
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21

IISE Transactions

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uiie21

Generating optimal robust continuous piecewise
linear regression with outliers through
combinatorial Benders decomposition

John Alasdair Warwicker & Steffen Rebennack

To cite this article: John Alasdair Warwicker & Steffen Rebennack (2022): Generating optimal
robust continuous piecewise linear regression with outliers through combinatorial Benders
decomposition, IISE Transactions, DOI: 10.1080/24725854.2022.2107249

To link to this article: https://doi.org/10.1080/24725854.2022.2107249

Copyright © 2022 The Author(s). Published
with license by Taylor & Francis Group, LLC.

View supplementary material

Published online: 06 Sep 2022.

Submit your article to this journal

Article views: 343

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/loi/uiie21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2022.2107249
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2022.2107249
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2022.2107249
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2022.2107249
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2022.2107249&domain=pdf&date_stamp=2022-09-06
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2022.2107249&domain=pdf&date_stamp=2022-09-06

Generating optimal robust continuous piecewise linear regression with outliers
through combinatorial Benders decomposition

John Alasdair Warwicker and Steffen Rebennack

Stochastic Optimization, Institute of Operations Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

ABSTRACT
Using piecewise linear (PWL) functions to model discrete data has applications for example in health-
care, engineering and pattern recognition. Recently, mixed-integer linear programming (MILP)
approaches have been used to optimally fit continuous PWL functions. We extend these formulations to
allow for outliers. The resulting MILP models rely on binary variables and big-M constructs to model
logical implications. The combinatorial Benders decomposition (CBD) approach removes the dependency
on the big-M constraints by separating the MILP model into a master problem of the complicating bin-
ary variables and a linear sub problem over the continuous variables, which feeds combinatorial solution
information into the master problem. We use the CBD approach to decompose the proposed MILP
model and solve for optimal PWL functions. Computational results show that vast speedups can be
found using this robust approach, with problem-specific improvements including smart initialization,
strong cut generation and special branching approaches leading to even faster solve times, up to more
than 12,000 times faster than the standard MILP approach.

ARTICLE HISTORY
Received 22 May 2021
Accepted 20 July 2022

KEYWORDS
Piecewise linear function;
combinatorial Benders
decomposition; mixed-
integer linear programming
(MILP); function fitting;
outlier detection

1. Introduction

It is often necessary to model discrete data points with a con-
tinuous function; for example, to allow for predictions of the
qualities of future data based on interpolation or extrapolation
from the existing data. Fitting data points with a piecewise linear
(PWL) function can be advantageous over using a non-linear
continuous function (polynomial regression) or a single linear
function (linear regression), since a PWL function consists of
linear segments and can lead to more accurate modelling than a
simple linear function. As well as modelling discrete data, PWL
functions can also be used to model continuous functions. By
approximating data (or non-linear functions) with PWL func-
tions, complicated mixed-integer non-linear and non-convex
programming problems can be (approximately) solved relatively
quickly using standard mixed-integer linear programming
(MILP) techniques (Feijoo and Meyer, 1998; Geißler et al. 2012;
Rebennack and Kallrath, 2015; Rebennack, 2016a).

PWL functions are comprised of connected, affine functions
(also referred to as linear segments) which intersect at breakpoints.
PWL fitting is also known by different names in other disciplines,
such as linear spline regression in statistics, or polyhedral function
fitting in mathematics. Applications of fitting PWL functions to
data have been seen in the fields of healthcare (Wagner et al.,
2002), pattern recognition (Chang, 1973), biomedical studies
(Berman et al., 1996), amongst others. In particular, Gunnerud

and Foss (2010) presented a method for the real-time optimiza-
tion of process systems within the field of engineering, where the
non-linearities of the presented approach were modelled by a
PWL function. This allowed a MILP model to be formulated,
with error bounds on the optimal solution also being found.

Despite the (piecewise) linearity of PWL functions, there are
still difficulties in computing them. Such difficulties include cal-
culating optimal breakpoint locations. Ensuring the continuity of
the linear segments presents a similar challenge (Chen and
Wang, 2009).

A recent trend is approaching the problem of PWL function
fitting from an optimization perspective. Various methods, rang-
ing from dynamic programming (Bellman and Roth, 1969) and
numerical approaches (Jupp, 1978), to heuristic approaches (Ertel
and Fowlkes, 1976) and the R package segmented (Muggeo,
2003), have been implemented. Hakimi and Schmeichel (1991)
presented an efficient, OðnÞ-time algorithm to fit an optimal
PWL function within some given maximum error tolerance � >
0: Approaches for minimizing the maximum error for a PWL
function with a given number of breakpoints have also been pre-
sented by Hakimi and Schmeichel (1991) (Oðn2 log nÞ), Wang
et al. (1993) (Oðn2Þ) and Goodrich (1994) (Oðn log nÞ).

Many MILP approaches for PWL fitting have also been pre-
sented in the literature. However, most disregard the continuity
requirement in order to simplify the problem. Bertsimas and
Shioda (2007) used MILP models for classification and to fit

Copyright � 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

CONTACT John Alasdair Warwicker john.warwicker@kit.edu
Supplemental data for this article is available online at https://doi.org/10.1080/24725854.2022.2107249.

IISE TRANSACTIONS
https://doi.org/10.1080/24725854.2022.2107249

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2022.2107249&domain=pdf&date_stamp=2022-09-03
http://orcid.org/0000-0002-6274-2638
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
http://www.tandfonline.com

discontinuous PWL functions to each class. Further approaches
by Bertsimas and Mazumder (2014), Bertsimas and King (2016),
and Bertsimas et al. (2016) similarly dismiss the continuity
requirement. Goldberg et al. (2014) and Goldberg et al. (2021)
include the continuity requirement using a non-convex, dynamic
programming approach, and Toriello and Vielma (2012) use a
non-convex, quadratically constrained approach. Toriello and
Vielma (2012) also introduce a mixed-integer linear model to fit
convex PWL functions to discrete data, which simplifies the prob-
lem significantly. The first exact approach to approximate con-
tinuous functions by PWL continuous functions was presented by
Rebennack and Kallrath (2015).

Rebennack and Krasko (2020) recently introduced a MILP
approach to PWL fitting for discrete data which does not
require any assumptions on the convexity of the PWL func-
tion. This novel approach does not directly compute the break-
points, yet ensures the continuity of the linear segments by
allowing the breakpoints to fall as necessary between two data-
points. This modelling trick comes at the cost of using big-M
constructs, which are known to yield weak LP-relaxations.
They also constructed an exact algorithm to optimally fit PWL
functions to univariate continuous functions. A similar MILP
formulation for fitting PWL functions to discrete data and uni-
variate functions has also been presented by Kong and
Maravelias (2020). Again, the breakpoints are calculated impli-
citly, at the cost of a large number of big-M constructs and
binary variables. The binary variables are used to assign data
points to linear segments, as well as to designate the first and
last point in each linear segment. Further binary variables are
used to activate the continuity constraints. However, the for-
mulation of Kong and Maravelias (2020) contains a larger
number of variables and constraints, and has recently been
shown to be less effective for most instances than the formula-
tion of Rebennack and Krasko (2020) for fitting optimal con-
tinuous PWL functions (Warwicker and Rebennack, 2022).

TheMILPmodel introduced by Rebennack and Krasko (2020)
for fitting PWL functions to data only uses binary variables to
assign data points to linear segments, and to model the change in
gradient between consecutive linear segments. In this article, we
update the model by implementing inbuilt outlier detection,
whereby outlier data points are identified during the optimization
process and implemented into the objective function. This is in
contrast with other approaches for outlier detection within classi-
fication or regression problems, which typically employ two-stage
models (see e.g., Chatzinakos et al., 2016; Sudermann-Merx and
Rebennack, 2021). In such models, outliers are often identified
separately from the main optimization problem based on a given
distancemeasure to the remainder of the data.

We use Benders decomposition (Benders, 1962) to look for
speedups in the updated, robust formulation to mitigate the weak-
ness presented by the presence of big-M constructs. The Benders
decomposition approach allows for linear programming problems
with a certain structure to be optimised via a divide-and-conquer
approach (Rebennack, 2016b; Rahmaniani et al., 2017). Benders
decomposition also works for MILP models as long as the sub
problems remain linear. Since the computational difficulty of solv-
ing an optimization problem increases with the size of the prob-
lem, iteratively solving sub problems can be more efficient than

solving the main, monolithic problem. The sub problems feed
information and constraints to the master problem. The given
MILP model fits this structure well, since the problem can be sep-
arated into a master problem solved over the first set of variables
(i.e., binary variables), and a sub problem over the continuous
variables. Depending on the optimality (or infeasibility) of the sub
problem, so-called Benders cuts are implemented into the master
problem, which is re-solved until no more cuts are available.
However, for the MILP we consider, we expect (and observe in
experimental results) that the Benders cuts are weak due to the
presence of big-M values and the number of constraints (Codato
and Fischetti, 2006). Improvements to the Benders decomposition
algorithm have been sought since its inception (see the survey by
Rei et al. (2009) for an in-depth discussion).

In particular, problem-specific tailoring of Benders decompos-
ition can lead to significant speedups (Lohmann and Rebennack,
2017; Rebennack et al., 2020). For example, combinatorial
Benders decomposition (CBD) is particularly effective for MILP
problems with a large number of logical implications modelled
through big-M constructs, since it aims to remove the depend-
ency on the big-M constraints (Codato and Fischetti, 2006). The
master problem contains the constraints which include the binary
variables and feeds solution information into the sub problem,
which tests for feasibility. On infeasibility, combinatorial cuts
(with no big-M values present) relating to irreducible infeasible
subsystems of the sub problem are added into the master prob-
lem. This way, the structure of the problem is exploited instead
of weak cuts resulting from the loose big-M formulation. Codato
and Fischetti (2006) performed experiments on two classes of
MILP models, demonstrating that combinatorial cuts can lead to
considerable speedups. Parallels can be drawn between CBD and
the logic-based Benders decomposition approach of Hooker and
Ottosson (2003), which is a more general case of CBD.

After testing a number of natural improvements to the CBD
method, we develop a tailored CBD approach to the PWL fitting
problem and compare it with the standard MILP approach with
outliers. Using a series of real-world data sets with different char-
acteristics, we present experimental comparisons between the
default CBD model, the tailored CBD model, and the monolithic
MILP approach.

This article has the following main contributions:

� We implement automatic outlier detection into the MILP
model for optimal PWL function fitting introduced by
Rebennack and Krasko (2020), such that a given number
of data points are excluded from the final PWL function.

� We show that the standard Benders decomposition method
when applied to the updated MILP model for PWL function
fitting with outlier detection is inefficient with respect to solv-
ing the MILP model as they only produce cuts which invali-
date the current solution.

� We use CBD to reformulate the MILP model. Using a state-
of-the-art implementation making use of callbacks, we show
the CBD approach far outperforms the standard MILP on a
series of data sets with different characteristics. Large speedups
are seen for functions where more breakpoints are required.

� We test a number of improvements to the CBD model,
and implement the best performing ones within the

2 J.A. WARWICKER AND S. REBENNACK

model for PWL function fitting with outliers. By increas-
ing the quantity and quality of combinatorial cuts and
using smart initialization strategies and branching rules,
we show that this tailored model is even faster than the
default CBD model and solves instances with a large
number of breakpoints very quickly.

The rest of this article is structured as follows. In Section 2 we
discuss the MILP approach of Rebennack and Krasko (2020) and
our added outlier detection implementation in detail. In Section 3
we apply Benders decomposition to the problem. We use the
CBD approach in Section 4 to discuss the combinatorial cuts and
the CBD methodology for the MILP model, with improvements
to this model discussed in Section 5. Experimental results are pre-
sented in Section 6, and we conclude with Section 7.

2. PWL function fitting

We begin this section by defining the important concepts
related to PWL function fitting. Throughout this article we
use the following notation: ½n� to denote the set f1, :::, ng:
Definition 1. (Rebennack and Krasko (2020)). A continuous
univariate function pðxÞ : ½X ,X � ! R with compact interval
½X ,X � is called a continuous PWL function, if there exists a
finite number B with X ¼ r1 < ::: < rb < rbþ1 < ::: < rB ¼
X , such that p(x) is an affine function on ½rb, rbþ1� for all
b 2 ½B� 1�. The rb are called breakpoints, with B the num-
ber of breakpoints. For each b 2 ½B� 1�, the function pðxÞ :
½rb, rbþ1� ! R is called a linear segment.

For the problem of PWL function fitting of bivariate data, a
set of I ordered tuples ðXi,YiÞ 2 R2, i 2 ½I�, is given where
�1 < X ¼ X1 � ::: � Xi � Xiþ1 � ::: � XI ¼ X <1: The
data tuples (Xi, Yi) are the sorted values of a discrete function
which takes inputs from ½X ,X � and returns outputs from R:
We seek to model these data points by a PWL function pðxÞ :
½X ,X � ! R with (at most) a given number of breakpoints B.
Since the resulting PWL function will be an approximation of
the data, only B � I is meaningful, while B� I is typically
seen in practice. Moreover, we seek an optimal PWL function
which minimises some distance metric dð�, �Þ between the data
points and given PWL function.

For the construction of an optimal PWL function, it is
necessary to allow the breakpoints to be free within the
range ½X ,X �, i.e., the breakpoint locations are not limited to
certain points, or pre-specified.

2.1. Existing model for PWL function fitting

For readibility and because the MILP formulation is central for
this work, we repeat the formulation of Rebennack and Krasko
(2020). This formulation does not explicitly solve for the location
of the breakpoints, yet provides the linear segments. Each linear
segment (b 2 ½B� 1�) is defined by a gradient cb and an inter-
cept db (i.e., the affine function b 2 ½B� 1� has equation
y ¼ cbxþ db). If the binary variable di, b ¼ 1, then the data
point (Xi, Yi) is associated with segment b of the PWL function
(for i 2 ½I� and b 2 ½B� 1�). The breakpoints are then given by
the intersection of consecutive linear segments (further informa-
tion on how solution information can be extracted is found in
Section A of the Appendix):

min n ð1aÞ
s:t: Yi � ðcbXi þ dbÞ � nþM1

i ð1� di, bÞ 8i 2 I½ �; 8b 2 B� 1½ � ð1bÞ
ðcbXi þ dbÞ � Yi � nþM1

i ð1� di, bÞ 8i 2 I½ �; 8b 2 B� 1½ � ð1cÞ
XB�1
b¼1

di, b ¼ 1 8i 2 I½ � ð1dÞ

diþ1, bþ1 � di, b þ di, bþ1 8i 2 I � 1½ �; b 2 B� 2½ � ð1eÞ
diþ1, 1 � di, 1 8i 2 I � 1½ � ð1fÞ
di,B�1 � diþ1,B�1 8i 2 I � 1½ � ð1gÞ
di, b þ diþ1, bþ1 þ cb � 2 � dþi, b 8i 2 I � 1½ �; b 2 B� 2½ � ð1hÞ
di, b þ diþ1, bþ1 þ ð1� cbÞ � 2 � d�i, b 8i 2 I � 1½ �; b 2 B� 2½ � ð1iÞ
dbþ1 � db � Xiðcb � cbþ1Þ �M2

i ð1� dþi, bÞ 8i 2 I � 1½ �; b 2 B� 2½ � ð1jÞ
dbþ1 � db � Xiþ1ðcb � cbþ1Þ þM2

iþ1ð1� dþi, bÞ 8i 2 I � 1½ �; b 2 B� 2½ � ð1kÞ
dbþ1 � db � Xiðcb � cbþ1Þ þM2

i ð1� d�i, bÞ 8i 2 I � 1½ �; b 2 B� 2½ � ð1lÞ
dbþ1 � db � Xiþ1ðcb � cbþ1Þ �M2

iþ1ð1� d�i, bÞ 8i 2 I � 1½ �; b 2 B� 2½ � ð1mÞ
n 2 M n,M

n
h i

ð1nÞ
db 2 Db,Db

� �
, cb 2 Cb,Cb

� �
8b 2 B� 1½ � ð1oÞ

di, b 2 f0, 1g 8i 2 I½ �; b 2 B� 1½ � ð1pÞ
cb 2 f0, 1g 8b 2 B� 2½ � ð1qÞ
dþi, b, d

�
i, b 2 0, 1½ � 8i 2 I � 1½ �; b 2 B� 2½ � ð1rÞ

IISE TRANSACTIONS 3

https://doi.org/10.1080/24725854.2022.2107249

The objective function (1a) minimises the chosen distance
metric. Throughout this article, we use the maximum difference
metric (or ‘1-norm), which minimises the maximum absolute
distance between the data points and the PWL function (we aim
to consider other distance metrics, such as the sum of absolute dif-
ferences and sum of squared differences, in future work). It works
by minimizing the absolute distance between the PWL function
and the farthest outlier data point, without consideration to all the
other data points. Note that the objective function does not con-
tain any of the binary variables, with its value implicitly given by
constraints (1b) and (1c), which evaluate the objective value for
the given PWL function. The role of the big-M constructs is dis-
cussed in Section B of the Appendix.

Constraints (1d) ensure each data point is associated with
exactly one linear segment. Constraints (1e)–(1g) ensure the
ordering of all data points, such that if a point is associated
with a certain segment, the previous point must either be
associated with the previous or same segment ((1f) and (1g)
ensure this for the first and last segments, respectively).

Constraints (1h)–(1m) ensure continuity of the PWL
functions. If there is a breakpoint between data points Xi

and Xiþ1 which are associated with linear segments b and
bþ 1 respectively, then di, b ¼ diþ1, bþ1 ¼ 1: Furthermore, the
two segments will intersect at the breakpoint which lies
between the two data points. That is,

Xi � dbþ1 � db
cb � cbþ1

� Xiþ1:

In this instance, either dþi, b or d
�
i, b is set to one depending on

the value of the binary variable cb, which denotes whether the
change in gradient between adjacent segments is positive or nega-
tive. In either case, the denominator will be distributed to avoid
non-linearity, and the direction of the inequalities will change
depending on the sign of the change in gradient. If cb ¼ 1, then
dþi, b ¼ 1 and constraints (1j) and (1k) are activated, implying that
the gradient decreases between the two consecutive linear seg-
ments (i.e., cb � cbþ1 � 0). Alternatively, if cb ¼ 0, then d�i, b ¼ 1
and constraints (1l) and (1m) are activated, implying the gradient
increases (i.e., cb � cbþ1 � 0). Note that if all of the cb variables
take the same value, then the PWL function is either convex or
concave. Finally, constraints (1n)–(1r) give the domains for the
decision variables (note that dþi, b and d�i, b, while having domains
½0, 1�, are not binary variables). The derivation of the variable
domains are discussed further in Section B of the Appendix. We
refer the reader to Rebennack and Krasko (2020) for a detailed
derivation and explanation of formulation (1).

Using this formulation results in a convex MILP with 2BI �
4I þ 3 continuous variables and BðI þ 1Þ � I � 2 binary varia-
bles, and a total of 9BI � 7B� 13I þ 12 functional constraints.
Solving formulation (1) for the given distance metric provides a
globally optimal PWL for the associated set of I data points, with a
given number of breakpoints B � I (Rebennack and Krasko, 2020,
Theorem 1). Recall that B � I is required to avoid overfitting.

2.2. Outlier detection

In its current state, formulation (1) can be susceptible to outliers in
the x-component (leverage points), as well as in the y-component.

If there are outliers in the data set, the resulting PWL function will
likely be heavily affected and far from optimal for the non-outlier
data points. For our application, we aim to remove outlier data
points from the resulting models. Post-processing outlier removal
methods, such as the removal of a given number of data points
with the farthest distance to their associated linear segment, can be
implemented. However, it is likely that the model will have to be
re-solved once the outliers have been removed in order to provide
a better fit to the remaining data points. Furthermore, these data
points will not necessarily always be outliers, and the resulting
model may be better if other points were removed from the data.
Alternative approaches, such as the total enumeration through all
possible sets of outlier points, are likely to be inefficient.

Regarding pre-processing options for outlier detection (and
elimination), we can identify a set of possible outliers before the
model is solved. Such an approach was utilised by Sudermann-
Merx and Rebennack (2021) for solving regression functions sub-
ject to the possible exclusion of pre-identified leverage points. In
this case, possible outlier points are identified before the model is
solved subject to the exclusion of a subset of these identified outlier
points. The outlier points can be identified using statistical analy-
ses; for example, identifying data points whose variables lie outside
the interquartile range. Let O be the set of possible outlier points,
qi be jOj binary variables, each relating to a possible outlier point,
where qi ¼ 1 means that data point i 2 O is included in the fit
(i.e., contributes to the objective function) and not an outlier, and
letQ be the total number of outliers to be excluded. The following
constraint was included in their model:

P
i2O qi ¼ jOj � Q:

For the application of solving regression functions,
Sudermann-Merx and Rebennack (2021) implemented outlier
detection into the objective function by multiplying the contribu-
tion of each possible outlier data point by the binary variable. In
this instance, the resulting objective function is non-linear and is
hence a relatively time-consuming addition.

In order to increase robustness and efficiency (and to avoid
additional pre- or post-processing computational costs), we wish
to implement outlier detection such that it is done simultaneously
within the MILP model. Such a strategy is often utilised in linear
regression models (Rousseeuw, 1984; Koenker and Bassett, 1985;
Hawkins and Olive, 1999), and is often done using non-linear
constraints. With the aim of preserving the linearity of the model,
we can implement outlier detection into our formulation by
slightly adjusting constraints (1b)–(1c).We use the binary variable
(qi, i 2 ½I�) to state that the data point Xi is included in the model
(if qi ¼ 1), and hence not an outlier point, and we again state that
we wish to omitQ outlier points.

min n ð2aÞ
s:t: Yi � ðcbXi þ dbÞ � nþM1

i ð2� di, b � qiÞ 8i 2 I½ �; 8b 2 B� 1½ � ð2bÞ
ðcbXi þ dbÞ � Yi � nþM1

i ð2� di, b � qiÞ 8i 2 I½ �; 8b 2 B� 1½ � ð2cÞ
XI

i¼1
qi ¼ I � Q ð2dÞ

qi 2 f0, 1g 8i 2 I½ � ð2eÞ
ð1dÞ � ð1rÞ ð2fÞ

The objective function (2a) calculates the distance meas-
ure as usual. However, constraints (2b)–(2c) have been
adjusted to only affect the calculation of n if the data point
Xi is not an outlier. Otherwise, it does not affect the

4 J.A. WARWICKER AND S. REBENNACK

https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249

objective function (since the data point is considered as an
outlier). Constraint (2d) ensures that only Q data points are
considered as outliers (note that even if at most Q outliers
were being identified, the value of the objective function
would not improve compared to a fixed value of Q), and
constraint (2e) gives the domain of the binary variables.

Formulation (2) introduces I new binary variables in com-
parison to formulation (1), and one further functional constraint.
Hence, formulation (2) has a total of BðI þ 1Þ � 2 binary varia-
bles, 2BI � 4I þ 3 continuous variables, and 9BI � 7B� 13I þ
13 functional constraints. We end the discussion on this model
with the following remark, which gives the optimality of the
found PWL function resulting from the MILP model.

Remark 1. For a set of I ordered data points
ðXi,YiÞ 2 R2, i ¼ 1, :::, I, bounds on the slope ½C,C� and
intercept ½D,D�, and a given number of breakpoints B � I
and a number of outlier points Q � I, optimal solutions of
the MILP given by formulation (2) define globally optimal
continuous PWL functions minimizing the given distance
metric, with slope 2 ½C,C� and intercept 2 ½D,D�:

3. Model decomposition

Solving the MILP given by formulation (2) involves solving
for BðI þ 1Þ � 2 ¼ OðBIÞ binary variables. Although it is
often the case that B� I, branch-and-cut approaches are
challenged even for medium-sized instances.

A natural decomposition for formulation (2) is to separate the
model into amaster problem consisting of the complicating varia-
bles, which can feed solution information into a sub problem.
Such an idea is typically used when applying Benders decompos-
ition (Benders, 1962). In this case, depending on the solution to
the sub problem (i.e., optimality or infeasibility), cuts can be added
to the master problem which is then re-solved. This process is
repeated until optimality is found for the overall problem (and the
solution is given by the distancemetric in the final sub problem).

To implement this decomposition approach into the model,
we use the following deconstruction of the MILP given by formu-
lation (3), separating the binary variables and continuous varia-
bles. The master problem consists of all constraints containing
only binary variables. Note that in the first iteration (without any
induced cuts), the master problem is simply a feasibility problem,
since the objective function of the monolithic MILP does not
depend explicitly on the values of the binary variables (we use the
objective function Z, which is affected by the cuts and provides a
lower bound on the overall objective). Furthermore, since there
are no constraints for the values of the cb variables, b 2
f1, :::,B� 2g, these can be chosen arbitrarily in the first iteration.
Themaster problem is given in formulation (3):

ðMasterÞ min Z 2 Rþ ð3aÞ
s:t ð1dÞ � ð1gÞ ð3bÞ

XI

i¼1
qi ¼ I � Q ð3cÞ

Induced cuts ð6Þ ð3dÞ
di, b 2 f0, 1g 8i 2 I½ �; 8b 2 B� 1½ � ð3eÞ
cb 2 f0, 1g 8b 2 B� 2½ � ð3fÞ
qi 2 f0, 1g 8i 2 I½ � ð3gÞ

The objective of the master problem is given as Z, which is
an auxiliary variable used to estimate the true value of the
objective function through cuts. The cuts will remove a non-
improving solution corresponding to the given assigment of
binary variables in the master problem. Initially, we set the
value of Z to zero as an initial lower bound on the true object-
ive function value (since we know that the true objective func-
tion value is always non-negative in a feasible solution).
Solving the master problem provides trial solutions of the bin-
ary variables. Let the optimal solution for the master problem
after the most recent addition of cuts be given by d̂i, b for i 2
½I�, b 2 ½B� 1�, q̂i for i 2 ½I�, and ĉb for b 2 ½B� 2� :

ðSubðd̂, q̂, ĉÞÞ min n ð4aÞ
s:t: nþ ðcbXi þ dbÞ � Yi �M1

i ð2� d̂i, b � q̂iÞ 8i 2 I½ �; 8b 2 B� 1½ � ð4bÞ
n� ðcbXi þ dbÞ � �Yi �M1

i ð2� d̂i, b � q̂iÞ 8i 2 I½ �; 8b 2 B� 1½ � ð4cÞ

dþi, b � d̂i, b þ d̂iþ1, bþ1 þ ĉb � 2 8i 2 I � 1½ �; b 2 B� 2½ � ð4dÞ
d�i, b � d̂i, b þ d̂iþ1, bþ1 þ ð1� ĉbÞ � 2 8i 2 I � 1½ �; b 2 B� 2½ � ð4eÞ
ðdbþ1 � dbÞ � Xiðcb � cbþ1Þ �M2

i d
þ
i, b � �M2

i 8i 2 I � 1½ �; b 2 B� 2½ � ð4fÞ
Xiþ1ðcb � cbþ1Þ � ðdbþ1 � dbÞ �M2

iþ1d
þ
i, b � �M2

iþ1 8i 2 I � 1½ �; b 2 B� 2½ � ð4gÞ
Xiðcb � cbþ1Þ � ðdbþ1 � dbÞ �M2

i d
�
i, b � �M2

i 8i 2 I � 1½ �; b 2 B� 2½ � ð4hÞ
ðdbþ1 � dbÞ � Xiþ1ðcb � cbþ1Þ �M2

iþ1d
�
i, b � �M2

iþ1 8i 2 I � 1½ �; b 2 B� 2½ � ð4iÞ

n 2 M n,M
n

h i
ð4jÞ

db 2 Db,Db

� �
, cb 2 Cb,Cb

� �
8b 2 B� 1½ � ð4kÞ

dþi, b, d
�
i, b 2 0, 1½ � 8i 2 I � 1½ �; b 2 B� 2½ � ð4lÞ

IISE TRANSACTIONS 5

We present the rearranged sub problem consisting of only
continuous variables in formulation (4) (which is a linear pro-
gram), having moved any constant terms (including the fixed
values for the binary variables) to the right-hand side of each
constraint. Although the values of dþi, b and d�i, b are fixed to
either zero or one in constraints (4d)–(4e), and hence lessen
the effect of the big-M constants in constraints (4f)–(4i), they
appear in the sub problem, since they are continuous variables
(following from formulation (1) by Rebennack and Krasko
(2020)). We note that they could also appear in the master
problem, although preliminary experiments showed no tan-
gible difference. Solving Subðd̂, q̂, ĉÞ gives information leading
to cuts to be added to the master problem (replacing con-
straint (3d)).

An advantage of solving for fixed binary variables is that there
is a reduced dependence on the big-M constraints in the sub
problem (i.e., many of the constraints (4b)–(4c) and (4f)–(4i) can
essentially be ignored). Solving the sub problem gives an incum-
bent solution for the overall problem. Due to the setup of the
problem, an optimal solution is always found for any feasible solu-
tion of binary variables, removing the need for feasibility cuts.

In order to apply Benders decomposition to the (bounded)
sub problem and find the cuts, we consider its dual. We consider
the dual variables ai, b, 1=2, p

þ=�
i, b , sþ=�i, b, 1=2 corresponding to con-

straints (4b)–(4c), (4d)–(4e), (4f)–(4i), respectively. The dual prob-
lem has the following objective function, a maximization problem
with the coefficients of the dual variables given by the constants
in the right-hand side of the rearranged sub problem given by
formulation (4):

max

�XI

i¼1

XB�1
b¼1

��
Yi �M1

i

�
2� d̂i, b � q̂i

��
ai, b, 1

þ
�
� Yi �M1

i

�
2� d̂i, b � q̂i

��
ai, b, 2

�

þ
XI�1
i¼1

XB�2
b¼1

��
d̂i, b þ d̂iþ1, bþ1 þ ĉb � 2

�
pþi, b

þ
�
d̂i, b þ d̂iþ1, bþ1 þ ð1� ĉbÞ � 2

�
p�i, b

�

�M2
i s
þ
i, b, 1 �M2

iþ1s
þ
i, b, 2 �M2

i s
�
i, b, 1 �M2

iþ1s
�
i, b, 2

�

Without writing the dual problem out explicitly, we note
that since the sþ=� variables are bounded from below by
zero, and have negative coefficients in the objective function,
they will take a value of zero in an optimal dual solution.
Hence, the maximization of the given objective function
only involves maximizing for the coefficients of the a and
pþ=� variables. The coefficients of the a variables are only
non-negative when the given data point is associated with
the given segment, and is not an outlier (i.e., when
di, b þ qi ¼ 2), whereas the coefficients of the pþ=� variables
are only non-negative when a breakpoint exists between
consecutive data points (i.e., when di, b þ diþ1, bþ1 þ cb � 2 ¼
1 or di, b þ diþ1, bþ1 þ ð1� cbÞ � 2 ¼ 1). Hence, the cuts
derived from the sub problem will involve the binary varia-
bles associated with non-outlier data points with the max-
imum absolute difference (in the former case), and at those
associated with the breakpoints (in the latter case).

From this, we note that the Benders cuts will be optimal-
ity cuts of the form Z � f ðd, q, c, â, p̂þ, p̂�Þ, where f is an
affine function of the master variables (i.e., d, q, c), and
ðâ, p̂þ, p̂�Þ represents the extreme points of the feasible
region of the dual sub problem (in the projected space of
the dual variables). These cuts will eliminate an infeasible
ðZ, d, q, cÞ solution for the master problem. That is, for a
given objective function value to the master problem Z,
alongside a set of binary variables forming that solution,
the Benders cuts will state that the given objective
function value Z is non-optimal, and that at least one of
the binary variables must change in order to find an
improved solution.

In experimental results, we found that the Benders
decomposition approach applied to formulation (2) led to
worse runtimes than the monolithic formulation. In particu-
lar, the runtime increases very quickly with the number of
breakpoints. Therefore, we consider a more efficient way to
find effective cuts for the master problem.

4. Implementing combinatorial cuts

The Benders decomposition approach relies on the sub
problem feeding information about the given solution back
to the master problem. The combinatorial Benders decom-
position approach, introduced by Codato and Fischetti
(2006), extends on this approach by returning combinatorial
information on the variables in the master problem, making
stronger cuts based on a smaller number of variables.

The combinatorial cuts are induced in the sub problem
and added into the master problem on iterations in which
the sub problem is infeasible. Since the objective function of
formulation (2) relies only on the continuous variables, it
cannot be accommodated explicitly into the master problem
(only through an auxiliary variable which is used to estimate
its value). However, by adding an inequality on the objective
value into the sub problem of the form n � UB� �, where
UB is the current incumbent value and � a small, but posi-
tive, constant, we can induce infeasibility in the sub prob-
lem. Feasible iterations, which present an improvement of
the current solution, update the value of the incumbent
solution UB: Once the master problem becomes infeasible
(due to the cuts), the optimal solution is defined by the set
of variables providing the current incumbent solution.

At each iteration of the sub problem, we are looking to
solve the following problem:

min n ð5aÞ
s:t: n � UB� � ð5bÞ

ð4bÞ � ð4lÞ ð5cÞ

If the sub problem is infeasible, this suggests that at least
one of the fixed binary variables must change in order to
find a new feasible solution. This information can be fed
into the master problem in the form of a cut. We refer to
such a cut as a solution elimination constraint, since it
ensures that the current solution cannot be found again by
the master problem. In particular, this cut will imply that

6 J.A. WARWICKER AND S. REBENNACK

the location of at least one breakpoint must change. We
now explicitly formulate the solution elimination constraint.
For b 2 ½B� 1�, let the breakpoint b fall between data points
Xib and Xibþ1 (i.e., d̂ib, b ¼ d̂ibþ1, bþ1 ¼ 1Þ for the current
given solution to the master problem (with fixed values
d̂, ĉ, q̂). The solution elimination constraint takes the fol-
lowing form:

XB�2
b¼1
ð2� dib , b � dibþ1, bþ1Þ þ

X
i2 I½ �:q̂ i¼1

ð1� qiÞ

þ
X

b2 B�2½ �:ĉb¼0
cb þ

X
b2 B�2½ �:ĉb¼1

ð1� cbÞ � 1,
(6)

where we define iB�1 ¼ I: First, we note that only changing di, b
variables that assign consecutive data points to adjacent segments
will affect the calculation of the objective function, since the
remaining values will be fixed in constraints (3c)–(3e). Second,
we note that since any data point that is deemed an outlier has
no effect on the calculation of the objective function, the con-
straint only eliminates the current assignment of non-outlier
points. The cut is weak and very dense and implies that this
approach is inefficient for this MILP, since it must cycle through
every possible feasible assignment of data points to linear seg-
ments and selection of outliers.

In the context of mixed-integer non-linear programming
(MINLP), such solution elimination constraints turned out
to be helpful in designing a global optimization algorithm
(Li et al., 2011). However, an efficient solution algorithm
can only be obtained when strengthening the master prob-
lem (which is a relaxation of the original problem), see
Frank and Rebennack (2015).

In order to find stronger combinatorial cuts, Codato and
Fischetti (2006) propose finding an irreducible infeasible subsystem
(IIS) of the sub problem. An IIS of the sub problem given by for-
mulation (6) is an infeasible subset of the constraints such that the
removal of any one of the constraints in the IIS results in a feasible
subsystem. A cut consisting of the need to change at least one of
the binary variables appearing in the IIS (known as a combinator-
ial Benders cut) yields a much stronger cut than the standard solu-
tion elimination constraint, since many more potential solutions
are declared infeasible.

Although the constraints (4f)–(4i) do not contain any
binary variables, they can still contribute to the combinator-
ial Benders cut, since they are affected by the values of the
binary variables in constraints (4d)–(4e). Hence, if any of
the constraints (4f)–(4i) appear in the IIS, this implies that
one (or both) of the constraints (4d)–(4e) (and their associ-
ated binary variables) are contributing to the infeasibility.

Let R denote the set of binary variables appearing in the
constraints of the IIS (that is, the binary variables with non-
zero coefficient in at least one constraint of the IIS). The
combinatorial Benders cuts take the following form:X

di, b2R:d̂ i, b¼1
ð1� di, bÞ þ

X
qi2R:q̂ i¼1

ð1� qiÞ

þ
X

cb2R:ĉb¼1
ð1� cbÞ þ

X
cb2R:ĉb¼0

cb � 1:
(7)

Note that only di, b or qi variables that are fixed to a value
of one will cause infeasibility, since they do not affect the
objective function if they are set to zero (due to the presence
of the big-M constants in constraints (4b)–(4c)).

Implementing these combinatorial cuts into the master
problem eliminates many suboptimal solutions in each iter-
ation. In each iteration, the sub problem either updates the
current objective value, or is infeasible due to the constraint
(6b). Repeatedly solving infeasible sub problems for the given
solution of the master problem induces more cuts, and even-
tually the master problem becomes infeasible. When the mas-
ter problem becomes infeasible, the optimal solution to the
model is given by the current value of UB, with the values for
the variables given by the solution to the master and sub prob-
lems which led to this solution. Furthermore, it is possible to
observe the gradual improvement in solution quality over
time (for more information, see Section C of the Appendix).
Overall, the process of CBD for our model (with the distance
metric given by dð�, �Þ) is outlined in Algorithm 1, which returns
an �-optimal PWL function over the data points (Xi, Y i), i 2 ½I�,
with (at most) B breakpoints and Q outliers.

Algorithm 1 Combinatorial Benders Decomposition for
PWL Regression with Outliers

1: Initialize UB ¼ 1, � > 0; initialize some solution
½d̂, q̂, ĉ� of the master problem;

2: while master problem is feasible do
3: Solve Subðd̂, q̂, ĉÞ;
4: if sub problem is feasible then
5: UB optimal objective function value

of Subðd̂, q̂, ĉÞ;
6: Add constraint dð�, �Þ � UB� � to the sub problem;
7: end if
8: Find (multiple) IISs of the sub problem;
9: Add combinatorial Benders cuts (constraint (7)) to

the master problem;
10: Solve the master problem to give some new ½d̂, q̂, ĉ�;
11: end while
12: Return UB:

5. Problem-specific model improvements

Due to the knowledge of the specific application we are con-
sidering (i.e., fitting PWL functions with outliers), we are
able to implement improvements throughout.

5.1. Generating strong combinatorial cuts from the IIS

During the process of CBD (see Algorithm 1), finding an
IIS leads to the creation of strong combinatorial cuts on the
binary variables to be included in the master problem. If we
are able to find multiple IISs for each infeasible sub prob-
lem, we can create different combinatorial cuts from each
one, eliminating many possible solutions in each iteration.
Since the number of IISs for a given system can be exponen-
tial in the size of the system (Chakravarti, 1994; Pfetsch,

IISE TRANSACTIONS 7

https://doi.org/10.1080/24725854.2022.2107249

2003), it is important that effective ones are computed
efficiently.

In order to compute multiple IISs for each sub problem,
we make use of the heuristic dual objective function

P
i wiui

with weights wi, as suggested by Codato and Fischetti (2006)
(see Section D of the Appendix). We initially set the weights
all to one, and then iteratively set the weight of a constraint
(which appears within the current IIS) one at a time to zero
in order to find multiple IISs of the same infeasible system
(until all the weights have been set to zero, or until an IIS
can no longer be found). Furthermore, if we select which
weights we reduce, and hence which constraints we no lon-
ger consider for the resulting IIS, we can improve the effi-
ciency of the process. In experimental results in Section 6,
we model this process by the use of the conflict refiner
available within CPLEX.

The sub problem given by formulation (6) contains three
possible groups of constraints that can appear in the IIS.
Constraint (6b) always appears in the IIS, since that is the
constraint that is causing the infeasibility. Additionally, fur-
ther constraints are either of the form of constraints
(4b)–(4c) or (4d)–(4e). If the constraints are of the form
(4b)–(4c), this implies that either one di, b variable or one qi
variable is causing the infeasibility. Hence, two variables will
be present in the resulting cut. However, if the constraints
are of the form (4d)–(4e), this implies that one of three vari-
ables (two di, b variables and one cb variable) are causing the
infeasibility, and hence it contributes three variables to the
combinatorial cut. The latter cuts are weaker, since they sug-
gest that either one of two di, b variables must change, or a
cb variable must change (note that there are no restrictions
on the cb variables). In contrast, the former cuts suggest
either one di, b variable must change, or a qi variable must
change (for which there are further implications due to the
knapsack-style constraint (3f)). In order to maximise the
strength of the resulting combinatorial cuts, we can priori-
tise the removal of the weaker constraints from the IIS first
(of the form (4d)–(4e)), so that stronger cuts can be found.
Hence, we can reduce the weights of the heuristic dual
objective function which correspond to the weaker cuts first.
Thus, in each iteration, we create more cuts which are com-
paratively stronger.

5.2. Initialization

The initialization of the CBD method involves setting an
initial value of the upper bound (UB). In the default
method, we set UB ¼ þ1, which is immediately taken over
by the value of the sub problem corresponding to the first
found feasible master system. However, by fixing the initial
value of UB to be lower (i.e., closer to the optimal solution),
the system eliminates more infeasible solutions quickly and
creates many strong combinatorial cuts. Hence, it may reach
the optimal solution faster. Naturally, there must be a trade-
off between the time required to find a reasonable initial
solution and the improvement presented by implementing
the given initialization. The R packages segmented and struc-
change can be used in tandem to give approximations for

breakpoint locations and initialized solutions (Muggeo,
2003). However, we note that these packages limit the num-
ber of breakpoints allowed for the PWL function (in prelim-
inary experiments, we could not fit more than eight
breakpoints), and hence cannot allow a fair comparison.

As a benchmark, we can initialise the model with the
upper bound from the immediately smaller problem (i.e.,
with one fewer breakpoint and no outliers). When this
information is not available, initializing the model with the
upper bound from any smaller problems (if available), or
through a simplified model where the breakpoints are
assumed to be distributed evenly, may be beneficial.

5.3. Balancing the branching in the master problem

There are three types of binary variables in the master prob-
lem. The di, b variables assign data points to linear segments,
the qi variables designate non-outlier points, and the cb vari-
ables model for the change in gradient between adjacent lin-
ear segments. For a given i? 2 ½I� and b? 2 ½B� 1�, standard
branching rules on the di, b binary variables lead to two leaf
nodes in the tree, namely di? , b? ¼ 0 and di? , b? ¼ 1: Since
branching on di? , b? ¼ 1 has a huge impact compared with
branching on di? , b? ¼ 0, the branch-and-bound tree
becomes very unbalanced (observe that such an effect is not
present for the cb or qi variables). Notably, setting di? , b? ¼ 1
means that di, b ¼ 0 for all i < i? and all b > b?: Special
branching rules can be implemented to exploit this special
structure and decrease the impact of heavily unbalanced
branching trees.

We consider a branching rule that takes advantage of the
structure of the d variables. Let there be a decision to
branch on a given variable di? , b? , with indices i? and b?: We
assume i? > 1 and b? > 1, and implement standard branch-
ing otherwise. This gives rise to the following four sub prob-
lems depending on the values of other d variables: (i)
di? , b? ¼ 1 and di?�1, b?�1 ¼ 1; this implies that di? , b?�1 ¼ 0
and di, b? ¼ 0 for all i < i?; (ii) di? , b? ¼ 1 and di?�1, b? ¼ 1;
(iii) di? , b? ¼ 0 and di? , b?�1 ¼ 1; (iv) di? , b? ¼ 0 and di? , b?�1 ¼
0; this implies that di?�1, b?�1 ¼ 0: Naturally, the first branch
is very strong as it implies the existence of a breakpoint
between the data point i? � 1 and i?, for the join between
the linear segments b? � 1 and b?: The second two branches
contain at least one variable set to one which gives rise to a
strong branch, despite no implication on the breakpoint
locations. The final branch contains three variables set to
zero. However, there is still some impact since neither the
linear segment b? � 1 or b? is assigned to data point i?:
Depending on the fractional value of the data point di?, b?
and its surrounding variables, tailoring the branching direc-
tion using branch callbacks to lead to the strongest possible
branch (with the most variables set to one) should lead to
better runtimes and eliminate many weaker solutions where
possible. Such a branching rule should also lead to less
unbalanced branching trees.

8 J.A. WARWICKER AND S. REBENNACK

https://doi.org/10.1080/24725854.2022.2107249

6. Computational experiments

In order to assess the effectiveness of the combinatorial
Benders decomposition approach to the PWL function fit-
ting problem, we implemented the model in Cþþ and
embedded it within IBM ILOG-CPLEX version 20.1.0. using
standard solver settings. The experiments in this section
were run on an Intel 3.00GHz machine with 16GB
of RAM.

We implement the CBD approach within a branch-and-
cut framework, with the combinatorial cuts being added as
lazy cuts (see Section E of the Appendix). The IISs of the
sub problem are found using the conflict refiner available
within CPLEX. The conflict refiner works by assigning pref-
erences to each constraint within the sub problem, analo-
gous to the weights as described in Section D of the
Appendix. In order to find multiple IISs of the same sub
problem, all preferences are initially set to one (which indi-
cates that the given constraint should be considered for the
IIS). Once an IIS has been found, the preference corre-
sponding to one of the constraints that appears in that IIS is
set to -1 (indicating that the given constraint should not be
considered when finding further IISs). The process repeats
by finding further IISs of the same sub problem, consisting
of constraints whose preference remains as one (ensuring
that the found IISs are all different). Once no more IISs of
the sub problem can be generated (i.e., an IIS of the con-
straints whose preference is still one), the process ends, and
the combinatorial cuts relating to each IIS are found.

We run computational experiments on 10 bivariate data
sets (with I data points) fitted with a PWL function with a
given number of breakpoints, minimizing the maximum
absolute difference between the data and the PWL function.
The data sets are taken from real world data and present a
variety of different landscapes. These data sets are often
used for data fitting analyses, including PWL function fit-
ting, regression analysis and time-series analysis. For further
details on the data sets, see Section F of the Appendix.

6.1. Improvements from the default approach

We first consider a number of possible improvements that
can be made to the default CBD approach, for finding opti-
mal PWL functions with one outlier. In Section 5, we have
seen that we can incorporate improvements in cut gener-
ation, initialization, and branching within the CBD model.
We present comparative results with the default approach,
assessing different implementations for each of these three
improvements. The full complementary experimental results
are found in Section G of the Appendix.

6.1.1. Generating strong cuts from the IIS
In Figure 1, we analyse the effect of allowing multiple IISs
to be found in each iteration, leading to the generation of
multiple combinatorial cuts. We compare the default CBD
formulation with two formulations that allow multiple cuts.
The two compared formulations differ in the order in which
the preferences of the constraints (appearing in the IIS) are

set to -1. That is, we present two methods to decide which
constraints should not appear in future IISs, after an initial
feasible IIS has been found.

The first method prioritises the removal of constraints of the
form of (4b)–(4c), which are strong constraints that would
imply that one of two binary variables may be causing the
infeasibility. After each feasible IIS has been found, the prefer-
ence for one of these constraints is set to -1 (if such a constraint
still appears in the IIS). This means that future IISs would not
contain as many constraints of this type. We refer to this
method as Weak Cuts. The second method prioritises the
removal of constraints of the form (4d)–(4e), which would
imply that one of three binary variables may be causing the
infeasibility. This method ensures that cuts resulting from
future IISs will be comparatively stronger, since they would
suggest that the infeasibility is being caused by one of a smaller
set of binary variables (in comparison with the Weak Cuts
method). We refer to this method as Strong Cuts. Full experi-
mental results are available in Section G.1 of the Appendix.

From Figure 1, we first note that the Strong Cuts
approach is the fastest overall (from the experimental results
in Section G.1 of the Appendix, we see that is it the fastest
approach in 45 out of the 55 presented cases (i.e., 82%)).
Although it produces a similar amount of cuts as the
Default method, the faster runtimes indicate that the gener-
ated cuts are strong (which is backed up by the experimental
results in the Appendix) and can eliminate many infeasible
solutions in each iteration due to multiple cuts being pro-
duced. Typically, between 95 and 100% of the total cuts pro-
duced by each approach were the combinatorial cuts.

For the method implementing Weak Cuts, many more cuts
were added overall. Furthermore, the experimental results in
the Appendix suggest that these cuts were more dense, with
each cut containing, on average, more variables than the other
two approaches. This meant that many more incremental sol-
utions were produced before the optimal solution was found,
and suggests that this method is ineffective at removing non-

Figure 1. Runtime vs. number of cuts.

Figure 2. Runtime vs. initial optimality gap (calculated as a ratio to the optimal
objective function value, denoted as the black dashed line).

IISE TRANSACTIONS 9

https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249

optimal solutions in comparison with the Strong Cuts method.
In particular, the results highlight that the quality of the gen-
erated cuts is more important that the quantity.

6.1.2. Smart initialization approaches
In Figure 2, we analyse whether improving the initialization
of the upper bound can lead to speedups. The BackProp
strategy uses the optimal solution from the smaller problem
with no outliers (i.e., the optimal solution found by the
CBD approach for a PWL function with B – 1 breakpoints)
as the initialised solution. However, we note that this infor-
mation may not always be available (and when it is, it may
take a significant amount of time to acquire). Hence, we
also consider an alternative strategy. The distributed strategy
assumes an even distribution of data points to each segment
of the PWL function (that is, each data point i 2 ½I� is
assigned to the segment i � B=I, rounded as necessary), and
takes the solution found by the sub problem as the initial-
ised solution. Full experimental results are available in
Section G.2 of the Appendix.

From Figure 2, we first note that while the BackProp
approach is able to provide initial solutions close to the
optimal objective function value, the Distributed approach
can also provide a good approximation (especially if the
data is uniformly distributed, which is seen in the experi-
mental results in the Appendix). For the Default setting, the
initialised upper bound is þ1: We believe that heuristic
approaches to initialization would also be beneficial if they
are able to compute a feasible initial solution quickly.

Regarding the runtime of the CBD approach with each
setting, we can see the BackProp approach is the fastest1

(from the experimental results in Section G.2 of the
Appendix, it is the fastest in 35 out of the 55 presented
cases, i.e., 64%). Furthermore, the Distributed approach can
also provide faster runtimes compared with the Default
approach. Overall, we can see that providing good initial
solutions can significantly improve the running time.
However, the cost of acquiring the initialised solution
should be considered against the gains in runtime. For
future applications, we would consider implementing fast
heuristic approaches to approximate the initial solution.

6.1.3. Branching approaches
In Figure 3, we compare the effectiveness of implementing
different branching strategies throughout the optimization
process on the default CBD formulation. The CPLEX par-
ameter VarSel decides whether or not to branch on the
maximum infeasibility (MaxInfeas) or the minimum infeasi-
bility (MinInfeas). The Special branching rule is imple-
mented using branch callbacks within CPLEX. When a
decision to branch on a given variable is made, we tailor the
branching to select the d variable with maximum infeasibil-
ity (usually this variable has a fractional value of 0.5), and

lead the branching to the strongest possible branch, depend-
ing on the value of the surrounding variables when the
branching decision is made (see the discussion in Section 5).
For weaker branches, we ensure the branching tree remains
balanced when adjacent d variables are both infeasible (i.e.,
di, b, di, bþ1 2 ð0, 1Þ). This is done by fixing one of the varia-
bles to one in each branch. We also limit one branch type
for each variable, so as not to repeat the same branches in
the search tree. Full experimental results are available in
Section G.3 of the Appendix.

From Figure 3, we first note that the MinInfeas and
MaxInfeas approaches are slower overall, and visit many
more nodes in the branch-and-bound trees. That is, these
branching approaches explore more possible solutions and
suboptimal branches before finding the optimal solution,
leading to faster runtimes. The Default and Special
approaches visit consistently fewer nodes. Regarding the
runtimes, the experimental results suggest a slight advantage
for the Special approach (it is the fastest of the four
approaches in 29 of the 55 presented cases, whereas the
Default approach is the fastest in 21 cases). Furthermore,
the Special approach leads to more balanced branch-and-
bound trees by design, which can be advantageous for solv-
ing larger instances.

6.2. Tailored combinatorial Benders decomposition

We now consider an approach that combines the best per-
forming approaches for each of the three improvements dis-
cussed in the previous subsection. The presented Tailored
approach implements Strong Cuts, BackProp initialization,
and Special branching from Figures 1, 2, and 3, respectively.
We discuss the improvement from the tailored approach
against the monolithic MILP approach and the default CBD
approach for outlier detection (we present a comparison of
the MILP approach with the Benders decomposition
approach, and the tailored approach with the algorithmic
approaches presented by Wang et al. (1993) and Goodrich
(1994) in Section H of the Appendix). Recall that outliers
are identified during the optimization process, and they do
not contribute towards the final objective function value.
We consider instances across the 10 data sets for between 6
and 20 breakpoints, and between zero and three outliers.
The full detailed results of the comparative experiments are
found in Section I of the Appendix, while comparative
results for finding PWL functions without outliers are found
in Section J of the Appendix. Runtime results for the default

Figure 3. Runtime vs. number of branch-and-bound nodes.

1For the experimental comparison, we do not include the time taken to find
the initial solutions in the presented runtimes for the Distributed and BackProp
settings, as we are using these settings as a benchmark.

10 J.A. WARWICKER AND S. REBENNACK

https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249

CBD approach are found in Section K of the Appendix. We
illustrate the results in Figures 4-7.

Figure 4 shows the fraction of instances that are solved
within a given time limit for the three approaches for up to

three outliers. As the number of outliers increases, we see a
comparatively better performance of the tailored CBD method.
For any time budget above 5 seconds, the tailored CBD
approach is preferable for calculating optimal PWL functions
without outliers, and is preferable in calculating optimal PWL
functions with outliers for any given time budget. The default
CBD approach performs well in comparison with the MILP
approach; however, the improvements embedded within the
tailored approach allow it to solve more instances within a
given time budget across all problem sizes and instances.

Figures 5-7 show direct pairwise comparisons between
the running times of the three approaches. For these com-
parisons, we have excluded any instances where either
approach fails (either exceeding the time or memory limits).
The line y ¼ x is shown on all figures. In particular, from
Figure 5 and Figure 6, we see how the Tailored approach is
overall faster than the MILP approach and the default CBD
approach, respectively. From Figure 7, we see that the even
the default CBD approach is preferable to the MILP
approach, especially for instances with outliers.

7. Conclusions

We have implemented combinatorial Benders cuts into the
recently presented MILP model used to fit PWL functions to
discrete data. We first implemented inbuilt outlier detection
into the MILP model, which exhibits a special structure con-
taining a large amount of binary variables and big-M con-
straints, and hence the CBD approach fits well. The cuts found
by the CBD approach can also be implemented into the stand-
ard MILP model.

By taking advantage of problem-specific knowledge, we
showed that improvements in the CBD model can be found.
These including implementing a larger quantity and quality
of combinatorial cuts. Furthermore, implementing an

Figure 4. g refers to the fraction of instances solved to optimality within the given time.

Figure 5. Comparative running times: MILP vs. Tailored.

Figure 6. Comparative running times: Default vs. Tailored.

Figure 7. Comparative running times: MILP vs. Default.

IISE TRANSACTIONS 11

https://doi.org/10.1080/24725854.2022.2107249

initialization approach that gives a good estimation on the
optimal value of the objective function can also lead to faster
solution times. The implementation of a special branching
rule also proved effective. The tailored CBD model takes
advantage of these improvements and leads to a greatly
improved model.

We have shown empirically that the tailored CBD
approach leads to vast speedups over the standard MILP
approach, especially when there are a larger number of
breakpoints and multiple outliers. For cases with nine or
more breakpoints and two or more outliers, the CBD
approach is faster in all tested instances. Furthermore, the
CBD approach solves a larger percentage of the presented
instances than the MILP approach when the time limit is
10 seconds or more. These results can be easily extended to
model non-linear continuous functions with PWL functions
more accurately.

Acknowledgments

We are very grateful for the detailed and thorough comments from the
editor and two anonymous reviewers.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) [Grant 445857709].

Notes on contributors

John Alasdair Warwicker completed a master’s degree in Mathematics
from Loughborough University and a PhD in Theoretical Computer
Science from the University of Sheffield. Since 2019, he has been work-
ing as a research associate at the Institute of Operations Research at
Karlsruhe Institute of Technology, in the chair of stochastic optimiza-
tion. His research interests lie on the border of discrete mathematics,
computer science and operations research. Specific areas of interest
include formulations and decomposition approaches for mathematical
programming models, and analyses of heuristics and hyper-heuristics.

Steffen Rebennack completed a degree in Mathematics at Heidelberg
University, and a master’s degree in Industrial & Systems Engineering
at the University of Florida. He also obtained a PhD in industrial &
systems engineering from the University of Florida, before working at
the Colorado School of Mines as an assistant professor and an associate
professor. Since 2017, he has been working as chair professor for the
stochastic optimization group in the Institute of Operations Research
at Karlsruhe Institute of Technology. His research interests include sto-
chastic and large-scale global optimization problems, with a focus on
applications in power systems analysis.

ORCID

John Alasdair Warwicker http://orcid.org/0000-0002-6274-2638

References

Bellman, R. and Roth, R. (1969) Curve fitting by segmented straight lines.
Journal of the American Statistical Association, 64(327), 1079–1084.

Benders, J.F. (1962) Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik, 4(1), 238–252.

Berman, N.G., Wong, W.K., Bhasin, S. and Ipp, E. (1996) Applications
of segmented regression models for biomedical studies. American
Journal of Physiology-Endocrinology and Metabolism, 270(4),
E723–E732.

Bertsimas, D. and King, A. (2016) OR forum—an algorithmic approach
to linear regression. Operations Research, 64(1), 2–16.

Bertsimas, D., King, A. and Mazumder, R. (2016) Best subset selection via
a modern optimization lens. The Annals of Statistics, 44(2), 813–852.

Bertsimas, D. and Mazumder, R. (2014) Least quantile regression via
modern optimization. The Annals of Statistics, 42(6), 2494–2525.

Bertsimas, D. and Shioda, R. (2007) Classification and regression via
integer optimization. Operations Research, 55(2), 252–271.

Chakravarti, N. (1994) Some results concerning post-infeasibility ana-
lysis. European Journal of Operational Research, 73(1), 139–143.

Chang, C. (1973) Pattern recognition by piecewise linear discriminant
functions. IEEE Transactions on Computers, 22(9), 859–862.

Chatzinakos, C., Pitsoulis, L. and Zioutas, G. (2016) Optimization tech-
niques for robust multivariate location and scatter estimation.
Journal of Combinatorial Optimization, 31(4), 1443–1460.

Chen, D.Z. and Wang, H. (2009) Approximating points by a piecewise lin-
ear function, in Y. Dong, D. Z. Du, O. Ibarra (eds.), Algorithms and
Computation. ISAAC 2009. Lecture Notes in Computer Science, vol.
5878. Springer, Berlin, Heidelberg.

Codato, G. and Fischetti, M. (2006) Combinatorial Benders cuts for
mixed-integer linear programming. Operations Research, 54, 756–766.

Ertel, J.E. and Fowlkes, E.B. (1976) Some algorithms for linear spline
and piecewise multiple linear regression. Journal of the American
Statistical Association, 71(355), 640–648.

Feijoo, B. and Meyer, R.R. (1988) Piecewise-linear approximation
methods for nonseparable convex optimization. Management
Science, 34(3), 411–419.

Frank, S.M. and Rebennack, S. (2015) Optimal design of mixed
AC–DC distribution systems for commercial buildings: A noncon-
vex generalized Benders decomposition approach. European Journal
of Operational Research, 242(3), 710–729.

Geißler, B., Martin, A., Morsi, A. and Schewe, L. (2012) Using piecewise
linear functions for solving MINLPs, in J. Lee, S. Leyffer (eds.), Mixed
Integer Nonlinear Programming. The IMA Volumes in Mathematics
and its Applications, vol. 154. Springer, New York, NY.

Goldberg, N., Kim, Y., Leyffer, S. and Veselka, T.D. (2014) Adaptively
refined dynamic program for linear spline regression. Computational
Optimization and Applications, 58(3), 523–541.

Goldberg, N., Rebennack, S., Kim, Y., Krasko, V. and Leyffer, S. (2021)
MINLP formulations for continuous piecewise linear function fit-
ting. Computational Optimization and Applications, 79(1), 223–233.

Goodrich, M.T. (1994) Efficient piecewise-linear function approxima-
tion using the uniform metric, in Proceedings of the Tenth Annual
Symposium on Computational Geometry, (SCG ’94), pp. 322–331.
Association for Computing Machinery, New York, NY, USA.

Gunnerud, V. and Foss, B. (2010) Oil production optimization—a
piecewise linear model, solved with two decomposition strategies.
Computers & Chemical Engineering, 34(11), 1803–1812.

Hakimi, S. and Schmeichel, E. (1991) Fitting polygonal functions to a
set of points in the plane. CVGIP: Graphical Models and Image
Processing, 53(2), 132 – 136.

Hawkins, D.M. and Olive, D. (1999) Applications and algorithms for
least trimmed sum of absolute deviations regression. Computational
Statistics & Data Analysis, 32(2), 119–134.

Hooker, J. and Ottosson, G. (2003) Logic-based Benders decompos-
ition. Mathematical Programming, 96(1), 33–60.

Jupp, D.L.B. (1978) Approximation to data by splines with free knots.
SIAM Journal on Numerical Analysis, 15(2), 328–343.

Koenker, R. and Bassett, G. (1985) On Boscovich’s estimator. The
Annals of Statistics, 13(4), 1625–1628.

Kong, L. and Maravelias, C.T. (2020) On the derivation of continuous
piecewise linear approximating functions. INFORMS Journal on
Computing, 32(3), 531–546.

Li, X., Tomasgard, A. and Barton, P.I. (2011) Nonconvex generalized Benders
decomposition for stochastic separable mixed-integer nonlinear programs.
Journal of Optimization Theory and Applications, 151, 343—389.

12 J.A. WARWICKER AND S. REBENNACK

Lohmann, T. and Rebennack, S. (2017) Tailored Benders decompos-
ition for a long-term power expansion model with short-term
demand response. Management Science, 63(6), 2027–2048.

Muggeo, V.M.R. (2003) Estimating regression models with unknown
break-points. Statistics in Medicine, 22(19), 3055–3071.

Pfetsch, M. (2003) The maximum feasible subsystem problem and vertex-
facet incidences of polyhedra. Doctoral thesis, Technische Universit€at
Berlin, Fakult€at II - Mathematik und Naturwissenschaften, Berlin.

Rahmaniani, R., Crainic, T.G., Gendreau, M. and Rei, W. (2017) The
Benders decomposition algorithm: A literature review. European
Journal of Operational Research, 259(3), 801–817.

Rebennack, S. (2016a) Computing tight bounds via piecewise linear
functions through the example of circle cutting problems.
Mathematical Methods of Operations Research, 84(1), 3–57.

Rebennack, S. (2016b) Combining sampling-based and scenario-based
nested Benders decomposition methods: application to stochastic dual
dynamic programming. Mathematical Programming, 156(1), 343–389.

Rebennack, S. and Kallrath, J. (2015) Continuous piecewise linear
delta-approximations for bivariate and multivariate functions.
Journal of Optimization Theory and Applications, 167(1), 102–117.

Rebennack, S. and Krasko, V. (2020) Piecewise linear function fitting
via mixed-integer linear programming. INFORMS Journal on
Computing, 32(2), 507–530.

Rebennack, S., Prokopyev, O.A. and Singh, B. (2020) Two-stage
stochastic minimum s-t cut problems: Formulations, complex-
ity and decomposition algorithms. Networks, 75(3), 235–258.

Rei, W., Cordeau, J.-F., Gendreau, M. and Soriano, P. (2009)
Accelerating Benders decomposition by local branching. INFORMS
Journal on Computing, 21(2), 333–345.

Rousseeuw, P.J. (1984) Least median of squares regression. Journal of
the American Statistical Association, 79(388), 871–880.

Sudermann-Merx, N. and Rebennack, S. (2021) Leveraged least
trimmed absolute deviations. OR Spectrum.

Toriello, A. and Vielma, J.P. (2012) Fitting piecewise linear
continuous functions. European Journal of Operational Research,
219(1), 86–95.

Wagner, A.K., Soumerai, S.B., Zhang, F. and Ross-Degnan, D. (2002) Segmented
regression analysis of interrupted time series studies in medication use
research. Journal of Clinical Pharmacy and Therapeutics, 27(4), 299–309.

Wang, D.P., Huang, N.F., Chao, H.S. and Lee, R.C.T. (1993) Plane
sweep algorithms for the polygonal approximation problems with
applications, in International Symposium on Algorithms and
Computation, pp. 515–522. Springer, Berlin, Heidelberg.

Warwicker, J.A. and Rebennack, S. (2022) A comparison of two
mixed-integer linear programs for piecewise linear function fitting.
INFORMS Journal on Computing, 34(2), 1042–1047.

IISE TRANSACTIONS 13

	Abstract
	Introduction
	PWL function fitting
	Existing model for PWL function fitting
	Outlier detection

	Model decomposition
	Implementing combinatorial cuts
	Problem-specific model improvements
	Generating strong combinatorial cuts from the IIS
	Initialization
	Balancing the branching in the master problem

	Computational experiments
	Improvements from the default approach
	Generating strong cuts from the IIS
	Smart initialization approaches
	Branching approaches

	Tailored combinatorial Benders decomposition

	Conclusions
	Acknowledgments
	Funding
	Orcid
	References

