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One-Shot Active Learning for Globally Optimal Battery
Electrolyte Conductivity**
Fuzhan Rahmanian,[a, b] Monika Vogler,[a, b] Christian Wölke,[c] Peng Yan,[c] Martin Winter,[c, d, e]

Isidora Cekic-Laskovic,[c] and Helge S. Stein*[a, b]

Non-aqueous aprotic battery electrolytes need to perform well
over a wide range of temperatures in practical applications.
Herein we present a one-shot active learning study to find all
conductivity optima, confidence bounds, and relating formula-
tion trends in the temperature range from � 30 °C to 60 °C. This
optimization is enabled by a high-throughput formulation and
characterization setup guided by one-shot active learning
utilizing robust and heavily regularized polynomial regression.

Whilst there is an initially good agreement for intermediate and
low temperatures, there is a need for the active learning step to
improve the model for high temperatures. Optimized electro-
lyte formulations likely correspond to the highest physically
possible conductivities within this formulation system when
compared to literature data. A thorough error propagation
analysis yields a fidelity assessment of conductivity measure-
ments and electrolyte formulation.

Introduction

High-conductivity electrolytes in secondary batteries are of
paramount importance for ensuring high performance and
reliability of each battery cell chemistry.[1] In specialty applica-
tions such as aerospace or stationary storage in remote
locations, bespoke electrolytes are however necessary.[2] High
or low temperatures make the electrolyte a limiting perform-
ance factor,[1–4] e.g., in electric vehicles which suffer from
relatively narrow optimal temperature windows of 15 °C to
35 °C.[1] Many studies[3–5] have thus been conducted to evaluate
lithium-ion battery (LIB) electrolytes at low temperatures in
respect to their conductivity. There exists only a limited number
of electrolyte studies that consider wide temperature ranges[6–9]

as recently reviewed by Lin et al.[10] Emblematic are the studies
of Smart et al.[6] and Fan et al.[7] that both evaluate a limited

number of formulations between � 60 °C to 20 °C and � 125 °C
to 70 °C, respectively. The studies by Dave et al.[11,12] consider a
wide range of electrolyte formulations but within a narrow
range of temperatures. Utilizing an existing dataset[13,14] span-
ning a wide range of formulations and temperatures, we aim to
perform as few as possible additional experiments to discover
formulations with maximum conductivity for a wide range of
temperatures. This is performed in a workflow called one-shot
active learning. This means that a machine learning algorithm
is used to suggest the most promising subsequent experiment
for improving the outcome and model. Besides aiming to
discover optimal electrolyte formulations for a range of temper-
atures, we also seek to evaluate whether there exists a globally
optimal electrolyte. Although, conductivity optima can be
predicted from the existing dataset using a machine learning
model, we believe that more physically meaningful predictions
can be obtained upon re-training of the model from one-shot
active learning suggestions. From the post shot model, we then
seek to deduce insights on the effects of different parameters
on the conductivity values, which could not be generated
solely based on the initially available dataset.

Compared to previous deployments of machine learning[15]

in the field of battery electrolyte optimization,[11] we investigate
whether an improvement in conductivity may already be
achieved through a single iteration cycle. This approach is
mostly analogous to the workflow of Attia et al.[16] for fast
charging protocol optimization, as herein we are using a high-
throughput electrolyte formulation robot and a machine
learning based optimizer, that were not integrated and in fact
run at two different locations asynchronously. This enabled us
to deploy active learning without requiring the experimental
equipment to have a direct interface to our active learning
infrastructure, potentially allowing a greater adoption of this
research paradigm.[17,18] This one-shot active learning study
aims to find optimally conducting electrolyte formulations at
temperatures ranging between � 30 °C and 60 °C with as few
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extra measurements as necessary. Opposed to applying
machine learning algorithms to conclude from existing data-
sets, active learning[18,19] is integrated in the data acquisition
process with the idea of improving the model through
intelligent suggestion of additional measurements. Usually,
optimization loops in materials science[12,20] are run over several
iterations, the approach herein, however, aims to only perform
a single iteration to achieve an improvement in conductivity
and potentially reduction in uncertainty. The existing dataset of
lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC),
ethyl methyl carbonate (EMC) and propylene carbonate (PC)
was totaling 80 electrolyte formulations with measured con-
ductivities at � 30 to 60 °C.[13,14] The suggestion of new
formulations was fully exploitative,[20] i. e., requested formula-
tions were selected solely based on their predicted conductivity
at a respective temperature with complete neglect of model
uncertainty. Active learning in fully exploitative mode has been
shown to significantly increase the so-called “enhancement
factor” by Rohr et al.[20] The enhancement factor describes the
increase in probability of finding an optimum given a fixed
budget of experiments. There are other research modes[20] not
explored in this study. However, a recent study by Flores
et al.[13] focused on the “understanding driven” research mode.
Their symbolic regression approach[13] works well for high
temperatures but fails for highly concentrated liquid electro-
lytes at low temperatures, indicating a change in the
physicochemical behavior. Organizationally, this study is the
human-in-the-loop version of the fully autonomous active
learning study presented by Rahmanian et al.[21]

Results and Discussion

Pre-shot model training

The dataset DS1 used herein is the same underlying the study
presented by Flores et al.[13] using the formulation and charac-
terization setup reported by Krishnamoorthy et al.[14] The herein
presented one-shot active learning approach is model free,
meaning that we do not utilize any physics or chemistry
knowledge except correct pose of the input (formulation) and
output (conductivity) and a compartmentalization of the
problem by temperature.

The global trends of electrolyte conductivity, captured by
our model M1, are shown in Figure 1, which illustrates the
conductivity (σ) over rLiPF6

and rPC at � 30 °C, � 10 °C, 20 °C, and
60 °C (additional temperatures see S2). For all considered
temperatures the R2 score is approximately 0.73–0.80, which
indicates a good fit. However, the degree of the polynomial
used for the fit is higher for the high temperatures compared
to low temperatures. The orange datapoints in Figure 1 indicate
the formulations covered by dataset DS1.

Overall, conductivity is strongly correlated with temperature
as expected from Debye-Hückel-Onsager (DHO) theory,[13,22]

however this theory is only valid for dilute solutions. Con-
sequently, we observe low conductivity for rLiPF6

>0.8 or rLiPF6

<0.1. In general, we observe the maximum conductivity

shifting towards higher conducting salt concentrations at
higher temperatures as it was reported by Landesfeind et al.[23]

and Ding et al.[24,25] for various electrolyte formulations. The
lowest overall measured conductivity is 194 mScm� 1 at � 30 °C.
Conductivity is showing a generally less pronounced depend-
ence on rPC than on rLiPF6

. This observation correlates with the
concentration-conductivity relationship that is primarily de-
pendent on conducting salt concentration.[25]

Going from low to high temperatures, the system seems to
allow for higher rPC and rLiPF6

while yielding a high conductivity
which is in good agreement with established theory.[25,26] The
model M1 also seems to prefer little presence of PC at low
temperatures for higher conductivity.[25,26] Our finding is in
good agreement with Ding et al.[26] who report, similar trends
with temperature.[27] They discuss the higher EC and PC
contents by an increase in the dielecteric constant and
consequently higher conductivity.[27,28] At 20 °C, a narrow global
optimum at relatively high rPC � 0:35 is observed. The plot of
the conductivity corresponding to 60 °C shows a very small
region with high conductivity around rPC �0:35 and rLiPF6

�0:38,
and additionally a maximum at rPC �0:3 and very high
rLiPF6

�1:2. All but the � 10 °C optima exist near unsampled
formulations. Based on the prediction of the trained model M1,
10 samples with highest predicted conductivity for each
temperature were selected and reported to the experimental-
ists. The requested and considered formulations can be found
in the https://github.com/BIG-MAP/electrolyte_optimization_
one_shot_active_learning repository.

One-shot predictions and measurements

Utilizing the above results obtained from M1 (see Figure 1), we
predict 10 top percentile formulations at every temperature,
resulting in a total of 100 electrolyte formulations. These
formulations were communicated to the experimentalists
omitting the predicted conductivity. The experimentalists
randomly selected 24 formulations from these 100 suggestions.
These selected formulations correspond to optimization tem-
peratures of � 30 °C, 20 °C and 60 °C. Conductivity measure-
ments were conducted for the selected formulations covering
all the temperatures between � 30 °C and 60 °C in steps of 10 °C
analogously to the generation of the dataset DS1. The data
obtained from the measurement of these 24 formulations
constitute dataset DS2. Figure 2 compares the M1 predicted vs.
measured conductivities for the 24 newly measured formula-
tions. There is a small deviation between the requested and
measured formulations due to slight imperfections in the
formulation process. Hence, Figure 2 shows the conductivity
prediction at the actually formulated composition. Inaccuracies
occurring during the solid and liquid dispensing processes are
technical in nature and are negligible given the fidelity assess-
ment presented in the section “Interactions and method
fidelity”. The error bar illustrates the conductivity error by
reporting the maximum and minimum values among the
repeated measurements.
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Figure 2(a) shows predicted and measured conductivities at
a temperature of � 30 °C. Formulations predicted to be
optimally conducting electrolytes at � 30 °C are verified exper-
imentally to be among the best conducting at this temperature.
The evaluation metric here should therefore not be the exact
value prediction, as all originate from a narrow distribution of
only 1% variance, which is significantly lower than the
experimental noise, i. e., all points are virtually indistinguishable.
All but one formulation optimized for � 30 °C fall within the top
percentile, i. e., the success rate is 87%, see also Figure 4. The
formulations optimized for 20 °C and 60 °C exhibit a signifi-
cantly lower conductivity at � 30 °C, also with relatively large
deviations between M1 prediction and measurement. This data
suggests that there exists no electrolyte with a globally optimal
conductivity. Differences in performance between formulations
optimized for the temperature of interest and those not
optimized for this temperature can amount up to 100%.

The measured conductivities for the requested formulations
are added as prior knowledge and the model is retrained using
dataset DS3.

Post-shot model refinement

After one-shot active learning and the Bayesian hyperpara-
meter tuning[29] as described in the methods section, the
models are significantly improved. The predicted trends for low
temperatures changed only marginally, whereas the improve-
ments for temperatures of 20 °C and 60 °C are significant, as
shown in Figure 3. Additional temperatures can be found in S3.
Together with the low temperature trends there is now a
coherent trend across temperatures suggesting higher rPC and
rLiPF6

for optimal conductivity at elevated temperatures.[23,26]

Also, the range of formulations, for which the maximum

Figure 1. Trends in electrolyte conductivity at a) � 30 °C, b) � 10 °C, c) 20 °C, d) 60 °C as obtained from model M1. Orange data points represent the rPC and
rLiPF6

position of formulations, which were experimentally measured. There is an overall incremental trend for higher rLiPF6
from � 30 °C to � 10 °C and narrow

optima in electrolyte conductivity at higher rPC at unsampled formulations for the higher temperatures. The red boxes in the plots represent the range of
formulations corresponding to the top percentile of the conductivity as obtained from the predictions of the model M1.
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conductivity was predicted by M1, changed significantly with
M2. Therefore, the region of the formulations constituting the
top percentile obtained from M1, represented as a red

rectangle in Figure 3, is far from the top percentile of the
improved model M2.

The improvement of the model’s predictions towards a
more physically meaningful trend highlights the significance of

Figure 2. Comparison between measured and predicted conductivity values at a) � 30 °C, b) � 10 °C, c) 20 °C, and d) 60 °C for the formulations selected based
on the predictions of model M1. Orange points represent the mean values of measured conductivities with error bars relating to the min/max spread from
repeated measurements. The high accuracy for low temperature predictions is best observed in a) where the formulations predicted to be best at 60 °C and
the ones optimized for conductivity at 20 °C perform worse at � 30 °C. Overall, this suggests, that there exists no globally optimal electrolyte and performance
can vary by up to a factor of two.

Figure 3. Trends in electrolyte conductivity after one-shot active learning for a) 20 °C, and b) 60 °C as predicted by M2. The red boxes correspond to the top
percentile, which was obtained from M1. The selected formulations which were suggested by M1 and used for conductivity determination (DS2), were added
to the training set as an additional prior knowledge (DS3). Model parameter tuning and uncertainty measurement were implemented at this stage of active
learning (see S4). Trends for additional temperatures can be seen in the S3.
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active learning in model refinement as we only added an
additional 30% of data points to the dataset whilst qualitatively
improving the model. Comparing these results to the symbolic
regression model by Flores et al.[13] reveals significant differ-
ences in the mass ratios required for maximum conductivity.

Figure 4 shows the conductivity as predicted by M1 and
measured experimentally for the formulations comprised in
dataset DS2 at the temperature for which the respective
formulation was optimized. Furthermore, the top percentiles
obtained from M1 (red areas) and M2 (green areas) are shown.
Overall, the optimization and prediction worked best at low
temperatures. The measured conductivity values are close to
the predicted ones at � 30 °C. Hence, the measured values are
within the top percentile of M1. Unsurprisingly, the top
percentile does not change significantly after the one-shot
active learning and the formulations are also within the top
percentile of M2. From the plots corresponding to 20 °C and
60 °C, a poorer performance is observed. At 20 °C, the model
significantly overestimates the highest conductivity. The meas-
ured conductivity values at 20 °C remain below the predictions
and below the top percentile. The results for 60 °C reveal a less
severe deviation between the predictions and the measured
conductivity values. However, the measured values are still
below the predicted ones and below the top one percentiles of
both, M1 and M2. This can be understood based on the results
obtained from Figure 3. Therefore, the success rate is only
about 12% as only one formulation is within the pre-shot top
percentile. The significant changes in the position of the
conductivity maxima upon one-shot active learning result in
the formulations contained in dataset DS2 not being the
highest conducting ones anymore. The range of the top
percentile in conductivity does not change severely, however
the formulations corresponding to these conductivity values
differ strongly. This indicates that M1, which is trained solely on
DS1, is not fit well for temperatures around 20 °C and above.
Based on the differences between Figure 3 and Figure 4, it can
be assumed, that the quality of the models significantly
increases through active learning.

The drastic improvement of the model becomes even more
obvious upon plotting the temperature maxima with the
spread of the top percentile as displayed in Figure 5. Before the

learning shot, the optima followed no physically meaningful or
interpretable trend whereas after adding the extra data
contained in DS2, the very fine trends in optima towards higher
rLiPF6

and slightly more rPC become obvious. Uncertainty
quantification was performed using the jackknife plus[30,31]

strategy resulting in an average 95% prediction interval of
3*10� 1 mScm� 1 (see S4). However, the incorporation of the
model agnostic prediction technique allows the measurement
of aleatoric and epistemic uncertainty at any point. Comparing
the results for electrolyte conductivity found by our one-shot
active learning approach to literature such as Ding et al.[24] at
60 °C, and � 30 °C suggests that the herein reported maxima
correspond to the globally maximum conductivity in this
system, which is approximately 12 mScm� 1 and 1.9 mScm� 1,
respectively. In another study, Landesfeind et. al.[23] indicate
global maxima of 4.7 mScm� 1, 7.6 mScm� 1 and 9.25 mScm� 1 at
� 10 °C, 20 °C, and 30 °C, respectively. Their results are in
agreement with our findings.

Interactions and method fidelity

Through the availability of a machine learning model M2 that
accurately and precisely predicts the trends in conductivity for
all temperatures, an assessment of confounding inputs and
method fidelity can be pursued. The model has two inputs: rPC

and rLiPF6
, and through the polynomial nature an analytical

derivation is facile. The post-shot regularized polynomial
equation [Eq. (1)] for conductivity (s) post hyperparameter
tuning is:

s ¼ c0 þ c1rPC þ c2rLiPF6
þ c3r

2
PCþ

c4rPCrLiPF6
þc5r

2
LiPF6
þc6r

3
PCþc7r

2
PCrLiPF6

þc8rPCr
2
LiPF6
þc9r

3
LiPF6

(1)

i. e., a polynomial of degree 3 with the individual parameters
shown in Table 1. Some coefficients change drastically with
temperature whilst others barely change. Upon careful compar-
ison to Equation (1), one can see that those coefficients
corresponding to a conducting-salt-ratio-only term, scale al-
most exponentially whilst all others, i. e., solvent-ratio-only and

Figure 4. Predicted and measured conductivities for the formulations contained in dataset DS2 optimized regarding conductivity at the temperatures a)
� 30 °C, b) 20 °C and c) 60 °C. Each subfigure shows the data for the formulations optimized at the respective temperature. Predictions originating from M1 are
shown. Additionally, the range of conductivities spanned by the top percentile as predicted by M1 (red areas) and M2 (green areas) are shown.
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solvent-conducting-salt-ratio terms scale sigmoidal with tem-
perature (see S6b). These interaction coefficients allow for
further research into the relationship governing the solvation
shell properties upon electrolyte solvent variation.[32]

A long-lasting debate of how precise the electrolyte
formulation needs to be answered using model M2. An error
propagation estimation can be done when the gradient of a
function and the uncertainty of the underlying input is known.
From the herein reported measurements, we know the
uncertainty of the conductivity and we can easily calculate the
gradient of the conductivity w.r.t. the formulation. Here, we
take the median uncertainty of the conductivity measurements
(Dsexp =0.3527 mScm� 1) and divide it by the largest gradient
of conductivity w.r.t. to formulation (both uni- and bivariate) at
every temperature (Figure 6, Table 2) to obtain a conservative
estimate of the maximally allowed formulation error [Eq. (2)]
that would be on the same order of magnitude like the
measurement noise. Unsurprisingly one can have larger errors
in solvent-to-co-solvent ratios as in conducting-salt-to-solvent
ratios. Interesting, however, is that an error of about 10% in the
solvents is acceptable for most temperatures. Dosing of the
conducting salt should however be as precise as possible as at
high temperatures the error should not exceed 1.5%.

Figure 5. Trends of maximum conductivity a) before (M1) and b) after (M2) one-shot active learning and model optimization. Each point corresponds to the
mean conductivity value of the top percentile obtained from the respective model trained for the temperature of interest. The error bars represent the spread
of rLiPF6

and rPC within the top percentile. Before introduction of the additional 24 electrolyte formulations (DS2), the trends are neither physically nor
qualitatively interpretable. Overall, higher rLiPF6

is needed at higher temperatures to reach the optima, with a minutely higher rPC from 20 °C onward.

Table 1. Polynomial coefficients incorporating ridge regularization after one-shot active learning for T= � 30 °C to 60 °C.

T [°C] / c×10� 3 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

� 30 1:0 � 0:3 5:6 0:9 � 2:3 � 9:7 � 0:6 1:4 0:6 4:0
� 20 1:2 � 0:3 8:9 0:9 � 3:2 � 13:6 � 0:7 1:9 0:8 5:1
� 10 1:4 1:0 12:1 0:1 � 3:9 � 17:1 � 0:3 2:4 0:9 6:1
0 1:5 0:4 15:9 � 0:1 � 4:9 � 21:2 � 0:4 3:3 0:9 7:3
10 1:5 1:2 20:4 � 0:9 � 5:9 � 26:1 � 0:4 4:2 0:7 8:8
20 1:6 1:7 25:0 � 1:4 � 6:8 � 31:0 � 0:3 5:1 0:5 10:5
30 1:6 2:7 29:7 � 3:2 � 6:9 � 35:8 0:4 5:6 0:0 12:2
40 1:6 3:0 35:1 � 3:2 � 7:3 � 41:9 1:0 6:2 � 0:6 14:6
50 1:6 3:2 41:3 � 3:2 � 7:6 � 49:5 0:0 6:4 � 0:7 17:6
60 1:6 3:0 47:4 � 2:5 � 6:9 � 57:2 � 0:7 6:6 � 1:8 21:1

Figure 6. The maximum formulation error calculated by Equation (2) with
the median Dsexp of approximately 0.352 mScm� 1 with respect to uni- and
bivariate combination of rLiPF6

and rPC between � 30 °C and 60 °C.
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(2)

Conclusion

This study shows the utility of active learning to improve model
accuracy and precision on complex data with few examples.
The pre-shot model M1 significantly underfit the data such that
obtained trends did not follow a physically meaningful trend.
After one-shot active learning, the discovered model M2
produced smooth optima across the temperatures under
investigation even though temperature was not a parameter in
model training. Obtained trends in the optima suggest that for
low temperatures, the conducting salt concentration should be
minimized whilst for higher temperatures the salt concentra-
tion should be increased. We find that a globally optimally
conducting electrolyte does not exist as those optimal at low
temperatures perform poorly at higher temperatures. Those
electrolytes optimized for near room temperature show
approximately 20% less conductivity at low and about half the
conductivity at high temperatures compared to the formula-
tions optimized for the respective temperature range. Through
the availability of an easily differentiable model M2, we can
discuss electrolyte solvent-conducting salt interactions and find
mostly sigmoidal or exponential temperature trends hinting at
two different mechanisms. The differentiable model M2 also
allows an elucidation of maximally allowed formulation errors
which lie at approximately 10% for the solvent composition
and 1.5% for the conducting salt ratio at most temperatures.
Through the conservative choice of a low degree polynomial
model, we were able to obtain optima and interpretable
insights translatable to existing physicochemical laws such as
the DHO theory, however at high salt concentrations.

We believe, our approach can be transferred to novel
electrolyte systems e.g., for Na-ion batteries. In our opinion,
this could accelerate knowledge generation when starting from
small datasets and unravel complex interrelations early in the
research process.

Experimental

Workflow

The overall idea of this study is the optimization through a one-
shot active learning iteration. To this end a pre-existing dataset
DS1 was utilized to pre-train a model M1. From M1, a set of
optimally conducting electrolytes was suggested to the experimen-
talists. The experimentalists measured the conductivity of the
newly suggested formulations and reported the results back to the
machine learning team. The newly measured data collected in the
dataset DS2 was merged with dataset DS1 to obtain an extended
dataset DS3. The dataset DS3 is then used to retrain the model to
provide refined trends with formulation and temperature. In the
following we will refer to the retrained model as M2. The predicted
conductivities obtained from M2 are also used to understand error
propagation.

Further details about the model training can be found in the
section “Model training and one-shot active learning”. A schematic
of this study’s workflow is shown in Figure 7. Summarizing, there
are three stages in this pipeline: 1) model training, 2) formulation
suggestions and measurement, 3) retraining and refinement of the
model and uncertainty quantification.

Description of the initial dataset DS1 and Measurements

The initial dataset DS1 used herein to pre-train the model M1,
totals 80 distinct electrolyte formulations measured at Helmholtz-
Institute Münster for general purpose, using their automated
formulation and characterization setup described in detail in
Krishnamoorthy et al.[14] The formulations reported in DS1 contain
ethylene carbonate (EC), propylene carbonate (PC), and ethyl
methyl carbonate (EMC) in a solvent/co-solvent mixture and
lithium hexafluorophosphate (LiPF6) as the conducting salt. The
data reported in DS1 covers temperatures between � 30 °C and
60 °C, at increments of 10 °C as described by Krishnamoorthy
et al.[14] Conductivity measurements were repeated 5 to 7 times.
For each datapoint the electrolyte formulation, conductivity and
measurement temperature were recorded. Across all formulations,
the ratio of ðECþ PCÞ : EMC was fixed either at 3 : 7 or 1 :1 by
weight and the concentration of LiPF6 was varied between 0.2 and
2.1 molkg� 1.

We express the uncertainties for the experimental values by the
min/max spread of the individual measurements. The mass ratios
of PC and LiPF6 were normalized and referenced as rPC ¼

PC
ðPCþECÞ

and rLiPF6
¼

LiPF6

ðPCþECÞ for using them as inputs for model training and
one-shot active learning. The (EC+PC) : EMC ratio was not consid-
ered during model training as it is not an independent variable.

Model training and one-shot active learning

The dataset size poses the challenge of finding well performing
models that are simple and interpretable.[33] We therefore settle on
polynomial regression[34] for our study. Contrary to Flores et al.[13]

we do not consider temperature as a parameter in model training
and train our model independently for each temperature. The basic
model is a strongly regularized polynomial regressor aiming to
avoid multicollinearity,[35,36] i. e., linear correlations among the input
parameters, which would negatively affect the estimates of the
coefficients in the regression model.[37–40] The polynomial
regression,[34] ridge regularization,[41] and in step two for optimiza-
tion purposes hyperparameter tuning are performed. All of the
machine learning steps were performed using the scikit-learn
library[42–44] available for Python. From the fitted polynomial model

Table 2. The maximum norm of the predicted conductivity gradient.

T [°C] / maxð@σ) [mS
cm] @srPC ;rLiPF6

@srPC
@srLiPF6

� 30 3:598 1:636 3:582
� 20 6:071 2:277 6:057
� 10 8:526 2:563 8:523
0 11:454 3:208 11:455
10 14:955 3:711 14:947
20 18:535 4:341 18:516
30 22:345 4:283 22:294
40 26:462 5:024 26:404
50 31:307 5:234 31:248
60 36:173 5:831 35:999
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a fine subsampling is performed comprising 104 formulation ratios
at a fixed grid spacing of 1 ratio-%. From this fine subsampling, the
10 formulations corresponding to the maximum predicted con-
ductivity, for each temperature were reported to the experimen-
talists resulting in a total of 100 suggested formulations. A subset
of 24 formulations was chosen by the experimentalists covering all
suggestions for � 30 °C, 20 °C and 60 °C. Subsequent to the
formulation and conductivity measurements of the new formula-
tions, the model was retrained on dataset DS3. For hyperparameter
tuning we performed a Bayesian search[29,42] with a threefold cross
validation (details see S5). The best parameters are then fed to our
model. This search uses ridge regularized polynomial models to
favor low polynomial degrees. To assess the model uncertainty for
both aleatoric and epistemic uncertainty after the learning shot
(and the possible necessity for a second learning shot) we build a
pipeline using the so called model agonistic prediction interval
estimator (MAPIE).[45] This estimator uses the jackknife plus[31] library
to estimate the uncertainty[46] of the model for a 95% prediction
interval, i. e. a newly predicted value has a probability of 95% to lie
within this prediction interval.
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