1.285 1.131
MPI-MR-gf 1.013 1.970 1.152
HYB-MR-gf 1.047 1.367 1.134

ments, while we have an overhead of approximately 22% for R-MAT. As described in Section 9.4,
this largely depends on the size of self-messages and the data, which a process does not need to
send. Note that the overheads of MPI-MR-ft are lower than those of our hybrid parallelization
(Figure 8 (left)). Overall our experiments the save self-message phase has an average overhead
of 8.8% for MPI-MR-ft and 13.1% for HYB-MR-ft. Furthermore, during all our experiments we
observe super linear speedups for the save self-message phase, which matches its theoretical
expected runtime of O

1
m

p2

2
, where the sum of all exchanged message sized m is large enough

compared to the number of processes p (Section 5.2.2).

92

10 Discussion

10. Discussion

10.1. Conclusion

This thesis introduces an in-memory fault-tolerant MapReduce framework for iterative algo-
rithms, designed to run on high performance computing (HPC) systems. We describe a fault-
tolerance mechanism to handle compute node failures by sending additional messages during
the shu�e phase. Furthermore, we implement a purely MPI based and a hybrid parallelized
MapReduce framework and prove their expected runtime.
We implement a Word Count, a PageRank, a connected component, and a R-MAT MapReduce
algorithm in our framework and perform runtime experiments. Since we use random static load
balancing, we only observe optimal speedups if the input data is large enough compared to the
number of processes and the bottleneck workload. Moreover, the purely MPI based implemen-
tation has on average a 2.21 times shorter runtime, but su�ers from a performance loss during
the shu�e phase for more than 64 nodes. Since the hybrid MapReduce implementation requires
24 times less processes, it does not su�er from MPI scaling issues.
Moreover, the recovery from node failures scales if the input data is large enough and its run-
time depends on the benchmark algorithm. While generating 10% node failures, we observe
an average overhead of 15.2% for our purely MPI based and 13.4% for our hybrid MapReduce
implementation.
Furthermore, the phase sending and saving self-messages scales well with increasing number of
processes and is faster than the other phases. We observe super linear speedups. This matches
its theoretical runtime of O

1
m

p2

2
, where p is the number of processes and m the large enough

size of all messages. For our purely MPI based implementation saving self-messages has an
overhead of 8.8% on average. For our hybrid MapReduce framework this overhead is 13.1%.

10.2. Future Work

First of all, an optimized and well scaling MapReduce algorithm on real world graphs re-
quires extensions to the MapReduce interface [57, 62]. One could introduce fault-tolerant data
structures, which a user-defined map or reduce function could access locally on each process.
Furthermore, a MapReduce operation for an associative user-defined reduce function could min-
imize the data sent during the shu�e phase. The map phase could apply the reduce function
locally before the shu�e phase, similar to the ReduceByKey operation in Thrill [22].
Moreover, one could adopt a parallel radix sort during the reduce phase of the hybrid MapRe-
duce implementation to address its scaling issues. This approach scales well for the purely MPI
based implementation.
Furthermore, we currently use random static load balancing to distribute the workload between
processes, which only achieves optimal speedups if the input data is large enough compared to
the number of processes and bottleneck workload. Our framework could benefit for instance
from a work stealing algorithm to better distribute the workload [86]. Note that one would
have to modify the fault-tolerance mechanism.
Additionally, one could support more than one compute node failure, by periodically saving
checkpoints of the entire MapReduce state to a fault-tolerant file system. Since these check-
points would be costly, the MapReduce framework would perform them rarely. In case of a
multi node failure, one could restart from the checkpoint and would not have to start the com-
putation from the beginning.
Furthermore, it was not possible to compare our framework to other fault-tolerant MapReduce
frameworks. Most libraries introduced in Section 3.3 are not designed to run on HPC systems.

93

10 Discussion

The FT-MRMPI library (Section 3.3.4) is the most similar to our framework, but the code was
not available and we were not able to contact the authors. However, an e�cient implementation
of FT-MRMPI would be a good comparison for our framework.
Finally, the fault-tolerant MPI library ULFM did not run stably on the SuperMUC-NG system,
which forced us to simulate failures. A possible solution would be to use a di�erent fault-tolerant
MPI implementation and perform fault-tolerance experiments by killing MPI processes via sys-
tem calls. Alternatively, one could run experiments on an HPC system on which ULFM works
reliably.

94

A Fundamentals: Balls in Bins

A. Fundamentals: Balls in Bins

This section contains the proof of Lemma 2.2 in Lemma A.1. We use the same notations and
definitions as introduced in Section 2.4.

Lemma A.1. Given the balls in bins problem with m balls and p bins with expected maximum
occupancy b(m, p), m œ N and p œ N \ {1, 2}. If m œ �(p log(p)), then b(m, p) œ O

1
m

p

2
.

Proof. Let log be the logarithmus dualis, m œ �(p log(p)), and – > 1. There is a — > 0 so
that m Ø —p log(p) and m

—p log(p) Ø 1, since p Ø 3. Furthermore, we have log log(p) Ø 0 and
log(p) Ø log log(p), therefore

1
1 ≠

1
–

log log(p)
2 log(p)

2
lies in [0, 1] and we can deduce:

–

ı̂ıÙ2m log(p)
p

A

1 ≠
1
–

log log(p)
2 log(p)

B

Æ –

Û
2m log(p)

p
Æ –

Û
m

—p log(p)

Û
2m log(p)

p
Æ –

Û
2
—

m

p
.

So the variable k– in Theorem 2.1 lies in O

1
m

p

2
. Let M be a random variable counting the

maximum number of balls in a bin. Then P (M Æ k–) indicates the probability that the
maximum number of balls in a bin lies in O

1
m

p

2
, if m œ �(p log(p)). By applying Theorem 2.1

[78] we can deduce:
P (M Æ k–) = 1 ≠ P (M > k–) = 1 ≠ o(1).

Finally, we prove Lemma 3.1 with

b(m, p) =
mÿ

i=0
i · P (M = i) Æ k–P (M Æ k–) + mP (M > k–) = k–(1 ≠ o(1)) + mo(1) œ O

A
m

p

B

.

B. MapReduce Benchmark Algorithms: PageRank

We introduce an alternative PageRank implementation to Section 4.2 using 3 di�erent MapRe-
duce operations. We can implement the PageRank without sending the outgoing neighbors
O(a) of a page a explicitly. Algorithm 25 simulates Algorithms 4 and 5 by chaining three dif-
ferent MapReduce operations. The input of this algorithm is a list of triples (a, b, p(a)), where
(a, b) œ E and p(a) is the current page rank of a. So instead of working on a graph, where
each vertex has an adjacency list as before, we use the edge list E. The map and reduce phases
applying the user-defined functions Map1, Reduce1, and Map2 correspond to the map phase
of Algorithm 4. Then we apply Equation 4.1 in Reduce2. Finally, during the last MapReduce
operation applying Map3 and Reduce3, we send the new page rank p(a) to each triple corre-
sponding to edge (a, x) for x œ V .
Note that the advantage of the PageRank Algorithm 25 is that we do not need to send the
neighbor vertices explicitly, which leads to equally sized input, output and intermediate ele-
ments. On the other hand, we need recompute the neighbors each time by using Map1 and
Reduce2. Algorithm 25 requires more MapReduce operations, which can lead to longer running
times. An advantage of PageRank with Algorithms 4 and 5 is that the outgoing neighbors O(a)
are usually not sent during the shu�e phase.

i

B MapReduce Benchmark Algorithms: PageRank

Algorithm 25: PageRank: Edge List Implementation
1 Map1(a, b, p(a)) // emit triples with a as key
2 emit(a, (b, p(a)))
3
4 Reduce1(a, values) // aggregate outgoing neighbors
5 foreach (b, p(a)) œ values do emit((a, b,

p(a)
|values|))

6
7 Map2(a, b, p(a)) // emit triples with b as key
8 emit(b, (a, p(a)))
9

10 Reduce2(b, values) // apply Equiation 4.1
11 p(b) = 1≠–

N
+ – ·

q
(a,p(a))œvalues·p(a) ”=Œ x

12 foreach (a, p(a)) œ values do emit((a, b, Œ))
13 emit((b, Œ, p(b)))
14
15 Map3(a, b, p(a)) // emit triples with a as key
16 emit(a, (b, p(a)))
17
18 Reduce3(a, values) // save p(a) at each triple corresponding to edge (a, b)
19 p(a) = p, with (Œ, p) œ values · p ”= Œ

20 foreach (b, Œ) œ values do emit((a, b, p(a)))
21

ii

C Experimental Evaluation

C. Experimental Evaluation

C.1. Word Count

In this section we provide additional plots and tables complementing the results of Section 9.1.
Figures 48 and 49 contain the results of strong scale experiments on the english and yelp
data sets (Table 3). These figures correspond to Figure 24 and provide the same results as
discussed in Section 9.1. Furthermore, Tables 9 and 10 contain the average percentages of the
MapReduce phases during an MapReduce operation.

Figure 48: We illustrate the runtime division of the MapReduce operation during the Word
Count algorithm (Section 4.1). We apply the Word Count algorithm on english
(nodes in {1, 5, 10, 20, 40, 80, 160}, 7 runs) and yelp (nodes in {5, 10, 20, 40, 80, 160},
7 runs). The x-axes show the number of nodes, while the logarithmic y-axes show the
average runtime. We profile the runtime of the map phase including serialization and
group by key (map), reduce phase including deserialization (reduce), shu�e phase
(shuffle), and save self-message time (save). MapReduce indicates the runtime of
the entire MapReduce operation.

Table 9: This table shows the relative average MapReduce phase times rx of the dif-
ferent MapReduce phases during the Word Count experiments with MPI-MR-ft
(Section 9.1). We compute rx = tx

tmr
· 100%, where tx is the average execution time

of phase x and tmr over all runs and node counts.
text map(%) reduce(%) shuffle(%) save(%)
english 68.04 16.66 14.65 0.65
yelp 58.93 25.42 14.53 1.11
gutenberg 54.33 30.54 14.16 0.97
randtext-gutenberg 68.06 20.68 9.85 1.41
average 62.81 24.03 11.98 1.18

iii

C Experimental Evaluation

Table 10: This table shows the relative average MapReduce phase times rx of the di�er-
ent MapReduce phases during the Word Count experiments with HYB-MR-ft
(Section 9.1). We compute rx = tx

tmr
· 100%, where tx is the average execution time of

phase x and tmr over all runs and node counts.
text map(%) reduce(%) shuffle(%) save(%)
english 84.49 10.09 4.88 0.54
yelp 74.11 17.21 7.21 1.46
gutenberg 67.95 23.16 7.45 1.44
randtext-gutenberg 90.12 1.97 6.8 1.11
average 78.46 13.39 6.92 1.23

Figure 49: We illustrate the relative speedups of the MapReduce operation during the Word
Count algorithm (Section 4.1). We show the results of the di�erent MapReduce
configurations listed in Table 1. We apply the Word Count algorithm on english
(nodes in {1, 5, 10, 20, 40, 80, 160}) and yelp (nodes in {5, 10, 20, 40, 80, 160}). We
perform 7 runs for each text and plot the averages. The x-axes show the number of
nodes, while the y-axes show the relative speedups. We profile the runtime of the
map phase including serialization and group by key (map), reduce phase including
deserialization (reduce), shu�e phase (shuffle), and save self-message time (save).
MapReduce indicates the runtime of the entire MapReduce operation. The linear
functions ax + b indicate linear regression with mean square error e.

iv

C.2 PageRank

C.2. PageRank

The following plots and tables correspond to the PageRank experiments described in Section 9.2.
Figure 50 shows the results of the week scale experiments with PageRank on Erd�sRényi-d38.
The results are similar to those with rhg-d8-g3 (Figure 32). Tables 11 and 12 contain the
increases in runtime of the di�erent phases during the week scale experiments in Section 9.2.

Figure 50: We perform 100 PageRank iterations with our MapReduce configurations (Table 1)
on Erd�sRényi-d38 (seeds in {1, 2, 3, 4, 5} and nodes {1, 2, 4, 8, 16, 32, 64, 128}). We
generate 218 vertices per node. Furthermore, we generate 10% node failures for
MPI(HYB)-MR-gf. The x-axes show the number of nodes, while the y-axes show the
average runtime per MapReduce operation including error bars with standard devia-
tion. We illustrate the map phase including grouping by key and serialization (map),
the reduce phase including deserialization (reduce), the shu�e phase (shuffle), the
save self-message time (save), recovery time (recovery), and the entire MapReduce
execution (MapReduce).

Table 11: Illustrate the increase in runtime for the di�erent phases. We indicate the increase
tmax
tmin

between the minimum and maximum runtime of a phase during the PageRank
experiments on rhg-d8-g3 (Figure 32). The column "all" indicates the overall in-
crease.

MapReduce map shu�e reduce all
MPI-MR 1.26 20.427 1.669 2.009
MPI-MR-ft 1.255 20.279 1.574 2.072
MPI-MR-gf 1.186 19.685 1.511 2.474
HYB-MR 1.552 2.965 2.067 1.916
HYB-MR-ft 1.531 4.374 2.029 2.119
HYB-MR-gf 1.648 5.935 2.249 2.47

v

C Experimental Evaluation

Table 12: Illustrate the increase in runtime for the di�erent phases. We indicate the increase
tmax
tmin

between the minimum and maximum runtime of a phase during the PageRank
experiments on Erd�sRényi-d38 (Figure 50). The column "all" indicates the overall
increase.

MapReduce map shu�e reduce all
MPI-MR 1.32 9.223 2.262 1.826
MPI-MR-ft 1.319 9.138 2.187 1.873
MPI-MR-gf 1.39 9.774 2.005 2.061
HYB-MR 1.824 3.413 2.702 2.302
HYB-MR-ft 1.829 3.667 2.731 2.552
HYB-MR-gf 1.949 3.859 2.805 2.781

C.3. Connected Components

This section provides additional information to the connected component experiments per-
formed in Section 9.3. We adopt the same parameters and naming conventions as introduced
in Sections 8 and 9
Table 3 contains the number of large star and small star MapReduce operations performed
during the execution of the two phase cc algoithm (Section 4.3). We apply the cc algorithm
on the Erd�sRényi-d0.25-n228 graph (Table 4). Figures 52 and 51 analyze the experiments of
the alternating cc algorithm using the same parameters as Figures 36 and 37.
Moreover, we perform week scaling experiments with our cc algorithm on Erd�sRényi-d0.25-nx

(Table 4) for 218 vertices per compute node. Table 14 contains all large star and small star
counts for the di�erent MapReduce configurations during our experiments with the two phase
algorithm (Figures 53 and 54).

Table 13: This table contains the number of small star and large star MapReduce operations
executed during the two phase cc computation for Erd�sRényi-d0.25-n228 (Table 4)
with seeds s = 1.

s large star small star
nodes 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

MPI-MR(-ft/gf)

1 16 13 16 16 16 17 14 17 5 4 5 5 5 5 4 5
2 15 15 17 14 15 17 17 17 5 5 5 4 5 5 5 5
3 17 14 14 14 14 14 17 18 5 4 4 4 4 4 5 5
4 14 16 16 15 15 16 16 17 4 6 4 5 5 5 5 5

HYB-MR(-ft/gf)

1 17 13 16 16 14 17 14 17 5 4 5 5 4 5 4 5
2 15 15 17 14 15 16 17 15 5 5 5 4 4 5 5 4
3 15 14 14 14 15 14 17 15 4 4 4 4 4 4 5 4
4 14 16 16 15 13 16 15 14 4 5 4 4 4 5 5 4

vi

C.3 Connected Components

(a) The y-axes show the relative speedups. We plot a linear regression ax + b, e, where e is the mean
square error. We compute the regression for the speedup of MPI(HYB)-MR, the save self-message
phase (save) of MPI(HYB)-MR-ft, and the speedup for the recovery of MPI(HYB)-MR-gf.

(b) The logarithmic y-axes show the average runtime per MapReduce operation.

Figure 51: We perform strong scaling experiments with our MapReduce configurations
(Table 1) for the alternating cc algorithm (Section 4.3). We run the experiments on
Erd�sRényi-d0.25-n228 for seeds s œ {1, 2, 3, 4} and plot the averages. We gener-
ate 10% node failure. We chose nodes in {1, 2, 4, 8, 16, 32, 64, 128}. The x-axes show
the number of nodes. We illustrate the map phase including grouping by key and
serialization (map), the reduce phase including deserialization (reduce), the shu�e
phase (shuffle), the save self-message time (save), recovery time (recovery), and
the entire MapReduce execution (MapReduce).

vii

C Experimental Evaluation

Figure 52: Illustration of the phases occurring during the recovery (Table 2). We show the
results for our alternating cc algorithm applied on Erd�sRényi-d0.25-n228. We
generate 10% node failure. The x-axes contain the number of nodes, while the
logarithmic y-axes show the runtime. These times correspond to the recovery time
in Figure 51

Figure 53: We perform weak scaling experiments with our MapReduce configurations (Table 1)
for the two phase cc algorithm (Section 4.3). We run the experiments on
Erd�sRényi-d0.25-nx for seeds s œ {1, 2, 3, 4} and plot the averages and include
the standard deviation as error bar. For each node we generate 218 vertices. Table 14
illustrates the amount of large star and small star operations. We generate 10% node
failure. We chose nodes in {1, 2, 4, 8, 16, 32, 64, 128}. The x-axis shows the number
of nodes, while the y-axis shows the runtime for the entire cc computation.

viii

C.3 Connected Components

Table 14: This table contains the number of small star and large star MapReduce operations
executed during the two phase cc computation for Erd�sRényi-d0.25-nx (Table 4)
during our strong scale experiments with seeds s = 1. We choose x so that for each
node we have 218 vertices and 216 edges.

s large star small star
nodes 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

MPI-MR

1 16 13 16 16 16 17 14 17 5 4 5 5 5 5 4 5
2 15 15 17 14 15 17 17 17 5 5 5 4 4 5 5 5
3 17 14 14 14 14 14 17 18 5 4 4 4 4 4 5 5
4 14 16 16 15 15 16 16 17 4 5 4 4 5 5 5 5

MPI-MR-ft

1 16 13 16 16 16 17 14 17 5 4 5 5 5 5 4 5
2 15 15 17 14 15 17 17 17 5 5 5 4 4 5 5 5
3 17 14 14 14 14 14 17 18 5 4 4 4 4 4 5 5
4 14 16 16 15 15 16 16 17 4 5 4 4 5 5 5 5

MPI-MR-gf

1 16 13 16 16 16 17 14 17 5 4 5 5 5 5 4 5
2 15 15 17 14 15 17 17 17 5 5 5 4 4 5 5 5
3 17 15 14 14 14 14 17 18 5 5 4 4 4 4 5 5
4 14 16 16 15 15 16 16 17 4 5 4 4 5 5 5 5

HYB-MR

1 16 13 16 16 14 17 14 17 5 4 5 5 4 5 4 5
2 15 15 17 14 15 16 17 15 5 5 5 4 4 5 5 4
3 15 14 14 14 15 14 17 15 4 4 4 4 4 4 5 4
4 15 16 16 15 13 16 15 14 4 5 4 4 4 5 5 4

HYB-MR-ft

1 16 13 16 16 14 17 14 17 5 4 5 5 4 5 4 5
2 15 15 17 14 15 16 17 15 5 5 5 4 4 5 5 4
3 15 14 14 14 15 14 17 15 4 4 4 4 4 4 5 4
4 15 16 16 15 13 16 15 14 4 5 4 4 4 5 5 4

HYB-MR-gf

1 16 13 16 16 14 17 14 17 5 4 5 5 4 5 4 5
2 15 15 17 14 15 16 16 15 5 5 5 4 4 5 5 4
3 15 14 14 14 15 14 17 15 4 4 4 4 4 4 5 4
4 15 16 16 15 13 16 15 14 4 5 4 4 4 5 5 4

ix

C Experimental Evaluation

Figure 54: We perform weak scaling experiments with our MapReduce configurations (Table 1)
for the two phase cc algorithm (Section 4.3). We run the experiments on
Erd�sRényi-d0.25-nx for seeds s œ {1, 2, 3, 4} and plot the averages. For each
node we generate 218 vertices. We generate 10% node failures. We chose nodes in
{1, 2, 4, 8, 16, 32, 64, 128}. The x-axes show the number of nodes, while the y-axes
show the runtime for the entire cc computation. We illustrate the speedups of the
map phase (map), reduce phase (reduce), shu�e phase (shuffle), save self-message
time (save), and recovery time (recovery). MapReduce indicates the speedup of the
entire MapReduce operation.

x

References

References

[1] Access and login to SuperMUC-NG. https://doku.lrz.de/display/PUBLIC/Access+
and+Login+to+SuperMUC-NG. Accessed: 2021-08-04.

[2] Data transfer options on SuperMUC-NG. https://doku.lrz.de/display/PUBLIC/
Data+Transfer+Options+on+SuperMUC-NG. Accessed: 2021-08-04.

[3] Details of compute nodes. https://doku.lrz.de/display/PUBLIC/Details+of+
Compute+Nodes. Accessed: 2021-08-04.

[4] File systems of SuperMUC-NG. https://doku.lrz.de/display/PUBLIC/File+
Systems+of+SuperMUC-NG. Accessed: 2021-08-04.

[5] Hadoop randomtextwriter. https://github.com/facebookarchive/hadoop-20/blob/
master/src/examples/org/apache/hadoop/examples/RandomTextWriter.java. Ac-
cessed: 2021-08-08.

[6] Hardware of SuperMUC-NG. https://doku.lrz.de/display/PUBLIC/Hardware+of+
SuperMUC-NG. Accessed: 2021-08-04.

[7] Intel oneapi threading building blocks. https://software.intel.com/content/www/
us/en/develop/tools/oneapi/components/onetbb.html#gs.88b67g. Accessed: 2021-
08-05.

[8] Intel xeon platinum 8174 processor. https://ark.intel.com/content/www/us/en/ark/
products/136874/intel-xeon-platinum-8174-processor-33m-cache-3-10-ghz.
html. Accessed: 2021-08-04.

[9] Project gutenberg is a library of over 60,000 free ebooks. https://www.gutenberg.org/.
Accessed: 2021-08-08.

[10] SuperMUC-NG. https://doku.lrz.de/display/PUBLIC/SuperMUC-NG. Accessed:
2021-08-04.

[11] Yelp open dataset. https://www.yelp.com/dataset. Accessed: 2021-08-08.
[12] Intel omni-path fabric suite fabric manager. https://www.intel.com/content/

dam/support/us/en/documents/network/omni-adptr/sb/Intel_OP_FabricSuite_
Fabric_Manager_UG_H76468_v1_0.pdf, 2015.

[13] OneTBB. https://github.com/oneapi-src/oneTBB, 2021. commit: 9e15720b, branch:
master.

[14] A. M. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic mpi programs on
clusters of workstations. In Proceedings. The Eighth International Symposium on High
Performance Distributed Computing (Cat. No. 99TH8469), pages 167–176. IEEE, 1999.

[15] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge joins in main
memory multi-core database systems. arXiv preprint arXiv:1207.0145, 2012.

[16] Apache. Apache hadoop. http://hadoop.apache.org/, 2021.
[17] M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders. Engineering in-place (shared-

memory) sorting algorithms. Computing Research Repository (CoRR), Sept. 2020.
[18] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur,

and J. L. Trä�. Mpi on millions of cores. Parallel Processing Letters, 21(01):45–60, 2011.
[19] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk, R. Thakur, and

J. L. Trä�. Mpi on a million processors. In European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, pages 20–30. Springer, 2009.

[20] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-memory joins:
Sort vs. hash revisited. Proceedings of the VLDB Endowment, 7(1):85–96, 2013.

xi

https://doku.lrz.de/display/PUBLIC/Access+and+Login+to+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Access+and+Login+to+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Data+Transfer+Options+on+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Data+Transfer+Options+on+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes
https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes
https://doku.lrz.de/display/PUBLIC/File+Systems+of+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/File+Systems+of+SuperMUC-NG
https://github.com/facebookarchive/hadoop-20/blob/master/src/examples/org/apache/hadoop/examples/RandomTextWriter.java
https://github.com/facebookarchive/hadoop-20/blob/master/src/examples/org/apache/hadoop/examples/RandomTextWriter.java
https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html#gs.88b67g
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html#gs.88b67g
https://ark.intel.com/content/www/us/en/ark/products/136874/intel-xeon-platinum-8174-processor-33m-cache-3-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/136874/intel-xeon-platinum-8174-processor-33m-cache-3-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/136874/intel-xeon-platinum-8174-processor-33m-cache-3-10-ghz.html
https://www.gutenberg.org/
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://www.yelp.com/dataset
https://www.intel.com/content/dam/support/us/en/documents/network/omni-adptr/sb/Intel_OP_FabricSuite_Fabric_Manager_UG_H76468_v1_0.pdf
https://www.intel.com/content/dam/support/us/en/documents/network/omni-adptr/sb/Intel_OP_FabricSuite_Fabric_Manager_UG_H76468_v1_0.pdf
https://www.intel.com/content/dam/support/us/en/documents/network/omni-adptr/sb/Intel_OP_FabricSuite_Fabric_Manager_UG_H76468_v1_0.pdf
https://github.com/oneapi-src/oneTBB
http://hadoop.apache.org/

References

[21] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and S. Mat-
suoka. Fti: High performance fault tolerance interface for hybrid systems. In Proceedings
of 2011 international conference for high performance computing, networking, storage and
analysis, pages 1–32, 2011.

[22] T. Bingmann, M. Axtmann, E. Jöbstl, S. Lamm, H. C. Nguyen, A. Noe, S. Schlag,
M. Stumpp, T. Sturm, and P. Sanders. Thrill: High-performance algorithmic distributed
batch data processing with c++. In 2016 IEEE International Conference on Big Data
(Big Data), pages 172–183. IEEE, 2016.

[23] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. Post-failure recovery
of mpi communication capability: Design and rationale. The International Journal of
High Performance Computing Applications, 27(3):244–254, 2013.

[24] R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm for strongly connected component
analysis in n log n symbolic steps. Formal Methods in System Design, 28(1):37–56, 2006.

[25] A. Bouteiller. Ulfm 4.0.2u1.
[26] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello. Mpich-v project:

A multiprotocol automatic fault-tolerant mpi. The International Journal of High Perfor-
mance Computing Applications, 20(3):319–333, 2006.

[27] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph mining.
In Proceedings of the 2004 SIAM International Conference on Data Mining, pages 442–
446. SIAM, 2004.

[28] S. Chakraborty, I. Laguna, M. Emani, K. Mohror, D. K. Panda, M. Schulz, and H. Sub-
ramoni. Ereinit: Scalable and e�cient fault-tolerance for bulk-synchronous mpi applica-
tions. Concurrency and Computation: Practice and Experience, 32(3):e4863, 2020.

[29] L. Clarke, I. Glendinning, and R. Hempel. The mpi message passing interface standard.
In Programming environments for massively parallel distributed systems, pages 213–218.
Springer, 1994.

[30] J. Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering,
11(4):29–41, 2009.

[31] Y. Collet. xxhash-extremely fast non-cryptographic hash algorithm. https://github.
com/Cyan4973/xxHash, 2021. commit: 4aa3d59, branch: dev.

[32] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. Mapre-
duce online. In Nsdi, volume 10, page 20, 2010.

[33] E. Dahlhaus. Parallel algorithms for hierarchical clustering and applications to split
decomposition and parity graph recognition. Journal of Algorithms, 36(2):205–240, 2000.

[34] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. 2004.
[35] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.
[36] C. Doll, T. Hartmann, and D. Wagner. Fully-dynamic hierarchical graph clustering using

cut trees. In Workshop on Algorithms and Data Structures, pages 338–349. Springer,
2011.

[37] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P. Messina,
T. Moore, R. Stevens, A. Trefethen, et al. The international exascale software project: a
call to cooperative action by the global high-performance community. The International
Journal of High Performance Computing Applications, 23(4):309–322, 2009.

[38] J. Dongarra, T. Herault, and Y. Robert. Fault tolerance techniques for high-performance
computing. In Fault-tolerance techniques for high-performance computing, pages 3–85.
Springer, 2015.

xii

https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash

References

[39] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: a
runtime for iterative mapreduce. In Proceedings of the 19th ACM international symposium
on high performance distributed computing, pages 810–818, 2010.

[40] P. Erdos, A. Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.

[41] G. E. Fagg and J. J. Dongarra. Ft-mpi: Fault tolerant mpi, supporting dynamic ap-
plications in a dynamic world. In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, pages 346–353. Springer, 2000.

[42] G. E. Fagg and J. J. Dongarra. Building and using a fault-tolerant mpi implementation.
The International Journal of High Performance Computing Applications, 18(3):353–361,
2004.

[43] P. Ferragina and G. Navarro. English texts. pizzachili.dcc.uchile.cl/texts/nlang/.
Accessed: 2021-08-08.

[44] E. H. Friend. Sorting on electronic computer systems. Journal of the ACM (JACM),
3(3):134–168, 1956.

[45] D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. von Looz. Communication-
free massively distributed graph generation. In 2018 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21 –
May 25, 2018, 2018.

[46] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer. Mimir: Memory-
e�cient and scalable mapreduce for large supercomputing systems. In 2017 IEEE inter-
national parallel and distributed processing symposium (IPDPS), pages 1098–1108. IEEE,
2017.

[47] G. Georgakoudis, L. Guo, and I. Laguna. Reinit++: Evaluating the performance of
global-restart recovery methods for mpi fault tolerance. In International Conference on
High Performance Computing, pages 536–554. Springer, 2020.

[48] S. Ghemawat, H. Gobio�, and S.-T. Leung. The google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems principles, pages 29–43, 2003.

[49] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys
(CSUR), 25(2):73–169, 1993.

[50] L. Gugelmann, K. Panagiotou, and U. Peter. Random hyperbolic graphs: degree sequence
and clustering. In International Colloquium on Automata, Languages, and Programming,
pages 573–585. Springer, 2012.

[51] L. Guo, G. Georgakoudis, K. Parasyris, I. Laguna, and D. Li. Match: An mpi fault
tolerance benchmark suite. In 2020 IEEE International Symposium on Workload Char-
acterization (IISWC), pages 60–71. IEEE, 2020.

[52] Y. Guo, W. Bland, P. Balaji, and X. Zhou. Fault tolerant mapreduce-mpi for hpc clus-
ters. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2015.

[53] L. Hübschle-Schneider and P. Sanders. Linear work generation of r-mat graphs. Network
Science, 8(4):543–550, 2020.

[54] L. Jiang, B. Ge, W. Xiao, and M. Gao. Bbs opinion leader mining based on an improved
pagerank algorithm using mapreduce. In 2013 Chinese Automation Congress, pages 392–
396. IEEE, 2013.

[55] H. Karlo�, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce. In
Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pages 938–948. SIAM, 2010.

xiii

pizzachili.dcc.uchile.cl/texts/nlang/

References

[56] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,
A. Di Blas, and P. Dubey. Sort vs. hash revisited: Fast join implementation on modern
multi-core cpus. Proceedings of the VLDB Endowment, 2(2):1378–1389, 2009.

[57] R. Kiveris, S. Lattanzi, V. Mirrokni, V. Rastogi, and S. Vassilvitskii. Connected com-
ponents in mapreduce and beyond. In Proceedings of the ACM Symposium on Cloud
Computing, pages 1–13, 2014.

[58] A. Koschel, F. Heine, I. Astrova, F. Korte, T. Rossow, and S. Stipkovic. E�ciency
experiments on hadoop and giraph with pagerank. In 2016 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP), pages 328–
331. IEEE, 2016.

[59] J. Leskovec. Orkut social network and ground-truth communities. https://snap.
stanford.edu/data/com-Orkut.html. Accessed: 2021-08-20.

[60] J. Leskovec. Stanford network analysis project. https://snap.stanford.edu/index.
html. Accessed: 2021-08-20.

[61] J. Leskovec. Twitter follower network. https://snap.stanford.edu/data/
twitter-2010.html. Accessed: 2021-08-20.

[62] J. Lin and M. Schatz. Design patterns for e�cient graph algorithms in mapreduce. In
Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pages 78–85,
2010.

[63] S. Maitrey and C. Jha. Mapreduce: simplified data analysis of big data. Procedia Com-
puter Science, 57:563–571, 2015.

[64] N. Manchanda and K. Anand. Non-uniform memory access (numa). New York University,
4, 2010.

[65] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture for the
new bottleneck: memory access. The VLDB journal, 9(3):231–246, 2000.

[66] M. K. Marina and S. R. Das. Routing performance in the presence of unidirectional links
in multihop wireless networks. In Proceedings of the 3rd ACM international symposium
on Mobile ad hoc networking & computing, pages 12–23, 2002.

[67] P. Messina. The exascale computing project. Computing in Science & Engineering,
19(3):63–67, 2017.

[68] L. H.-S. Michael Axtmann, Sascha Witt. In-place Parallel Super Scalar Radix Sort
(IPS2Ra). https://github.com/ips4o/ips2ra, 2021. commit: ee6103c, branch: mas-
ter.

[69] I. Müller, P. Sanders, A. Lacurie, W. Lehner, and F. Färber. Cache-e�cient aggregation:
Hashing is sorting. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1123–1136, 2015.

[70] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing the graph 500.
Cray Users Group (CUG), 19:45–74, 2010.

[71] J. R. Neely and B. R. de Supinski. Application modernization at llnl and the sierra center
of excellence. Computing in Science & Engineering, 19(5):9–18, 2017.

[72] E. Nuutila and E. Soisalon-Soininen. On finding the strongly connected components in a
directed graph. Information processing letters, 49(1):9–14, 1994.

[73] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

[74] S. Pallickara and G. Fox. Naradabrokering: A distributed middleware framework and
architecture for enabling durable peer-to-peer grids. In ACM/IFIP/USENIX Interna-

xiv

https://snap.stanford.edu/data/com-Orkut.html
https://snap.stanford.edu/data/com-Orkut.html
https://snap.stanford.edu/index.html
https://snap.stanford.edu/index.html
https://snap.stanford.edu/data/twitter-2010.html
https://snap.stanford.edu/data/twitter-2010.html
https://github.com/ips4o/ips2ra

References

tional Conference on Distributed Systems Platforms and Open Distributed Processing,
pages 41–61. Springer, 2003.

[75] A. B. Patel, M. Birla, and U. Nair. Addressing big data problem using hadoop and map
reduce. In 2012 Nirma University International Conference on Engineering (NUiCONE),
pages 1–5. IEEE, 2012.

[76] F. Petrini and M. Vanneschi. k-ary n-trees: High performance networks for massively
parallel architectures. In Proceedings 11th international parallel processing symposium,
pages 87–93. IEEE, 1997.

[77] S. J. Plimpton and K. D. Devine. Mapreduce in mpi for large-scale graph algorithms.
Parallel Computing, 37(9):610–632, 2011.

[78] M. Raab and A. Steger. “balls into bins”—a simple and tight analysis. In International
Workshop on Randomization and Approximation Techniques in Computer Science, pages
159–170. Springer, 1998.

[79] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems. In 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, pages 13–24. Ieee, 2007.

[80] K. Rattanaopas and S. Kaewkeeree. Improving hadoop mapreduce performance with
data compression: A study using wordcount job. In 2017 14th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), pages 564–567. IEEE, 2017.

[81] D. Richards, O. Aaziz, J. Cook, S. Moore, D. Pruitt, and C. Vaughan. Quantitative per-
formance assessment of proxy apps and parentsreport for ecp proxy app project milestone
adcd-504-9. Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), 2020.

[82] S. Rivas-Gomez, S. Markidis, E. Laure, K. Brabazon, O. Perks, and S. Narasimhamurthy.
Decoupled strategy for imbalanced workloads in mapreduce frameworks. In 2018 IEEE
20th International Conference on High Performance Computing and Communications;
IEEE 16th International Conference on Smart City; IEEE 4th International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), pages 921–927. IEEE, 2018.

[83] M. Sahane, S. Sirsat, and R. Khan. Analysis of research data using mapreduce word
count algorithm. Internl. Journal of Advanced Research in Computer and Commn. Engg,
4, 2015.

[84] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang. Big data analytics on
apache spark. International Journal of Data Science and Analytics, 1(3):145–164, 2016.

[85] P. Sanders. On the competitive analysis of randomized static load balancing. In Pro-
ceedings of the first Workshop on Randomized Parallel Algorithms, RANDOM. Citeseer,
1996.

[86] P. Sanders. Connecting mapreduce computations to realistic machine models. arXiv
preprint arXiv:2002.07553, 2020.

[87] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system.
In 2010 IEEE 26th symposium on mass storage systems and technologies (MSST), pages
1–10. Ieee, 2010.

[88] J. Singler, P. Sanders, and F. Putze. Mcstl: The multi-core standard template library.
In European Conference on Parallel Processing, pages 682–694. Springer, 2007.

[89] M. Skarupke. I Wrote a Faster Sorting Algorithm. https://probablydance.com/2016/
12/27/i-wrote-a-faster-sorting-algorithm/, 2016.

xv

https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/
https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/

References

[90] D. B. Skillicorn, J. Hill, and W. F. McColl. Questions and answers about bsp. Scientific
Programming, 6(3):249–274, 1997.

[91] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak,
P. Bose, F. Cappello, B. Carlson, et al. Addressing failures in exascale computing. The
International Journal of High Performance Computing Applications, 28(2):129–173, 2014.

[92] M. Snir12. Toward exascale resilience: 2014 update.
[93] G. Stellner. Cocheck: Checkpointing and process migration for mpi. In Proceedings of

International Conference on Parallel Processing, pages 526–531. IEEE, 1996.
[94] D. Türei, T. Korcsmáros, and J. Saez-Rodriguez. Omnipath: guidelines and gateway for

literature-curated signaling pathway resources. Nature methods, 13(12):966–967, 2016.
[95] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103–111, 1990.
[96] S. Vitali, J. B. Glattfelder, and S. Battiston. The network of global corporate control.

PloS one, 6(10):e25995, 2011.
[97] M. von Looz, H. Meyerhenke, and R. Prutkin. Generating random hyperbolic graphs in

subquadratic time. In International Symposium on Algorithms and Computation, pages
467–478. Springer, 2015.

[98] T. White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.
[99] N. Wolfe, M. Mubarak, N. Jain, J. Domke, A. Bhatele, C. D. Carothers, and R. B. Ross.

Preliminary performance analysis of multi-rail fat-tree networks. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 258–
261. IEEE, 2017.

[100] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95, 2010.

[101] K. H. Zou, K. Tuncali, and S. G. Silverman. Correlation and simple linear regression.
Radiology, 227(3):617–628, 2003.

xvi

	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Structure of Thesis

	2 Fundamentals
	2.1 High-Performance Computing (HPC) Systems
	2.2 MapReduce
	2.3 Graph Theory
	2.4 Balls in Bins

	3 Related Work
	3.1 Fault-Tolerant MPI
	3.2 Theoretical Models
	3.3 MapReduce Libraries
	3.3.1 Google MapReduce
	3.3.2 Iterative Hadoop
	3.3.3 MR-MPI and Mimir
	3.3.4 Fault-Tolerant MapReduce-MPI for HPC Clusters
	3.3.5 Twister
	3.3.6 Thrill and Spark

	3.4 Aggregation: Hashing vs. Sorting
	3.5 In-place Parallel Super Scalar Radix Sort
	3.6 Randomized Static Load Balancing

	4 MapReduce Benchmark Algorithms
	4.1 Word Count
	4.2 PageRank
	4.3 Connected Components
	4.4 Recursive Matrix Model (R-MAT)

	5 Fault-Tolerant MapReduce
	5.1 General
	5.2 Single Node Fault-Tolerance
	5.2.1 Single MPI Process Failure
	5.2.2 Single Node Failure

	6 MPI Parallelized MapReduce
	6.1 Map
	6.1.1 Algorithm
	6.1.2 Complexity

	6.2 Reduce
	6.2.1 Algorithm
	6.2.2 Complexity

	6.3 Fault-Tolerance
	6.3.1 Redistribute Algorithm
	6.3.2 MergeBuffer Algorithm
	6.3.3 Complexity

	7 Hybrid Parallelized MapReduce
	7.1 Shared Memory Parallelized Map
	7.1.1 Algorithm
	7.1.2 Complexity

	7.2 Shared Memory Parallelized Reduce
	7.2.1 Algorithm
	7.2.2 Complexity

	7.3 Shared Memory Parallelized Fault-Tolerance
	7.3.1 Redistribute Algorithm
	7.3.2 MergeBuffer Algorithm
	7.3.3 Complexity

	8 Experimental Setup
	8.1 Hardware
	8.2 Software and Compilation
	8.3 Parameters Used and Failure Generation
	8.4 Timing
	8.5 Benchmark Sets
	8.5.1 Text Data Sets
	8.5.2 Graph Data Sets

	8.6 Statistics

	9 Experimental Results
	9.1 Word Count
	9.2 Page Rank
	9.3 Connected Components
	9.4 R-MAT
	9.5 Summary

	10 Discussion
	10.1 Conclusion
	10.2 Future Work

	A Fundamentals: Balls in Bins
	B MapReduce Benchmark Algorithms: PageRank
	C Experimental Evaluation
	C.1 Word Count
	C.2 PageRank
	C.3 Connected Components

