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Rotory high temperature superconducting (HTS) flux pumps can consistently generate a DC voltage by rotating
magnets over superconducting tapes, and thus energize the circuit if a closed loop is formed. The voltage out-
put is a crucial factor to reflect the performance of such an HTS flux pump, which is determined by a set of
design specifications, and some of them have been investigated extensively in the current literature.
However, no work has been done yet to study the HTS dynamo output voltage by efficiently integrating all
the design parameters together. In this paper, a well‐trained deep‐learning neuron network (DNN) with
back‐propagation algorithms has been put forward and validated. The proposed DNN is capable of quantifying
the output voltage of an HTS dynamo instantly with an overall accuracy of approximately 98% with respect to
the simulated values with all design parameters explicitly specified. The model possesses a powerful ability to
characterize the output behavior of HTS dynamos by considering multiple design parameters, e.g., airgap,
superconductor tape width, operating frequency, remanent flux density, rotor radius, and permanent magnet
width, which have covered all the typical design considerations. The output characteristics of an HTS dynamo
against each of the design parameters have been successfully demonstrated using this model. Compared to con-
ventional time‐consuming finite element method (FEM) based numerical models, the proposed DNN model has
the advantages of automatic learning, fast computation, as well as strong programmability. Therefore the DNN
model can greatly facilitate the design and optimization process for HTS dynamos. An executable application
has been developed accordingly based on the DNN model, which is believed to provide a useful tool for learn-
ers and designers of HTS dynamos.
1. Introduction

In order to develop large capacity and high‐power density electric
machines, strong magnetic fields are required from the rotor coils
[1–4]. High temperature superconducting (HTS) machines have seen
continuously increasing interest, given that HTS rotor coils are capable
of generating ultra‐high magnetic fields within limited space [5] and
even demonstrating improved electrical stability compared to conven-
tional machines [6]. However, due to the existence of flux creep [7]
and substantial AC losses [8–10], it is challenging for HTS magnets
to run in a self‐maintained persistent current mode. The traditional
approach to inject current into the rotor coils involves at least two cur-
rent leads, which transport current from ambient temperature to the
cryogenic environment. This imposes a considerable thermal load
upon the cryogenic system and results in significant additional capital
and operating cost [11].

Flux pumps have been regarded as a promising alternative solution
for injecting sustainable current into a closed‐circuit loop. Extensive
research has been conducted worldwide in the past decades covering
the theoretical analysis and experimental testing of different types of
HTS flux pumps, including the rotary flux pump, linear flux pump,
pulsed flux pump and transformer‐rectifier flux pump. Details about
each category can be found in a recent review paper [12]. Among
those HTS flux pump variations, the HTS rotary flux pump, or so‐
called HTS dynamo, first proposed by Hoffman [13] has been a hot
topic owing to its applicability to HTS machine design. The HTS
dynamo employs permanent magnets (PMs) to provide travelling mag-
netic waveform to induce a time‐averaged DC voltage without any
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physical contacts, which intuitively suits the standard structure of elec-
tric machines, e.g., a synchronous machine.

The open circuit voltage is one of the most important criteria to
evaluate the performance of an HTS dynamo. Both qualitative and
quantitative analysis aiming to investigate its output characteristics
in different aspects have been done in existing literature [14–21], such
as the output voltage dependence on airgap distance [22], the operat-
ing frequency [23], the width of the HTS tape [24] and the geometry
of the magnet [25]. Nevertheless, most previous work focused on a
specific parameter and its individual effect, but never achieved a best
design for the HTS dynamo as it is challenging to combine all param-
eters together efficiently. The authors proved the feasibility of apply-
ing common machine‐learning techniques to capture the output
characteristics of an HTS dynamo in a fast and accurate manner in
[26], which treats each of the design parameters as independent inputs
and Voc as output and link them together by a determined mathemat-
ical model. The model proposed in [26] is however limited by only
considering the three previously considered design parameters,
namely the air gap distance g, HTS tape width Ws and the remanent
flux density Br of the PM. In order to break through those limitations
and expand our findings further, we developed an updated numerical
model to generate data samples taking into account non‐linear high
frequency response f , rotor radius Rr and PM width Wm. With a full
set of parameter inputs, all key design considerations of an HTS
dynamo have been covered. Hence, the new proposed model is capable
of efficiently describing the output behavior of HTS dynamo at full
scale. Above all, it has also been demonstrated that by inversely apply-
ing the proposed deep learning based statistical model, the key param-
eters required to design an HTS dynamo with a specific output voltage
can be conveniently quantified, i.e., a powerful design tool for rotary
HTS flux pump has been provided in this paper.
2. Methodology

The work in this paper is divided into two parts, in which the first
step is to construct a numerical model that can derive the open circuit
voltage via finite element method (FEM) simulations. The derived val-
ues are then collected as data samples to feed into the second step,
which is to apply an appropriate deep‐learning framework to extract
the underlying relationships among variables from the data sets. A
complete DNN model is obtained, which is capable of predicting Voc

of an HTS dynamo by integrating all the six key parameters, without
having to resort to complex numerical modelling.
Fig. 1. Illustration of the domain division for the H-A formulation-based
model with different state variables.
2.1. Multi-layer model

Thanks to the efforts from researchers worldwide, a set of numeri-
cal models are available to implement different formulations for HTS
modelling. Specifically in the field of HTS dynamo modelling
[10,27], have summarized the most up‐to‐date models, which include
coupled H‐A formulation [28], H‐formulation with shell current
[17–19], segregated H‐formulation [29], minimum electromagnetic
entropy production (MEMEP) [30,31], coupled T‐A formulation
[32,33], integral equation [34], volume integral equation‐based equiv-
alent circuit [35]. Each of the listed formulations has been validated to
be effective in modelling the electromagnetic characteristics for HTS
dynamos.

In this paper, we adapted the benchmarked coupled H‐A formula-
tion as our base numerical model on the consideration of its ease of
use, stable performance, and fast computational speed. The coupled
H‐A formulation proposed by Brambilla et al. [28] was initially intro-
duced for modelling superconducting rotating machines, which is intu-
itively suitable for the HTS dynamo modelling in terms of handling the
rotating magnets. In an H‐A formulation‐based model, the whole sys-
tem is modelled, but separated into two domains with distinguished
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formulation: the H formulation is implemented in the region that con-
tains the superconductors, while the A formulation is implemented in
the region that does not contain superconductor (essentially the rest of
the system). In addition, the model can be simplified by constraining
the domain, where the magnetic vector potential A is directly solved,
to a small region surrounding the superconductor, allowing the major-
ity of the model to be solved with the magnetic scalar potential Vm, as
illustrated in Fig. 1. By replacing the magnetic vector potential with
scalar potential, substantial computation cost can be saved. Details
about the basic implementation of the H‐A formulation can be found
in [27].

The non‐linear electrical resistivity of superconductors is reflected
by applying the 2D version of E‐J power law in Cartesian coordinates
(assuming the tape is infinitely long):

Ez ¼ ρJz ¼ Ec
Jz

Jc Bð Þ

� �
Jzj j

Jc Bð Þ

h i n�1ð Þ ð1Þ

where Ec and n are chosen as 10�4V=m and 20 respectively as conven-
tion. Jc Bð Þ signifies the field dependent critical current density of the
superconductors. In this work, we used the empirical function [36]:

Jc Bð Þ ¼ Jc0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Bpara2þBperp2

p
B0

� �α ð2Þ

where Bpara and Bperp represent the parallel and perpendicular compo-
nents of the magnetic flux density with respect to the wide face of
superconducting tape. Jc0, B0, k and α are materials related constant
coefficients, whose values are chosen as 23.583 GA=m2, 169.4 mT,
0.1538 and 1.022 to match the experimental measurement in [17].

The time averaged open circuit voltage Voc is derived by taking the
time and surface integration of Eq. (1):

Voc ¼ �L
1
T

Z 2T

T

1
S

ZZ
� Ezðx; y; tÞdsdt ð3Þ

Please note that L is the effective depth of the magnet, and the time
integration is performed in the second cycle to avoid any transient
response that may occur in the first one.

Including the H‐A formulation model, all the numerical models
benchmarked in [27] followed a classical approximation that assumes
the superconductor tape as a single layer structure. However, in [36]
Zhang first put forward a multilayer numerical model for HTS coated
conductors considering the impact of both the superconducting and
non‐superconducting components and modelled the electromagnetic
loss in HTS coated conductors over a wide range of frequencies and
found that, above a certain frequency, most magnetization losses occur
in the copper stabilizers [37–42]. The multilayer model [43] has been
adopted to study the frequency dependence of open circuit voltage of
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an HTS dynamo that has been recently investigated in [16], in which
the non‐linear frequency response has been attributed to the current
interactions between different layers of the HTS tape. As a result, we
adopted the multi‐layer structure to model the HTS tape as shown in
Fig. 2, enabling the model to include the effects of high frequency
operation.
Fig. 3. Structure of a typical full-connected neuron network.
2.2. Deep-learning neuron network

Numerical models such as the H‐A formulation described above are
widely used to solve superconductivity problems, which can solve
Maxwell equations combined with required physical laws and condi-
tions through finite element method (FEM) simulations. It is well‐
recognized that FEM simulations can simulate the complete system
operation while capturing details from the physical process involved,
offering an efficient and low‐cost alternative to experimental work.
However, the utilization of FEM simulations is subjected to profes-
sional knowledge about the target problem, which requires abundant
user interactions, and the efficiency deserves further improvement.
Such an approach does not lend itself to the industrial design and opti-
mization, where the focus is put on certain specifications that can
reflect the performance of the device rather than the underlying
physics.

Deep‐learning is a neuron network based artificial intelligence
method, which can represent unknown relations among a set of data
samples in the form of a statistical model [44–46]. The multi‐layer per-
ceptron (MLP) is the most widely used neuron network, consisting of
the input layer, output layer and hidden layer(s). Fig. 3 shows a full‐
connected neuron network, which has n hidden layers withmn neurons
in each of them. Neurons in each layer are connected through certain
activation functions, so the given input and output can be linked
together. For the problem concerned here, the number of neurons in
Fig. 2. Cross section schematic for the multilayer structure adopted in the H-
A numerical model.
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the input and output layer are fixed to be six and one, respectively,
in accordance with the six design parameters and one voltage output
for an HTS dynamo. Given the relationships between the output and
each of the inputs can be highly nonlinear, the rectified linear unit
(ReLU) function, which possesses the superior ability to characterize
the complex nonlinearity of the model and smoothen gradient propa-
gation during the training, is employed as the activation function [47]:

ReLU xð Þ ¼ max 0;wTxþ bð Þ ð4Þ
where wT denotes the weight coefficients matrix and b signifies the bias
coefficients.

The main purpose of the model is to predict the voltage, which can
be considered as a regression task to predict a continuous variable, and
hence the squared error (L2 norm) is adopted as the loss criterion to
quantify the discrimination between every observation and prediction:

l y; byð Þ ¼ l1; � � � ; lNf g; lN ¼ yn �cynð Þ2 ð5Þ
Based on this loss function, the adaptive moment estimation (Adam) is
applied as the optimisation solver to update weight coefficients matrix
in Eq. (11) as follows [48]:

gt ¼ rθf t θt�1ð Þ ð6Þ

mt ¼ β1mt�1 þ 1� β1ð Þgt ð7Þ

vt ¼ β2vt�1 þ 1� β2ð Þg2t ð8Þ

cmt ¼ mt= 1� βt1
� � ð9Þ

bvt ¼ vt= 1� βt2
� � ð10Þ

θt ¼ θt�1 � αcmt=
ffiffiffiffiffiffiffiffiffiffiffiffibvt þ ε

p� � ð11Þ
where f t is the objective function and θt represents the parameters to be
updated, while α, β and ε are set to be constant values as 0.001, 0.9 and
10�8, respectively. The k‐fold cross validation scheme is taken, which
means the data set is divided into k mini‐sets and the training process
repeats k times by taking each of those mini‐sets as the validation
set. Thus, the adapted Nash‐Sutcliffe model efficiency coefficient
(NSE) is calculated to evaluate the performance of the trained model:

NSE ¼ 1
k∑

k
t¼1 1� ∑p

i¼1 yi�byi� �2

∑p
i¼1 yi�y

�ð Þ2
" #

ð12Þ



Fig. 4. Waveform profiles of the instantaneous voltage across the HTS tape for
the permanent magnet past the HTS tape in the 2nd cycle, ignoring any initial
transient effects.

Z. Wen et al. Superconductivity 3 (2022) 100017
where k is the number of mini‐sets (set to be 10), p is the number of
data samples, y

�
represents the average output, yi and byi indicate the

observed and predicted output, respectively. The best NSE score that
can be achieved is 1, which means that the model can predict all data
samples perfectly with no errors. Otherwise, the closer the NSE score is
to 1, the better accuracy the model will have. We have previously
implemented the MLP with one hidden layer to predict the output char-
acteristics for an HTS dynamo based on three input design parameters
[26]. In this paper, we take advantage of the deep‐learning approach
enhanced by GPU acceleration to investigate more complicated neuron
networks, then put forward an improved model, which can rapidly and
accurately capture the output characteristics for HTS dynamo with all
design parameters now included.

2.3. Data pre-processing

Each set of data required by the DNN training requires seven val-
ues, with six values for each of the input design parameters and one
for the output open circuit voltage. In order to make the input data
more effective and representative, two data schemes were chosen.
The first one divides the value range for each parameter into 1000
small intervals, which essentially forms a dense data map that
improves the resolution of the prediction model. Randomly combining
the median of each interval k times, 1000� k sets of data samples can
be obtained. The second one divides the value range for each param-
eter into 50 relatively large intervals, which allows more room for dif-
ferent parameter combinations under limited data samples, so that it is
easier for the model to learn the general behavior from the data sam-
ples. By randomly combining the median of each interval k times,
50� k sets of data samples can be obtained. In this work, 4000 data
samples have been generated following the first and second data cho-
sen scheme, respectively, to form the data set required by the model
training.

The input values propagate through the hidden layers simultane-
ously until they reach the output layer, so it is important that the val-
ues for each input neuron are closely comparable, otherwise the input
neuron with a significantly higher value will dominate the training
process and lead to poor performance for the model to predict the out-
put when taking other input neurons into account. Therefore, the val-
ues for each input neuron were normalized into unit scale by the
following transformation:

xt ¼ x�xmin
xmax�xmin ð13Þ

Though it is commonly believed that the output values will not have
impacts on the quality of the trained model, it should be noted that
the output values in this study represent the open circuit voltage from
an HTS dynamo, which can vary between zero to thousands of micro‐
volts. In order to avoid any convergence difficulties due to the wide
fluctuation of values, the logarithm for the output values is taken to
constrain them in a narrow domain as follows:

yt ¼ log10 y þ 1ð Þ ð14Þ
3. Results

3.1. Numerical model validation

In this work, an H‐A formulation based numerical model is built to
generate the data samples required for DNN model training. To verify
this model, it was firstly utilized to calculate the time dependent equiv-
alent voltage (surface integration of Eq. (1)) in comparison to the
experimental measurement in [17], as plotted in Fig. 4. The wave-
forms show excellent agreement with each other, and their calculation
results for Eq. (3) are 27.51 μV and 27.57 μV , confirming the effective-
ness of this model. Note the results are obtained from the parameter
4

setting, where g is 3.7 mm, Ws is 12 mm, f is 4.25 Hz, Br is 1.25 T,
Rr is 35 mm and Wm is 6 mm. Unless state explicitly, each parameter
follows the same setting in results presented below.
3.2. DNN topology determination

In terms of constructing a MLP type neuron network, there are sev-
eral influential factors, or so‐called hyperparameters that have signifi-
cant impact on the performance of the derived model. Some of these
hyperparameters can be intuitively set according to the nature of the
problem, such as the number of neurons in the input and output layer,
and some of the others can follow the general rules of practice pub-
lished in existing literature, such as the choice of proper activation
function and loss function. However, exact guidelines about how to
determine the structure of hidden layers are still lacking [49].
Researchers have put tremendous efforts in trying to provide a solution
for this issue, including the Akaike’s Information Criterion [50],
Inverse test method [51] and some customized methods to find the
optimal architecture for neuron network. Yet those methods are devel-
oped for specific problems, and it is hard to simply apply them to a
new situation. In this paper, we determined the neuron network topol-
ogy based on previous work and our understanding of this specific
problem.

Theoretically, hidden layers greater than one can describe any arbi-
trary functions with arbitrary boundaries. Nevertheless, more hidden
layers do not necessarily guarantee a better performance of the model.
Besides, the increase of hidden layers will expand the model complex-
ity and result in lower efficiency since more time is required to solve
the model. Choldum et al., have stated in [52] that the number of hid-
den layers in the neuron network can be determined according to the
main components suggested by the principal components analysis. In
our case, the six input variables are pre‐selected design parameters,
which are independent to each other and no correlations exist among
them. Hence, it is reasonable to limit the hidden layers for the neuron
network below six. As for the number of neurons in the hidden layer, it
also needs careful attention. On the one hand, insufficient neurons will
make the model incapable of learning the underlying relations from
the data sample, which is often referred to as ‘under fitting’. On the
other hand, excessive neurons will cause ‘over fitting’, where the
model gets stuck in local optima and fails to learn the general behavior
from the data samples. Considering the suggestions in [53–55] and the
computing resources available, a randomized grid search was per-
formed to test the number of neurons in each hidden layer ranges from
4 to 1024. A series of experiments with different DNN topology were
then conducted, and the quality of those models were evaluated using
their NSE scores. The best topology that achieved the highest NSE
score for each number of hidden layers has been selected to be pre-
sented in Table 1.



Table 1
NSE scores for different DNN model topologies.

Number of neurons in each layer NSE

1 2 3 4 5 6

1020 NA NA NA NA NA 0.99601
808 292 NA NA NA NA 0.99932
636 376 444 NA NA NA 0.99927
432 820 328 836 NA NA 0.99908
400 816 856 348 400 NA 0.99910
968 328 160 696 128 92 0.99907

Fig. 6. Histogram plot of the error rates for predicted voltage.
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Yet a high NSE score does not necessarily mean that the model has
good quality, because the data set prepared to train the model is lim-
ited. In order to ensure that the model has generalized prediction capa-
bility, the best trained DNN model was selected to predict a new set of
data samples that are not covered in the training set. As shown in
Fig. 5, all the predictions denoted by the red points locate in close
proximity of the perfect match line, indicating very good performance
of this model in the general case. The relative error in percentage for
each prediction is plotted in Fig. 6, from where it can be seen that the
maximum error for two predictions is about 12% out of all tested sam-
ples (total number of 183), while most of the predictions have an error
rate less than 2% and the average error rate is maintained at 2.06%.
Fig. 7 shows these prediction errors in more detail by dividing all
the test samples into different intervals in terms of their proportions
to the maximum value. It can be observed that high error rates are
easier to occur for small predicted values, e.g. the 0 ∼ 10% interval,
which can be readily understood because small values are more vul-
nerable to the error measurement under relative criteria. Even includ-
ing those outliers (identified by black cycles), the average error rate
(marked by green triangles) for predictions in every interval are well
below 3%. Besides, the demand for designing and optimizing HTS
dynamo type of devices, in most cases, is to maximize the output volt-
age, for which we believe the applicability and effectiveness of this
model will not be undermined.
3.3. Parameter grouping

As a demonstration of the proposed DNN model, we utilized the
model to illustrate the output characteristics for each of the six param-
eters. Since it is not practical to visualize all the parameters in one sin-
gle plot, the six parameters were manually classified into three groups.
Firstly, both the frequency and the rotor radius determine how long
Fig. 5. Prediction results by the best trained DNN model.

Fig. 7. Box Plot of the error rates for predicted voltage grouped by different
intervals (proportional to the maximum prediction).
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the HTS tape will experience the effective field provided by the rotat-
ing magnet in one complete cycle, so they are grouped together as the
“duration group”. Secondly, the magnetic field experienced by the HTS
tape is directly controlled by the airgap distance and the PM remanent
flux density, and so form the “field group”. Lastly, the authors of [24]
have pointed out that the HTS tape width relative to the PM width can
make a difference on the output voltage by affecting some critical fea-
tures, e.g. whether the applied field can be considered homogeneous:
therefore we have grouped the tape and PM width together as the
“width group”. As it can be seen from Fig. 8(a), the smooth curved sur-
face implies that the frequency response of the HTS dynamo tends to
become non‐linear when the frequency increases gradually (the turn-
ing point occurs at approximately 100 Hz), which is in accordance
with the observation in [16]. In addition, the rotor radius response



Fig. 8. Surface plots for different parameter groups. (a) “Duration group”, (b)
“field group”, (c) “width group”.
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also shows what is expected: the output voltage decreases when the
rotor gets larger. This is because a larger rotor will reduce the time
interval during which the HTS tape is exposed to the effective PMmag-
netic field, which is essentially equivalent to a decrease in frequency.
From Fig. 8(b) it can be observed that the peak output voltage can be
achieved by having the smallest airgap and the largest remanent flux
density at the same time. The saddle shape in Fig. 8(c) reflects the
bilateral effects of the HTS tape width on the output voltage, namely
the fact that the voltage increases with HTS tape width up to a certain
point, after which it starts to decrease. Meanwhile, the PM width also
plays a critical role on the output voltage, which increases monotoni-
cally with the PM width within the investigated range.
6

3.4. Optimal tape width

Combining our previous study in [26] and the work demonstrated
in section 3.3, it is concluded that the individual impact of all design
parameters on the output voltage can be described by a monotonic
function, except for the HTS tape width. Since it has now been fully
proved that there exists an optimal HTS tape width for the HTS
dynamo to obtain maximum output voltage, it is worthwhile knowing
whether the optimal width is influenced by other parameters. A series
of parameter sweeps were conducted for each of the other five param-
eters by varying the HTS tape width, to identify the optimal HTS tape
width for different configurations, with results shown in Fig. 9.
According to the sweeping results, altering any of the parameters will
change the optimal width correspondingly. An increase in PM rema-
nent flux density, Fig. 9(b), and PM width, Fig. 9(e) both result in a
considerably wider HTS tape required to obtain higher output voltage.
The rotor radius has a relatively less influence on the optimal HTS
tape, as shown in Fig. 9(d), which results in a difference less than
2 mm between the maximum optimal width of 32 mm and minimum
optimal width of 30.5 mm. While its impact on the output voltage is
also not significant as can be seen from Fig. 8(a), so that it is reason-
able to ignore the rotor radius. The optimal HTS tape width tends to
increase with air gap, as shown in Fig. 8(a). In particular, Fig. 9(c)
indicates that the optimal tape width is inversely proportional to the
frequency under low frequencies (roughly under 100 Hz), and then
becomes positively proportional to the frequency at higher frequen-
cies. Meanwhile, it has been revealed that either a decrease in the air-
gap or an increase in the operating frequency can help level up the
output voltage. This observation can lead to a useful HTS dynamo
design rule, namely that the device should be operated under small air-
gap distance and high frequency, because less HTS tape is required
while obtaining higher output voltage.

As aforementioned, the width ratio of the PM and the HTS tape is a
key factor in an HTS dynamo. In order to explore this factor in more
detail, we defined the “width ratio” Wrt as:

Wrt ¼ Ws

Wm
ð15Þ

The output characteristics predicted by our DNN model for different
Wrt comparison is presented in Fig. 10. Each of the solid lines with a
distinct color represents the PM width response under a specific width
ratio, and it is clear that increasing the PM width increases the output
voltage if the width ratio is kept constant. However, for Wrt greater 6,
the intersections imply that increasing the width ratio cannot guarantee
that the voltage will also increase. This result proves the existence of
the bilateral effect of the HTS tape width again and implies that the
HTS tape width and the PM width should be considered separately
while employing the width ratio between them is not sufficient to sum-
marize their individual impacts in one variable. Moreover, Fig. 10 also
provides a possible solution to avoid the limitation of the bilateral
effect of the HTS tape width in HTS dynamo design, which is to increase
the PM width further, so that the optimal HTS tape width can be effec-
tively extended.

3.5. Case study

The DNN model proposed in this paper can bring direct benefits to
those who want to obtain the output voltage for arbitrary configura-
tions. When it comes to another typical design scenario, where the
desired output voltage is specified but the design parameters are to
be determined, this model also can be utilized as a powerful design
tool to provide recommended parameters, according to the given spec-
ifications. As a demonstration of this useful function, several design
conditions are assumed to perform a case study. In Case 1, there are
no manual constraints on any of the design parameters, which means
that the model is allowed to provide possible recommendations in the



Fig. 9. Optimal HTS tape width for different (a) air gap, (b) remanent flux density, (c) frequency, (d) rotor radius, (e) PM width.

Fig. 10. Open circuit voltage characteristics against magnet width under
various width ratio.
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full default range for each of the parameters. In Case 2, the airgap is
restricted between 3 and 5 mm. In Case 3, the frequency is restricted
under 200 Hz while the permanent magnet width is restricted between
2 and 12 mm. For all the three cases described above, the desired out-
put voltage is set to be 260 μV . It should be noted that there may exist
various parameter combinations, which can result in the same output
voltage. Hence, for each of the assumed design conditions, one set of
the recommended design parameters is selected to run through the
base numerical model to validate its correctness. The results are pre-
sented in Table 2, where the correctness is defined as:

correctness ¼ 1� Vsimu�Vexpj j
Vexp

ð16Þ

where Vexp identifies the desired voltage, Vsimu identifies the output
voltage calculated from the numerical simulations by setting the recom-
mended parameters. It can be seen that an HTS dynamo with the rec-
ommended parameters for each case is capable of generating a output
voltage that is close to the expected value, which demonstrates that
the proposed model can provide fast guidance under specific design
considerations by listing reliable recommended parameters.
7



Table 2
Recommended parameters for each presumed condition.

g=mm Ws=mm Br=T f=Hz Rr=mm Wm=mm Correctness

Case 1 9.5 46 1.23 750.25 35 4.75 96.77%
Case 2 5 60 0.85 250.75 52.5 4.75 98.91%
Case 3 7 32 0.85 50.75 35 12 97.54%

Z. Wen et al. Superconductivity 3 (2022) 100017
4. Conclusions

In this paper, a novel statistical model has been proposed to effi-
ciently predict the output voltage for a rotary HTS flux pump (HTS
dynamo) with an overall accuracy of around 98% with respect to the
FEM numerical models, by means of the deep learning neuron net-
work. This model takes into account six design parameters, namely
the airgap distance, HTS tape width, operating frequency, rotor radius,
as well as remanent flux density and width of the PM, which cover all
the typical design dimensions for HTS dynamos. The data set prepared
to train this model was generated by a benchmarked H‐A formulation
based numerical model, by adding a multilayer structure and magnetic
field sensitivity for the modelling of the HTS tape, to reflect the high
frequency response and Jc Bð Þ dependence. Therefore, this model pos-
sesses a generalized ability to quantify the output voltage for an HTS
dynamo according to its design parameters. It should be pointed out
that despite the monotonic dependence of the output voltage on some
parameters, e.g., the air gap and field density, the correlations between
the output voltage and all these influential factors are predominantly
non‐linear, which is challenging to be quantitatively described by ana-
lytical equations. The proposed statistical model is capable of integrat-
ing all the studied parameters together to efficiently quantify the
output voltage characteristics of a rotary HTS flux pump.

As a demonstration, the proposed model is utilized to investigate
the output properties for each of the six parameters. It is observed that
an increase in permanent magnet width can help to increase the effec-
tive width of the HTS tape, which can serve as a solution to avoid the
bilateral effect observed in [26]. The results imply that properly
increasing the operation frequency (without causing extra losses in
the HTS and non‐superconducting layers) can not only result in a
higher output voltage, but also help decrease the width of HTS tape
to achieve the maximum voltage. The case study shows that the model
is also capable of generating the optimal design parameters under any
specific design condition. In addition, though the model is developed
specifically for the rotary HTS flux pumps described above, the meth-
ods and techniques demonstrated here can be flexibly extended to
other more complicated scenarios. In a summary, a robust and reliable
statistical model has been proposed in this paper, which opens the way
to rapid and accurate design and optimization of HTS flux pumps.
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