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Feasibility and robustness of 
dynamic 18F-FET PET based tracer 
kinetic models applied to patients 
with recurrent high-grade glioma 
prior to carbon ion irradiation
Charlotte Debus   1,2,3,4, Ali Afshar-Oromieh5,6,7, Ralf Floca3,8, Michael Ingrisch9, 
Maximilian Knoll1,2,3,4, Jürgen Debus1,2,3,4, Uwe Haberkorn5,6 & Amir Abdollahi1,2,3,4

The aim of this study was to analyze the robustness and diagnostic value of different compartment 
models for dynamic 18F-FET PET in recurrent high-grade glioma (HGG). Dynamic 18F-FET PET data of 
patients with recurrent WHO grade III (n:7) and WHO grade IV (n: 9) tumors undergoing re-irradiation 
with carbon ions were analyzed by voxelwise fitting of the time-activity curves with a simplified and 
an extended one-tissue compartment model (1TCM) and a two-tissue compartment model (2TCM), 
respectively. A simulation study was conducted to assess robustness and precision of the 2TCM. 
Parameter maps showed enhanced detail on tumor substructure. Neglecting the blood volume VB 
in the 1TCM yields insufficient results. Parameter K1 from both 1TCM and 2TCM showed correlation 
with overall patient survival after carbon ion irradiation (p = 0.043 and 0.036, respectively). The 2TCM 
yields realistic estimates for tumor blood volume, which was found to be significantly higher in WHO 
IV compared to WHO III (p = 0.031). Simulations on the 2TCM showed that K1 yields good accuracy and 
robustness while k2 showed lowest stability of all parameters. The 1TCM provides the best compromise 
between parameter stability and model accuracy; however application of the 2TCM is still feasible and 
provides a more accurate representation of tracer-kinetics at the cost of reduced robustness. Detailed 
tracer kinetic analysis of 18F-FET PET with compartment models holds valuable information on tumor 
substructures and provides additional diagnostic and prognostic value.

Despite extensive research, prognosis of patients diagnosed with high-grade glioma (HGG) remains poor1–3. 
Persistent remissions are rare and local tumor progress still poses a major pattern of therapy failure4,5.

Biological imaging, such as positron emission tomography (PET), can be used to assess tissue metabolism and 
represents a promising modality to assist in diagnosis and planning of the treatment6.

In recent years, 18F-labeled fluoro-ethyl-tyrosine (FET)7 has been increasingly used for imaging HGG8–13. 
18F-FET has been shown to provide high sensitivity and specificity of the tracer for glioma tissue and at the same 
time low uptake in inflammatory and healthy brain tissue14. The high in-vivo stability of FET and long half-life 
of 18F, together with the easy production in sufficient amounts, make the tracer practical for clinical applications. 
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The role of 18F-FET in both diagnosis as well as therapy monitoring of HGG has been intensively studied8,15,16, 
proving the value of 18F-FET for lesion detection in low- and high-grade gliomas as well as the identification of 
tumor recurrence. Tracer uptake in terms of the standard uptake value (SUV) has further been correlated with 
tumor cell density17.

However, it has been shown that the amount of tracer uptake and the subsequent correlation of the SUV with 
tumor grading depend on the acquisition timing following tracer injection18. Hence, static PET scan protocols 
might not reveal the entire metabolic tumor structure, and results can vary for different acquisition schemes.

Advanced pharmacokinetic analysis of time-activity curves (TACs) from dynamic PET scans using compart-
ment models enables for the extraction of direct physiological correlates and helps in the comprehension of the 
underlying fundamental uptake mechanisms19. This is of special interest, as it may allow the assessment of tumor 
physiology and eventual heterogeneity that might not be visible with standard modalities, like magnetic reso-
nance imaging (MRI) or computed tomography (CT).

18F-FET, unlike other system L- substrates like [11C] methionine and [18F]FDOPA, is not further metabolized 
after being taken up by the cells, which simplifies respective compartment models and thus makes it a potentially 
valuable candidate for tracer kinetic analysis. Several authors have studied the value of dynamic 18F-FET PET for 
diagnosis and grading of HGG9,20–22. However, most of them resort to either qualitative analysis of curve shapes or 
derivation of semi-quantitative parameters such as the initial slope or time to peak. Few authors applied detailed 
pharmacokinetic analysis using different compartment models23,24, but parameter robustness and reliability were 
not investigated.

The aim of the present study was to investigate feasibility of tracer kinetic analysis in dynamic 18F-FET PET 
of recurrent HGG and to identify the most accurate and reliable model. Therefore, we systematically investigated 
fits with the 1TCM, the simplified 1TCM and the 2TCM to data from patients with recurrent HGG. Quality of the 
2TCM fits was assessed by fitting synthetic TACs, generated with different parameter combinations, and analyz-
ing the resulting parameter estimates in terms of accuracy and robustness.

Methods
All procedures performed in this study were in accordance with the 1964 Helsinki declaration and its later 
amendments or comparable ethical standards. The study was approved by the institutional ethics committee 
(ethics committee of the University of Heidelberg, S-421/2015). Owing to the retrospective nature, the need for 
informed consent was waived.

Compartment models.  Different compartment models could be feasible to describe 18F-FET tracer kinet-
ics. The simplest approach is using a standard one-tissue compartment model (1TCM), which is depicted in 
Fig. 1a. The exchange of tracer between blood and tissue by means of exchange rate constants K k[ , ]1 2  can be 
expressed in a single differential mass balance equation:

= −
dC t

dt
K C t k C t( ) ( ) ( ) (1)

t
a t1 2

C t( )a  and C t( )t  represent the tracer concentrations within the arterial blood pool and tissue, respectively.
The total measured concentration of tracer in a volume element then yields:

Figure 1.  Schematic representation of the used compartment models. Ca is the concentration of tracer in 
the arterial blood (arterial input function AIF). (a) The one-tissue compartment model (1TCM) describes 
the exchange of tracer between the arterial blood with the tissue in terms of exchange rates K1(1TCM) and 
k2(1TCM). In an element of tissue the blood compartment in form of the capillaries occupies the volume 
fraction VB, whereas the fraction of tissue volume is VT = 1-VB. (b) The more complex two-tissue compartment 
model (2TCM) separates the tracer concentration in tissue into tracer in the extracellular extravascular space 
(EES) and in the cells. Tracer is transported from the capillaries into the EES over the blood-brain barrier with 
rates K1(2TCM), k2(2TCM), and from the EES it is taken up in the cells with rates k3(2TCM), k4(2TCM).
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VB represents the relative volume of blood within in a respective volume element (in ml/100 ml tissue, 
< <V0 1B )19. In many cases, VB is assumed to be zero, leading to a simplified model with only two parameters 

K1 and k2
25. In the following, this model will be referred to as “simplified 1TCM” (s1TCM). The two transfer 

constants [K k,1 2] in the 1TCM include both tracer transport over the blood-brain barrier via blood flow and 
diffusion and transport of the tracer to the cells. After crossing the blood-brain barrier, 18F-FET is transported 
into the cells by the LAT system26. Hence, a more detailed description of the transport processes could be formu-
lated in a two-tissue compartment model (2TCM)19, which is described by two differential equations with trans-
fer constants [K k k k, , ,1 2 3 4]:

= − + +
dC t

dt
K C t k k C t k C t( ) ( ) ( ) ( ) ( ) (3)a

1
1 2 3 1 4 2

= −
dC t

dt
k C t k C t( ) ( ) ( ) (4)

2
3 1 4 2

The interplay of the two tissue compartments is illustrated in Fig. 1b. C1(t) represents the concentration of tracer 
in the interstitial space, whereas C2(t) is the concentration within cells. Transport rates K1 and k2 describe blood 
flow and diffusion of the tracer into the interstitial space, and k3 and k4 the transport via the LAT system.

The total tracer concentration CT(t) in a voxel of tissue corresponds to the time-activity curve (TAC) derived 
from dynamic PET measurements. The concentration in the arterial blood pool is usually derived from the 4D 
PET images by extracting the TAC in a feeding artery close to the tissue of interest. This arterial TAC is often 
referred to as arterial input function (AIF). For tracer-kinetic analysis, the functional representation of CT(t) 
from the respective model is fitted to the measured TAC in tissue by means of non-linear least square techniques, 
using the measured arterial concentration. The fitting routine in terms yields estimates for the models transfer 
constants.

The subsequent bidirectional transport of 18F-FET into and out of the cells after crossing the BBB can be 
modeled by application of a 2TCM. However, if data quality is low, e.g. due to low temporal resolution or low 
signal-to-noise ratio (SNR), a simplified one tissue compartment model (1TCM) could be more suitable as it 
yields more stable parameter estimates and does not pose the risk of overfitting the data.

Patient data.  16 patients with recurrent HGG were investigated in this institutional review board approved 
retrospective analysis. Patient characteristics are listed in Table 1. Tumor grade was evaluated at diagnosis of 
tumor recurrence based on clinical features on MRI.

18F-FET PET scans were acquired prior to re-irradiation using a Siemens Biograph 6 PET/CT scanner. Median 
injected activity was 190 MBq (130 to 235 MBq). Dynamic acquisition was performed over 40 min in 20 frames 
with temporal sampling of 6 × 20 s, 8 × 60 s and 5 × 300 s. Endpoint static 18F-FET PET images were calculated by 
averaging the scans of the last 10 minutes. Images featured a resolution of 1.33 mm × 1.33 mm × 3 mm, acquired 
over 80 slices. Static 18F-FET PET raw images were converted to SUV images, and tracer-enhancing tumor lesions 

Feature Grade III Grade IV

Gender Male 6 6

Female 1 3

Primary Treatment

Resection Complete 1 2

(surgery) Partial 2 6

Biopsy only 4 1

Chemotherapy TMZ 5 9

Radiotherapy Photon 6 9

Ion 1 0

At time of recurrence 
diagnosis

Age <50 1 4

50–59 4 1

60–69 1 3

≥70 1 1

KPS 100 1 4

90 5 3

≤80 1 1

NA 0 1

After Re-irradiation

Status at last FU PD 5 7

SD 2 2

Death 4 8

Table 1.  Patient Characteristics.
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were segmented based on an isocontour of 70% (I70). Various thresholds are in practice for isocontours, ranging 
from 50% to 90%. 18F-FET uptake is low compared to other tracers like FDG. Therefore, to our experience in 
recurrent glioma, I90 yields very small volumes of only a few voxels. I50 on the other hand can easily result in 
wide spreading segmentations of half of the brain, as recently shown27. Thus, I70 was selected as best compromise 
between these values.

SUVmax was determined as maximum value within I70. The standardized uptake ratio (SUR) was calculated by 
normalizing SUVmax to the mean background uptake (SUVbg), which was derived as average SUV within a region 
of similar 2D size in a part of the brain contralateral to the tumor.

Patient individual image-derived arterial TACs were extracted from the left/right carotid artery in three image 
slices. Segmentations of arterial TACs were delineated based on the first and second time frame and chosen to 
include only the inner part of the artery by selection of voxels with maximum peak activity (visual inspection 
of voxel-wise TACs) and by co-registering contrast enhanced MRI, in order to minimize partial volume effects. 
Whole blood to plasma conversion was applied using a factor of 10%.

Voxelwise fitting of TACs with 1TCM, s1TCM and 2TCM was performed within I70, yielding parameter esti-
mates K1 (s1TCM), k2 (s1TCM), K1 (1TCM), k2 (1TCM), VB (1TCM), K1 (2TCM), k2 (2TCM), k3 (2TCM), k4 
(2TCM), VB (2TCM). For all transfer rates a constraint of 0 min−1 < ki < 1 min−1 was set in order to limit the 
search space and exclude unreasonable values. The maximum value of respective parameter estimates was defined 
as the 75th quantile, since the actual maximum value potentially consists of the set parameter constraints. Median 
and maximum of each of the 6 parameters were correlated with tumor grade. Tumors were irradiated with frac-
tionated carbon ions at a median total dose of 37.5 GyE (range 30 to 42 GyE, 3 GyE per fraction). Median param-
eter estimates of the 1TCM and 2TCM as well as SUR and grade were correlated with overall survival (OS) and 
progression free survival (PFS) after re-irradiation using Cox proportional hazards model.

Simulation Data.  For assessment of stability and precision of the parameter estimates resulting from fits 
with the 2TCM, synthetic TACs were generated using various parameter combinations of K1, k2, k3, k4 and VB 
(2TCM). To our knowledge, no detailed reports on tracer kinetic modeling in dynamic 18F-FET PET in recurrent 
HGG exist. Thus, representative values of the model parameters, which could be used for data simulation, were 
not available. Representative sets of parameters for the 2TCM were derived from patient parameter estimates of 
the current analysis. Histograms of parameter distributions of each patient were investigated and peak values 
were extracted. From these, ten common parameter combinations were derived (see results). Using the parameter 
combinations and two different measured patient AIFs, 1000 TACs were generated for each parameter combina-
tion using the 2TCM model function.

Acquisition noise was simulated by adding Gaussian random numbers to the synthetic curves, resulting in a 
signal-to-noise ratio (peak of AIF, divided by standard deviation of the noise) of SNR = 100. Simulated TACs were 
fitted with the 2TCM, using the same AIF as for data generation.

Evaluation of parameter estimates.  Quality of fits was evaluated by means of reduced χ red
2 , calculated 

as the ratio between χ2 and the number of degrees of freedom f:

χ = ⋅
∆

⋅ = −
f y

SSR f n p1 1 , ,
(5)red

2
2

with n being the number of sampling steps, p the number of model parameters, and SSR the sum-of-squared- 
residuals. ∆y2 is the squared error on each measured activity value y. For real patient data, the exact error on the 
measured activity is usually not known, which complicates calculation of χ red

2 . However, apart from systematic 
errors of the acquisition scanner that are identical for all measurements, the error on the measured activity y is 
influenced by the statistical nature of the radioactive decay. Therefore, we assumed ∆ ≈y y  . For simulated 
curves, the noise level is known, thus the error on the measured activity can be simply derived as 

σ∆ = =y Noise
AIF

CNR
peak .

χ red
2  is mainly driven by the SSR, indicating a better fit quality if the model curve lies closer to the measured 

data points. However, the more parameters a model provides, the better it can approximate the measured data, 
regardless of validity of these parameters. Hence, the Akaike information criterion (AIC)28 provides a more reli-
able quantity for fit evaluation, as it penalizes the fit quality of a model with the number of parameters29:

= ⋅






 + +AIC N SSR

n
pln 2( 1)

(6)

The corrected AIC (cAIC) for small sample sizes is calculated as:

= +
+ +
− −

cAIC AIC p p
n p

2( 1)( 2)
2 (7)

When comparing fits from different models, the model yielding the lowest cAIC is considered to yield the best 
representation of the measured data. For comparison of the three models used in this study, the cAIC was com-
puted for each fit, and results among models were compared.

Accuracy and stability of parameter estimates from fitting the simulated TACs (Pfit) were evaluated in terms of 
the absolute and relative deviation from the true value (Pinput), referred to as absolute and relative error:
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=
−

⋅E
P P

P
100%

(9)
rel

fit input

input

Software.  All image analysis was conducted using the Medical Imaging interaction ToolKit (MITK)30. SUV 
calculations were conducted using the SUV calculation plugin. For segmentation of tumor lesions, the MITK iso-
contour plugin31 was used. Tracer kinetic analysis was performed using an in-house developed software module 
for pharmacokinetic modeling in MITK32, which allows for voxelwise fitting of the measured time activity curves 
with various compartment models. The tool is incorporated into MITK and applies a Levenberg-Marquardt algo-
rithm for model fitting.

For statistical analysis and plotting the open-source R software package was utilized (version 3.3.2, http://
www.R-project.org). Two-sided, unpaired Wilcoxon tests were applied, together with Bonferroni-Holmes mul-
tiple testing corrections. Mantel-Cox log-rank test was used to compare differences in Kaplan-Meier survival 
curves (KM). Cox proportional hazards model was used for univariate analyses using log-transformed median 
parameter values (survival package, version 2.40-1, https://CRAN.R-project.org/package=survival). The signif-
icance level was set to 0.05.

Results
Regions of increased tracer uptake were delineated on basis of endpoint 18F-FET PET images using an isocontour 
of 70% (I70) and SUVmax and SUR were calculated. Within the isocontour, voxelwise tracer kinetic analysis was 
conducted using the simplified 1TCM (without blood volume VB), the standard 1TCM and 2TCM (both with 
blood volume).

Figure 2.  Parameter maps from fits with different compartment models in an exemplary patient with grade IV 
glioma. Pharmacokinetic analysis was performed within an isocontour of 70%, which was delineated based on 
the endpoint static summation image, as illustrated in (a). SUVmax and SUR were extracted, where SUR is the 
ratio between SUVmax and mean background SUV. Both the standard 1TCM and a simplified 1TCM were fitted 
voxelwise to the time-activity curves (TACs), yielding estimates for exchange rates K1 and k2 (b). Furthermore, 
TACs were fitted with the more complex 2TCM, which yields metabolic exchange rates K1, k2, k3 and k4 (d). The 
general definitions of the 1TCM and 2TCM yield estimates on the blood volume VB, which is displayed in (c). In 
the simplified 1TCM (s1TCM), the blood volume is assumed to be zero VB = 0. Parameter maps of tracer kinetic 
analysis show enhanced detail on tumor substructure, however, stability is decreased for the 2TCM. Both 1TCM 
and 2TCM yield similar distributions of VB, indicating that the parameter is not negligible.

http://www.R-project.org
http://www.R-project.org
https://CRAN.R-project.org/package=survival
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Figure 2 shows corresponding parameter maps from fits with the different models in an exemplary patient. 
K1 and k2 from the simplified and standard 1TCM (Fig. 2b) showed tumor substructure in more detail compared 
to the static SUV image. Parameter maps of K1 and k2 are very similar, with hot-spots and cold-spots in the same 
areas. However, the simplified 1TCM yields higher values in both parameters.

Fits with the 2TCM (Fig. 2d) could resolve the substructure even further; however, the enhanced level of detail 
of the 2TCM also resulted in less stable parameter estimates. This is visible in k2, where dark-red voxels indicate 
misfits, which approached the parameter constraint boundaries. Parameter maps of k3 and k4 present with con-
gruent distributions, however, values of k3 are higher in hotspots. VB from the 1TCM and 2TCM show also very 
similar distributions (Fig. 2c), indicating stability and consistency of the parameter over the models. Estimates for 
VB are higher from 1TCM compared to 2TCM. These results indicate that the blood volume VB is not negligible 
in tracer kinetic analysis of dynamic 18F-FET PET.

Evaluation of fit quality.  Quality of respective fits with the three different models was investigated. Figure 3 
shows the measured TAC in two exemplary voxels together with fitted curves from all three models. It can be 
observed that the 2TCM model function fits the measured time-activity-curves best. The simplified 1TCM pro-
vides the least adequate fit, with substantial deviations from the measured curve, especially at later time points. 
The standard 1TCM describes the time course of tracer activity more appropriately; however, it also shows devi-
ations towards the end of the acquisition. It could be hypothesized that the 2TCM describes the tracer kinetics 
most accurately, as it visually gives the best fit to the data. In order to further investigate this finding, quantitative 
analysis of goodness-of-fit was performed by evaluation of χ red

2 and cAIC.
Reduced χ red

2 from fits to data of each patient with either one of the three utilized models is shown in Fig. 3. 
The simplified 1TCM yielded much higher χ red

2 compared to the standard 1TCM and 2TCM, indicating that it 
gives only a poor description of the TACs and thus tracer kinetics. χ red

2  from the standard 1TCM and 2TCM 
proved to be very similar. However, in most cases the 1TCM yielded slightly lower χ red

2 values. On the other hand 
it showed more outliers to extremely high values in many patients, showing that in some voxels the model curve 
did not fit the data at all.

Regardless of the model, χ red
2 takes very large values in all patients, even though it should be close to one. A 

possible explanation for this deviation is an underestimation of the acquisition noise.

Figure 3.  Goodness-of-fit in patient data from fits with different compartment models. The top two plots show 
the measured time-activity-curve in two exemplary voxels (dots) together with fitted curves from the 1TCM, 
standard 1TCM and 2TCM (lines). The 2TCM curve visually best describes the measured data points. 
Differences between s1TCM and 1TCM appear to be small. The bottom plot shows the distribution of the fit-
quality measure reduced X² from all three models in every patient. Note that values for χ red

2  are shown on a 
logarithmic scale, since s1TCM yields much higher χ red

2 than 1TCM and 2TCM. Lower values of χ red
2  indicate 

better fits, i.e. less deviation between model curve and data points. Fits from s1TCM yield significantly higher 
χ red

2 , thus poorest fits. χ red
2  from the 1TCM and 2TCM yield similar values, however 1TCM appears to present 

with slightly better fits.
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In order to consider fit quality with respect to the number of model parameters, the corrected AIC was calcu-
lated (Fig. 4). The results show that the simplified 1TCM yields the poorest results, however, fit quality according 
to the cAIC is not as bad as suggested by χ red

2 . Interestingly, the 2TCM appears to be the best representation of 
the data (lowest cAIC) in most cases, even though fits showed slightly higher χ red

2 compared to the 1TCM.

Parameter estimates from patient data.  Table 2 lists median parameter estimates from the three mod-
els for all patients, together with the respective SUVmax and SUR values. Except for k2 from the 2TCM, which takes 
unreasonably high values in many patients (up to the constraint boundary of 1 min−1), parameter estimates from 
fits with all models present with reasonable values. Figures 5 and 6 show histograms of the total voxel frequency 
of parameter estimates from the 1TCM (Fig. 5) and 2TCM (Fig. 6) in patients with grade III and grade IV tumors, 
respectively.

On average, patients with grade IV glioma presented with higher SUVmax and SUR (Fig. 7). The differ-
ence was not significant (SUVmax: 2.3 vs. 3.0, p = 0.2; SUR: 2.2 vs 3.0, p = 0.091). K1 from fits with the simpli-
fied 1TCM showed a tendency towards higher values in patients with grade IV tumors, with mean values of 
K1 = 0.138 min−1 in grade III, and K1 = 0.204 min−1 in grade IV (p = 0.17). k2 from s1TCM fits was similar in 
both groups (k2 = 0.189 min−1 in grade III and k2 = 0.194 min−1 in grade IV). As already discussed, the standard 
1TCM yielded lower values for K1 and k2 compared to the simplified 1TCM. However, the tendency of lower K1 in 

Figure 4.  Goodness of fit compared to model stability. The left plot shows χ red
2  for the 1TCM and 2TCM on a 

zoomed scale for better comparison. The right plot shows the values for the corrected Akaike information 
criterion (cAIC) that accounts for model complexity by panelizing the fit quality (sum of squared residuals) with 
the number of parameters in the model. Lower cAIC indicates a better representation of the fitted data by the 
model. cAIC from the 2TCM were lowest, even though χ red

2  of this model was slightly higher compared to the 
1TCM.
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grade III tumors and k2 being alike in both entities remained (K1 = 0.085 min−1 vs. 0.135 min−1; k2 = 0.087 min−1 
vs. 0.095 min−1). This can also be observed in the respective histogram, which presents with a clear shift towards 
higher values in grade IV tumors. VB from the 1TCM fits was significantly lower in grade III glioma as shown in 
Fig. 7, with values of 7.5 ml/100 ml vs. 11.6 ml/100 ml (p = 0.02518, Bonferroni-Holmes corrected). This effect is 
also partially visible in the total voxel-value frequency histogram. For the 2TCM, similar results were observed 
with VB (grade III) = 5.9 ml/100 ml vs. VB (grade IV) = 9.1 ml/100 ml (p = 0.03112). The result did not remain 
significant after multiple testing corrections.

Average K1 in the 2TCM over all patients yielded significantly lower values in grade III compared to grade IV 
glioma (0.127 min−1 vs. 0.224 min−1, p = 0.0091, Fig. 6 top). Estimates on k2 presented with a tendency to unre-
alistically high values in both groups (see Table 2): k2 (grade III) = 0.503 min−1 and k2 (grade IV) = 0.676 min−1. 
Furthermore, estimates on k2 resulted in several outliers up to the upper parameter constraint of 1 min−1 espe-
cially in grade IV tumors. Thus, it is likely, that the fits in these voxels ran into constraint boundaries. Values for 
k3 showed a trend to higher values in grade IV tumors (0.233 min−1 vs. 0.305 min−1), whereas mean k4 was com-
parable with 0.079 min−1 in grade III and 0.073 min−1 in grade IV.

Parameter estimates from the different models, as well as grade and SUR, were further correlated with patient’s 
overall survival (OS) and progression free survival (PFS). Results are listed in Supplementary Table S1. SUR 
showed correlation with OS (HR = 2.78, CI = [1.17; 6.64], p = 0.021). Furthermore, median K1 from both the 
1TCM and 2TCM fits showed significant correlation with OS: HR = 2.78, CI = [0.99; 7.84], p = 0.043 (1TCM); 
HR = 3.02, CI = [1.07; 8.59], p = 0.036 (2TCM). For both models, a cut-off for K1 was found, that significantly 
separated patients overall survival, as shown in Supplementary Fig. S2. Patients with lower K1 showed improved 
survival, with thresholds of K1(1TCM) = 0.074 min−1 (p = 0.0041) and K1(2TCM) = 0.104 min−1 (p = 0.0041), 
respectively. Cut-offs for K1 from both models also presented with tendencies to separate progression free sur-
vival: K1(1TCM) = 0.059 min−1, p = 0.082 and K1(2TCM) = 0.104 min−1, p = 0.086. A trend towards correlations 
of these parameters with PFS was found, that was however not significant (p = 0.2006 and p = 0.154, respectively). 
Furthermore, k2 from the 1TCM showed tendencies towards correlation with PFS (p = 0.1042). Parameter k4 
separated progression free survival with a threshold of k4 = 0.067 min−1 (p = 0.066). Cox proportional hazards 
model revealed however non-significant correlations with p = 0.301.

Evaluation of accuracy and robustness of the 2TCM on simulation data.  In order to investigate 
the validity of 2TCM and test accuracy and robustness of the determined parameter estimates, histogram analysis 
of the individual patient’s parameter maps was performed, as illustrated in Fig. 8 for one patient. Corresponding 
histograms for K1 and k2 from the 1TCM are shown in the supplements (Fig. S3). Peak values of the histograms of 
each parameter were extracted in order to find common parameter values [K1, k2, k3, k4, VB]. From these values, 
10 combinations were composed for data simulation, which are listed in Table 3. These parameter combinations 
together with two measured AIFs (Fig. 8 bottom) were used to simulated time-activity curves, which were fitted 
again with the 2TCM. The resulting parameter estimates were evaluated by means of stability and precision.

Grade SUVmax SUR

s1TCM 1TCM 2TCM

K1 
[10−2 min−1]

k2 
[10−2 min−1]

K1 
[10−2 min−1]

k2 
[10−2 min−1]

VB 
[ml/100 ml]

K1 
[10−2 min−1]

k2 
[10−2 min−1]

k3 
[10−2 min−1]

k4 
[10−2 min−1]

VB
[ml/100 ml]

III

1.7 2.1 6.6 10.4 4.9 6.8 4.2 9.3 59.2 18.4 4.1 2.2

3.9 3.4 12.4 9.2 10.3 6.8 6.7 13.7 33.1 23.0 7.0 5.1

1.9 1.6 7.3 11.8 4.5 6.2 7.9 7.4 34.4 15.2 3.7 6.6

1.1 1.2 15.3 39.2 4.3 7.3 8.6 7.2 45.8 28.8 7.7 7.3

3.3 2.7 18.9 15.1 14.7 10.7 9.3 22.2 47.2 19.0 8.7 5.9

3.0 3.1 27.2 26.5 16.4 13.4 10.3 19.4 32.8 28.3 17.2 9.4

1.2 1.4 8.9 20.5 4.6 9.3 5.7 9.6 100 30.6 6.7 4.8

IV

1.9 1.7 23.9 43.3 7.2 8.7 12.6 10.1 51.8 35.1 7.5 11.4

2.9 3.7 42.7 33.8 33.3 22.5 14.7 47.9 100 22.1 13.7 11.5

4.6 3.2 23.2 15.6 14.8 7.5 15.9 21.8 49.8 44.8 8.4 13.4

3.3 2.9 22.6 18.0 18.5 13.5 9.8 38.7 100 17.5 6.7 6.9

3.4 4.1 17.1 15.3 12.6 9.6 11.5 20.4 46.7 18.5 7.4 8.8

2.9 3.0 11.7 7.5 9.0 4.5 11.2 17.5 63.4 26.3 2.2 7.2

3.4 3.4 13.9 11.0 9.9 6.5 8.7 20.0 97.9 30.6 5.9 5.8

1.9 2.6 12.7 17.5 5.8 5.0 9.4 8.5 56.2 56.3 6.6 9.1

2.8 2.6 14.7 14.7 10.4 7.4 10.4 16.2 42.3 23.8 7.5 7.7

Table 2.  Median parameter estimates from fits with the three different compartment models in every patient, 
together with SUVmax and SUV-to-background ratio (SUR): K1 and k2 from the simplified 1TCM; K1, k2 and VB 
from the standard 1TCM; K1, k2, k3, k4 and VB from the 2TCM. Note: Median Parameter estimates were used 
instead of averages, due to several voxels with failed fits, which yielded outliers towards high transfer rates (~100 
10−2 min−1 was set as upper constraint for all parameters).
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Figure 9a shows the distribution of χ red
2  for all 10 combinations, with either one of the AIFs. Fits to data sim-

ulated with combination 7 and AIF type I, as well as combination 2 with AIF type II, yielded exceptionally poor 
fit quality. Apart from these cases, fit quality was good, with χ red

2 being close to one. However, in all combina-
tions, some fits completely failed, yielding outliers of very high χ red

2 . This suggests decreased stability of the fits, 
which could be overcome by averaging signal from multiple voxels and thus, decreasing noise of the TACs 
(ROI-based analysis).

Figure 9b shows absolute errors on parameter estimates of K1, k2, k3 and k4. It can be observed, that fits with 
AIF type II yield overall more stable results, with smaller quantiles of the parameter value distribution. This is 
counter-intuitive, since AIF type I would be assumed to yield better fit accuracy, because it captures the peak 
activity better. Interestingly, the distinct difference between the two AIF types was not observed in fit quality.

Overall, both accuracy and stability varied greatly over the different parameter combinations, which suggests 
that the 2TCM accurately describes the kinetics only in some tissue settings. Estimates on K1 showed the lowest 
errors of all, with deviations of about 0.01 min−1. k2 presents with increased errors, which are nonetheless not 
larger than 0.5 min−1 within the 25th and 75th quantile. With regards to stability, k2 showed the widest distribution 
of parameters, suggesting that it is the least stable parameter. k3 shows large errors for combinations 1 and 7 (AIF 
type I). The errors in combination 7 were already suggested by the poor fit quality and high χ red

2 . Interestingly, 

Figure 5.  Histogram of total voxel frequency of parameter estimates on K1, k2 and VB (from top to bottom) 
from fits with the 1TCM in grade III tumors (left column) and grade IV tumors (right column), respectively. 
A clear shift towards higher values for grade IV tumors can be seen for K1, and to some extend for VB, whilst 
distributions for k2 are relatively similar.
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combination 2 (AIF type II) showed low errors on parameter estimates, even though χ red
2 predicted the fits to be 

of poor quality. In all combination k3 shows many outliers to high values, indicating failed fits. k4 shows good 
stability and accuracy, except for one case (combination 9). This combination is the only one with a large true 
value of k4 = 0.2 min−1, showing that the model loses robustness for high values of this parameter. The inability of 
the 2TCM do deal with high values of k4 could also be an explanation for the poorer fit quality in combination 7, 
where k4 was set to 0.1 min−1.

Figure 6.  Histogram of total voxel frequency of parameter estimates on K1, k2, k3, k4 and VB (from top to 
bottom) from fits with the 2TCM in grade III tumors (left column) and grade IV tumors (right column), 
respectively. A clear shift towards higher values for grade IV tumors can be seen for K1 and k2, and to some 
extend for VB and k3. Distributions for k4 are relatively similar.
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In the majority of cases k3 and k4 show positive errors, meaning that they are commonly overestimated by 
the fit. This is partly due to the fact that they were initial set to very low values for simulation, which also makes 
it difficult to interpret accuracy of these parameters in terms of absolute errors. Thus, further analysis was done 
by evaluation of relative errors on parameter estimates, which are displayed in Table 4 for the different param-
eter and AIF combinations. The high stability and accuracy of estimates on K1 is confirmed, as the parameter 
shows low errors, which are mostly under 10% and quantile errors do not exceed ± 30%. k2 shows errors that are 
increased in several cases up to ~50%, but mostly low as well. However, in 4 cases, the deviations from the true 
value are substantial, because the quantiles do not include the 0% error value. k3 and k4 show large deviations 
from the true values in combinations 1, 7 and 9, with median errors up to several hundred percent with AIF type 
I. Furthermore, even though median errors are low in most of the other combinations, the parameters present 
with increased instability, reflected in the large quantiles of the errors.

Discussion
The presented study investigated the feasibility of tracer kinetic analysis in dynamic 18F-FET PET scans of patients 
with recurrent high-grade glioma re-irradiated with carbon ions. Up-to-date, controversial reports exits on the 
value of SUV and SUV-to-background ratio (SUR) for grading of glioma17,21,31,33. These discrepancies might be 
linked to differences in SUR depending on the time point of PET image acquisition after injection of the tracer, as 
demonstrated by Weckesser et al.18. In this context, dynamic 18F-FET PET may provide more detailed information 
about tracer uptake compared to static image acquisition. However, dynamic scanning protocols are rarely used 
in clinical routine, due to the time-consuming acquisition and challenging interpretation of the data.

There are only few reports on detailed compartment model analysis in 18F-FET PET in patients, and the ques-
tion, which model best describes the kinetics of tracer uptake, metabolism and washout is still unanswered23,24. 
However, voxelwise tracer kinetic analysis holds the promise of unraveling tumor sub-volumes of different meta-
bolic activity, which is especially relevant in high-grade glioma due to their infiltrative and heterogeneous nature. 
Compartment modeling can yield direct physiological correlates on the blood volume and perfusion (i.e. vascu-
larization) and metabolic rate constants.

Retrospective data of 16 patients were analyzed by voxelwise fitting of measured time-activity curves (TAC) 
with three different compartment models: a standard one-tissue compartment model (1TCM), a simplified 
1TCM that assumes the blood volume to be zero (s1TCM) and a two-tissue compartment model (2TCM).

Figure 7.  Correlation of parameter estimates with patient’s tumor grade. The plots display the differences 
in median parameter estimates between patients with WHO grade III and WHO grade IV gliomas. Mean 
values over the entire cohort were 2.2 vs. 3.0 for SUR (p = 0.09073), 7.5 ml/100 ml vs. 11.6 ml/100 ml for VB 
from 1TCM (p = 0.0021), 0.127 min−1 vs. 0.224 min−1 for K1 from 2TCM (p = 0.09073) and 5.9 ml/100 ml vs. 
9.1 ml/100 ml for VB from 2TCM (p = 0.03112).
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All models could be fitted to the data appropriately within an isocontour of 70%. The applied acquisition pro-
tocol was feasible for tracer kinetic analysis with compartment models, providing sufficient data quality in terms 
of temporal resolution and signal-to-noise ratio. We could find no evidence against application of either of the 
models on clinical patient data. The standard 1TCM and 2TCM fitted the data very well, with good fit quality and 
reasonably low χ red

2 , however, the 1TCM yielded failed fits with exceptionally high χ red
2  in several cases. The 

simplified 1TCM with VB = 0 presented with poorer fits and the model did not properly represent the curve 
shapes. Both versions of the 1TCM yielded reasonable estimates on transfer rates K1 and k2. The 2TCM yielded 
the least stable parameter estimates, especially for k2. There were no hints towards overfitting of the data with the 
2TCM, as in fact it yielded higher χ red

2  (lower fit quality) than the standard 1TCM.
Estimates on the blood volume VB were reasonable and showed similar patterns of increased and decreased 

values for the 1TCM and 2TCM, indicating that this parameter is not negligible and the simplified 1TCM 
might not be an adequate description of uptake kinetics. This is conceivable, as high-grade glioma present with 

Figure 8.  Extraction of parameter values for simulation time-activity curves with the 2TCM. The top plots 
show representative histograms of the distributions of parameter estimates K1, k2, k3 and k4 from fits with the 
2TCM in an exemplary patient. Peak analysis of the histograms of all patients was used to identify the most 
common value of these parameters that were used as input for data simulation. Two different AIFs, displayed in 
the bottom two plots, were used for both data simulation and subsequent fitting.
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enhanced vascularization and thus, a large blood volume, whereas the fraction of blood vessels is approximately 
2 to 4% in normal brain tissue25.

A large source of error in tracer kinetic modeling is the selection of an appropriate arterial input curve34. 
Ideally, the AIF would be derived from blood sampling during tracer administration; however, this invasive pro-
cedure is rarely feasible with patients. Furthermore, in retrospective settings, such an AIF is impossible to acquire. 
Therefore, image-derived input functions are often chosen, even though they are prone to error due to partial vol-
ume effects, motion during acquisition, etc. In this study, image-derived input functions were carefully extracted 
from carotid arteries, applying several suggested methods34 like co-registration with MRI and visual inspection 
of TACs in included voxels, in order to minimize distortion of the arterial signal. Nonetheless, no ground truth 
AIF was available for comparison, and underestimation of arterial tracer concentration, especially in the peak 
region, can influence parameter estimates of kinetic modeling. No relation was found between the quality of fits 
and the AIF type, even though it was assumed that fits with AIFs of type III could yield poorer results due to an 
underestimation of the peak activity.

In many cases, temporal resolution is increased for the initial frames in order to more precisely sample the 
peak concentration of the AIF and hence, improve parameter estimates. In principle this is possible, as most 
PET dynamic data is acquired in list mode and afterwards sampled to respective time frames at reconstruction. 
However, higher temporal resolution always comes at the cost of reduced SNR, which on the other hand decreases 
quality of the extracted arterial TAC and thus, fit quality35. In contrast to MRI, the signal from the reconstructed 
PET images is the accumulation of all decays measured between time frames, thus forming an integral signal. This 
aspect potentially reduces the risk of underestimating the peak activity in the AIF.

It was found that the parameter VB provides a diagnostic value for tumor grading, especially in the standard 
1TCM. Overall VB from the 1TCM was 7.5 ml/100 ml for grade III tumors and 11.6 ml/100 ml for grade IV tumors 
(p = 0.02518 after multiple-testing correction). Using the 2TCM yielded lower estimates for VB of 5.9 ml/100 ml in 
grade III glioma and 9.1 ml/100 ml in grade IV glioma. These estimates are comparable to values published in the 
literature, that were derived using dynamic contrast-enhanced MRI (DCE MRI)36,37. Prediction of tumor grade 
in recurrent glioma via imaging has a clinical impact, as these tumors may derive after long-latency period from 
lower-grade glioma and are often no more biopsied. Therefore, differentiation of tumor grades based on dynamic 
18F-FET PET scans could provide valuable input in predicting the outcome in recurrent setting.

Parameter estimates were further correlated with tumor grade and OS. Parameter estimates from the 2TCM 
hinted towards correlation with patients’ survival, further indicating the additional value of detailed tracer kinetic 
analysis in 18F-FET PET. Additional studies are required to validate potential correlations between 2TCM param-
eters and OS.

With the 2TCM being more detailed but also less stable compared to the 1TCM, the question arises, which 
model fit the data more adequately, and thus, better represents the underlying tracer kinetics. Therefore, accuracy 
and robustness of the more complex 2TCM were investigated by simulating TACs of 10 tissue types and fitting 
this synthetic data with the 2TCM. Since no complete set of reference values for exchange rates K1, k2, k3, k4 and 
VB was given by the literature, we determined 10 common parameter combinations in our patient data and used 
these, together with measured patient AIFs, to simulate time-activity curves at the same data quality as the patient 
PET scans.

Fit quality and stability as well as errors on parameter estimates were quantified in order to assess reliability of 
this model for data at the same quality (SNR, temporal resolution) as patient scans. Results showed sufficient fit 
quality and precision of parameter estimates. K1 and VB are parameters with high stability and accuracy. k3 and 
k4 exhibit large errors at large values (~0.20 min−1) but are otherwise robust estimates. k2 proved to be the least 
stable and least reliable parameter. Interestingly, AIFs of type II, where the initial frame already includes enhanced 
activity instead of the zero base line, provided better fit-quality and smaller errors, contrary to the expectations. It 
was initially hypothesized that a zero-activity first frame is required for a proper description of the peak activity.

Combination K1[10−2 min−1] k2[10−2 min−1] k3[10−2 min−1] k4[10−2 min−1]
VB
[ml/100 ml]

1 10 20 2.5 5 5

2 10 20 7.5 5 5

3 10 60 12.5 5 5

4 10 45 7.5 5 5

5 10 20 12.5 5 5

6 20 20 2.5 5 5

7 20 20 7.5 10 5

8 20 60 12.5 5 5

9 40 45 2.5 20 5

10 40 60 7.5 5 5

Table 3.  Parameter values for K1, k2, k3, k4 and VB from the 2TCM used for simulation of time activity curves. 
Each parameter combination was used with either one of the two AIF types (Fig. 6) to simulated 10000 curves. 
Gaussian random numbers were added to the simulated curves, in order to simulate noise at the same level 
as the measured patient TACs. These simulated data were in terms fitted with the 2TCM in order to evaluate 
precision and robustness of parameter estimates from the 2TCM in data of our quality (temporal resolution, 
sampling, SNR).
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Several authors have studied the value of dynamic 18F-FET PET for grading and prognosis in both low- and 
high-grade glioma9,10,20,22,38. Pöpperl et al. showed the superior value of dynamic acquisition protocols over static 
ones for grading in glioma patients21. However, for analysis of dynamic scans, most authors rely on qualitative 
description such as the overall tumor TAC shapes, the determination of semi-quantitative values like SUV at 
different time points22 or the time-to-peak activity9,20. To our knowledge this study provides the first quanti-
tative report on detailed parameter estimates from these compartment models. Thiele et al., performed tracer 
kinetic modeling with the 1TCM and 2TCM amongst other analysis techniques of dynamic 18F-FET PET in grade 
IV glioma patients23. However, correlations of parameters from compartmental analysis with clinical outcome 
were missing due to the low stability of their results. Furthermore, the sinus sagittalis was used for derivation of 
image-based arterial TACs, which only gives the tracer concentration in venous blood. In addition, neither fit 
quality nor mentioned instability nor reliability of parameter estimates was further quantified. In contrast, the 
results of the current analysis provide an estimate on precision and robustness of tracer-kinetic analysis with the 
2TCM by evaluating fits to simulated data.

Recently, pharmacokinetic modeling of 18F-FET tracer kinetics in a syngeneic orthotopic preclinical model 
was reported by injecting F98 glioblastoma cells into the right hemisphere of Fisher rats39. They found a favorable 
performance of the 2TCM in terms of model selection criteria AIC, F test and residual plots. This finding is in 
accordance with our study, showing that the 2TCM presents with lowest cAIC and thus appears to be the best 
representation of the data. However, there are some differences in their study compared to ours. First, F98 is 

Figure 9.  Results from fitting simulated data with the 2TCM. Figure 7 (a) shows goodness-of-fits in terms of 
reduced X², for each of the 10 different parameter combinations (with both AIFs). Due to outliers at very high 
values, the y-axis in the left plot is displayed on a logarithmic scale. For more detailed evaluation, the right plot 
shows the distribution of X² at an enlarged linear scale. Apart from two exceptions, both AIF types yielded 
similar fit quality. Figure 7 (b) shows the distribution of absolute errors in each of the four model parameters 
K1, k2, k3 and k4. The absolute error was calculated as the parameter estimate minus the true value used for 
simulation. While K1 yields good accuracy and robustness, k2 showed lowest stability of all parameters. k3 and 
k4 showed tendencies towards positive values for the errors, indicating a systematic overestimation of these two 
parameters.
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carcinogen (nitrosourea-mediated mutagenesis) induced rat glioblastoma model that might differ not only with 
respect to the molecular characteristics affecting radiosensistivity (e.g., presence of BRCA1 mutation) but also 
tumor invasion and angiogenesis pattern from the human glioblastoma in patients40,41. A second pivotal differ-
ence between the two studies is that they do not consider the parameter blood volume (VB) in their compart-
ment models. Indeed, we found that neglecting the blood volume in the 1TCM (simplified 1TCM) model yields 
poor results. However, high-grade glioma are highly vascularized necessitating inclusion of VB in modeling these 
tumors, at least in patients. Together, our data underscore the importance of considering VB in dynamic mode-
ling. Moreover, we performed simulation analyses to investigate accuracy and robustness of parameter estimates. 
Results showed that the 2TCM is in principle feasible and accurate, however, at the cost of reduced fit stability.

Combination AIF ΔK1 [%] Δk2 [%] Δk3 [%] Δk4 [%] ΔVB [%]

1

I 10.5 47.9 356.9 176.0 −7.0

[−1; 25] [10; 151] [−9; 2357] [−52; 471] [−23; 11]

II 7.9 25.9 115.6 76.0 −5.3

[−1; 21] [1; 110] [−34; 1091] [−95; 302] [−16; 6]

2

I 7.4 31.5 38.0 6.8 −6.6

[−4; 26] [−10; 139] [−43; 349] [−87; 100] [−24; 11]

II −4.0 −12.5 −21.1 −66.9 −8.8

[−11; 2] [−26; 9] [−44; 28] [−100; −19] [−19; 5]

3

I 3.3 12.7 −8.1 −14.5 −0.5

[−15; 23] [−26; 67] [−51; 72] [−81; 53] [−18; 17]

II 5.4 10.8 −2.6 −12.1 −1.5

[−12; 22] [−22; 63] [−46; 52] [−59; 36] [−13; 13]

4

I 11.0 26.4 6.8 −12.8 −4.1

[−6; 29] [−9; 91] [−47; 152] [−100; 90] [−21; 14]

II 5.8 6.9 −2.0 −7.9 −1.9

[−8; 21] [−17; 52] [−50; 94] [−81; 57] [−16; 10]

5

I 7.1 40.9 25.5 −16.0 −3.4

[−6; 27] [−19; 165] [−45; 218] [−81; 46] [−21; 16]

II 5.0 12.9 0.5 −10.8 −5.3

[−5; 19] [−21; 85] [−44; 93] [−60; 30] [−18; 8]

6

I 2.9 13.0 52.3 56.4 −1.3

[−3; 11] [−4; 62] [−43; 571] [−85; 271] [−19; 18]

II 2.6 6.7 25.8 16.8 −2.4

[−1; 7] [−4; 26] [−40; 171] [−69; 131] [−15; 11]

7

I −16.1 105.7 1233.3 −45.5 191.6

[−40; 3] [9; 117] [−4; 1233] [−66; −29] [−4: 282]

II 1.4 5.7 7.4 −51.1 −0.4

[−3; 8] [−11; 38] [−43; 125] [−69; −28] [−13; 12]

8

I 2.8 5.4 −3.3 −12.0 799.2

[−12; 21] [−24; 67] [−54; 61] [−82; 48] [780; 815]

II 2.8 3.8 −2.6 −7.3 798.5

[−11; 19] [−24; 50] [−43; 48] [−54; 33] [786; 811]

9

I 1.7 8.3 344.8 127.8 3.1

[−5; 10] [0; 37] [−23; 1272] [−22; 400] [−19; 33]

II 2.5 6.8 69.5 52.4 −2.0

[−2; 8] [−4; 33] [−63; 786] [−40; 281] [−16; 14]

10

I 0.9 0.8 −1.1 −4.7 −1.4

[−5; 7] [−9; 13] [−24; 26] [−31; 25] [−20; 17]

II 0.0 0.3 −1.1 −1.0 −0.1

[−4; 5] [−8; 9] [−18; 19] [−20; 18] [−13; 12]

Table 4.  Median relative errors on parameter estimates from fitting simulated data of 10 different parameter 
combinations (Table 3) and two different AIFs with the 2TCM, for each of the model parameters K1, k2, k3 
and k4 and VB. The 25th and 75th quantile of the errors are denoted in square brackets under the median value. 
Normalizing the absolute error to the true parameter value used for simulation, and multiplying by 100 
calculated relative errors. Quantiles of k2 show, that even though errors on this parameter are low in most cases, 
it presents with high instability. k3 and k4 show large relative errors, which is likely to be due to their low original 
values.
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Overall, the standard 1TCM provided the best results in terms of feasibility and robustness with an appropriate 
description of the tracer kinetics. This is in concordance with results reported in animal studies24. Additionally, 
correlation of K1 with overall patient survival was visible in K1 from both the 1TCM and 2TCM.

The blood volume VB appears to be overestimated by the 1TCM compared to values reported previously in the 
literature36. Precision and robustness of the estimates from the 1TCM should be further investigated, e.g. with a 
simulation study similar to the one we conducted on the 2TCM in a larger population.

Fitting dynamic 18F-FET PET data with a 2TCM appears to hold some valuable information on tumor heter-
ogeneity and substructure. The 2TCM provided the best model representation according to the Akaike informa-
tion criterion28,29. Estimated VB from the 2TCM yielded reliable values with good accuracy and robustness and 
showed a trend towards prognostic value for grading, as a trend towards higher values for K1 and VB was observed 
in grade IV tumors compared to grade III tumors. k4 appears to correlate with progression free survival. Larger 
patient cohorts need to be analyzed to further investigate these findings. Furthermore, the combination of param-
eters from this more complex model with physiological measures derived from other imaging modalities (e.g. 
dynamic contrast-enhanced MRI) could provide additional, relevant information on tumor tissue composition.

Conclusion
The presented study provides a first overview on the diagnostic and prognostic value of compartmental analysis 
for dynamic 18F-FET PET in recurrent high-grade glioma patients. The models revealed an improved resolution 
of tumor substructure (e.g. vascularization). Despite the limited size of the cohort, correlation of parameters 
with tumor grade and overall survival yielded promising results, which warrants further exploration. It is yet to 
be investigated, whether our findings can be translated to primary, untreated tumors. However, feasibility of the 
analysis is independent of this, enabling a proper conduction of such a study.
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