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ABSTRACT To shed light on the processes driving cell migration, a systematic analysis of the cell behavior
is required. Since the manual analysis of hundreds or even thousands of cells is infeasible, automated
approaches for cell segmentation and tracking are needed. While for the task of cell segmentation deep
learning has become the standard, there are few approaches for simultaneous cell segmentation and tracking
using deep learning. Here, we present EmbedTrack, a single convolutional neural network for simultaneous
cell segmentation and tracking which predicts human comprehensible embeddings. As embeddings, offsets
of cell pixels to their cell center and bandwidths are learned which are processed in a subsequent clustering
step to generate an instance segmentation and link the segmented instances over time. We benchmark our
approach on nine 2D data sets from the Cell Tracking Challenge, where our approach performs on seven out
of nine data sets within the top 3 contestants including three top 1 performances. The source code is publicly
available at https://git.scc.kit.edu/kit-loe-ge/embedtrack.

INDEX TERMS Cell segmentation, cell tracking, deep learning, image segmentation, instance segmentation,
multiple object tracking, object segmentation.

I. INTRODUCTION
The growing availability of biomedical data, such as omics
data [1], [2], spectral data [3], images [4] and videos [5],
[6], offers the possibility to shed light on the cause of
diseases as well as on the biological mechanisms driving
the formation of life. Cell migration, the directed movement
of cells, is a mechanism of particular interest as it is vital
for numerous biological processes such as wound healing,
embryonic development or immune response [7]. However,
to better understand thismechanism, a quantitative analysis of
the cell behavior is needed, which requires tracking hundreds
or even thousands of cells over time. Therefore, automated
cell segmentation and tracking approaches are needed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Santosh Kumar .

Cell segmentation is the identification of cell instances in
single image frames, where the shape of each cell is captured
accurately on the pixel level. Cell tracking extends the task of
cell segmentation by establishing links between cell instances
over time. These links usually either mark two segmented
cells in different image frames as the same cell identity or
indicate mother-daughter cell relationships after a cell divi-
sion. To solve the task of cell tracking, two paradigms exist:
tracking-by-detection and tracking-by-contour-evolution [5].
In tracking-by-detection, cell segmentation and the linking
of the identified instances are done separately, whereas in
tracking-by-contour-evolution, segmentation and linking are
done simultaneously by propagating an initial segmentation
over time.

For long, cell tracking has been dominated by traditional
approaches such as simple Nearest Neighbors linking [5],
[8], Bayesian filters [9]–[12], and graph-based matching
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[13]–[19]. The recent success of deep learning based cell seg-
mentation, surpassing traditional segmentation approaches
[20]–[23] and the successful application of deep learn-
ing for multiple object tracking [24]–[26], give reason
to apply deep learning to the task of cell tracking as
well.

Currently, the number of approaches incorporating deep
learning for cell tracking is still small. In [27] and [28] a
Convolutional Neural Network (CNN) shaped like a stacked
hourglass with convolutional gated recurrent units is used
to predict pixel-wise embeddings, which are subsequently
clustered into instances. Hayashida et al. train a single model
to detect and track cells by predicting offsets and a magnitude
which quantifies how likely a cell is at a specific position [29].
He et al. combine a particle filter with multi task learning
to learn an observation model to select the most probable
candidate in the next frame [30]. Hayashida and Bise train
two separate models for detection and tracking and predict
a motion flow of detected centroids between successive
frame pairs [31]. Wen et al. train a multi layer perceptron
to predict similarity scores of pairs of already segmented
cells between successive frames based on position and their
Euclidean distances to their neighbors [32]. In [33], after
applying a cell segmentation, pairs of image patches are
forwarded to a CNN to predict similarity scores which are
used to match cells using the Hungarian method. Chen et al.
extend a Mask R-CNN with a Siamese branch for tracking,
using handcrafted and learned features as embeddings to link
corresponding cells [34]. Sugawara et al. learn, based on
sparse annotations, two separate models for cell detection
and tracking, where for tracking flows between successive
frames are estimated [35]. In [36], two separate models are
trained for segmentation and tracking of cells, whereas the
tracking model receives a pair of successive frames, a binary
mask and the mask of the cell to track and learns to predict
the mask of the cell in the next frame. Ben-Haim et al. use
a cascade of approaches to track already segmented cells:
first deep metric learning is used extract cell features, then
a graph neural network learns to predict linking costs based
on the extracted embeddings, finally, the cells are matched
based on the linking costs using a graph-based matching [37].
To handle the lack of fully annotated data, [38] trains a
CycleGAN to generate synthetically annotated training data,
whereas [39] learns to generate pseudo tracking labels from
detection annotations.

Methods based on a cascade of models [30]–[33],
[35]–[37], [40] can be complicated and can usually not be
trained end to end, whereas approaches using only a single
model [27]–[29], [34] can be trained at once. Approaches
using recurrent network elements [27], [28], [30], can need
careful re-initialization or updates in contrast to models
without recurrent elements [29], [31]. Embeddings can be
estimated for all cells simultaneously, followed by calculating
their pairwise distances afterwards [27]–[31], [35], [39] or
a model can predict similarity scores for distinct pairs of
cells [30], [32]–[34], [36]. Often, the learned embeddings
are not human comprehensible [27], [28], [34], in contrast,

learning embeddings that represent offsets are easy to
interpret for humans [29], [31], [35], [39].

In summary, we can categorize recent deep learning
based cell segmentation and tracking approaches by: (i) the
complexity of their setup, e.g. needing several models for
segmentation and tracking vs. a single model, (ii) their
network architecture, e.g. if recurrent network elements are
used, (iii) their learned output, e.g. predicting similarity
scores or embeddings, and (iv) the type of the learned
embedding, e.g. whether the embedding is comprehensible
for humans.

Here, we propose a single CNN for cell segmentation and
tracking, without any recurrent network elements learning
human comprehensible embeddings. Our work is based on
the instance segmentation approach of Neven et al. [41],
which trains a branched ERFNet [42] to learn the offset
of pixels to its object center as well as a clustering
bandwidth to cluster pixels into instance masks. Lalit et al.
applied this approach first to the task of cell segmenta-
tion [43]. We extend the instance segmentation approach
to simultaneous segmentation and tracking, by including
an estimation of offsets for cell pixels to their cell center
between successive frames. Therefore, we adapt the branched
ERFNet to process pairs of images and extend the network
with an additional decoder branch for tracking. To show
the competitiveness of our approach named EmbedTrack,
we evaluate our approach on diverse 2D data sets of the
well-established Cell Tracking Benchmark (CTB) from the
Cell Tracking Challenge (CTC) [5], [6]. We provide our code
at https://git.scc.kit.edu/kit-loe-ge/embedtrack.

Our work has most similarity with the cell detection and
tracking approach of [29], in the sense that we train a
CNN learning offsets. However, the approaches differ in the
used network architecture, the loss function, and the post-
processing, our approach is learning a clustering bandwidth
and [29] learns a 3D embedding including position and time.
Furthermore, [29] only detects cells as points while our
network learns cell segmentation.

In the following, we start by introducing the instance
segmentation approach of Neven et al. [41]. Next, we show
how to extend the instance segmentation approach to joint
cell segmentation and tracking. In the experiments section,
we participate as team KIT-Loe-GE on the CTB. Besides
reporting our results on the benchmark, we provide insights
into the cell statistics of the data sets concerning cell counts
and cell motility as well as provide run time estimates of our
algorithm.

II. INSTANCE SEGMENTATION OF NEVEN et al.
Instance segmentation allows to distinguish between different
instances of the same semantic class in an image. Therefore,
foreground pixels need to be assigned to different instances,
for instance by finding clusters of foreground pixels and
assigning pixels belonging to the same cluster to the same
instance mask. To cluster pixels, a clustering bandwidth,
which is often defined manually, is needed. The cluster-
ing bandwidth determines in combination with a distance
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FIGURE 1. Visualization of the clustering using different clustering bandwidths. The plots show the distance
d (c, p) using Gaussian kernels with different bandwidths s = sx = sy in range [0, 1] (heat maps from blue
to yellow) of each pixel p in the plot to the object center c (cyan) of the ellipsoid object. The red circles are
contours where the distance score between the center c and any pixel p is d (c, p) = 0.5. The points (black)
visualize pixels shifted by their predicted offset to the center of the ellipsoid object. To cluster the pixels
into instances, points (black) will be assigned to the same instance if they lay within the red circle.

measure how far pixels can be apart from a cluster center to
be still assigned to this cluster center. Neven et al. proposed
the idea of training a CNN to predict offsets to shift pixels
along their x- and y-dimension to their object centers, so they
form compact clusters, as well as learning the clustering
bandwidths s required for each object, instead of selecting
them manually [41]. As distance measure, [41] use the
Gaussian kernel

d(c,p) = exp

(
−

(cx − px)2

sx
−

(
cy − py

)2
sy

)
, (1)

where c and p are 2D position vectors, cx and px the
x-dimension of the vectors cy and py the y-dimension of
the vectors, and sx and sy are the bandwidth in x- and
y-dimension. Using such a distance measure provides the
possibility to allow for more slack in estimating the object
center of large objects and avoid over-segmentation by
increasing the bandwidth, whereas a more precise estimation
of the object center of small objects can be enforced by
reducing the bandwidth. Fig. 1 shows distance measures
based on the Gaussian kernel with different bandwidths s.
A too large bandwidth leads to merging pixels belonging to
different objects into one instance mask, which can result
in merging of objects – under-segmentation error – whereas
a too small bandwidth leads to not all shifted pixels being
clustered to the same instance, which can result in splitting
an object – over-segmentation error.

As the true object center is unknown during inference, the
idea is that by learning to predict the clustering bandwidths
and offsets for each pixel, pixels can be clustered into
instances by selecting any pixel, since its shift by the learned
offset is an estimate of the object center and the clustering
bandwidth defines how far other shifted pixels can be apart
to be still assigned to the same instance.

III. METHOD
In the following, we show how to extend the instance
segmentation approach of Neven et al. to cell segmentation
and tracking by adding an additional decoder path to the
CNN for tracking and introduce an additional tracking step.

An overview of our approach is shown in Fig. 2. First,
pairs of image crops of the successive time points t and
t − 1 are forwarded to a CNN, which predicts for each
pixel segmentation offsets and clustering bandwidths for
segmentation, and tracking offsets of pixels belonging to a
cell at t to their cell center at t − 1 for tracking. Next, the
segmentation offsets and clustering bandwidth predictions
are processed with a foreground-background prediction in a
clustering step, to assign pixels predicted as cell (foreground)
to instances. Finally, based on the predicted tracking offsets
between the two time points and the instance masks retrieved
from the clustering step, the instances are linked backwards
in time.

In the following, the network architecture, the loss
function, the clustering step, and tracking step are explained
in more detail.

A. EmbedTrack MODEL
We use a branched ERFNet [42] with one shared encoder
and three decoder paths – two for segmentation and one
for tracking. A visualization of the model and the predicted
outputs is shown in Fig. 2. An image pair is fed through the
shared encoder, where the images are processed individually
to omit entangling their feature representations. For tracking,
the resulting feature representations are concatenated and
forwarded to the tracking branch, whereas for segmentation
the feature representations are forwarded to the segmentation
branches separately. For each time point, t and t − 1, the
network predicts a set of segmentation predictions, whereas
for tracking one tracking offset prediction from t to t − 1 is
predicted.

For raw images of shape [H ,W ], where H is the height
and W the width, the first segmentation decoder predicts
segmentation offsets OS of shape [2,H ,W ] between pixels
belonging to a cell and their corresponding cell center, and
clustering bandwidths S of shape [2,H ,W ]. The second
segmentation decoder predicts the seediness D of shape
[H ,W ], which is a score between 0 and 1 which serves as
a foreground-background estimation as well as indicates if
a cell pixel estimates its cell center correctly. The tracking
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FIGURE 2. Method Overview. The approach consists of three steps: (1) prediction of offsets, clustering bandwidths and seediness maps using a CNN,
(2) processing the predicted segmentation offsets and clustering bandwidths in a clustering step to retrieve an instance segmentation, and (3) linking the
instance segmentation masks over time by processing the by the CNN predicted tracking offsets. (1) The CNN, a branched ERFNet, receives pairs of raw
image crops, of time points t and t − 1. The CNN predicts two sets of segmentation predictions, one set for each of the two time points, and one tracking
offset tensor. The offsets and the clustering bandwidths are tensors, where their values along the x-and y-dimension are shown as maps, where H and W
are the height and the width of the raw image crops. (2) The segmentation predictions are processed in a clustering step to retrieve instance
segmentation masks for time points t and t − 1, where gray and black show the prediction of the network for cell and background and the yellow pixels
show the cell pixels after adding the predicted offset. The red circles indicate dS

j,i = 0.5 with the predicted clustering bandwidths. (3) The instance
segmentation masks are linked backwards in time using the predicted tracking offsets, which is a tensor here shown with its values along x- and
y-dimension. Raw image crops of the data set BF-C2DL-HSC from the CTC [5], [6].

decoder learns to predict tracking offsets OT of shape
[2,H ,W ] between pixels belonging to a cell at t and their
corresponding cell center at t − 1. We apply a tanh activation
on the segmentation offset and tracking offset prediction and
a sigmoid activation on the clustering bandwidth prediction
and the seediness prediction. After applying the activation
functions, the segmentation and tracking offsets are in range
[−1, 1], whereas the clustering bandwidth prediction and the
seediness prediction are in range [0, 1]. In summary, the
network predicts one set of segmentation predictions Pseg =

{S,OS,D} for each image t and t − 1, and one tensor of
tracking offsets OT to link pixels belonging to a cell at t to
its corresponding cell center at t − 1.

B. LOSS
The aim is to train the segmentation decoders of the CNN
to predict a foreground-background prediction, segmentation
offsets, and clustering bandwidths that are required for the

subsequent clustering step, whereas the tracking decoder is
trained to predict tracking offsets to link instance masks from
t to t − 1. In the loss, the centers of the cell instances and the
ground truth instance masks are used. We like to emphasize
that the offsets and clustering bandwidths have no direct
supervision during training.

Pixels belonging to the same instance should predict
similar clustering bandwidths, since in the clustering step any
shifted pixel could be selected as the cluster center and its
clustering bandwidth defines the range in which other pixels
will be assigned to the same cluster and therefore the same
instance. To enforce similar clustering bandwidths, [41] use a
loss component based on the variance between the clustering
bandwidth vectors belonging to the same instance. Therefore,
for each instance m the mean clustering bandwidth vector
sm, in x- and y-dimension, is calculated over the set of pixel
indices Pm belonging to the instance mask m, where sk is the
clustering bandwidth vector at pixel index k of the clustering
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bandwidth prediction S

sm =
1
|Pm|

∑
k∈Pm

sk . (2)

The loss part enforcing similar clustering bandwidth predic-
tions for pixels belonging to the same masks is then given as

Lvar =
1

Minst

Minst∑
m=1

1
|Pm|

∑
k∈Pm

(sm − sk )2, (3)

where Minst is the number of instance masks and |Pm| is the
number of pixels of instance m.

To get the predictions of the cell centers for segmentation
and tracking, the predicted offsets oSi for segmentation and oTi
for tracking, where i is a multi-index, referring to the pixel
position in x- and y-dimension, are added to the position of
each pixel

eSi = pi + oSi ,

eTi = pi + oTi , (4)

where eSi is the predicted cell center of pixel i at the same
time point, eTi is the predicted cell center of pixel i from time
point t for its cell center at t − 1, and pi is the normalized
pixel position – pixel coordinates from range ([0,H ], [0,W ])
normalized to range ([0, 1], [0, 1]). By using the already
introduced distance measure from Equation (1), we get for
each pixel index i a prediction how close its shifted position
eSi is to the cell center

sm = exp(ws · sm),

dSm,i

(
cm, eSi

)
= exp

−
(
cm,x − eSi,x

)2
sm,x

−

(
cm,y − eSi,y

)2
sm,y

 ,

(5)

where dSm,i(cm, eSi ) is the distance between the cell center cm
of instance mask m and the predicted cell center eSi , sm,x and
sm,y are the x- and y-dimensions of a scaled mean clustering
bandwidth vector sm and ws a scaling weight which we set
to−10. As cell center cm for each instance maskmwe choose
as in [43] the medoid, so the cell center will always lay inside
of the cell.

In [41] the segmentation offsets and clustering bandwidths
are learned jointly using an instance loss based on the Lovász
hinge loss [44], [45]. The Lovász hinge loss is a convex
surrogate for sub-modular losses which allows an efficient
minimization of sub-modular loss functions such as the
Jaccard loss [45]. The Jaccard loss is given by

LJaccard = 1− J (Ppred,PGT), (6)

where J (Ppred,PGT) is the Jaccard index between the set
of pixels Ppred belonging to the predicted instance mask
and the set of pixels PGT belonging to the ground truth
instance mask. By minimizing the Lovász hinge loss, the
predicted segmentation offsets and clustering bandwidths can
be jointly optimized such that the Jaccard index between

predicted instance mask and ground truth instance mask will
be maximized

Bm =
(
bm,i

)
=

{
1 if i ∈ Pm
0 otherwise,

DS
m = (dSm,i(cm, eSi )),

Linstance =

Minst∑
m=1

LLovász

(
2 · DS

m − 1, 2 · Bm − 1
)

, (7)

where, Bm is a binary mask which is 1 at indices belonging to
the instance mask m and 0 otherwise, DS

m is a distance matrix
of shape [H ,W ] containing the distance of each shifted pixel
to the cell center cm of instance mask m, 1 is a matrix of ones
the same size as DS

m, and LLovász the Lovász hinge loss.
To cluster pixels into instances, first the foreground pixels

need to be selected, therefore, a foreground-background
prediction is needed. The seediness mapD, which the second
segmentation decoder is learning, predicts for each pixel
if it belongs to background or a cell, and if the pixel
belongs to a cell how close the predictions of the cell
center eSi is to the actual cell center. It therefore serves as a
foreground-background estimation and as a prediction of how
well pixels estimate their cell center. To learn the seediness
map, an additional seed loss part is used in [41]. For the
seediness map, the CNN learns to predict for each pixel i the
distance measure dSm,i(cm, eSi ) for pixels belonging to a cell
and regressing to 0 for background pixels

Lseed = wfg

Minst∑
m=1

1
|Pm|

∑
k∈Pm

(dSm,k (cm, eSk )− dk )
2

+
1
|Pbg|

∑
j∈Pbg

(dj − 0)2, (8)

where dk is the predicted seediness score of pixel k belonging
to the set of pixel indices Pm of instance mask m, dj is
the predicted seediness score at background pixel j in the
seediness map, Pbg the set of background pixel indices, and
wfg is a weight for foreground pixels.
The segmentation loss is then given as

Lseg = winstanceLinstance + wvarLvar + wseedLseed, (9)

where the weights are set to winstance = wseed = wfg = 1,
and wvar = 10. Since the network provides segmentation
predictions for pairs of images, the segmentation loss is
calculated for both images of time points t and t−1 separately
and accumulated.

For tracking, the aim is to shift pixels belonging to a cell
at t to their cell center at t − 1. Similar to the instance
segmentation loss, we propose to use the Lovász hinge
loss for tracking. Since the network predicts two sets of
segmentation predictions, one for time point t and one for
time point t − 1, we add time indices in the following to
highlight to which time point the predicted segmentation
components belong. dTm,i(c

t−1
m , eTi ) is the distance between

ct−1m , the cell center of instance m at time point t − 1, and eTi ,
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which is the predicted cell center of pixel i belonging to time
point t shifted to its cell center at t − 1

dTm,i

(
ct−1m , eTi

)
= exp

−
(
ct−1m,x−e

T
i,x

)2
stm,x

−

(
ct−1m,y−e

T
i,y

)2
stm,y

 ,

DT
m =

(
dTm,i

(
ct−1m , eTi

))
,

Btm =
(
btm,i

)
=

{
1 if i ∈ P t

m

0 otherwise
,

Ltrack =

M t
inst∑

m=1

LLovász

(
2·DT

m−1, 2·B
t
m − 1

)
, (10)

where P t
m are the pixel indices of the instance segmentation

mask m at time point t , DT
m is a distance matrix of shape

[H ,W ] containing the distance of each shifted pixel to the
cell center ct−1m of instance mask m at time point t − 1, 1 is a
matrix of ones the same size asDT

m, andB
t
m is a binarymask of

instancem at time point t , andM t
inst is the number of instances

at time point t .
The loss is finally given as the sum of segmentation and

tracking loss

L = wsegLseg + wtrackLtrack, (11)

where wseg and wtrack are weights both set to 1.

C. PIXEL CLUSTERING
To convert the pixel-wise predictions from the segmentation
decoders to an instance segmentation, a clustering step
is applied. We modify the clustering proposed in [41] as
follows: First, the clustering bandwidth tensor is smoothed
with a 3 × 3 kernel along x- and y- dimension and will be
referred to as Ssmooth. Since the seediness map D estimates
how well pixels predict their cell center, we select pixels
with scores larger than 0.5 in the seediness map and compute
the shifted pixel positions eSi to find potential cell centers.
We convert each eSi , which is a normalized pixel position in
range ([0, 1], [0, 1]) to a pixel index in range ([0,H ], [0,W ]),
accumulate them, and find potential cell centers by selecting
pixel indices with more than five clustered pixels in their
3× 3 neighborhood. Next, the pixel indices j that refer
to potential cell centers are sorted by their seediness map
score dj. Then, starting with the pixel with the highest
score, the list of likely cell centers is processed and pixels
i are assigned to the cell centers eSj using a similar distance
measure as in the loss

sj = exp(ws · Ssmooth[j]),

dSj,i(e
S
j , e

S
i ) = exp

−
(
eSjx − e

S
i,x

)2
sjx

−

(
eSjy − e

S
i,y

)2
sjy

 ,

Bj =

{
1 if dSj,i > 0.5

0 otherwise,
(12)

where sj is as in the loss a scaled clustering bandwidth vector
at pixel j with the same weight ws as used in the loss, sjx and
sjy the x and y components of the clustering bandwidth vector,
and Bj the resulting instance mask. Pixel indices referring to
potential cell centers that are assigned to an instance mask
will be removed from the list of likely cell centers. To filter
out false positives, we set the minimum size of an instance
mask to half the size of the 1% percentile of all mask sizes in
the training data set. On cell boundaries, pixels can have high
distance scores for several cell centers. To assign the pixel to
the best cell center, we keep for each pixel its highest distance
score dSj,i to allow to reassign a pixel to a subsequent cell
center. Therefore, three conditions need to be fulfilled: the
pixel receives a higher score dSj,i if it is assigned to the new cell
center, the number of pixels clustered into the new instance
have at least the minimum size, and the fraction of pixels that
are already assigned to another mask is less than half of the
final instance mask. A visualization of the clustering step is
shown in Fig. 3.

D. TRACKING
After the clustering step, the instance segmentation masks
are linked over time. Therefore, the shifted positions eTi are
calculated for all pixels i that belong to an instance mask at
time point t to find their corresponding cell centers at t − 1.
Each instance mask at t is marked as a potential matching
candidate for the instance mask at t−1 that contains the most
shifted pixels of it. If a mask at t−1 has exactly one matching
candidate, the two instance masks at t and t − 1 are assigned
to the same track, whereas if an instance mask at t−1 has two
potential matching candidates at t , the instance masks at t are
set as successors of the instance mask at t − 1. In all other
cases, shifted pixels not overlapping with any mask, more
than two matching candidates - the mask at t is marked as
a new track starting at t .

IV. EXPERIMENTS
All models where trained on a system with Ubuntu 18.04,
an Intel i9 99000k, 32GB RAM and two Titan RTX with
24GB VRAM each. The approach was implemented in
Python with PyTorch as deep learning framework.

A. DATA SETS
The CTC provides two benchmarks based on the same
cell data sets: the Cell Segmentation Benchmark (CSB)
for segmentation and the Cell Tracking Benchmark (CTB)
for tracking. We train EmbedTrack on nine 2D data sets
from the CTC, which are shown in Fig. 4. The CTC data
consists of two labeled images sequences for training, which
we will refer to as training sequences 01 and 02, and two
unlabeled image sequences for testing, which we will refer to
as challenge sequences 01 and 02. For the training sequences,
manually generated, Gold Truth (GT), annotations are
provided for some segmentation masks, whereas the tracking
information is fully provided as point-wise annotations for
the nine selected data sets. All of the selected data sets, apart
from Fluo-N2DH-SIM+ which is simulated and hence has a
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FIGURE 3. Clustering step. (A) the seediness map D is thresholded resulting in a foreground (gray) background (black) prediction. Next, the pixels
predicted as foreground are shifted by the predicted segmentation offsets OS, where the shifted pixels are shown in yellow (B). (C) The shifted pixels are
assigned to clusters by selecting an unclustered, shifted pixel (cyan) and calculating its distance dS

j,i (e
S
j , eS

i ) to all other pixels i – distance map shown as
a heat map. (D) The distance map is thresholded and pixels with a distance score higher than 0.5 (red circle) are assigned to the same cluster. The steps
(C) and (D) are repeated until all pixels are clustered (E). Finally, the clustered pixels are converted into a instance masks, where each cluster represents
an instance. Raw image crop of the data set BF-C2DL-HSC from the CTC [5], [6].

FIGURE 4. Benchmark Data from the CTC. All selected data sets from the CTC on which the EmbedTrack approach was evaluated and trained on. The
contrast of the raw images has been adapted using min-max scaling to the percentiles 1 and 99 for visualization purposes. All data sets can be retrieved
from http://celltrackingchallenge.net/.

fully annotated GT, also contain a Silver Truth (ST). The ST
are segmentation masks obtained from averaging predictions
of previous submissions to the CTC and are provided by the
CTC.

B. EVALUATION METRICS
To compare the submitted cell segmentation and tracking
algorithms, the CTC uses the metrics SEG, DET and TRA,
which all lay in range [0, 1], where a higher score corresponds

with a better performance. The SEG metric is based on the
Jaccard similarity index, which calculates the ratio between
the intersection of ground truth mask and predicted mask
and the union of ground truth mask and predicted mask.
Ground truth masks are matched to predicted masks, if the
intersection between ground truth mask and predicted mask
covers at least half of the ground truth mask. Ground truth
masks without a matched predicted mask are penalized with
a score of 0. The DET and TRA score are based on the
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TABLE 1. Inference time and training data statistics on our system with Ubuntu 18.04, an Intel i9 99000k, 32 GB RAM and two Titan RTX with 24 GB VRAM
each. Inference time per sequence is the average time needed to process the challenge data sets from loading the raw images from disk to saving the
predicted tracking masks, averaged over both sequences. By dividing the average run time through the number of frames per sequence, we get a rough
estimate for processing a single frame. The cell statistics, cell counts and the overlap of the 10% most motile cells calculated from the ST annotations of
the training data sets.

acyclic oriented graph matching (AOGM) measure [46]. The
AOGM penalizes the number of transformations needed to
transform the predicted tracking graph into the ground truth
tracking graph. The measure penalizes errors concerning
the detection: false positives, false negatives, and merged
cells and tracking: missing links, wrong links, and links
with wrong semantics. The DET score only includes errors
concerning detection, whereas TRA includes all penalties for
detection and tracking. On the CTB, the tracking algorithms
are compared on the metrics SEG, TRA, and OPCTB which is
the average between SEG and TRA score.

C. TRAINING
We merge the segmentation masks from the ST with the
point-wise annotations of the tracking GT to create fully
labeled training data with reasonable annotation accuracy.
To train our approach, we split the training sequences, 01 and
02, keeping the first 90% of each image sequence for training
and the last 10% of each image sequence for evaluation. For
submission to the CTB, we select the model with the best
Intersection over Union (IoU) score on the evaluation data
set. During training, we generate overlapping crops of size
256x256 (512x512 for Fluo-C2DL-MSC). As augmentations
during training we use CLAHE, blur, rotation, flipping and
add shifts to simulate larger cell movement. Each image
crop is normalized to range [0, 1] using the 1% and 99%
percentiles per image. We train each model for 15 epochs
using the Adam optimizer [47] with learning rate 5 · 10−4

and a one cycle learning rate scheduler.

D. INFERENCE
For inference, we generate overlapping crops of of size
256x256 (512x512 for Fluo-C2DL-MSC). We apply as
test time augmentation rotation and flipping and min-max
normalize each crop to range [0, 1] using the 1% and 99%
percentiles per image, then we forward the augmented crops
to the trained model. We calculate the average over the
augmented outputs and stitch the averaged predictions to
predictions covering the entire image. Next, the clustering
step generates the instance segmentation on the segmentation
predictions of the entire image. Finally, we link instances
to tracks by processing the tracking offsets and the instance
segmentation masks as explained in the tracking step.

E. EVALUATION ON THE CTB
To evaluate the performance of our approach on diverse 2D
data sets, we train and submit a model for each of the nine
selected 2D data sets from the CTC. We report the time
needed to process the two challenge sequences on our system,
averaged over both challenge sequences, which includes all
processing steps from loading the model, generating image
crops, inferring them with the trained model, clustering,
tracking and saving the predicted masks to disk in Table 1.
In addition, to provide additional insight on the data sets,
we calculate the cell counts and cell motility based on the
training sequences 01 and 02, which are shown in Table 1.
As measure for cell motility, we use the ST annotations and
calculate the overlap of cells between successive frames as
their intersection of the two masks divided by the smallest
size of the two masks and report the overlap for the 10% of
the most motile cells. For instance, the most motile 10% of
the cells in the 01 training sequence of BF-C2DL-HSC have
an overlap smaller than 0.388. Based on the cell statistics,
we identify challenging data sets based on their cell motility
and their cell count. BF-C2DL-HSC and BF-C2DL-MuSC
are data sets that have high cell motility: 10% of the cells
have an overlap of less than 0.6, furthermore, both data sets
have more than 10 cells in the last frame. Data sets with
high cell count, more than 100 cells in the last frame, are
BF-C2DL-HSC, Fluo-N2DL-HeLa and PhC-C2DL-PSC.

For better comparison, we provide in Table 2 a short
summary of all cell segmentation and tracking algorithms
that perform on at least one of the nine selected data sets
within the top 3. Apart from TUG-AT [27], [54] which
submitted a joint approach for segmentation and tracking, all
other teams handled segmentation and tracking separately.
The performance on the CTB is shown in Table 3, where
the metric scores SEG, TRA and OPCTB are the averages
over the two challenge sequences. Compared to the other
participating teams, our approach performs well on a wide
range of data sets, showing competitive performance on eight
out of nine data sets, including surpassing all other submitted
approaches on three data sets.

Our approach handles both data sets with high cell
motility – BF-C2DL-HSC and BF-C2DL-MuSC – well,
outperforming all other submitted approaches. Also, on data
sets with high cell count, BF-C2DL-HSC, Fluo-N2DL-HeLa
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TABLE 2. Overview of submitted cell segmentation and tracking approaches. Short description of the submitted cell segmentation and tracking
algorithms that reached at least one top 3 performance on one of the nine selected data sets.

TABLE 3. Results of the Cell Tracking Benchmark (CTB) – status 14.03.2021. We participated as team KIT-Loe-GE on the CTB
http://celltrackingchallenge.net/latest-ctb-results/. Per data set we compare our performance including achieved rank on the benchmark in brackets –
marked in purple and bold, against the top 3 performing CTB submissions – color-coded by participating team.
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and PhC-C2DL-PSC, our approach performs on at least one
of the CTB metrics within the top 2 approaches. Besides
that, we perform on three more data sets, Fluo-N2DH-
GOWT1,PhC-C2DL-U373, and Fluo-N2DH-SIM+ within
the top 3 concerning the overall OPCTB metric. Moreover, all
nine data sets can be processed within a reasonable time.

V. CONCLUSION
We proposed learning cell segmentation and tracking jointly
in a single CNN by learning offsets of cell pixels to their cell
centers and a clustering bandwidth. The proposed network
architecture does not require any recurrent network parts and
the predicted embeddings, offsets and clustering bandwidth,
are human comprehensible. To show the performance of
EmbedTrack, we evaluated our approach on nine 2D data sets
from the Cell Tracking Challenge, which was presented in
Table 3. While having a reasonable run time, our approach
performs on at least one metric on seven out of nine
data sets within the top 3 contestants including three top
1 performances. Our approach can handle data sets with high
cell motility, surpassing previous submissions on the CTB,
as well as data sets with many cells.

In its current formulation, EmbedTrack requires dense
annotations of segmentation masks and links over time.
To reduce the burden of annotation, directions of future work
are training the approach on simulated data, for instance by
using GANs as in [38], or adapting the training to learn on
sparse labeled data. In addition, extending the approach to
3D data sets should be investigated.

Cell segmentation and tracking provide the basis for
analyzing the cell behavior, for instance by quantifying
changes in cell characteristics, such as size or shape. To shed
light on the processes driving cell migration, future cell
segmentation and tracking approaches should ideally keep
track of each cell and its lineage over time. We envision
EmbedTrack as a contribution in the steady improvement of
cell segmentation and tracking algorithms towards the goal
of reaching virtually error free segmentation and tracking
performance.
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