
Deterministic Parallel Hypergraph Partitioning
Lars Gottesbüren

lars.gottesbueren@kit.edu
Karlsruhe Institute of Technology

Karlsruhe, Germany

Michael Hamann
michael.hamann@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Abstract
Balanced hypergraph partitioning is a classical NP-hard op-
timization problem with applications in various domains
such as VLSI design, simulating quantum circuits, optimiz-
ing data placement in distributed databases or minimizing
communication volume in high-performance computing. En-
gineering parallel heuristics for this problem is a topic of
recent research. Most of them are non-deterministic though.
In this work, we design and implement a highly scalable
deterministic algorithm in the state-of-the-art parallel par-
titioning framework Mt-KaHyPar. On our extensive set of
benchmark instances, it achieves similar partition quality
and performance as a comparable but non-deterministic con-
figuration of Mt-KaHyPar and outperforms the only other
existing parallel deterministic algorithm BiPart regarding
partition quality, running time and parallel speedups.

CCS Concepts: • Computing methodologies→ Shared
memory algorithms; • Mathematics of computing →
Graph algorithms.

Keywords: hypergraph partitioning, multilevel algorithms,
deterministic parallelism

1 Introduction
Balanced k-way hypergraph partitioning (HGP) is a classical
optimization problem. Its goal is to divide the vertices of a
hypergraph into 𝑘 blocks of bounded size while minimiz-
ing an objective function on hyperedges that connect more
than one block. Hypergraphs are a generalization of graphs
where hyperedges can contain more than two vertices. A
commonly used objective function is the connectivity metric
where we aim to minimize the sum of the number of blocks
connected by each hyperedge. This problem is NP-hard [31]
and even hard to approximate [4] within constant factors,
which is why heuristic algorithms are used in practice. Bal-
anced hypergraph partitioning has numerous applications
in domains such as VLSI design [2, 3], logic synthesis for
integrated circuits [35], simulating quantum circuits [24], sci-
entific computing [10], SAT solving [33], as well as storage
sharding in distributed databases and data centers [13, 28].
There has been a huge amount of research on graph and

hypergraph partitioning, but especially in recent years, the
interest in parallel algorithms has surged [16, 20, 22, 23, 28,
32] due to ever growing problem sizes. With the exception

of BiPart [32], these algorithms are non-deterministic. Re-
searchers have advocated the benefits of deterministic par-
allel algorithms for several decades [7, 9, 27, 30], including
ease of debugging, reasoning about performance, and repro-
duciblity. While some strive for deterministic programming
models, we want to leverage randomized scheduling for bet-
ter performance and thus pursue deterministic algorithms.
The above reasons are desirable properties, yet the BiPart
authors [32] argue that for VLSI circuit design, deterministic
partitioning results are even necessary, since some manual
post-processing is involved that should not be repeated.

Previous results showed that the quality of partitions com-
puted by BiPart does not compare favorably with current
state-of-the-art parallel algorithms such as Mt-KaHyPar [23]
and our experiments show that BiPart exhibits poor scal-
ability. The goal of this work is to design, implement and
evaluate a scalable and deterministically parallel hypergraph
partitioning algorithm with state-of-the-art solution quality.

1.1 Multilevel Partitioning
More formally, the hypergraph partitioning problem is de-
fined as follows. Given a hypergraph 𝐻 = (𝑉 , 𝐸), imbalance
parameter Y ∈ (0, 1), and number of blocks 𝑘 ∈ N, find a
𝑘-way partition 𝑉1 ∪ · · · ∪ 𝑉𝑘 = 𝑉 of the vertices 𝑉 that is
Y-balanced |𝑉𝑖 | ≤ (1 + Y) ⌈|𝑉 |/𝑘⌉. The objective function to
minimize is the connectivity metric

∑
𝑒∈𝐸 (_(𝑒) − 1), where

_(𝑒) := |{𝑉𝑖 | 𝑉𝑖 ∩ 𝑒 ≠ ∅}| is the number of blocks connected
by hyperedge 𝑒 . The most successful approach for parti-
tioning is the multilevel framework. Starting with the input
hypergraph, a sequence of successively smaller (coarser) but
structurally similar hypergraphs is constructed by repeat-
edly contracting groups of vertices (clusters or matchings).
This is called the coarsening phase. Once a sufficiently small
hypergraph is reached, expensive algorithms compute an
initial partition. In the following refinement phase, this par-
tition is then projected back up through the hierarchy by
assigning vertices to the same block as their representative
in the next coarser hypergraph. This yields a partition of the
larger hypergraph with the same imbalance and objective
function as on the coarse hypergraph. On each level of the hi-
erarchy, local search algorithms such as Fiduccia-Mattheyses
(FM) [18] or label propagation [36] move vertices to improve
the current partition.

Mt-KaHyPar [22] adds a preprocessing phase based on
community detection to the coarsening phase. Community

ar
X

iv
:2

11
2.

12
70

4v
1 

 [
cs

.D
S]

  2
3 

D
ec

 2
02

1

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-6958-4927


Lars Gottesbüren and Michael Hamann

Algorithm 1: Local Moving Round
for 𝑣 ∈ 𝑉 in random order do in parallel

compute and perform best move for 𝑣
update data structures

detection, also called clustering, aims to group vertices to-
gether that are internally densely but externally sparsely
connected. Contractions during the coarsening phase are
then restricted to vertices in the same community to avoid
destroying small cuts, as first proposed in [26]. To avoid
confusion, we use the terms community detection and com-
munities in the preprocessing phase, while we use clustering
and clusters in the coarsening phase.
There are two fundamental approaches to the multilevel

framework. In direct 𝑘-way partitioning, the initial partition
is directly 𝑘-way and refinement algorithms operate on a
𝑘-way partition. Recursive bipartitioning instead obtains a 𝑘-
way partition by recursively splitting the blocks in two parts.
This is simpler as it only requires refinement algorithms that
work on two-way partitions. Most partitioners [10, 16, 29,
32], including BiPart use recursive bipartitioning. However,
recursive bipartitioning often achieves substantially worse
solution quality than direct 𝑘-way [38], which is why we
focus on direct 𝑘-way in this paper.

1.2 Non-Determinism in Local Moving
Typical community detection, clustering coarsening and la-
bel propagation refinement algorithms are so-called local
moving algorithms, which follow the structure outlined in Al-
gorithm 1: given an initial assignment of vertices to groups,
visit vertices in random order in parallel, and improve the
solution by greedily moving vertices when they are visited.
Since vertices are moved right away, the local optimization
decisions depend on non-deterministic scheduling decisions.
Our approach to incorporate determinism is illustrated in
Algorithm 2. It is based on the synchronous local moving
approach of Hamann et al. [25] to parallelize the Louvain
community detection algorithm [8] on distributed memory.

Instead of performing moves asynchronously, vertices are
split into sub-rounds – using deterministically reproducible
randomness. In each sub-round, the bestmove for each vertex
in the current sub-round is computed with respect to the
unmodified groups. In a second step, some of the calculated
moves are approved and performed, and some are denied,
for example due to the balance constraint.

1.3 Contributions
We propose three deterministic parallel local moving algo-
rithms: for the preprocessing, coarsening and refinement
phases of Mt-KaHyPar. An algorithmic novelty is the incor-
poration of vertex weights in the approval step of the re-
finement phase via a merge-style parallelization. Extensive

Algorithm 2: Synchronous Local Moving Round
randomly split vertices into sub-rounds
for 𝑟 = 0 to number of sub-rounds do

for 𝑣 ∈ 𝑉 in sub-round 𝑟 do in parallel
compute and save best move for 𝑣

approve saved moves and update data structures

experiments demonstrate that our new algorithm achieves
good speedups (28.7 geometric mean, 48.9 max on 64 threads)
and achieves similar solution quality and performance as its
non-deterministic counterpart (as expected slightly worse
overall though). We investigate potential causes for this cost
of determinism, finding that the coarsening phase is the most
affected. Our algorithm outperforms BiPart regarding solu-
tion quality, running time and parallel speedups on 98% of
the instances.

Our shared-memory implementation is available as open-
source software as part of the Mt-KaHyPar framework. We
describe engineering details, and also describe how to incor-
porate determinism in the rest of the framework.
The paper is organized as follows. In Section 2, we intro-

duce concepts and notation. Subsequently, we describe our
algorithmic components and the implementation in Section 3.
In Section 4, we analyze the algorithm experimentally via a
parameter study and comparison with existing algorithms,
before concluding the paper in Section 5.

2 Preliminaries
By [𝑚] we denote the set {0, 1, . . . ,𝑚 − 1} for a positive
integer𝑚. We use Python-style slicing notation 𝐴[𝑖 : 𝑗] to
denote sub-arrays from index 𝑖 up to (excluding) index 𝑗 .

Hypergraphs. A weighted hypergraph 𝐻 = (𝑉 , 𝐸, 𝑐, 𝜔) is
a set of vertices 𝑉 and a set of hyperedges 𝐸 with vertex
weights 𝑐 : 𝑉 → N and hyperedge weights 𝜔 : 𝐸 → N,
where each hyperedge 𝑒 is a subset of the vertex set 𝑉 . The
vertices of a hyperedge are called its pins. A vertex 𝑣 is inci-
dent to a hyperedge 𝑒 if 𝑣 ∈ 𝑒 . I(𝑣) denotes the set of all inci-
dent hyperedges of 𝑣 . The degree of a vertex 𝑣 is𝑑 (𝑣) := |I(𝑣) |.
The size |𝑒 | of a hyperedge 𝑒 is the number of its pins. By
𝑁 (𝑣) := {𝑢 ∈ 𝑉 | I(𝑢) ∩ I(𝑣) ≠ ∅} we denote the neigh-
bors of 𝑣 . We extend 𝑐 and 𝜔 to sets in the natural way
𝑐 (𝑈 ) :=

∑
𝑣∈𝑈 𝑐 (𝑣) and 𝜔 (𝐹 ) :=

∑
𝑒∈𝐹 𝜔 (𝑒).

A graph is a hypergraph where each edge has size 2. We
use the terms nodes and edges when referring to graphs, and
vertices, hyperedges and pins when referring to hypergraphs.

Partitions. A 𝑘-way partition of a hypergraph𝐻 is a func-
tion Π : 𝑉 → [𝑘] that assigns each vertex to a block (or
block identifier) 𝑖 ∈ [𝑘]. In addition to the identifiers, we
also use the term block for their corresponding vertex sets
𝑉𝑖 := Π−1 (𝑖). We call Π Y-balanced if each block 𝑉𝑖 satisfies



Deterministic Parallel Hypergraph Partitioning

the balance constraint: 𝑐 (𝑉𝑖 ) ≤ 𝐿max := (1 + Y) ⌈𝑐 (𝑉 )/𝑘⌉ for
some parameter Y ∈ (0, 1).
For each hyperedge 𝑒 , Λ(𝑒) := {𝑉𝑖 | 𝑉𝑖 ∩ 𝑒 ≠ ∅} denotes

the connectivity set of 𝑒 . The connectivity _(𝑒) of a hyperedge
𝑒 is _(𝑒) := |Λ(𝑒) |. A hyperedge is called a cut hyperedge if
_(𝑒) > 1. Given parameters Y, and 𝑘 , and a hypergraph 𝐻 ,
the hypergraph partitioning problem is to find an Y-balanced
𝑘-way partition Π that minimizes the connectivity metric
(_− 1) (Π) :=

∑
𝑒∈𝐸 (_(𝑒) − 1)𝜔 (𝑒). We use the term solution

quality for connectivity metric in the experiments. In order
to avoid confusion later on, note that, while these concepts
are defined as functions, the pseudocodes in this paper treat
them as data that are modified as the algorithms iteratively
change the partition.

Contraction. A clustering (or set of communities) C is a
partition without a restriction on the number of clusters
(vertex blocks). Contracting a clustering yields a smaller,
coarser hypergraph, bymerging vertices assigned to the same
cluster into a super-vertex whose weight is the sum of the
constituents. Correspondingly, the hyperedges of the coarse
hypergraph become smaller and duplicate hyperedges may
arise. Duplicates are removed and their weight is aggregated
at the sole non-removed representative.

Given a partition Π𝑐 of a hypergraph𝐻𝑐 that was obtained
from another hypergraph 𝐻 by contracting a clustering C,
the partition Π𝑐 can be projected to 𝐻 by assigning vertices
to the block of their super-vertex Π(𝑣) = Π𝑐 (C(𝑣)). The
partition of 𝐻 then has the same imbalance and objective
function value as that of𝐻𝑐 . This is the fundamental property
of the multilevel framework.

Parallel Primitives. We use parallel primitives such as
prefix sums, reduce and sorting from Intel’s tbb library.
Whenever possible, we use our own counting sort (integer
sorting) implementation [12, Section 8.2] with𝑂 (log(𝑛) +𝐾)
depth and 𝑂 (𝑛 + 𝐾) work, where 𝑛 is the size of the input,
and 𝐾 is the maximum key value.

A fundamental primitive in our algorithms is deterministic
parallel random shuffling, or more often, randomly splitting
elements into sub-rounds. Our algorithm is based on the
RandSort and RandDist algorithms [11]. We divide the input
range into a fixed number of equal-size chunks (256 regard-
less of number of threads used for reproducibility), which are
handled independently in parallel. For each chunk, a random
number generator is seeded with an input seed and the index
of the first element, which is then used to generate 8-bit tags
for each element in the chunk. The input range is then sorted
by the tags using parallel counting sort. For splitting into
sub-rounds, the algorithm stops here – counting sort returns
an array of offsets where each tag starts. Multiple tags are
further grouped together to form sub-rounds as needed. For
random shuffling, the elements with the same tag are shuf-
fled sequentially, but each tag independently in parallel. The

order within the same tag is deterministic because counting
sort is stable.

3 Deterministic Parallel Multilevel
Partitioning

In this section, we describe our algorithms. The structure fol-
lows the order of the multilevel framework.We introduce the
community detection preprocessing in Section 3.1, the coars-
ening in Section 3.2, the initial partitioning in Section 3.3,
and the direct 𝑘-way refinement in Section 3.4.

3.1 Preprocessing
The preprocessing phase detects communities in the hy-
pergraph that are used to guide the coarsening process by
restricting contractions to vertices in the same community,
as proposed in [26]. We perform community detection on the
bipartite graph representation of the input hypergraph with
some modified edge weights to handle large hyperedges. The
bipartite graph representation𝐺 = (𝑉𝐺 , 𝐸𝐺 ) of a hypergraph
𝐻 = (𝑉 , 𝐸) has the vertices and hyperedges as nodes, and
an edge for every pin connecting the vertex and hyperedge.
Since this also assigns hyperedges to communities, we sub-
sequently restrict the communities to the vertices. The edge
weights are set to 𝑤 ′(𝑣, 𝑒) := 𝜔 (𝑒) |I(𝑣) |

|𝑒 | or 𝑤 ′(𝑣, 𝑒) := 𝜔 (𝑒)
for pin 𝑣 ∈ 𝑒 and hyperedge 𝑒 ∈ 𝐸, depending on the density
of the hypergraph as described in [26].

We heuristically maximize the well-known modularity ob-
jective using a synchronous parallel version of the popular
Louvain algorithm [8]. The modularity of given communities
C is Q(C) := cov(C) − ∑

𝐶∈C vol(𝐶)2/vol(𝑉𝐺 )2. Here, the
coverage cov(𝐶) :=

∑
𝐶∈C

∑
𝑢∈𝐶

∑
𝑣∈𝐶∩𝑁 (𝑢) 𝑤

′(𝑢, 𝑣)/vol(𝑉𝐺 )
is the fraction of edge weights inside communities. The vol-
ume vol(𝑢) :=

∑
𝑣∈𝑁 (𝑢) 𝑤

′(𝑢, 𝑣) is the sum of incident edge
weights of a node (counting self-loops twice), which is ex-
tended to node-sets vol(𝑋 ) :=

∑
𝑢∈𝑋 vol(𝑢).

The Louvain algorithm starts with each node in its own
community. In a round, it visits each node in a random order
and greedily maximizes modularity by possibly moving the
node to the community of a neighbor. After a fixed number
of rounds or if no node has been moved in the last round,
the communities are contracted and the algorithm is applied
recursively to the contracted graph. This continues until no
node has been moved on a level, at which point the commu-
nity assignment is projected to the input graph.

The gain (modularity difference) of moving a node from its
current community to a neighboring community can be com-
puted purely from the weight of incident edges to the target
or current community, as well as their volumes. Therefore, it
suffices to store and update the volume for each community,
and compute the weights to the communities by iterating
once over the neighbors of the node.
We randomize the visit order by dividing nodes into ran-

dom sub-rounds. For each sub-round we calculate the best



Lars Gottesbüren and Michael Hamann

move for each node in parallel, but only apply volume and
community assignment updates after synchronizing, to make
the algorithm deterministic.

Volume Updates. One intricacy with updating the com-
munity volumes is that adding floating point numbers is not
commutative, and thus the previous approach [22, 39] of
applying all updates in parallel with compare-and-swap in-
structions is non-deterministic. Instead, we have to establish
an order in which the volume updates of each community
are aggregated. For this, we collect all necessary updates in a
global vector, which we lexicographically sort by community
(primary key) and node ID (secondary key). Applying the up-
dates is done in parallel for different communities. To reduce
the sorting overhead we split the updates into two vectors
(addition and subtraction) which are sorted independently
in parallel, but applied one after another.

To analyze the work and depth, let𝑉 ′
𝐺
denote the nodes in

a sub-round. The work is
∑

𝑢∈𝑉 ′
𝐺

deg(𝑢) + |𝑉 ′
𝐺
| log( |𝑉 ′

𝐺
|). The

depth is linear in the maximum number of moves in or out of
a community (sequential volume updates) and the maximum
degree max𝑢∈𝑉 ′

𝐺
(deg(𝑢)) for calculating modularity gains,

plus the depth of the sorting algorithm. This is usually poly-
logarithmic in |𝑉 ′

𝐺
|, but tbb’s quick-sort implementation

uses sequential partitioning, and thus is linear. We tested
a supposedly better sorting algorithm but did not achieve
an improvement. The number of moves and degree linear
terms in the depth may be reduced to poly-logarithmic by
parallelizing the per-vertex gain calculation (parallel for loop
over neighbors, atomic fetch-add for weight to neighbor
clusters) and aggregating updates within a community in
parallel with a deterministic reduce. However, in practice
the outer level of parallelism is sufficient.

Contraction. To contract the communities, we first remap
the community IDs to a consecutive range. This is done by
computing the prefix sum over an array with 1’s in the lo-
cations of used community IDs. In a second pass, we remap
the node-to-community assignment by looking up the old
community ID in the prefix sum array.
Subsequently, we sort the nodes by community ID via

counting sort, which also gives us an array of offsets into the
sorted range where each community begins. We parallelize
the generation of the coarse edges on a per-community level.
For each community, one thread generates all of its outgoing
coarse edges by iterating sequentially over the neighbors
of the vertices in the community, and aggregating the edge
weights in a vector indexed by community ID of the neighbor.
Since the sorting algorithm is stable, the orders in which
node volumes are aggregated and edges are generated are
deterministic. The work is 𝑂 ( |𝐸𝐺 |), and the depth is the
largest degree sum over vertices in a community.

Algorithm 3: Compute Heavy-Edge Rating
Input: vertex 𝑢 ∈ 𝑉
candidates← ∅
for 𝑒 ∈ I(𝑢) do

for 𝑣 ∈ 𝑒 do
if community[𝑢] = community[𝑣]

if rating[C[𝑣]] = 0
add C[𝑣] to candidates

rating[C[𝑣]] += 𝜔 (𝑒)/|𝑒 |
for 𝐶 ∈ candidates do

if weight[𝐶] + 𝑐 (𝑢) ≤ 𝐶𝑊max and rating[𝐶] > best
rating

store 𝐶 as best candidate
rating[𝐶] ← 0

return best candidate

3.2 Coarsening
After performing community detection on the bipartite graph
representation, we proceed to contracting the actual hyper-
graph. In the coarsening phase we keep performing coars-
ening passes over the vertices (Algorithm 4) until only a
few vertices remain, at which point we can run initial par-
titioning. We choose this contraction limit 𝐶𝐿 = 160 · 𝑘
dependent on 𝑘 , as in [1, 22]. In each coarsening pass, we
perform one round of local moving and then contract the
resulting clusters. The objective function for the clustering
is the commonly used [1, 10, 22] heavy-edge rating function
𝑟 (𝑢,𝐶) :=

∑
𝑒∈𝐼 (𝑢)∩𝐼 (𝐶)

𝜔 (𝑒)
|𝑒 |−1 which rewards heavy hyper-

edges between a vertex 𝑢 and a potential target cluster 𝐶 ,
but penalizes large hyperedges.

Initially, the clustering C is a singleton clustering, i.e., each
vertex is in its own cluster. For each vertex 𝑢 in a sub-round,
we store the best target cluster according to the rating func-
tion in an array of propositions P. Algorithm 3 shows pseu-
docode for calculating the ratings and Algorithm 4 shows
pseudocode for one coarsening pass over the vertices. First,
we aggregate the ratings in a sparse array indexed by clus-
ter ID and store the potential candidates in a dense vec-
tor, before we select the highest-rated candidate and reset
the ratings. To save running time, and since their contri-
bution to the rating function is small, we skip hyperedges
with size > 1000. This ensures that at most 𝑂 ( |I(𝑣) |) time is
spent for vertex 𝑣 (though the constant is large) instead of
𝑂 (∑𝑒∈I(𝑣) |𝑒 |), which leads to work linear in the number of
pins per coarsening pass to compute target clusters. If there
are multiple candidates with the same rating, we pick one
uniformly at random – to achieve deterministic selection we
use a hash-and-combine function seeded with 𝑢 as a random
number generator. In Algorithm 3, we could theoretically
parallelize the iteration over neighbors by using atomic fetch-
and-add instructions for aggregating the ratings. The check
rating[C[𝑣]] = 0 can be faithfully implemented because the



Deterministic Parallel Hypergraph Partitioning

Algorithm 4: Coarsening Pass
randomly split vertices into sub-rounds
C[𝑢] ← 𝑢,P[𝑢] ← 𝑢 : ∀𝑢 ∈ 𝑉
opportunistic-weight[𝑢] ← 𝑐 (𝑢) : ∀𝑢 ∈ 𝑉
for 𝑟 = 0 to number of sub-rounds do

for 𝑢 ∈ 𝑉 in sub-round 𝑟 do in parallel
P[𝑢] ← ComputeHeavyEdgeRating(u)

opportunistic-weight[P[𝑢]] += 𝑐 (𝑢) // atomic
𝑀 ← ∅ // moves
for 𝑢 ∈ 𝑉 in sub-round 𝑟 do in parallel

if opportunistic-weight[P[𝑢]] ≤ 𝐶𝑊max
C[𝑢] ← P[𝑢]

else
add 𝑢 to𝑀

sort𝑀 lexicographically by (P[𝑢], 𝑐 (𝑢), 𝑢)
for 𝑖 = 0 to |𝑀 | do in parallel

if 𝑖 = 0 or P[𝑀 [𝑖 − 1]] ≠ P[𝑀 [𝑖]]
for 𝑗 = 𝑖 until 𝐶𝑊max exceeded do
C[𝑀 [ 𝑗]] ← P[𝑀 [ 𝑗]]

set opportunistic-weight of C[𝑀 [𝑖 − 1]]
contract clustering C

atomic instruction returns the value immediately prior to its
execution. However, in practice the outer level of parallelism
over the vertices is again sufficient.

ApprovingMoves. Since the initial partitioning stepmust
be able to compute a feasible partition, we enforce a maxi-
mum weight on the clusters 𝐶𝑊max := min (𝐿max, 𝑐 (𝑉 )/𝐶𝐿).
To respect this constraint, we filter the target cluster can-
didates further during the selection. Additionally, some of
the calculated moves must be rejected. Therefore, we sort
the moves lexicographically by cluster, vertex weight, and
lastly vertex ID (for determinism). For each target cluster,
we then approve the vertices one by one (in order of ascend-
ing weight), and reject all of the remaining moves into this
cluster once𝐶𝑊max would be exceeded. Our implementation
iterates over the moves in parallel, and the iteration of the
first vertex in the sub-range of a cluster is responsible for
performing the moves into the cluster. To drastically reduce
the number of moves we have to sort, we employ an op-
timization, where we already sum up the cluster weights
during the target-cluster calculation step using atomic fetch-
and-add instructions, and simply approve all moves into a
target cluster whose weight will not exceed 𝐶𝑊max. Due to
this optimization, calculating the target clusters is by far the
more expensive step in practice, even though approving the
moves requires sorting.

Contraction. The hypergraph contraction algorithm con-
sists of several steps: remapping cluster IDs to a consecutive
range (as for graph contraction), generating pin lists of the

hyperedges of the contracted hypergraph, removing dupli-
cate hyperedges, and finally assembling the data structure.

We generate the coarse pin list of each hyperedge in par-
allel, by replacing the vertex ID with the remapped cluster
ID and removing duplicate entries. Our version uses a bit-set
for de-duplication, but sorting is not much slower. At this
stage we already discard hyperedges of size one.
To remove duplicate hyperedges, we use a parallel ver-

sion of the INRSort algorithm [5, 15]. The INRSort algorithm
works as follows. Comparing all hyperedge-pairs for equal-
ity is too expensive, so a hash function is used to restrict
comparisons to hyperedges with equal hash value and size.
For parallelism, hyperedges are distributed across threads
using the hash value of their pins [22]. Each thread sorts its
hyperedges by their hash value, their size, as well as ID for
determinism. In each sub-range with equal hash value and
size (consecutive in memory due to sorting), pair-wise com-
parisons of their pins are performed. Again, we use a bit-set
to check for equality, as this was slightly faster than sorting
the pins. The running time of the de-duplication algorithm
is difficult to analyze, since it depends on the collision rate of
the hash function, the number of duplicate hyperedges and
their sizes. However, in practice, it is faster than constructing
the pin lists and the incident hyperedge lists.

At this point, we have obtained the pin lists of the coarse
hypergraph, and now need to construct the list of incident
hyperedges at each vertex. For this, we first count the num-
ber of incident hyperedges at each vertex, and compute a
prefix sum over these values. In a second pass, we write
the incident hyperedges into the sub-ranges of the corre-
sponding pins, using an atomic fetch-and-add instruction on
the starting position of the sub-range. Finally, we sort the
incident hyperedges of each vertex for determinism.

3.3 Initial Partitioning
After the coarsening phase, we compute an initial 𝑘-way
partition on the coarsest hypergraph. We perform recur-
sive bipartitioning with the multilevel algorithm and thus
only need to provide flat algorithms for computing initial
2-way partitions. Since the coarsest hypergraphs are small,
a portfolio of 9 different simple, sequential algorithms [37]
is used. Combined with 20 repetitions each for diversity,
there is ample parallelism. Each run is followed up with 3
rounds of sequential FM local search [18]. These algorithms
are inherently deterministic, however care must be taken
when selecting which partition to use for refinement. The
primary criteria are connectivity followed by imbalance. To
achieve deterministic selection, we assign sequentially gen-
erated tags to the initial bipartitions, which are used as a
tie breaking mechanism. In combination with deterministic
coarsening and refinement, the overall initial partitioning
phase is deterministic.



Lars Gottesbüren and Michael Hamann

Algorithm 5: Compute Max Gain Move
Input: vertex 𝑣 ∈ 𝑉
gains[𝑖] ← 0∀𝑖 ∈ [𝑘]
internal← 0
for 𝑒 ∈ I(𝑣) do

if Φ(𝑒,Π[𝑣]) > 1
internal += 𝜔 (𝑒)

for block 𝑖 ∈ Λ(𝑒) do
gains[𝑖] += 𝜔 (𝑒)

𝑗 ← arg max𝑖∈[𝑘 ] (gains[𝑖])
return 𝑗, gains[ 𝑗] − internal

3.4 Refinement
In the refinement phase, we take an existing 𝑘-way par-
tition (from the previous level or initial partitioning) and
try to improve it by moving vertices to different parts, de-
pending on their gain values. The gain of moving vertex
𝑢 ∈ 𝑉 from its current block 𝑠 to block 𝑡 is gain(𝑢, 𝑡) :=∑

𝑒∈I(𝑢) :Φ(𝑒,𝑠)=1𝜔 (𝑒) −
∑

𝑒∈I(𝑢) :Φ(𝑒,𝑡 )=0𝜔 (𝑒). The first term ac-
counts for the hyperedges 𝑒 for which 𝑠 will be removed
from their connectivity set Λ(𝑒), the second term accounts
for those where 𝑡 will be newly added.

Finding Moves. Our refinement algorithm is a synchro-
nous version of label propagation refinement [22, 34]. The
vertices are randomly split into sub-rounds. For each ver-
tex in the current sub-round, we compute the highest gain
move, and store it if the gain is positive. Algorithm 5 shows
pseudocode for computing the gains of a vertex 𝑣 to all 𝑘
blocks, and selecting the highest gain move. As an optimiza-
tion it uses the connectivity sets Λ(𝑒) instead of checking the
pin counts Φ(𝑒, 𝑖) for each block 𝑖 ∈ [𝑘] directly. The gain-
calculation phase takes 𝑂 (𝑘 |𝑉 | + ∑𝑢∈𝑉

∑
𝑒∈I(𝑢) _(𝑒)) work

(across all sub-rounds) and 𝑂 (𝑘 + max𝑢∈𝑉 (
∑

𝑒∈I(𝑢) _(𝑒)))
depth for each sub-round. The 𝑂 (𝑘) term per vertex for
initializing the gains array and selecting the highest gain
can be eliminated by tracking occupied slots and resetting
only these, though this is not useful in practice if 𝑘 is small.
In a second step we approve some of the stored moves,

and subsequently apply them in parallel, before proceeding
to the next sub-round. This is the interesting part, as just
applying all moves does not guarantee a balanced partition.

Maintaining Balance By Vertex Swaps. In this step we
perform a sequence of balance-preserving vertex swaps on
each block-pair, prioritized by gain. This approach was first
introduced in SHP [28], though their work only considers
unweighted vertices as SHP is not a multilevel algorithm.
For each block-pair (𝑠, 𝑡) ∈

( [𝑘 ]
2
)
, we collect the vertices

𝑀𝑠𝑡 that want to move from 𝑠 to 𝑡 and 𝑀𝑡𝑠 from 𝑡 to 𝑠 , and
sort both sequences descendingly by gain (with vertex ID
as tie breaker for determinism). SHP now moves the first
min( |𝑀𝑠𝑡 |, |𝑀𝑡𝑠 |) vertices from each sequence. If each vertex

has unit weight, this does not change the balance of the
partition. However, we have to handle weights, so we are
interested in the longest prefixes of 𝑀𝑠𝑡 , 𝑀𝑡𝑠 , represented
by indices 𝑖, 𝑗 , whose cumulative vertex weights 𝑐 (𝑀𝑠𝑡 [0 :
𝑖]), 𝑐 (𝑀𝑡𝑠 [0 : 𝑗]) are equal. This is similar to merging two
sorted arrays, as we describe in the next paragraph. We
do not have to swap exactly equal weight, as long as the
resulting partition is still balanced. For each block, we have
a certain additional weight 𝐵𝑡 it can take before becoming
overloaded. If block-pairs are handled sequentially one after
another, we can set 𝐵𝑡 = 𝐿max − 𝑐 (𝑉𝑡 ). If they are handled in
parallel, we divide this budget (equally) among the different
block-pairs that have moves into 𝑡 .
Again, we denote the prefixes as indices 𝑖 and 𝑗 into𝑀𝑠𝑡

and 𝑀𝑡𝑠 , respectively. The prefixes 𝑖, 𝑗 are called feasible if
they satisfy the condition −𝐵𝑠 ≤ 𝑐 (𝑀𝑠𝑡 [0 : 𝑖]) − 𝑐 (𝑀𝑡𝑠 [0 :
𝑗]) ≤ 𝐵𝑡 , i.e., swapping the first 𝑖, 𝑗 moves yields a balanced
partition. To compute the two longest feasible prefixes of
𝑀𝑠𝑡 , 𝑀𝑡𝑠 , we can iterate simultaneously through both se-
quences and keep track of the so far exchanged vertex weight
𝑐 (𝑀𝑠𝑡 [0 : 𝑖])−𝑐 (𝑀𝑡𝑠 [0 : 𝑗]). If 𝑐 (𝑀𝑠𝑡 [0 : 𝑖])−𝑐 (𝑀𝑡𝑠 [0 : 𝑗]) <
0 and 𝑀𝑠𝑡 has moves left, we approve the next move from
𝑀𝑠𝑡 by incrementing 𝑖 . Otherwise we approve the next move
from 𝑀𝑡𝑠 . In each iteration we check whether the current
prefixes are feasible.
We parallelize this similar to a parallel merge algorithm.

In a first step, we compute cumulative vertex weights via
parallel prefix sums. Then the following algorithm is applied
recursively. We search for the cumulative weight of the mid-
dle of the longer sequence in the shorter sequence using
binary search. The left and right parts of the sequences can
be searched independently. If the right parts contain feasible
prefixes, we return them, otherwise we return the result from
the left parts. The top-level recursive call on the left parts
is guaranteed to find at least 𝑖 = 𝑗 = 0 (no move applied). If
𝑛 denotes the length of the longer sequence, this algorithm
has 𝑂 (log(𝑛)2) depth and 𝑂 (𝑛) work.

Since we are interested in the longest prefixes, we can omit
the recursive call on the left parts if the prefixes at the split-
ting points are feasible. Depending on the available budgets
𝐵𝑠 , 𝐵𝑡 this is fairly likely, since the cumulative weights are as
close as possible. Further, we can omit the recursive call on
the right parts if the cumulative weight at the middle of the
longer sequence exceeds the cumulative weight at the end
of the shorter sequence plus the appropriate budget. Note
that in this case the binary search finds the end and thus the
left recursion takes the entirety of the shorter sequence.
We stop the recursion and run the sequential algorithm

if both sequences have less than 2000 elements. This value
worked well in preliminary experiments. As we already com-
puted cumulative weights, we instead perform the simulta-
neous traversal from the ends of the sequences. Since we
expect to approve the majority of the saved moves, this is
likely faster.



Deterministic Parallel Hypergraph Partitioning

Algorithm 6: Perform Move
Input: vertex 𝑣 ∈ 𝑉 to be moved from block 𝑠 to 𝑡
attributed← 0
for 𝑒 ∈ I(𝑣) do

lock(𝑒)
if (Φ(𝑒, 𝑠) −= 1) = 0

attributed += 𝜔 (𝑒)
remove 𝑠 from Λ(𝑒)

if (Φ(𝑒, 𝑡) += 1) = 1
attributed −= 𝜔 (𝑒)
add 𝑡 to Λ(𝑒)

unlock(𝑒)
Π[𝑣] ← 𝑡

part-weight[𝑠] −= c(𝑣) // atomic
part-weight[𝑡] += c(𝑣) // atomic
return attributed

Further ImplementationDetails. If wemove vertices in
parallel, the computed gains are not correct, as moving a ver-
tex impacts the gains of its neighbors. However, we can still
obtain the sum of the exact gains using a technique dubbed
attributed gains [22] which is outlined in Algorithm 6, where
we also describe the data structure updates incurred by a
vertex move. For each incident hyperedge 𝑒 of the moved
vertex, we increment the pin count Φ(𝑒, 𝑡) in the target block
𝑡 and decrement Φ(𝑒, 𝑠) in the source block 𝑠 . If Φ(𝑒, 𝑠) be-
comes zero, we attribute an 𝜔 (𝑒) connectivity improvement,
similarly if Φ(𝑒, 𝑡) becomes one we attribute an 𝜔 (𝑒) loss.
The sum of these attributed gains is equal to the overall im-
provement, though each individual attributed gain may not
be correct. If the overall attributed gain is negative, we made
the solution worse. Since we cannot single out particular
bad moves, we instead revert to the partition before the sub-
round. A good strategy to avoid this in future iterations is
to increase the number of sub-rounds for the current level.
However, this happens predominantly in the last round on
the level, which is why we observed little impact.
To speed up the gain-calculation phase, we employ an

optimization that is commonly known as active sets. We
perform multiple rounds (consisting of sub-rounds) of the
refinement algorithm. Starting from the second round, only
neighbors of vertices that were moved in the previous round
are considered. We implement this by activating neighbors
of moved vertices, using compare-and-swap instructions
on an array storing the last round in which a vertex was
activated to avoid duplicate insertion. To achieve linear work
in the number of pins, we also use this mechanism to scan
each hyperedge at most once per round. At the beginning
of the next round, the collected neighbors are sorted for
determinism, before being split into sub-rounds.

3.5 Differences to BiPart
Wenowdiscuss differences between our algorithm and BiPart.
As already mentioned, BiPart uses recursive bipartitioning,
whereas we use direct 𝑘-way, which is superior regarding
solution quality [38]. Other than 2-way versus 𝑘-way and
using sub-rounds and active sets, the refinement algorithms
are largely the same, inspired by label propagation [34] and
SHP [28]. However, their refinement ignores vertex weights
(apply all moves of the shorter sequence and the same num-
ber from the longer), which leads to imbalanced partitions
that must be repaired by explicit rebalancing. This can be
slow and offers little control by how much solution quality
degrades. Our refinement guarantees balanced partitions at
all stages without rebalancing. Furthermore, BiPart uses
no mechanism to track actual improvements, whereas we
use attributed gains to detect and prevent quality-degrading
moves. Their coarsening scheme assigns each vertex to its
smallest incident hyperedge (ties broken by ID) and merges
all vertices assigned to the same hyperedge. This offers no
control over vertex weights and does not rank higher hy-
peredge weights as more important to not cut. Preventing
large vertex weights is important so that initial partitioning
can find balanced partitions and there is more leeway for
optimization in initial partitioning and refinement. BiPart
uses a parallel version of greedy graph growing [10] for ini-
tial partitioning, even though the coarsest hypergraphs are
small, where it is feasible to afford many diversified, parallel
repetitions of sequential algorithms.

4 Experiments
Our code is integrated in the Mt-KaHyPar hypergraph par-
titioning framework. It is written in C++17, uses Intel’s tbb
library for parallelization and is compiled with g++ version
9.2 with optimization level -O3 and native architecture opti-
mizations. The experiments are run on a 128-core (2 sock-
ets, 64 cores each) AMD EPYC Zen 2 7742 CPU clocked at
2.25GHz (3.4GHz turbo boost) with 1TB DDR4 RAM, and
256MB L3 cache.

4.1 Benchmark Set
We use the established benchmark set of 94 large hyper-
graphs that was assembled to evaluate Mt-KaHyPar, set B
in [22]. It contains hypergraphs from three different sources:
VLSI instances from the DAC 2012 Routability-Driven Place-
ment Contest [40], various large sparse matrices from the
SuiteSparse Matrix Collection [14], and three different rep-
resentations (literal, primal, dual) of SAT formulas from the
2014 SAT Competition [6]. We use 𝑘 ∈ {2, 4, 8, 16, 32, 64},
Y = 0.03, and partition each instance five times with different
random seeds. Since we have 94 instances, we cannot report
instance sizes for each of them, however these statistics are
available online1 in the supplementary material of [22]. The
1https://algo2.iti.kit.edu/heuer/alenex21/

https://algo2.iti.kit.edu/heuer/alenex21/


Lars Gottesbüren and Michael Hamann

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

performance ratio

2.0 2.2

Prepro-Sub5

Prepro-Sub7

Prepro-Sub10

Prepro-Sub13

Prepro-Sub16

1.00 1.05 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
a
ct

io
n

of
in

st
an

ce
s

1.5 2.0

Coarsen-Sub2

Coarsen-Sub3

Coarsen-Sub4

Coarsen-Sub5

Coarsen-Sub7

Coarsen-Sub10

Coarsen-Sub13

Coarsen-Sub16

1.00 1.05 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
a
ct

io
n

of
in

st
an

ce
s

1.5 2.0

SyncLP-Sub1

SyncLP-Sub3

SyncLP-Sub5

SyncLP-Sub7

SyncLP-Sub10

Figure 1. Performance profiles comparing the impact of the number of sub-rounds parameter on the different phases.

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
o
n

of
in

st
a
n

ce
s

1.5 2.0

performance ratio

4 6 8

NoPreprocessing

WithPreprocessing

Figure 2. Solution quality with and without preprocessing.

largest instances have between 107 and 108 vertices and hy-
peredges, as well as 108 to 2 ·109 pins. Dual SAT instances are
known for large hyperedges (with up to millions of pins), and
hence their corresponding primal counterparts are known
for large vertex degrees. Some sparse matrices are even more
skewed with a maximum degree of 107.

4.2 Configurations
We perform 5 rounds of local moving on each level during
refinement, 5 rounds before contracting during preprocess-
ing, and one round before contracting during coarsening.
We call the algorithm and configuration proposed in this
work Mt-KaHyPar-SDet, and the equivalent configuration
that uses the existing non-deterministic local moving algo-
rithms Mt-KaHyPar-S, where Det stands for determinism,
and S for speed. Additionally, we consider the configuration
Mt-KaHyPar-D (for default) from [22], which has a different
initial partitioning configuration that is non-deterministic [23]
and additionally uses parallel localized FM– amore advanced
refinement algorithm that is difficult to make deterministic.
The parallel n-level version from [23] is excluded here since
it represents a vastly different time-quality trade-off.

4.3 Performance Profiles
To compare the solution quality of different algorithms, we
use performance profiles [17]. Let A be the set of all algo-
rithms we want to compare, I the set of instances, and 𝑞𝐴 (𝐼 )
the quality of algorithm 𝐴 ∈ A on instance 𝐼 ∈ I. For each
algorithm 𝐴, we plot the fraction of instances (𝑦-axis) for
which 𝑞𝐴 (𝐼 ) ≤ 𝜏 · min𝐴′∈A 𝑞𝐴′ (𝐼 ), where 𝜏 is on the 𝑥-axis.

Achieving higher fractions at equal 𝜏-values is considered
better. For 𝜏 = 1, the 𝑦-value indicates the percentage of
instances for which an algorithm performs best. To inter-
pret these plots, we either look at how quickly the curve
converges towards 𝑦 = 1 (higher is better), or we look at the
maximum ratio for certain instance fraction quantiles. To
calculate the ratios, we take the average connectivity across
different seeds for each instance. In addition to the plots, we
report the 𝜏 ratios (performance ratios) at certain quantiles,
as well as their geometric mean.

4.4 Parameter Tuning
The supposedly most important parameter is the number of
sub-rounds used, as it offers a trade-off between scalability
(synchronization after each sub-round) and solution quality
(more up-to-date information). In the following, we show
that this is actually not a trade-off, as the number of sub-
rounds either does not affect solution quality, or using fewer
sub-rounds even leads to better quality.

Sub-rounds. We made an initial guess of 5 sub-rounds
for refinement, and 16 sub-rounds for coarsening and pre-
processing, which we use as a baseline configuration when
varying each parameter. Figure 1 shows the performance pro-
files. The largest impact is on the coarsening phase, where 2
sub-rounds performs the best. Such a small value is surpris-
ing, yet one possible explanation is that high-degree vertices
attract low-degree vertices too quickly if synchronization
happens too frequently. Using only 1 sub-round is excluded
here, since the clustering oscillates, which leads to coarsen-
ing converging long before the contraction limit is reached
and thus initial partitioning takes very long. Furthermore,
using 2 sub-rounds is about 12% slower than using 3 sub-
rounds in the geometric mean, again due to the same effect.
Since it gives only slightly worse solution quality, we choose
3 sub-rounds for coarsening in the main experiments. For
preprocessing, there is little impact on solution quality. Here
we stick with our original choice of 16 sub-rounds since the
floating-point-aggregation handling becomes substantially
slower if more vertices are in a sub-round due to the sort-
ing overhead. For refinement, there is again little difference,
where 1 sub-round narrowly emerges as the best choice. This



Deterministic Parallel Hypergraph Partitioning

101 102 103 104

total. seq time [s]

4

8

16

32

64
sp

ee
d

u
p

101 102 103

preprocessing. seq time [s]

101 102 103

coarsening. seq time [s]

100 102 104

initial partitioning. seq time [s]

4

8

16

32

64

sp
ee

d
u

p

100 101 102

refinement. seq time [s]

threads

4

8

16

32

64

128

Figure 3. Speedups for Mt-KaHyPar-SDet in total as well as its components separately. The x-axis shows the sequential time
in seconds, the y-axis the speedup. The lines are rolling geometric means (window size 50) of the per-instance speedups
(scatter).

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
a
ct

io
n

of
in

st
a
n

ce
s

Mt-KaHyPar-D

Mt-KaHyPar-SDet

Mt-KaHyPar-S

Zoltan

BiPart

1.5 2.0

performance ratio

10 100 1000 c

Figure 4. Performance profiles comparing the solution qual-
ity of BiPart, Zoltan, our algorithm Mt-KaHyPar-SDet and
the existing Mt-KaHyPar variants. The ❃ symbol marks seg-
mentation faults (6 instances for Zoltan).

is again surprising, as frequently synchronizing should allow
for more informed move-decisions. One cause we noticed is
that with more sub-rounds the pair-wise swaps did not have
sufficiently many moves to balance, as moves from earlier
sub-rounds are not considered. Using such moves as back-up
could be included in future versions of the algorithm.

Impact of Preprocessing. In Figure 2, we show that the
preprocessing phase is important for solution quality, which
justifies the overhead for the floating-point volume updates.

4.5 Scalability
In Figure 3 we show self-relative speedups of the overall al-
gorithm and the separate components, plotted against the se-
quential running time on that particular instance. In addition
to the scatter plot, we show rolling geometric means with
window size 50. The overall geometric mean speedups of
the full partitioning process are 3.91, 7.04, 12.79, 21.32, 28.73,
29.09 for 4, 8, 16, 32, 64, and 128 threads, respectively, and
the maximum speedups are 4.9, 8.7, 15.8, 29.1, 48.9, and 72.6.
Since our algorithms are memory-bound workload types
these are very good results. On about 37% of the runs with
4 threads, and 0.32% of runs with 8 threads, we observe
super-linear speedups which occur in all phases except ini-
tial partitioning. We identified two reasons for this. First,
even sequential runs had running time fluctuations, and
as super-linear speedups occur mostly for small sequential
times, the speedups are more easily affected. Second, while
most of the work performed is deterministic, in all phases
except initial partitioning we sort vectors that are filled in
non-deterministic order. Sorting algorithms have checks for
pre-sorted sub-sequences to speed up execution.

Looking at speedups for the indidivual phases, we see that
most phases exhibit very consistent speedups, even for small
sequential running times. Only initial partitioning exhibits



Lars Gottesbüren and Michael Hamann

1.00 1.05 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
ac

ti
o
n

o
f

in
st

a
n

ce
s

1.5 2.0

NonDetPreprocessing

Mt-KaHyPar-SDet

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

o
f

in
st

a
n

ce
s

1.5

performance ratio

2 3

NonDetCoarsening

Mt-KaHyPar-SDet

1.00 1.05 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
a
ct

io
n

of
in

st
an

ce
s

1.5 2.0

NonDetRefinement

Mt-KaHyPar-SDet

Figure 5. Performance profiles illustrating the quality impact of determinism in each component.

0 100 200 300 400 500 564

instances

100

101

102

re
la

ti
ve

sl
ow

d
ow

n

Mt-KaHyPar-D

Mt-KaHyPar-S

Zoltan

BiPart

Figure 6. Slowdown of the other algorithms relative to
Mt-KaHyPar-SDet, each using 64 threads. The instances on
the x-axis are sorted independently for each algorithm.

100 101 102 103 104

sequential time for BiPart [s]

2

4

6

sp
ee

d
u

p

threads

4

8

16

32

64

Figure 7. Speedups for BiPart.

sub-par speedups on larger instances, which is due to load
imbalance from long running sequential FM refinement.

With 128 threads (only rolling geometric means shown for
readability), the running times still improve, though not as
drastically. Only small instances show a slight slowdown, pre-
dominantly in initial partitioning. Starting at > 64 threads,
the second memory socket is used, so some slowdown is
expected. We use interleaved memory allocations to cope
with NUMA effects as much as possible.

4.6 Comparison with other Algorithms
Figure 4 shows performance profiles comparing our new
algorithm Mt-KaHyPar-SDetwith its non-deterministic vari-
ant Mt-KaHyPar-S, the stronger variant Mt-KaHyPar-Dwhich
uses parallel FM, the non-deterministic distributed algo-
rithm Zoltan [16] as well as the deterministic BiPart al-
gorithm [32]. In these experiments, each algorithm is run
with 64 threads. As expected, Mt-KaHyPar-D performs best,
contributing the best solutions on about 75% of the instances,
followed by Mt-KaHyPar-SDet and Mt-KaHyPar-S which
are similar, though Mt-KaHyPar-S is slightly better as it con-
verges faster towards 1. BiPart is far off, contributing only
6 of the best solutions, and its quality is off by more than
a factor of 2 on more than 50% of the instances; on some
instances even by three orders of magnitude. Zoltan is sit-
uated between BiPart and Mt-KaHyPar-S. In a direct com-
parison, Mt-KaHyPar-SDet computes better partitions than
BiPart on 551 of the 564 instances with a geometric mean
performance ratio of 1.0032 compared to BiPart’s 2.3805. In
Figure 6, we report relative slowdowns, i.e., the running time
of the other algorithm divided by running time of the base-
line Mt-KaHyPar-SDet. Mt-KaHyPar-S is faster on all but
158 instances and never by a factor of more than 2. BiPart
is between one and two orders of magnitude slower than the
two speed variants of Mt-KaHyPar. The reason for this is
shown in Figure 7 which shows self-relative speedups of
BiPart for increasing number of threads. Most speedups are
below 2 and the largest speedup is about 7.

4.7 The Cost of Determinism
In this section, we investigate in which phase the solution
quality of Mt-KaHyPar-SDet gets lost, by swapping out one
component for its non-deterministic counterpart, in each of
the plots in Figure 5. Interestingly, the biggest quality loss
comes from coarsening, whereas deterministic preprocessing
even improves quality. The loss in refinement is expected due
to the lack of up-to-date gains and the inability to leverage
zero gain moves for rebalancing and diversification [22].



Deterministic Parallel Hypergraph Partitioning

For coarsening, the results are unexpected, particularly
because similar local moving algorithms [25] are not as af-
fected by out-of-date gains. One reason for this is that multi-
ple global rounds are performed, where vertices can back out
of their first cluster assignment. We only use one round and
even prematurely terminate the round to avoid coarsening
too aggressively. Performing a second round, where only al-
ready clustered vertices may reassess their assignment, may
be beneficial and we leave this for future research. Addition-
ally, we unsuccessfully experimented with several features
of the non-deterministic coarsening such as adapting hyper-
edge sizes to the current clustering in the rating function
and stable leader chasing, where oscillations (vertices join-
ing each other) and cyclic joins are resolved by merging all
involved vertices.

5 Conclusion and Future Work
We presented the first scalable, deterministic parallel hyper-
graph partitioning algorithm. Our experiments show that
determinism does incur sacrifices regarding both solution
quality and running time compared to the previous non-
deterministic version, but these are small enough to justify
if determinism is desirable. Future work includes incorpo-
rating determinism into additional refinement algorithms,
improving performance on multi-socket machines, and im-
plementing these techniques for distributed memory.

For example for flow-based refinement [19, 21] this is well
within reach, as scheduling on block-pairs can synchronize
after each block was involved in a refinement step, and the
flow algorithms need not be deterministic since the used cuts
are unique. Parallel localized FM seems like a much more
difficult target, though a promising approach may be to stick
with approving expansion steps at synchronization points.
Additionally, handling extremely large 𝑘 and speeding up
initial partitioning is possible by employing the deep multi-
level approach [20] instead of recursive bipartitioning during
initial partitioning.

Acknowledgments
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under grants
WA 654/19-2 and WA 654/22-2.

References
[1] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian

Schlag. 2017. Engineering a Direct k-way Hypergraph Partitioning
Algorithm. In 19th Workshop on Algorithm Engineering & Experiments
(ALENEX). SIAM, 28–42. https://doi.org/10.1137/1.9781611974768.3

[2] Charles J. Alpert. 1998. The ISPD98 Circuit Benchmark Suite. In
International Symposium on Physical Design (ISPD). 80–85. https:
//doi.org/10.1145/274535.274546

[3] Charles J. Alpert and Andrew B. Kahng. 1995. Recent Directions
in Netlist Partitioning: A Survey. Integration 19, 1-2 (1995), 1–81.
https://doi.org/10.1016/0167-9260(95)00008-4

[4] Konstantin Andreev and Harald Räcke. 2004. Balanced Graph Parti-
tioning. In SPAA 2004: Proceedings of the Sixteenth Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, June 27-30, 2004,
Barcelona, Spain. 120–124. https://doi.org/10.1145/1007912.1007931

[5] Cevdet Aykanat, Berkant Barla Cambazoglu, and Bora Uçar. 2008.
Multi-level Direct k-Way Hypergraph Partitioning With Multiple Con-
straints and Fixed Vertices. Journal of Parallel Distributed Computing
68, 5 (2008), 609–625. https://doi.org/10.1016/j.jpdc.2007.09.006

[6] Anton Belov, Daniel Diepold, Marijn Heule, and Matti Järvisalo. 2014.
The SAT Competition 2014. http://www.satcompetition.org/2014/.

[7] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian
Shun. 2012. Internally deterministic parallel algorithms can be fast.
In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2012, New Orleans, LA, USA,
February 25-29, 2012, J. Ramanujam and P. Sadayappan (Eds.). ACM,
181–192. https://doi.org/10.1145/2145816.2145840

[8] Vincent D. Blondel, Jean Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. 2008. Fast Unfolding of Communities in Large Networks.
Journal of Statistical Mechanics: Theory and Experiment 10 (2008). https:
//doi.org/10.1088/1742-5468/2008/10/P10008

[9] Robert L Bocchino, Vikram Adve, Sarita Adve, and Marc Snir. 2009.
Parallel ProgrammingMust BeDeterministic ByDefault. Usenix HotPar
6 (2009).

[10] Ümit V. Catalyurek and Cevdet Aykanat. 1999. Hypergraph-
Partitioning-based Decomposition for Parallel Sparse-Matrix Vector
Multiplication. IEEE Transactions on Parallel and Distributed Systems
10, 7 (1999), 673–693. https://doi.org/10.1109/71.780863

[11] Guojing Cong and David A. Bader. 2005. An Empirical Analysis of
Parallel Random Permutation Algorithms ON SMPs. In Proceedings
of the ISCA 18th International Conference on Parallel and Distributed
Computing Systems, September 12-14, 2005 Imperial Palace Hotel, Las Ve-
gas, Nevada, USA, Michael J. Oudshoorn and Sanguthevar Rajasekaran
(Eds.). ISCA, 27–34.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2001. Introduction to Algorithms (second ed.). MIT Press.

[13] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. 2010.
Schism: a Workload-Driven Approach to Database Replication and
Partitioning. Proceedings of the VLDB Endowment 3, 1 (2010), 48–57.
https://doi.org/10.14778/1920841.1920853

[14] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse
Matrix Collection. ACM Trans. Math. Software 38, 1 (11 2011), 1:1–1:25.
https://doi.org/10.1145/2049662.2049663

[15] Mehmet Deveci, Kamer Kaya, and Ümit V. Çatalyürek. 2013. Hy-
pergraph Sparsification and Its Application to Partitioning. In 42nd
International Conference on Parallel Processing, ICPP 2013, Lyon, France,
October 1-4, 2013. 200–209. https://doi.org/10.1109/ICPP.2013.29

[16] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling,
and Ümit V. Catalyürek. 2006. Parallel Hypergraph Partitioning for
Scientific Computing. In 20th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2006), Proceedings, 25-29 April 2006, Rhodes
Island, Greece. IEEE. https://doi.org/10.1109/IPDPS.2006.1639359

[17] Elizabeth D. Dolan and Jorge J. Moré. 2002. Benchmarking Optimiza-
tion Software with Performance Profiles. Mathematical Programming
91, 2 (2002), 201–213. https://doi.org/10.1007/s101070100263

[18] Charles M. Fiduccia and Robert M. Mattheyses. 1982. A Linear-Time
Heuristic for Improving Network Partitions. In Proceedings of the 19th
Design Automation Conference, DAC ’82, Las Vegas, Nevada, USA, June
14-16, 1982. 175–181. https://doi.org/10.1145/800263.809204

[19] Lars Gottesbüren, Michael Hamann, and Dorothea Wagner. 2019. Eval-
uation of a Flow-Based Hypergraph Bipartitioning Algorithm. In
27th European Symposium on Algorithms (ESA). 52:1–52:17. https:
//doi.org/10.4230/LIPIcs.ESA.2019.52

[20] Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and
Daniel Seemaier. 2021. Deep Multilevel Graph Partitioning. (2021).

https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1145/274535.274546
https://doi.org/10.1145/274535.274546
https://doi.org/10.1016/0167-9260(95)00008-4
https://doi.org/10.1145/1007912.1007931
https://doi.org/10.1016/j.jpdc.2007.09.006
http://www.satcompetition.org/2014/
https://doi.org/10.1145/2145816.2145840
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1109/71.780863
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/ICPP.2013.29
https://doi.org/10.1109/IPDPS.2006.1639359
https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/800263.809204
https://doi.org/10.4230/LIPIcs.ESA.2019.52
https://doi.org/10.4230/LIPIcs.ESA.2019.52


Lars Gottesbüren and Michael Hamann

https://arxiv.org/abs/2105.02022
[21] Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea

Wagner. 2020. Advanced Flow-Based Multilevel Hypergraph Par-
titioning. In 18th International Symposium on Experimental Algo-
rithms, SEA 2020, June 16-18, 2020, Catania, Italy. 11:1–11:15. https:
//doi.org/10.4230/LIPIcs.SEA.2020.11

[22] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag.
2021. Scalable Shared-Memory Hypergraph Partitioning. In Pro-
ceedings of the Symposium on Algorithm Engineering and Experi-
ments, ALENEX 2021, Virtual Conference, January 10-11, 2021. 16–30.
https://doi.org/10.1137/1.9781611976472.2

[23] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag.
2021. Shared-Memory n-level Hypergraph Partitioning. arxiv preprint
(2021). https://arxiv.org/abs/2104.08107

[24] Johnnie Gray and Stefanos Kourtis. 2021. Hyper-Optimized Tensor
Network Contraction. Quantum 5 (2021), 410.

[25] Michael Hamann, Ben Strasser, Dorothea Wagner, and Tim Zeitz. 2018.
Distributed Graph Clustering Using Modularity and Map Equation. In
European Conference on Parallel Processing (Euro-Par). 688–702. https:
//doi.org/10.1007/978-3-319-96983-1_49

[26] Tobias Heuer and Sebastian Schlag. 2017. Improving Coarsening
Schemes for Hypergraph Partitioning by Exploiting Community Struc-
ture. In 16th International Symposium on Experimental Algorithms
(SEA). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 21:1–21:19.
https://doi.org/10.4230/LIPIcs.SEA.2017.21

[27] Guy L. Steele Jr. 1990. Making Asynchronous Parallelism Safe for the
World. In Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, San Francisco, California, USA,
January 1990, Frances E. Allen (Ed.). ACM Press, 218–231. https:
//doi.org/10.1145/96709.96731

[28] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon
Shalita, Yaroslav Akhremtsev, and Alessandro Presta. 2017. Social
Hash Partitioner: A Scalable Distributed Hypergraph Partitioner. Pro-
ceedings of the VLDB Endowment 10, 11, 1418–1429. https://doi.org/10.
14778/3137628.3137650

[29] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar.
1999. Multilevel Hypergraph Partitioning: Applications in VLSI Do-
main. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
7, 1 (1999), 69–79. https://doi.org/10.1109/92.748202

[30] Edward A. Lee. 2006. The Problem with Threads. Computer 39, 5
(2006), 33–42. https://doi.org/10.1109/MC.2006.180

[31] Thomas Lengauer. 1990. Combinatorial Algorithms for Integrated Cir-
cuit Layout. John Wiley & Sons, Inc.

[32] Sepideh Maleki, Udit Agarwal, Martin Burtscher, and Keshav Pingali.
2021. BiPart: A Parallel and Deterministic Multilevel Hypergraph
Partitioner. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 161–174. https://doi.
org/10.1145/3437801.3441611

[33] Zoltán Ádám Mann and Pál András Papp. 2014. Formula Partitioning
Revisited. In 5th Pragmatics of SAT Workshop. 41–56. https://doi.org/
10.29007/9skn

[34] Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2017.
Parallel Graph Partitioning for Complex Networks. IEEE Trans-
actions on Parallel and Distributed Systems 28, 9 (2017), 2625–2638.
https://doi.org/10.1109/TPDS.2017.2671868

[35] Walter Lau Neto, Max Austin, Scott Temple, Luca G. Amarù, Xifan
Tang, and Pierre-Emmanuel Gaillardon. 2019. LSOracle: a Logic
Synthesis Framework Driven by Artificial Intelligence. In Proceed-
ings of the International Conference on Computer-Aided Design, IC-
CAD 2019, Westminster, CO, USA, November 4-7, 2019. 1–6. https:
//doi.org/10.1109/ICCAD45719.2019.8942145

[36] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near
Linear Time Algorithm to Detect Community Structures in Large-Scale
Networks. Physical Review E 76, 3 (2007), 036106. https://doi.org/10.

1103/PhysRevE.76.036106
[37] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke,

Peter Sanders, and Christian Schulz. 2016. 𝑘-way Hypergraph Par-
titioning via n-Level Recursive Bisection. In 18th Workshop on Al-
gorithm Engineering & Experiments (ALENEX). SIAM, 53–67. https:
//doi.org/10.1137/1.9781611974317.5

[38] Horst D. Simon and Shang-Hua Teng. 1997. How Good is Recursive
Bisection? SIAM Journal of Scientific Computing 18, 5 (1997), 1436–1445.
https://doi.org/10.1137/S1064827593255135

[39] Christian L. Staudt and Henning Meyerhenke. 2016. Engineering
Parallel Algorithms for Community Detection in Massive Networks.
IEEE Transactions on Parallel and Distributed Systems 27, 1 (01 2016),
171–184. https://doi.org/10.1109/TPDS.2015.2390633

[40] Natarajan Viswanathan, Charles J. Alpert, Cliff C. N. Sze, Zhuo Li, and
Yaoguang Wei. 2012. The DAC 2012 Routability-Driven Placement
Contest and Benchmark Suite. In 49th Conference on Design Automation
(DAC). ACM, 774–782. https://doi.org/10.1145/2228360.2228500

https://arxiv.org/abs/2105.02022
https://doi.org/10.4230/LIPIcs.SEA.2020.11
https://doi.org/10.4230/LIPIcs.SEA.2020.11
https://doi.org/10.1137/1.9781611976472.2
https://arxiv.org/abs/2104.08107
https://doi.org/10.1007/978-3-319-96983-1_49
https://doi.org/10.1007/978-3-319-96983-1_49
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.1145/96709.96731
https://doi.org/10.1145/96709.96731
https://doi.org/10.14778/3137628.3137650
https://doi.org/10.14778/3137628.3137650
https://doi.org/10.1109/92.748202
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1145/3437801.3441611
https://doi.org/10.1145/3437801.3441611
https://doi.org/10.29007/9skn
https://doi.org/10.29007/9skn
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/ICCAD45719.2019.8942145
https://doi.org/10.1109/ICCAD45719.2019.8942145
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1137/S1064827593255135
https://doi.org/10.1109/TPDS.2015.2390633
https://doi.org/10.1145/2228360.2228500

	Abstract
	1 Introduction
	1.1 Multilevel Partitioning
	1.2 Non-Determinism in Local Moving
	1.3 Contributions

	2 Preliminaries
	3 Deterministic Parallel Multilevel Partitioning
	3.1 Preprocessing
	3.2 Coarsening
	3.3 Initial Partitioning
	3.4 Refinement
	3.5 Differences to BiPart

	4 Experiments
	4.1 Benchmark Set
	4.2 Configurations
	4.3 Performance Profiles
	4.4 Parameter Tuning
	4.5 Scalability
	4.6 Comparison with other Algorithms
	4.7 The Cost of Determinism

	5 Conclusion and Future Work
	Acknowledgments
	References

