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Quantitative Bounds Versus Existence
of Weakly Coupled Bound States
for Schrödinger Type Operators

Vu Hoang, Dirk Hundertmark, Johanna Richter and Semjon Vugalter

Abstract. It is well-known that for usual Schrödinger operators weakly
coupled bound states exist in dimensions one and two, whereas in higher
dimensions the famous Cwikel–Lieb–Rozenblum bound holds. We show
for a large class of Schrödinger-type operators with general kinetic ener-
gies that these two phenomena are complementary. We explicitly get a
natural semi-classical type bound on the number of bound states precisely
in the situation when weakly coupled bound states exist not.
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1. Introduction: Quantitative Bounds Versus Weakly Coupled
Bound States

In this paper, we study operators of the form

T (p) + V

where p = −i∇ is the quantum-mechanical momentum operator and the ki-
netic energy symbol T : R

d → [0,∞) is a measurable function. See Sect. 3
for the precise definition of T (p) + V and the condition we need on the ki-
netic energy symbol T and the interaction potential V . There has been an
enormous amount of interest in the study of bound states for such operators.
Usually, in standard quantum mechanics the symbol is given by T (η) = η2,
that is, the kinetic energy is given by the the Laplacian p2 = −Δ. In this
case, it is well-known that quantum mechanics in three and more dimensions
is quite different from one and two dimensions. In three and more dimensions
the perturbed operator p2 +V can be unitarily equivalent to the free operator
p2 for potentials V which are small in some sense [40, Theorem XIII.27], and
for a suitable class of potentials the famous Cwikel–Lieb–Rozenblum bound
(CLR) holds, which gives a bound on the number of bound states in terms
of a semi-classical phase-space volume, see [11,30,41,42]. The works of Cwikel
and Lieb had been motivated by Simon [48], the work of Rozenblum by the
St. Petersburg school of mathematical physics around Birman and Solomyak,
whose work had been virtually unnoticed in the west until the mid 1970s.1

Rozenblum’s paper [41] was an announcement of his result and, typically for
the journal, did not contain any proofs. A version of his result also appeared in
the summer school lecture notes by Birman and Solomyak [7]. The version with
full proofs was published in [42]. Similarly, Lieb’s paper [29] is announcement
of his result and the details of his proof had been published later in [30,51]

In one and two dimensions, arbitrarily small attractive potentials produce
a bound state, see Problem 2 on page 156 in [25], or [10,60] and also [38]. More
precisely, it was rigorously shown2 by Barry Simon many years ago, see [50],
that it suffices that V is not identically zero and V ∈ L1 with

∫
V dx ≤ 0,

1See the “note added in proof” in [48].
2For a textbook treatment of weakly coupled bound states for the Schrödinger operator in
one and two dimensions, see page 679–682 in [53].
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together with some mild moment condition on V , so that −Δ + λV has a
strictly negative bound state in one and two dimensions, for any λ > 0. This
had been generalized in [37,59] to higher order Schrödinger-type operators.

Recently renewed interest in weakly coupled bound states arose due to the
observation that such states can be found in many other physically interesting
cases and they are responsible for different physical behavior of these systems
compared to what one is used to from usual quantum mechanics in high dimen-
sions. These systems include quantum wave guides, systems with homogenous
or increasing magnetic fields, the Bardeen–Cooper–Schrieffer (BCS) model for
superconductivity. These examples are not necessarily one or two-dimensional,
but they are described by Schrödinger type operators with strongly degenerate
kinetic energies [16,18,26,38], that is, the kinetic energy T can be degenerate,
T (η) = 0, not only at a single point but on a “large” set in momentum space.
For example, the kinetic energy could have a zero set which is an embedded
hypersurface in R

d. At this point it is important to emphasize that the results
of [16] concern the special BCS Hamiltonian in three dimensions where, in
particular, the zero set of the kinetic energy is a two-dimensional sphere in
R

3. The works [18,26,38] require that the kinetic energy T is locally bounded,
satisfying some growth conditions at infinity, the zero set of the kinetic energy
T is a smooth co-dimension one submanifold of Rd, in [38] only locally, and
that

∫
V dx < 0 or, even stronger, V ≤ 0 and V �= 0. These last two condi-

tions are stronger than the conditions on the potential in the original work of
Simon. In particular, they leave open the question what happens if V �= 0 and∫

V dx = 0 or if the co-dimension of the zero set of the kinetic energy T is
larger than one.

Motivated by the above questions, we consider a very general class of
kinetic energies and potentials. More importantly, we have a sharp existence
result for weakly coupled bound states: We give conditions under which weakly
coupled bound states exist for any non-trivial attractive potential,

∫
V dx ≤ 0,

and if our conditions are not met, then for any strictly negative but sufficiently
small potential weakly coupled bound states exist. Moreover, in the second
case, we prove a quantitative bound on the number of negative bound states.

We are able to do this by identifying the mechanism which is responsible
for the creation of weakly coupled bound states: Roughly speaking η �→ T (η)−1

being integrable or not in a small neighborhood of the zero set of T distin-
guishes between having a quantitative bound on the number of negative bound
states in the first case or having weakly coupled bound states for arbitrarily
small attractive potentials in the second, see Theorems 1.1 and 1.3, for the
precise conditions.3

In the following we will always assume, without further mentioning it,
that the potential V is relatively form small with respect to the kinetic energy
T (p). That is, there exists 0 < a < 1 and b > 0 such that

3And Theorem 1.5, which shows that under some slight additional assumptions these are
complementary.
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|〈ϕ, V ϕ〉| ≤ ‖
√

T (p)ϕ‖2 + b‖ϕ‖2

for all ϕ ∈ D(
√

T (p)) = Q(T (p)), the form domain of T (p). Here we identify,
for simplicity, 〈ϕ, V ϕ〉 = 〈√|V |ϕ, sgn(V )

√|V |ϕ〉 for the quadratic form of the
potential V and also assume that its quadratic form domain Q(V ) contains
Q(T (p)). In this case, the famous KLMN theorem guarantees that one can
define the generalized Schrödinger operator as a sum of the quadratic forms
corresponding to T (p) and V , see [40,56]. By a slight abuse of notation, we
denote this operator by T (p) + V .

Our first theorem concerns the existence of bound states. We write V �= 0
if V is not the zero function, more precisely, if V �= 0 on a set of positive
Lebesgue measure.

Theorem 1.1. (Weakly coupled bound states) Let T : Rd → [0,∞) be measur-
able. Assume that there exists a compact set M ⊂ R

d such that
∫

Mδ

T (η)−1 dη = ∞ for all δ > 0, (1.1)

where Mδ := {η ∈ R
d : dist(η,M) ≤ δ}. Then inf σ(T (p)) = 0 and if the

potential V �= 0, obeys the basic assumptions from Sect. 2 and V ≤ 0, then
T (p)+V , defined in the quadratic form sense, has at least one strictly negative
bound state.

Moreover, if T is locally bounded this also holds for sign indefinite po-
tentials in the sense that if V ∈ L1(Rd), V �= 0, obeys the basic assumptions
from Sect. 2 and

∫
V dx ≤ 0, then the operator T (p) + V has again at least

one strictly negative eigenvalue.

Remarks 1.2. (i) Our theorem poses rather weak conditions on the zero set
of the kinetic energy symbol T . Moreover, T does not have to satisfy
any growth conditions at infinity. Of course, if T does not satisfy a
growth condition at infinity, then, even if V ∈ L1, it does not have
to be relatively form bounded with respect to T (p). Assuming this and
σess(T (p) + V ) = σ(T (p)), one can formulate a version of Theorem 1.1
which still guarantees the existence of some negative spectrum, but not
necessarily discrete, we leave the details to the interested reader.

(ii) If the potential is negative, V ≤ 0, and the zero set of the kinetic energy
is somewhat ‘thick’, there can be even be infinitely many bound states
below the essential spectrum, see Theorem 3.4 and Corollaries 3.6 and
3.7 below. Moreover, if the kinetic energy symbol T is continuous, then
the compact set M above can be chosen to be a subset of the zero set of
T . In this case, the behaviour of T near its zero set determines whether
(1.1) holds or not.

(iii) We would like to emphasize that our result also holds when
∫

V dx = 0.
This makes our criterion applicable in several cases, when previous results
[16,18,26,38] fall short. One example is when the Fourier transform V̂ of
the potential is zero on a large ball centered at the origin.
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(iv) Our method in the proof of Theorem 1.1 relies on a very simple and
natural variational calculation, which also works in the critical case where∫

V dx = 0. It does not require a detailed analysis of the generalized
Schrödinger operator T (p) + V . Its main advantage is its simplicity and
its wide range of applications.

The situation discussed in Theorem 1.1 changes drastically when η �→
T (η)−1 is integrable near the zero set of T , more precisely, when T−11{T<δ} ∈
L1(Rd) for some δ > 0. Not only do weakly coupled bound states cease to exist
but we have even a quantitative bound on the number of negative eigenvalues
in this case. More precisely, introduce the function G : [0,∞] → [0,∞] by

G(u) := u

∫

T (η)<u

T (η)−1 dη

(2π)d
(1.2)

for u ≥ 0. It is clear from the definition that G(u) < ∞ if and only if∫
T<u

T (η)−1 dη < ∞ and if G(u0) < ∞ for some u0 > 0, then G(u) < ∞
for all 0 ≤ u ≤ u0 and in this case limu→0 G(u) = 0. The function G is the
central object in our quantitative bound on the number of bound states for
the Schrödinger-type operator T (p) + V .

Theorem 1.3. (Quantitative bound) Let T : Rd → [0,∞) be measurable and
assume that the potential V obeys the basic assumptions from Sect. 2. Then
for T (p) + V , defined in the quadratic form sense, we have the bound

N(T (p) + V ) ≤ α2

(1 − 2α)2

∫
G(V−(x)/α2) dx, (1.3)

for all 0 < α < 1
2 . Here V− = max(0,−V ) is the negative part of V and

N(T (p) + V ) is the number of eigenvalues of T (p) + V which are strictly neg-
ative.

Moreover, if for a given potential V there exists a perturbation W > 0
with G(V− + W ) < ∞, then the above bound also includes zero-energy eigen-
values, that is,

N0(T (p) + V ) := #{eigenvalues of T (P ) + V ≤ 0}

≤ α2

(1 − 2α)2

∫
G(V−(x)/α2) dx,

(1.4)

Remarks 1.4. (i) As we will see in Section A, in many practical cases, even
when the kinetic energy symbol T is not homogeneous, the function G
from Theorem 1.3 can be straightforwardly evaluated and in most cases
the result of this evaluation agrees with the precise semi-classical guess
up to a small factor. In particular, when T (η) = η2, we recover Cwikel’s
version of the CLR bound.
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(ii) A straightforward argument shows that if for all u > 0 the sublevel sets
{T < u} have finite Lebesgue measure, then

∫

T<u

T (η)−1 dη < ∞ for some u > 0

⇐⇒
∫

T<u

T (η)−1 dη < ∞ for all u > 0.

In this case, G(u) < ∞ for all u ≥ 0 is equivalent to G(u0) < ∞ for
some u0 > 0. Moreover, in the case that the sublevel sets {T < u} have
finite Lebesgue measure, Lemma B.2 in the appendix yields a non-trivial
relative form compactness criterium of a potential V which does not
require that T diverges to infinity at infinity.
Of course, in all the applications we know of one usually has limη→∞ T (η)
= ∞ or, in the case of discrete Schrödinger operators, the range of possible
momenta η is a bounded subset of R

d. Thus in these applications one
always has G(u) < ∞ for all u > 0 once G(u0) < ∞ for some u0 > 0.

(iii) The function G above has a nice semi-classical interpretation. We note

G(u) =
∫

T/u<1

(T (η)/u)−1 dη

(2π)d
=

∫

T/u<1

dη

(2π)d

∫ ∞

0

s−21{T/u<s} ds

=
∫ ∞

0

∫

Rd

1{T (η)−min(1,s)u<0}
dη

(2π)d

ds

s2

=
∫

Rd

1{T (η)−u<0}
dη

(2π)d
+
∫ 1

0

∫

Rd

1{T (η)−min(1,s)u<0}
dη

(2π)d

ds

s2
.

Thus with the classical phase-space volume, given by

N cl(T + V ) :=
∫∫

Rd×Rd

1{T (η)+V (x)<0}
dηdx

(2π)d

=
∫

Rd

∣
∣
{
η ∈ R

d : T (η) + V (x) < 0
}∣
∣ dx

(2π)d
,

a reformulation of the bound in (1.3) is

N(T (p) + V ) ≤ α2

(1 − 2α)2
N cl(T + V/α2)

+
α2

(1 − 2α)2

∫ 1

0

N cl
(
T + sV (x)/α2

) ds

s2

(1.5)

for all 0 < α < 1/2. The first part on the right hand side above is
clearly related to the classical phase space volume guess suggested by the
uncertainty principle and the second part can be considered as a quantum
correction. We would like to emphasize that for the usual Schrödinger
operator one has

N cl(|η|2 + V/α2) =
|Bd

1 |
(2π)d

∫

Rd

V−(x)d/2 dx (1.6)
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which for a large class of potentials, e.g., V ∈ C∞
0 (Rd) is finite in all

dimensions. On the other hand, it is well known that in dimensions one
and two the Cwikel–Lieb–Rozenblum bound does not hold. Thus even in
this well understood case, finiteness of the classical phase space volume
does not imply the existence of a quantitative bound of CLR-type. Our
quantum correction, the second term in (1.5) takes care of this. Theorem
1.3 shows that a simple general quantitative bound on the number of
bound states holds, exactly when the contribution from the quantum
correction, i.e., the second term in (1.5), is finite.

To show that under some slightly stronger conditions on T, Theorems 1.1
and 1.3 are complementary, we provide

Theorem 1.5. Let Z := {T = 0} be the zero set of the kinetic energy symbol
T : Rd → [0,∞). Assume that Z is compact and that T is small only close to
its zero set, more precisely, we assume that for all δ > 0 there exists u > 0
with

∫

{T<u}∩Zc
δ

1
T (η)

dη < ∞, (1.7)

where Zc
δ is the complement of Zδ := {η ∈ R

d : dist(η, Z) ≤ δ}. Then

(a)
∫

Zδ

1
T (η)

dη = ∞ for some δ > 0 (1.8)

is equivalent to T (p)+V having weakly coupled bound states for any non-
trivial attractive potential V . That is, for any V ≤ 0, V �= 0, which obeys
the basic assumptions from Sect. 2 the operator T (p)+V has at least one
strictly negative eigenvalue.
Moreover, if in addition the kinetic energy symbol T is locally bounded,
then (1.8) is also equivalent to T (p) + V having a strictly negative eigen-
value for non-trivial sign changing potentials V in the sense that if V ∈
L1(Rd), V �= 0, obeys the basic assumptions from Sect. 2 and

∫
V dx ≤ 0,

then the operator T (p) + V has again at least one strictly negative eigen-
value.

(b)
∫

Zδ

1
T (η)

dη < ∞ for some δ > 0 (1.9)

is equivalent to the existence of a quantitative bound on the number of
bound states in the following sense: There exists a function G0 : [0,∞] →
[u,∞] with G0(u) < ∞ for all small enough u > 0 and limu→0+ G0(u) = 0
such that for any potential V which is relatively form compact with respect
to T (p) one has the bound

N(T (p) + V ) ≤
∫

G0(V−(x)) dx,
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where V− = max(0,−V ) is the negative part of V and N(T (p)+V ) is the
number eigenvalues of T (p)+V which are strictly negative. Moreover, in
this case one can take G0(u) = α2

(1−2α)2 G(α−2u) with G defined in (1.2)
and 0 < α < 1/2.

Remarks 1.6. (i) To see that (1.7) is, indeed, a rather weak growth and
regularity condition on T we note that (1.7) is fulfilled under the following
two conditions on T :

1) There exists 0 < ε,R < ∞ with T (η) ≥ ε for all |η| > R, (1.10)

which is, for example, the case if T (η) → ∞ for

2) T is lower semi-continuous. (1.11)

Indeed, under the above two conditions one has

for any δ > 0 there exists u > 0 with {T < u} ∩ Zc
δ = ∅, (1.12)

which clearly implies (1.7). To see (1.12), define r(u) := sup{dist(η, Z) :
T (η) < u}. Then {T < u} ⊂ Zδ is equivalent to r(u) ≤ δ, so it is
enough to show limu→0+ r(u) = 0. Clearly, 0 < u �→ r(u) is increas-
ing. Assume that there exists ε0 > 0 with r(u) ≥ 2ε0 for all u > 0.
Taking u = 1/n, this yields the existence of a sequence ξn ∈ R

d with
dist(ξn, Z) > ε0 and T (ξn) < 1/n. Because of (1.10) we have ξn ≤ R
for all large enough n. Thus we can take a subsequence ξnl

such that
η = liml→∞ ξnl

exists. Because of the lower semicontinuity of T one
has 0 ≤ T (η) ≤ lim inf l→∞ T (ξnl

) = 0, so η ∈ Z, which contradicts
dist(η, Z) = liml→∞ dist(ξnl

, Z) ≥ ε0 > 0. So r(u) → 0 as u → 0, which
proves (1.12).

(ii) The existence of a quantitative bound on the number of strictly negative
eigenvalues of T (p)+V clearly implies that weakly coupled bound states
do not exist, see Remark 1.4.i. On the other hand, we do not know of any
result in the literature which shows, without assuming strong additional
conditions on the kinetic energy T (P ), that the absence of weakly coupled
bound states implies the existence of a quantitative semi-classical type
bound on the number of strictly negative bound states of Schrödinger-
type operators T (P ) + V . These strong additional assumptions refer to
Markov properties [27], positivity-preservation of the associated semi-
group [12,30,43] or the inverse of the kinetic energy being in a weak
Lp-space, thus imposing a kind of homogeneity condition, [14,15], see
also [46,47]. The main point of our Theorem 1.5 is that under very weak
regularity assumptions on T near its zero set, which are fulfilled in all
physically relevant cases, the two phenomena of weakly coupled bound
states and the existence of quantitative semi-classical type bound on the
number of strictly negative bound states are indeed complementary.
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(iii) Condition (1.7) ensures that we have the equivalences
∫

Zδ

1
T (η)

dη = ∞ for all δ > 0

⇐⇒
∫

Zδ

1
T (η)

dη = ∞ for some δ > 0

⇐⇒
∫

T<u

1
T (η)

dη = ∞ for all u > 0. (1.13)

This clearly ensures that conditions (1.8) and (1.9) are complementary.
The equivalence (1.13) follows from Lemma 6.4 in Sect. 6.2.

To put our work into perspective: Previously, the weakest condition on the
potential which guaranteed existence of at least one strictly negative eigenvalue
is due to Pankrashkin [38] who showed that a strictly negative eigenvalue exists
if V ∈ L1 and

∫
V dx < 0. This condition is weaker than the condition of

[16,18] where the authors have to assume that the Fourier transform V̂ is non-
vanishing within a large enough ball centered at the origin.4 In [16,18,26], they
adapt the method of Simon, using the Birman–Schwinger principle [5,6,55],
to identify a singular piece of the Birman–Schwinger operator. This approach
needs global assumptions on the zero set of the kinetic energy, see also Remark
1.2.iii . The work [38] uses a construction of appropriate trial functions, as such
the assumptions on the zero set of the kinetic energy in [38] are local. More
precisely, there is an open set such that locally within this set the zero set of T
is a smooth submanifold of Rd. The work [26] establishes the precise asymptotic
rate of the negative eigenvalues, but for this they need strong assumptions.

It is easy to construct examples of potentials V ∈ L1 such that its Fourier
transform V̂ is zero on a large centered ball. Simply take any spherically sym-
metric Schwartz function V̂ which is supported on a large enough centered
annulus in Fourier space and let V be the inverse Fourier transform of V̂ . In
this case

∫
V dx = V̂ (0) = 0 and our Theorem 1.1 shows that there exists at

least one strictly negative eigenvalue under suitable conditions on the kinetic
energy T , whereas the previous results in [18,26,38] are not applicable. The
only exception is the pioneering work of Simon, which for the Laplace operator
T (p) = p2 in one and two dimensions, shows that there are strictly negative
eigenvalues if

∫
V dx ≤ 0, V does not vanish identically, and, for some technical

reasons, some high enough moments of V are finite.
Some additional remarks concerning Theorem 1.3 are

Remarks 1.7. (i) As already mentioned, from the definition of G together
with a simple monotonicity argument it is clear that if for some u0 one
has G(u0) < ∞ then G(u) < ∞ for all 0 ≤ u ≤ u0 and limu→0+ G(u) =
0. Thus, if G(u0) < ∞, or equivalently, T1T<u0 ∈ L1(Rd), for some
u0 > 0, a simple construction yields a potential V < 0 such that5

4More precisely, in [18] they require that V̂ is non-vanishing on the set S − S = {η1 − η2 :
ηj ∈ S}, where S is the zero set of T .
5for your favorite choice of 0 < α < 1/2, e.g., α = 1/42.
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∫
Rd G(V−(x)/α2) dx < ∞. But then, replacing V by λV for 0 < λ ≤ 1, the

monotone convergence theorem gives limλ→0+

∫
Rd G(λV−(x)/α2) dx = 0

and the bound provided by (1.3) shows

N(T (p) + λV ) ≤ α2

(1 − 2α)2

∫

Rd

G(λV−(x)/α2) dx < 1

for all small enough λ > 0. So in this case there exists a strictly negative
potential for which T (p) + V has no strictly negative eigenvalues. So
Theorems 1.1 and 1.3 appear to be complementary. More precisely, as
Theorem 1.5 below shows this is, indeed, the case under some slight
additional global assumptions on the kinetic energy T , which seem to be
fulfilled in all physically relevant applications.

(ii) Theorem 1.1 shows that strictly negative eigenvalues of T (P ) + V exist
once the integral of T (η)−1 diverges in a neighborhood of a compact
set. On the other hand, Theorem 1.3 yields a quantitative bound on the
number of negative eigenvalues under the condition that T−11{T<δ} is
integrable for some δ > 0. Naturally, one can ask the question what could
happen if T−1 is integrable over every compact set, but diverges globally.
As an example of such a situation, we consider the operator

Hλ = (p2
1 + p2

2)
1/2 − λU(x1, x2, x3) on L2(R3),

for some 0 ≤ U ∈ C∞
0 (R3), λ ≥ 0. For sufficiently small λ this operator

does not have negative spectrum (no weakly coupled bound states). On
the other hand, after some critical λcr the infimum of the essential spec-
trum immediately goes down and discrete eigenvalues still do not exist.
More precisely, by construction we have

σ(Hλ) ∩ (−∞, 0) = σess(H) ∩ (−∞, 0)

=
⋃

x3∈R

(
σ((p2

1 + p2
2)

1/2 − λU(·, x3)) ∩ (−∞, 0)
)
. (1.14)

For fixed x3 ∈ R consider the operator (p2
1 + p2

2)
1/2 − λU(·, x3) as an

operator on L2(R2). Its quadratic form is monotonically decreasing in
λ > 0 and for fixed x3 ∈ R we can apply Theorem 1.3 to show that
for small enough λ the operator (p2

1 + p2
2)

1/2 − λU(·, x3) is positive. This
example shows that for the existence of weakly coupled bound states one
needs that the kinetic energy goes to zero fast enough near its zero set.

We would like to stress that in all or our results, the assumptions on
the kinetic energy symbol T are very weak and fulfilled in all physically inter-
esting cases. Our theorems have several applications, discussed in Section A,
including Schrödinger operators with fractional Laplacians, different types of
Schrödinger type operators with degenerate kinetic energies such as pseudo-
relativistic Schrödinger operators with positive mass and two-particle pseudo-
relativistic Schrödinger operators with different masses, including very differ-
ent masses, BCS-type operators, and discrete Schrödinger operators.

Our paper is organized as follows: We first address the question of exis-
tence of negative bound states. The main idea in the proof of Theorem 1.1 is
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first shown in a simple model case in Sect. 4. In Sect. 5 we give the proof of
Theorem 1.1 and its refinement Theorem 3.4 and their corollaries. In Sect. 6
we give the proof of Theorem 1.3 and in Sect. 6.2 the proof of Theorem 1.5.
The applications of Theorems 1.1 and 1.3 are discussed in Appendix A.

2. Basic Assumptions

We consider operators of the form

H = T (p) + V (2.1)

where p = −i∇ is the quantum-mechanical momentum operator and the sym-
bol of the kinetic energy T is a measurable nonnegative function on R

d. We
define T (p) as the Fourier multiplier,

T (p)ϕ := F−1[T (·)ϕ̂(·)] (2.2)

where we use the convention

f̂(η) := F(f)(η) :=
1

(2π)d/2

∫

Rd

e−iη·xf(x) dx

and

qg(x) := F−1(g)(x) :=
1

(2π)d/2

∫

Rd

eiη·xg(η) dη

for the Fourier transform and its inverse. A-priori the above expressions are
only defined when f, g are Schwartz class, but they extend to unitary operators
to all of L2(Rd) by density of Schwartz functions in L2(R), see [31,52].

For a positive self-adjoint operator A we denote by Q(A) its form domain
and by D(A) its domain. Thus Q(A) = D(

√
A). In particular,

Q(T (p)) =
{

f ∈ L2(Rd) :
∫

Rd

T (η)|f̂(η)|2 dη < ∞
}

(2.3)

The potential V : Rd → R is a Borel-measurable function. In order to define the
Schrödinger type operator T (P )+V as a sum of quadratic forms, it is enough
to assume, for simplicity, that its modulus |V | is form small with respect to
T (p), that is, for some 0 < a < 1 and b > 0 we have

〈ϕ, |V |ϕ〉 ≤ ‖
√

T (p)ϕ‖2 + b‖ϕ‖2 (2.4)

for all ϕ ∈ D(
√

T (p)) = Q(T (p)), the form domain of T (p). In this case the
quadratic form domain Q(V ) of V is given by the domain of the multiplication
operator |V |1/2, Q(V ) = D(|V |1/2), and we identify, for simplicity, 〈ϕ, V ϕ〉 =
〈√|V |ϕ, sgn(V )

√|V |ϕ〉 for the quadratic form of the potential V . We also
assume that Q(T (p)) ⊂ Q(V ).

More generally, let V+ = max(V, 0), respectively V− = max(−V, 0), be
the positive, respectively negative, part of the potential V and assume that
Q(T (p) ∩ Q(V+) is dense in L2(Rd) and that V− is relatively form small with
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respect to T (p) + V+. That is, Q(T (p) ∩ Q(V+) ⊂ Q(V−) and there exists
0 ≤ α < 1 and 0 ≤ β < ∞ such that

‖
√

V−f‖2 ≤ α
(
‖
√

T (p)f‖2 + ‖
√

V+f‖2
)

+ β‖f‖2 (2.5)

Under either conditions (2.4) or (2.5), the famous KLMN theorem, see, e.g.,
[56, Theorem 6.24] or [53, Theorem 7.5.7], shows that the natural quadratic
form corresponding to T (p) + V is closed on Q(T (p)) ∩ Q(V+) and defines a
lower bounded self-adjoint operator, which we will denote by T (p) + V , for
simplicity.

Since we have the form smallness condition on |V |, or we split V into
its positive and negative parts, we do not discuss highly singular oscillating
potentials in this work.

Since T (p) is a Fourier multiplier, i.e., multiplication by a function on
the Fourier side, it has purely essential spectrum, σ(T (p)) = σess(T (p)) =
essrange(T ) ⊂ [0,∞). Here the essential range of T is given by

essrange(T ) = {E ∈ R : |T−1((E − δ, E + δ))| > 0 for all δ > 0}.

We also need a condition on the essential spectrum of T (p)+V . We will always
assume that

σess(T (p) + V ) ⊂ σess(T (p)). (2.6)

For sufficient conditions, which imply (2.6) and (2.5), respectively (2.4), see
Remark 2.1.

For the quantitative bound on the number of bund states we need a
slightly stronger assumption, where in (2.5) we replace V+ by zero and in (2.6)
we replace V by −V−.

Remarks 2.1. (i) The conditions (2.5) and (2.6) are, in particular, fulfilled
when |V | is relatively form compact with respect to T (p), i.,e, (T (p) +
1)−1/2|V |(T (p) + 1)−1/2 is a compact operator on L2(Rd). This is well-
known, see [56, Section 6.3] or [53, Section 7.5] for example. In this case,
V is automatically relatively form small with respect to T (p) with relative
bound zero, [56, Lemma 6.26]. Moreover, by the relative form compact-
ness σess(T (p) + V ) = σess(T (p)) = σ(T (p)), [56, Lemma 6.26] or [53,
Theorem 7.8.4],

(ii) Necessary and sufficient conditions are given in [35] for a potential V
to be relatively form bounded, respectively relative form compact, with
respect to the usual kinetic energy T (p) = p2. These conditions cover,
in particular, examples where the potential is highly oscillatory. Since a
characterization of relatively form bound and form compact potentials V
in the spirit of [35] is not known for the general class of kinetic energies
we are interested in, we provide in Appendix B two sufficient conditions
for the invariance of the essential spectrum of T (p) under perturbation
by a potential V which is relative form bounded with respect to T (p).
These condition are far from optimal but are easy to apply in a wide
variety of cases.
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For example, assume that V is relative form small with respect to
T (p). Then one has σess(T (p)+V ) = σess(T (p)) as soon as |V |1/2(T (p)+
1)−1 is a compact operator or if V ∈ L1(Rd), assuming in addition that
limη→∞ T (η) = ∞, see Lemma B.1 in the appendix. A different criterium,
which still needs that T diverges at infinity, is discussed in Lemma B.2.

3. Existence of Bound States: The General Setup

Physical heuristic suggests that a weak attractive potential can create a bound
state if T is small close to its zero set. To make this precise we introduce a
local version of this.

Definition 3.1. Let T : Rd → [0,∞) be measurable. T has a thick zero set near
ω ∈ Z if

∫

Bδ(ω)

T (η)−1 dη = ∞ for all δ > 0, (3.1)

where Bδ(ω) = {η ∈ R
d : dist(η, ω) < δ} is the open ball of radius δ centered

at ω.

In the following, we will assume, without mentioning all the time, that
the assumptions of Theorem 1.1 hold and T (p)+V is defined in the quadratic
form sense. A local version of Theorem 1.1 is given by

Theorem 3.2. Suppose that V ≤ W �= 0 obey the basic assumptions from
Sect. 2, W ∈ L1,

∫
W dx ≤ 0, and T has a thick zero set near some point

ω ∈ Z. Then T (p) + V has at least one strictly negative eigenvalue.

Remark 3.3. The sole role of the comparison potential W is to be able to
easily include potentials V obey the basic assumptions from Sect. 2, but are
not integrable. For example, if the positive part V+ ∈ L1 and V− �∈ L1, and V
obeys the basic assumptions from Sect. 2, we can choose

Wm
R = V+ − min(V−,m)1BR

where BR is a centered ball of radius R > 0. Then V ≤ Wm
R ∈ L1, Wm

R obeys
the basic assumptions from Sect. 2, and

∫
Wm

R dx < 0 for m,R large enough.
Thus Theorem 3.2 yields the existence of a negative eigenvalue of T (p) + V in
this case.

In particular, the existence of a strictly negative eigenvalue of T (p) + V
for potentials V �= 0, which obey the basic assumptions from Sect. 2 and which
are sign definite, that is, V ≤ 0, follows at once from Theorem 3.2. We do not,
however, consider sign changing potentials which are not in L1(Rd).

A refinement of Theorem 3.2, when the zero set of the kinetic energy T
has many disjoint thick parts is given by the next theorem, which also yields
an easy criterion for the infinitude of weakly coupled bound states.

Theorem 3.4. Assume that V,W �= 0 obey the basic assumptions from Sect. 2
and that for some k ∈ N the kinetic energy T has a thick zero set near k
pairwise distinct points ω1, . . . , ωk ∈ Z.
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(a) If V ≤ 0, then T (p) + V has at least k strictly negative eigenvalues.
(b) If V ≤ W , W ∈ L1, and the k × k matrix M = (Ŵ (ωl − ωm))l,m=1,...,k,

where Ŵ is the Fourier transform of W , is strictly negative definite, then
T (p) + V has at least k strictly negative eigenvalues.

(c) If V ≤ W , W ∈ L1, the k × k matrix M = (Ŵ (ωl − ωm))l,m=1,...,k, is
negative semi-bounded, the eigenvalue 0 of this matrix is non-degenerate,
and the function T is locally bounded, then T (p)+V has at least k strictly
negative eigenvalues.

Remarks 3.5. (i) In the spirit of Theorem 3.4, one can formulate a condi-
tion under which the operator T (p) + V has at least k eigenvalues when
V ≤ W , for a semi-bounded matrix M = (Ŵ (ωl − ωm))l,m=1,...,k with a
degenerate eigenvalue zero. We are not doing this for the sake of simplic-
ity, but leave it to the interested reader.

(ii) Similar to part (a) of Theorem 3.4, in [9,38] the authors also had the
condition that the matrix M = (V̂ (ωl−ωm))l,m=1,...,k is negative definite,
but the conditions on the zero set of the kinetic energy are much stronger
than ours. Moreover, we can also handle the case of a non-degenerate zero
eigenvalue of M .

In the following we use for two real-valued functions f, g the notation
f � g if there exists a constant C > 0 such that f ≤ Cg. We also write
f ∼ g if f � g and g � f .

Useful corollaries of Theorems 3.2 and 3.4 are

Corollary 3.6. Assume that V ≤ W �= 0 obey the basic assumptions from
Sect. 2, that there are k isolated points ω1, . . . , ωk and that near F = {ω1, . . . ,
ωk}, i.e., in an open neighborhood O containing F , the kinetic energy symbol
obeys the bound

T (η) � dist(η, F )γ for all η ∈ O and some γ ≥ d. (3.2)

(a) If V ≤ 0 or if W ∈ L1(Rd) and the matrix M = (Ŵ (ωl−ωm))l,m=1,...,k is
negative definite, then T (p)+V has at least k strictly negative eigenvalues.

(b) If W ∈ L1(Rd) and
∫

W dx ≤ 0, then T (p) + V has at least one strictly
negative eigenvalue.

Corollary 3.7. Assume that V ≤ W �= 0 obey the basic assumptions from
Sect. 2and that there is a C2 submanifold Σ of codimension 1 ≤ m ≤ d − 1
such that near Σ, i.e., in an open neighborhood O containing Σ, the kinetic
energy symbol obeys the bound

T (η) � dist(η,Σ)γ for all η ∈ O and some γ ≥ m. (3.3)

(a) If V ≤ 0 then T (p) + V has infinitely many strictly negative eigenvalues.
(b) If V ≤ W , W ∈ L1(Rd), and

∫
W dx ≤ 0, then T (p)+V has at least one

strictly negative eigenvalue.

Remark 3.8. In most applications T is continuous and the zero set of T is either
a point, a collection of points, or a smooth submanifold in R

d. So Corollaries
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3.6 and 3.7 would be enough to cover all applications we can think of. However,
we find that the proof for the general case is so simple, that adding further
structure to its assumptions only obscures the simplicity of the proof. So we
prefer to state Theorem 1.1 and its local versions, Theorems 3.2 and 3.4, in
their generality.

Some of the most interesting applications are considered in Appendix A.

4. Existence of Bound States: A Simple Model Case

We want to construct a test function ϕ such that 〈ϕ, (T (p) + V )ϕ〉 < 0. Once
one has such a state together with σess(T (p) +V ) ⊂ [0,∞), the Rayleigh–Ritz
variational principle shows that strictly negative discrete spectrum exists. Of
course, the catch is how to guess such a variational state ϕ in a systematic
way.

To motivate our construction for our general set-up, we will discuss here
the simple model case, where T (η) = |η|γ , i.e., T (p) = (−Δ)γ/2 is a fractional
Laplacian.

4.1. The Case
∫
V dx < 0: Learning from Failure

We will work mainly in Fourier-space and, for simplicity, consider
∫

V dx < 0
first. In order to make the kinetic energy small, a natural first guess for the
Fourier transform of the test function would be

w̃δ := 1Aδ
,

for a suitably chosen set Aδ of finite positive measure which concentrates
around zero, since this makes the kinetic energy small. However, it turns out
that this is not a good ansatz and it is instructive to see why. In order to
use the assumption

∫
V dx < 0, we want our test function to converge to a

constant, so its Fourier transform should converge to a delta-function at zero.
Thus we need to normalize w̃δ and are led to consider

ϕ̃δ :=
w̃δ

‖w̃δ‖L1
η

.

Note that this choice fulfills two crucial assumptions: Let

κδ(x) := F−1(ϕ̃δ)(x) =
1

(2π)d/2

∫

Rd

eiη·xϕ̃δ(η) dη

be the inverse Fourier transform of ϕ̃δ. We always have

|κδ(x)| ≤ ‖ϕ̃δ‖L1
η

(2π)d/2
=

1
(2π)d/2

by our normalization of ϕ̃δ. Moreover, as long as Aδ concentrates to the single
point zero in a suitable way, we also have

lim
δ→0

κδ(x) =
1

(2π)d/2
=

1
(2π)d/2
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for all x ∈ R
d. Since, by assumption the potential V is integrable, we conclude

with Lebesgue’s dominated convergence theorem

lim
δ→0

〈κδ, V κδ〉 =
1

(2π)d

∫
V dx. (4.1)

So if
∫

V dx < 0, the choice for ϕδ yields a test function which makes the
potential contribution strictly negative.

It only remains to see whether the kinetic energy vanishes and, since the
set Aδ concentrates near zero, this should be the case, but there is a catch:
Note that

〈κδ, (−Δ)γ/2κδ〉 = 〈ϕ̃δ, |η|γϕ̃δ〉 =
1

‖w̃δ‖2
L1

η

∫

Aδ

|η|γ dη.

Since ‖w̃δ‖L1
η

= |Aδ|, the Lebesgue measure of the set Aδ, we can use re-
arrangement inequalities, see, e.g., [31], to make the kinetic energy smallest by
chosing Aδ to be centered ball of radius δ, say. In this case |Aδ| ∼ δd and thus

〈κδ, (−Δ)γ/2κδ〉 ∼ 1
δ2d

∫ δ

0

rγ+d−1 dr ∼ δγ−d (4.2)

and this goes to zero as δ → 0 only if γ > d and it misses the critical case
where γ = d.

So we have to modify the test functions. A better choice, which also works
for γ = d, turns out6 to be given by

ŵδ(η) := |η|−γ 1Aδ
(η) (4.3)

where now the set Aδ has to stay away from zero to make ŵδ(η) normalizable.
Note that |η|−γ is just the inverse of the symbol T (η) = |η|γ .

We further set, as before,

ϕ̂δ :=
ŵδ

‖ŵδ‖L1
η

.

With this choice

〈wδ, (−Δ)γ/2wδ〉 = 〈ŵδ, |η|γŵδ〉 =
∫

Aδ

|η|−γ dη = ‖ŵδ‖L1
η
,

hence

〈ϕδ, (−Δ)γ/2ϕδ〉 =
1

‖ŵδ‖L1
η

. (4.4)

As before, we still have

〈ϕδ, V ϕδ〉 → 1
(2π)d

∫
V dx as δ → 0

as soon as Aδ concentrates near zero in the limit δ → 0. Since the function
R

d � η �→ |η|−γ has a non-integrable singularity near zero for γ ≥ d, we can
make Aδ concentrate near zero, thus having ‖ŵδ‖L1

η
blow up and, because of

6We will further generalize this ansatz in Sect. 5.
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(4.4), we get limδ→0〈ϕδ, (−Δ)γ/2ϕδ〉 = 0, i.e., the kinetic energy vanishes in
the limit δ → 0 as soon as γ ≥ d.

Explicitly, choosing Aδ to be the annulus

Aδ := {r1,δ < |η| < r2,δ}
we have

‖ŵδ‖L1
η

∼
∫ r2,δ

r1,δ

rγrd−1 dr =

{
ln( r2,δ

r1,δ
) if γ = d

1
γ−d

[
r

−(γ−d)
1,d − r

−(γ−d)
2,δ

]
if γ > d

and choosing r1,δ = δ2 and r2,δ = δ we see limδ→0 ‖ŵδ‖L1
η

= ∞. With (4.4)

lim
δ→0

〈ϕδ, ((−Δ)γ/2 + V )ϕδ〉 =
1

(2π)d

∫
V dx,

follows. So bound states with strictly negative energy exist once
∫

V dx < 0.

4.2. The Case of
∫
V dx = 0

To include the case where V does not vanish identically but
∫

V dx = 0,
we have to further modify the test function. Second order perturbation theory
suggest that the test function should be modified by adding a suitable multiple
of the potential V . This suggests the ansatz

ϕδ + αφ (4.5)

for some α ∈ R and a suitably nice function φ, to be determined later, as a
trial state for the computation of the energy. Using this we get, with T (p) =
|p|γ = (−Δ)γ/2,

E(δ, α) := 〈ϕδ + αφ, (T (p) + V )(ϕδ + αφ)〉
= 〈ϕδ, T (p)ϕδ〉 + 〈ϕδ, V ϕδ〉 + 2αRe(〈ϕδ, T (p)φ〉) + 2αRe(〈ϕδ, V φ〉)

+ α2〈φ, T (p)φ〉 + α2〈φ, V φ〉.
From the discussion above we know

lim
δ→0

〈ϕδ, T (p)ϕδ〉 = 0,

lim
δ→0

〈ϕδ, V ϕδ〉 =
1

(2π)d

∫
V dx = 0,

lim
δ→0

〈ϕδ, V φ〉 =
1

(2π)d/2

∫
V φ dx, (4.6)

and, since T (p) is a positive operator, we also have

|〈ϕδ, T (p)φ〉| ≤ 〈ϕδ, T (p)ϕδ〉1/2〈φ, T (p)φ〉1/2 → 0 as δ → 0. (4.7)

Thus

E(α) := lim
δ→0

E(δ, α) = 2α
1

(2π)d/2
Re

∫
V φ dx + α2〈φ, T (p)φ〉 + α2〈φ, V φ〉

and

lim
α→0

E(α)
α

=
2

(2π)d/2
Re

∫
V φ dx.
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This shows that we will have E(δ, α) < 0 for some finite δ > 0 and α > 0, if
we can find a Schwartz function φ ∈ Q(T (p)) such that

∫
V φ dx < 0.

Split V = V+ −V−, the positive and negative parts of V . By assumption,∫
V− dx =

∫
V+ dx > 0. Take a big centered ball B such that

∫
B

V− dx > 0
and consider the set

D := B ∩ {V− > 0}.

Let κε ∈ C∞
0 (Rd) be an approximate delta-function and set

φε := κε ∗ 1D.

This is a nice infinitely often differentiable function with compact support,
in particular a Schwartz function, so its Fourier transform decays rapidly,
hence hence φε is in the form domains of T (p) and V±. By the properties
of convolutions [31], we have 0 ≤ φε ≤ 1 and φε → 1D in L1 for ε → 0,
hence, after taking a subsequence, also pointwise almost everywhere. With
slight abuse of notation we denote this subsequence still by φε. With the help
of Lebesgue’s dominated convergence theorem one sees

lim
ε→0

∫
V φε dx = −

∫

B

V− dx < 0,

so using φε instead of φ for some small enough ε > 0 in the above argument
shows that there are α, δ, ε > 0 such that

〈ϕδ + αφε, (T (p) + V )(ϕδ + αφε)〉 < 0.

Hence the variational principle shows that we have a strictly negative eigen-
value of T (p) + V also in the case where V does not vanish identically but∫

V dx = 0.

5. Existence of Bound States: Proof of the General Case

In this section we give the proof of Theorems 1.1 and 3.4 and Colloraries 3.6
and 3.7. To prepare for this, we give a lemma first, which is a convenient
replacement for (4.4). We have to be a little bit careful here, to ensure that
the constructed function is normalizable. The construction in (4.3) worked,
because there the kinetic energy was bounded away from zero in any open set
not containing zero. In the general case, where T is just measurable, this is not
so clear. As an easy way out we simply cut the kinetic energy close to zero.

Lemma 5.1. Let T, χ : Rd → [0,∞) be measurable and 0 ≤ χ ≤ 1. For τ > 0
define the function ŵτ by

ŵτ (η) = max(T (η), τ)−1χ(η) for η ∈ R
d.

Then wτ := F−1(ŵτ ) ∈ Q(T (p)), the quadratic form domain of T (p), and we
have the bound

〈wτ , T (p)wτ 〉 ≤ ‖ŵτ‖L1
η

for its kinetic energy.
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Remark 5.2. At first sight the bound provided by Lemma 5.1 seems surprising,
since the left hand side of the bound scales quadratically in w but the right
hand side is linear in ŵ. This is not a contradiction, though, since we assume
that ŵτ = max(T, τ)−1χ and 0 ≤ χ ≤ 1, which breaks the scaling.

Proof of Lemma 5.1. This is a simple calculation. Since T is positive and by
Plancherel,

〈wτ , T (p)wτ 〉 = 〈
√

T (p)wτ ,
√

T (p)wτ 〉 = 〈ŵτ , T ŵτ 〉

=
∫

Rd

T (η)max(T (η), τ)−2χ(η)2 dη

≤
∫

Rd

max(T (η), τ)−1χ(η)2 dη

≤
∫

Rd

max(T (η), τ)−1χ(η) dη = ‖ŵτ‖L1
η
,

since, by assumption 0 ≤ χ ≤ 1, thus also 0 ≤ χ2 ≤ χ. �

Now we come to the

Proof of Theorem 3.2. Since V ≤ W , we have 〈ϕ, V+ϕ〉 ≤ 〈ϕ,W+ϕ〉 < ∞ for
all ϕ ∈ Q(W+), i.e., Q(W+) ⊂ Q(V+). Hence Q(T (p) + W ) = Q(T (p)) ∩
Q(W+) ⊂ Q(T (p) + V ) and 〈ϕ, (T (p) + V )ϕ〉 ≤ 〈ϕ, (T (p) + W )ϕ〉 for all
ϕ ∈ Q(T (p) + W ). The variational principle shows that T (p) + V has at least
as many negative eigenvalues as T (p) + W has, [4,8,53]. So replacing V with
W , if necessary, we can, without loss of generality, assume V ∈ L1(Rd) and∫

V dx ≤ 0.
Let ω ∈ R

d be such that
∫

B1/n(ω)

T (η)−1 dη = ∞

for every n ∈ N. By monotone convergence, we have

lim
τ→0

∫

B1/n(ω)

max(T (η), τ)−1 dη =
∫

B1/n(ω)

T (η)−1 dη = ∞,

so there exists a sequence τn+1 < τn → 0, for n → ∞, with

lim
n→∞

∫

B1/n(ω)

max(T (η), τn)−1 dη = ∞. (5.1)

Define the functions ŵn and ϕ̂n by

ŵn(η) := max(T (η), τn)−11B1/n(η) and ϕ̂n(η) :=
ŵn(η)

‖ŵn‖L1
η

for every η ∈ R
d. Note that ŵn ∈ L1

η, so ϕn is non-trivial. Because of Lemma
5.1, wn ∈ Q(T (p)) ⊂ Q(V ). By construction,

‖ŵn‖L1
η

→ ∞ as n → ∞.
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In addition, since the sets B1/n(ω) concentrate around ω and ϕ̂n is L1 normal-
ized, we also have that ϕ̂n is a sequence of approximate delta-functions which
concentrates at ω. Thus we have the uniform bound

|ϕn(x)| ≤ 1
(2π)d/2

‖ϕ̂‖L1
η

=
1

(2π)d/2

and the pointwise limit

lim
n→∞ ϕn(x) =

1
(2π)d/2

eiω·x for all x ∈ R
d.

Using Lebesgue’s dominated convergence theorem this shows

lim
n→∞〈ϕn, V ϕn〉 =

1
(2π)d

∫

Rd

V dx.

For the kinetic energy we simply note that Lemma 5.1 yields

〈ϕn, T (p)ϕn〉 =
1

‖ŵn‖2
L1

η

〈wn, T (p)wn〉 ≤ 1
‖ŵn‖L1

η

→ 0 as n → ∞.

So if
∫

V dx < 0 we can immediately conclude

lim
n→∞〈ϕn, (T (p) + V )ϕn〉 =

1
(2π)d

∫

Rd

V dx < 0

and the variational principle implies that there is a strictly negative eigenvalue
of T (p) + V .

In the case
∫

V+ dx =
∫

V− dx > 0, so
∫

V dx = 0, we use the construction
of Sect. 4.2 to see that there exists a positive function φ ∈ C∞

0 (Rd) with
∫

Rd

V φ dx < 0.

Similarly to the discussion in Sect. 4.2, we modify the trial state to the form

ϕ(x) = ϕn(x) + αeiω·xφ(x) for x ∈ R
d.

Setting φ̃(x) = eiω·xφ(x) we have, analogously to the calculation in Sect. 4.2,

lim
α→0

α−1 lim
n→∞〈ϕn + αφ̃, (T (p) + V )(ϕn + αφ̃)〉

=
2

(2π)d/2
Re

∫
e−iω·xV (x)φ̃(x) dx

=
2

(2π)d/2

∫
V (x)φ(x) dx < 0.

So for all large enough n ∈ N and small enough α > 0

〈ϕn + αφ̃, (T (p) + V )(ϕn + αφ̃)〉 < 0,

which, by the variational principle, implies the existence of at least one negative
eigenvalue for T (p) + V . �
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Proof of Theorem 3.4. We will first prove part b: Assume that there are k
distinct points ω1, . . . , ωk such that

∫

Bδ(ωl)

T (η)−1 dη = ∞ (5.2)

for all r = 1, . . . , k and all δ > 0. Using the previous construction, we see
that for each r = 1, . . . , k there exist functions ϕr,n where the support of ϕ̂r,n

concentrates in Fourier space near ωr. Then

lim
n→∞

〈
k∑

r=1

crϕr,n, (T (p) + W )

(
k∑

r=1

crϕr,n

)〉

= lim
n→∞

k∑

r,s=1

crcs〈ϕr,n, (T (p) + W )ϕs,n〉

=
1

(2π)d

k∑

r,s=1

crcs

∫

Rd

W (x)e−ix(ωr−ωs) dx =
1

(2π)d/2

k∑

r,s=1

Ŵ (ωr − ωs)crcs

=
1

(2π)d/2
〈c,Mc〉Ck

with the matrix M = (Ŵ (ωr −ωs))r,s=1,...,k. If this matrix is negative definite,
then 〈c,Mc〉Ck < 0 for all c �= 0, thus T (p) + W , hence also T (p) + V , will
be strictly negative on the subspace Nk,n = span(ϕr,n, r = 1, . . . , k). For large
n the functions ϕr,n do not overlap in Fourier-space, thus dimNk,n = k for
all large enough n. This gives the existence of at least k strictly negative
eigenvalues of T (p) + V by the usual variational arguments, see [4,8,53].

To prove part a, we simply note that if V ≤ 0 and V �= 0, then for BR a
centered ball of radius R

Wm
R := −min(V−,m)1BR

is integrable for all m,R > 0 and V ≤ Wm
R ≤ 0. Since V �= 0, one has∫

Wm
R dx < 0 for large enough m,R. Using the variational principle again, we

can assume V = W ∈ L1, W ≤ 0, and W �= 0, without loss of generality.
The matrix M above will be negative definite. For |c|2 =

∑k
r=1

|cr|2 = 1, we have

〈c,Mc〉Ck =
1

(2π)d/2

∫

Rd

W (x)

∣
∣
∣
∣
∣

k∑

r=1

cre
−ixωr

∣
∣
∣
∣
∣

2

dx < 0

since x �→ ∑k
r=1 cre

−ixωr is real-analytic, thus not zero on any open set of
positive Lebesgue measure and W ≤ 0, W �= 0. Moreover, let Sk−1 be the unit
sphere in C

k and note that the map Sk−1 � c �→ 〈c,Mc〉Ck is continuous and
M is a hermitian matrix. Thus by the above, we see that the largest eigenvalue
of M is negative. So M is negative definite and by part b, we conclude that
T (p) + V has at least k strictly negative eigenvalues.

To prove part c, we note that it is enough to show that T (p) + W has
at least k negative eigenvalues. Let M be the k × k matrix as above and let
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a = (a1, . . . , ak)t be the normalized eigenvector corresponding to the eigen-
value zero, which we assume to be non-degenerate. Let Ua be the k −1 dimen-
sional orthogonal complement of the vector a in C

k. Furthermore, we set

Na,n :=

{
k∑

r=1

crϕr,n : c = (c1, . . . , ck)t ∈ Ua

}

,

where the functions ϕr,n are defined just below Eq. (5.2). Note that Na,n is
a k − 1-dimensional subspace of L2(Rd) for large enough n since then ϕr,m,
r = 1, . . . , k, have disjoint support in Fourier space. Define, for some positive
α,

ϕ̃ :=
k∑

r=1

arϕr,n + αφ

and Lk,α,n := span{Na,n, ϕ̃}. That is, any vector in Lk,α,n can be written as

ψn,α = ψn,α(γ, c) =
k∑

r=1

crϕr,n + γ

(
k∑

r=1

arϕr,n + αφ

)

=
∑

c̃rϕr,n + γαφ

(5.3)

were we set c̃ = c̃(γ, c) = γa + c ∈ C
k. Since Ua is the orthogonal complement

of a in Ck, the map c̃ : C × Ua → Ck is a bijection.
Our goal is to show that the dimension of Lk,n is k and T (p) + W is

negative on Lk,α,n\{0}, for large enough n and a suitable choice of φ and
α ∈ R. Writing ψn,α = (c + γa)ϕ·,n + γαφ, we have

〈ψn,α, (T (p) + W )ψn,α〉 = 〈(c + γa)ϕ·,n, (T (p) + W )(c + γa)ϕ·,n〉
+ 2Re〈γαφ, (T (p) + W )(c + γa)ϕ·,n〉
+ |γα|2〈φ, (T (p) + W )φ〉.

(5.4)

Since the ϕr,n, r = 1, . . . , k, have disjoint supports in Fourier space when n ∈ N

is large and, as before, 〈ϕr,n, T (p)ϕr,n〉 = on(1) → 0 as n → ∞, we have

〈(c + γa)ϕ·,n, T (p)(c + γa)ϕ·,n〉 = on(1)|c + γa|2 = on(1)(|c|2 + |γ|2)
where we also used that since a is normalized in Ck and c ⊥ a, we have
|c + γa|2 = |c|2 + |γ|2. Also

〈(c + γa)ϕ·,n,W (c + γa)ϕ·,n〉 = 〈(c + γa), (M + ΔMn)(c + γa)〉Ck ,

where M = (Ŵ (ωr − ωs))r,s=1,...,k is the k × k matrix as before, but now it
has a single zero eigenvalue since Ma = 0 and 〈c,Mc〉Ck ≤ −λ1|c|2 for some
λ1 > 0 and all c ⊥ a. Moreover, ΔMn is a k × k matrix which converges to
zero as n → ∞, that is, 〈c̃,ΔMnc̃〉 = on(1)|c̃|2 for all c̃ ∈ Ck. Using Ma = 0
and c ⊥ a, we get

〈(c + γa), (M + ΔMn)(c + γa)〉Ck = 〈c,Mc〉Ck + 〈(c + γa),ΔMn(c + γa)〉Ck

≤ −λ1|c|2 + on(1)(|c|2 + |γ|2).
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For the part due to the kinetic energy in the cross term we use the Cauchy
Schwarz inequality to bound it as

|〈γαφ, T (p)(c + γa)ϕ·,n〉|
≤ |γα|〈φ, T (p)φ〉1/2 〈(c + γa)ϕ·,n, T (p)(c + γa)ϕ·,n〉1/2

= on(1)α|γ|(|c|2 + |γ|2)1/2 ≤ on(1)α(|c|2 + |γ|2).
The part due to the potential in the cross term is bounded as

Re〈γαφ,W (c + γa)ϕ·,n〉 = αRe(γ〈φ,Wcϕ·,n〉 + |γ|2αRe〈φ,Waϕ·,n〉
≤ α|γ|‖|W |1/2φ‖‖|W |1/2cϕ·,n‖ + |γ|2αRe〈φ,Waϕ·,n〉
≤ Cα|γ||c| + |γ|2αRe〈φ,Waϕ·,n〉,

where we also used

‖|W |1/2φ‖2 = 〈φ, |W |φ〉 ≤ C and ‖|W |1/2cϕ·,n‖2 = 〈cϕ·,n, |W |cϕ·,n〉 ≤ C|c|2
for some large enough constant C.

Plugging all of this into (5.4) and collecting terms we get the upper bound

〈ψn,α,(T (p) + W )ψn,α〉
≤ on(1)(|c|2 + |γ|2) − λ1|c|2 + α

(
Re〈φ,Waϕ·,n〉 + Cα

)|γ|2 + Cα|γ||c|.
(5.5)

for some large enough constant C, any ψn,α ∈ Lk,n,α in the form given by
(5.3), and α ≥ 0.

Note that

〈φ,Waϕ·,n〉 = (2π)−d/2

∫
φ(x)W (x)

k∑

r=1

arϕr,n dx → (2π)−d/2

×
∫

φ(x)W (x)
k∑

r=1

are
iωr·x dx

so with the choice φ(x) = ζ(x)
∑k

r=1 are
iωr·x for some real-valued function ζ

〈φ,Waϕ·,n〉 → (2π)−d/2

∫
ζ(x)W (x)

∣
∣
∣
∣
∣

k∑

r=1

are
iωr·x

∣
∣
∣
∣
∣

2

dx.

Of course,

(2π)−d/2

∫
W (x)

∣
∣
∣
∣
∣

k∑

r=1

are
iωr·x

∣
∣
∣
∣
∣

2

dx = 〈a,Ma〉Ck = 0

but, since
∣
∣
∣
∑k

r=1 are
iωr·x

∣
∣
∣ can vanish only on a set of measure zero and W is

not identically zero, there must exist a real-valued Schwartz function ζ0 with

compact support such that
∫

ζ0(x)W (x)
∣
∣
∣
∑k

r=1 are
iωr·x

∣
∣
∣
2

dx < 0. We cut this
Schwartz function in Fourier space with a spherically symmetric and smooth
cut-off function, to get a real-valued Schwartz function ζ which has compact
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support in Fourier space and for which, by making the cut-off in Fourier space
large enough, one has

∫
ζ(x)W (x)

∣
∣
∣
∣
∣

k∑

r=1

are
iωr·x

∣
∣
∣
∣
∣

2

dx < 0.

With this choice we then have

Re〈φ,Waϕ·,n〉 ≤ −ρ

for some ρ > 0 and all large enough n. Thus (5.5) implies

〈ψn,α, (T (p) + W )ψn,α〉
≤ on(1)(|c|2 + |γ|2) − λ1|c|2 − α

(
ρ − Cα

)|γ|2 + Cα|γ||c|
≤ on(1)(|c|2 + |γ|2) − λ1|c|2 − α

(
ρ − Cα

)|γ|2 + Cα1/2|c|2 + Cα3/2|γ|2
= −(

on(1) + Cα1/2 − λ1

)|c|2 + α
(
C(α + α1/2) − ρ

)|γ|2

≤ −λ1

2
|c|2 − αρ

2
|γ|2 < 0,

(5.6)
for all large enough n and all small enough and positive α and all c + γa �= 0.
Thus the quadratic form T (p) + W is negative definite on the space Lk,n and
the usual min–max variational arguments show that T (p)+V has no less than
dim(Lk,α,n) negative eigenvalues.

It remains to show that Lk,n has dimension k. Assume that

ψα,n(c, γ) = (c + γa)ϕ·,n + γαφ = 0 (5.7)

and α �= 0. Since in the construction above, we chose ζ0 to have compact
support, its Fourier transform ζ̂0 will not have compact support. The function
ϕ̂r,n has support in a small ball, depending on how large n is, around each
center ωr, r = 1, . . . , k. So for large enough n the supports of ϕ̂r,n are pairwise
disjoint and, moreover, since ζ̂0 does not have compact support, we can choose
the cut-off in Fourier space so large that the support of ζ̂ is not contained in
the union of the supports of the ϕ̂r,n. But then (5.7) immediately implies that
γ = 0. Once this is the case, the linear independence of the ϕr,n, r = 1, . . . , k
for large n shows that also c = 0.

Thus for fixed a ∈ Ck\{0}, the map Ck � (c+γa) �→ ψα,n(c, γ) ∈ Lk,n,α,
with c ⊥ a, is a bijection. Hence Lk,n,α is k-dimensional for all large enough
n. This finishes the proof. �

Now we come to the

Proof of Corollary 3.6. A simple calculation shows that the assumption of
Theorem 3.4 is fulfilled at k distinct points ω1, . . . , ωk. So Theorem 3.4
applies. �

For the proof of Corollary 3.7 the following Lemma is helpful, which
gives the so-called nearest point projection parametrization of a suitable open
neighborhood of Σ.
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Lemma 5.3. Let Σ be a C2 submanifold in R
d of codimension 1 ≤ n ≤ d −

1. Then for each point ω ∈ Σ, there exists a neighborhood O of ω in R
d

and neighborhoods U1 in R
d−n and U2 in R

n both containing zero and a C1

diffeomorphism Ψ : U1 × U2 → O, such that

Ψ(0, 0) = ω and Ψ(y, 0) ∈ Σ for all y ∈ U1.

Moreover,

dist(Ψ(y, t),Σ) = |t|.
This type of result seems to be well-known to geometers, at least in the

analytic category, see for example [54]. However, we could not find a reference
which assumes only that Σ is a C2 manifold. So for the convenience of the
reader, and ours, we give the proof of this Lemma in Appendix C. We now
come to the

Proof of Corollary 3.7. Assume that Σ has codimension 1 ≤ m ≤ d − 1. Pick
a point ω ∈ Σ and let O, U1, U2 be the neighborhoods and ψ the C1 diffeo-
morphism from Lemma 5.3. Since O is open there exists δ0 > 0 such that
Bδ(ω) ⊂ O for all 0 < δ ≤ δ0. Fix such a δ and choose A1 ⊂ U1 and A2 ⊂ U2

both centered closed balls in R
d−m, respectively, Rm, with

ψ(A1 × A2) ⊂ Bδ(ω).

We use ψ to change coordinates in the calculation of a lower bound for∫
Bδ(ω)

T (η)−1 dη. Parametrize η as η = ψ(y, t), then the change of variables
formula gives
∫

Bδ(ω)

T (η)−1 dη ≥
∫

ψ(A1×A2)

T (η)−1 dη

=
∫∫

A1×A2

T (ψ(y, t)) |det(D(ψ(y, t)))|dydt

�
∫∫

A1×A2

|t|−γ dydt ∼
∫

A1

(∫ diam(A2)

0

r−γ+d−1 dr
)

dy

= ∞
∫

A1

dy = ∞,

where in the second inequality we used the assumption on the symbol T , and
the fact that Dψ is continuous, so |det(Dψ(y, t))| � 1 on the compact set
A1 × A2. In the last steps we simply used γ ≥ m. Together with the k = 1
case of part c of Theorem 3.4 this shows that T (p) + V has at least one
strictly negative eigenvalue if V is relatively form compact with respect to
T (p), V ∈ L1(Rd), and

∫
V dx ≤ 0.

Of course, we can pick arbitrarily many distinct points ωl ∈ Σ and then
the above shows that for arbitrarily many distinct points ωl ∈ Σ one has

∫

Bδ(ωl)

T (η)−1 dη = ∞

for all small enough δ, hence by monotonicity also for all δ > 0. Thus if V �= 0
and V ≤ 0, the assumption of part a of Theorem 3.4 is fulfilled for any k ∈ N
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and so T (p) + V has infinitely many strictly negative bound states in this
case. �

Finally, we will prove Theorem 1.1, by reducing it to the k = 1 case of
Theorem 3.4.c. For this, the following Lemma is useful.

Lemma 5.4. Assume that T : Rd → [0,∞) is measurable and that there exists
a compact set M ⊂ R

d such that (1.1) holds. Then there exists a point ω ∈ M
such that T has a thick zero set near ω.

Proof. By assumption we know that there exist a compact subset M ⊂ R
d

with
∫

Mδ

T (η)−1 dη = ∞

for all δ > 0, where Mδ is the closed δ-neighborhood Mδ = {η ∈ R
d :

dist(η,M) ≤ δ}.

Assume, by contradiction, that for every ω ∈ M there exists δω > 0 with
∫

Bδω (ω)

T (η)−1 dη < ∞.

We clearly have

M ⊂
⋃

ω∈M

Bδω
(ω)

and by compactness of M there exist a finite subcover, i.e., N ∈ N and points
ωl ∈ M , l = 1, . . . , N , such that

O :=
N⋃

l=1

Bδωl
(ωl) ⊃ M.

Clearly
∫

O
T (η)−1 dη < ∞ (5.8)

by construction of O. Since M is compact and contained in the open set O, it
has a strictly positive distance from the closed set Oc. Thus there exists δ > 0
such that Mδ ⊂ O, but then with (5.8) we arrive at the contradiction

∞ >

∫

O
T (η)−1 dη ≥

∫

Mδ

T (η)−1 dη = ∞.

Hence there exists ω ∈ M for which (3.1) holds. �

Now we can give the short

Proof of Theorem 1.1. From the assumption of the Theorem and Lemma 5.4
we have that there exists a point ω ∈ R

d such that T has a thick zero set near
ω and hence the k = 1 case of Theorem 3.4.c applies. �
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6. Quantitative Bounds

6.1. Proof of Theorem 1.3: Quantitative Bound

Our approach is inspired by Cwikel’s proof of the Cwikel–Lieb–Rozenblum
inequality. We will give a slight modification of Cwikel’s proof, which enables
us to reduce his constant by a factor of two, see Lemma 6.1. For different
modifications of Cwikel’s proof see [57,59] and, in particular, [61]. Since T (p)+
V ≥ T (p)−V−, in the sense of quadratic forms, the variational principle shows

N(T (p) + V ) ≤ N(T (p) − V−)

where N(A) denotes the number of negative eigenvalues of an operator A. Thus
it is enough to bound the number of strictly negative eigenvalues of T (p) − U ,
where U ≥ 0.

Since U is relatively form compact with respect to T (p), the operator√
U(T (p) + E)−1/2 is compact for all E > 0, see [56, Lemma 6.28]. Let A be

a compact operator with singular values sj(A), j ∈ N, and let

n(A; 1) := #{j ∈ N : sj(A) ≥ 1}
be the number of singular values of A greater or equal to one. Furthermore,
for E > 0 let N(T (p)−U,−E) be the number of eigenvalues of T (p)−U which
are less or equal to −E. The Birman–Schwinger principle, [53, Theorem 7.9.4],
shows

N(T (p) − U,−E) = n(KE ; 1) (6.1)

with the so-called Birman–Schwinger operator KE =
√

U(T (p) + E)−1
√

U ,
which is also a compact operator for any E > 0. Factorizing KE = AEA∗

E with
A = f(x)gE(p), where we introduced the multiplication operator f =

√
U and

the Fourier-multiplier gE(p) = (T (p)+E)−1/2, the Birman–Schwinger principle
shows

N(T (p) − U,−E) = n(AE ; 1)

since the singular values of AE are just the square roots of the positive eigen-
values of KE . Since N(T (p) − U) = limE→0+ N(T (p) − U,−E), we have to
control n(AE ; 1) for small E > 0. For convenience, we will write g for gE below.
Following Cwikel, we decompose f and g as

f =
∑

n∈Z

fn and g =
∑

n∈Z

gn,

where fn := f1{αrn−1<f≤αrn} and gn := g1{rn−1<g≤rn}

for some α > 0 and r > 1 and introduce the operators

Bα,r :=
∑

k+l≤1

fk(x)gl(p), Hα,r :=
∑

k+l≥2

fk(x)gl(p).

We have the bounds �
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Lemma 6.1. For any α > 0 and r > 1 and any functions f, g ≥ 0 the operator
Bα is bounded and its operator norm is bounded by

‖Bα,r‖ ≤ α

(
r4

r2 − 1

)1/2

.

Moreover, define G̃α(u) for u, α > 0 by

G̃α(u) := u2

∫

ug(η)>α

g(η)2
dη

(2π)d
.

If for α > 0 we have
∫
Rd Gα(f(x)) dx < ∞, then Hα,r is a Hilbert–Schmidt

operator for all r > 1 and its Hilbert–Schmidt norm is bounded by

‖Hα,r‖2
HS ≤

∫

Rd

G̃α(f(x)) dx.

Remarks 6.2. (i) If g is ‘locally’ L2 in the sense that g1{g>α} ∈ L2(Rd) for
any α > 0, then G̃α(u) < ∞ for all u, α > 0 and limu→0 G̃α(u) = 0 for
any α > 0.

(ii) Note that the right hand side of the bound on the operator norm of Bα,r

is minimized by the choice r =
√

2 and the bound for the Hilbert–Schmidt
norm of Hα,r is independent of r > 1. This improves the constant from
Cwikel’s original proof by a factor of two. We will use the choice r =

√
2

later.

Before we give the proof of the lemma, we state and prove an immediate
consequence.

Corollary 6.3. If
∫
Rd G̃α(f(x)) dx < ∞ for all α > 0, then the operator

f(x)g(p) is compact.

Proof. By Lemma 6.1 we have f(x)g(p) = Bα +Hα, where Bα is bounded and
Hα is a Hilbert–Schmidt, in particular, a compact operator. Since the operator
norm of Bα is bounded by ‖Bα‖ ≤ 2α, where we chose r = 2 for convenience,
we see that f(x)g(p) is the norm limit, as α → 0, of the compact operators
Hα, so it must be compact. �

Proof of Lemma 6.1. The proof of the bound for the operator norm of Bα,r

follows Cwikel’s ideas closely, with the difference that we defined Bα,r slightly
differently7 than Cwikel in [11]. We give the short proof for the convenience
of the reader and in order to implement a little trick, which allows to improve
on Cwikel’s constant by a factor of two:

7This slight change in definition is the reason why the bound on the Hilbert–Schmidt norm

of Hα,r is independent of r > 1, so we can freely optimize the bound on Bα,r from Lemma

6.1 in r > 1. This was already noticed in [22].
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Let Ψ,Φ ∈ L2(Rd), f̃k := α−1r−kfk and g̃l := r−lgl . Then

〈Ψ, Bα,rΦ〉 =
∑

k+l≤1

〈fk(x)ψ, gl(p)Φ〉 = α
∑

k+l≤1

rk+l〈f̃kΨ, g̃lΦ̂〉

= α
∑

k∈Z

〈
f̃kΨ,

∑

n≤1

rn g̃n−kΦ̂
〉

Thus

|〈Ψ, Bα,rΦ〉|α ≤
∑

k∈Z

∣
∣
∣
〈
f̃kΨ,

∑

n≤1

rn g̃n−kΦ̂
〉∣
∣
∣ ≤ α

∑

k∈Z

∥
∥f̃kΨ

∥
∥
∥
∥
∥
∑

n≤1

rn g̃n−kΦ̂
∥
∥
∥

≤ α

(
∑

k∈Z

‖(f̃kΨ‖2

)1/2
⎛

⎝
∑

n≤1

∥
∥
∥
∑

n≤1

rn g̃n−kΦ̂
∥
∥
∥

2

⎞

⎠

1/2

.

Moreover, 0 ≤ f̃k ≤ 1 and they have disjoint supports, so
∑

k∈Z
(f̃k)2 ≤ 1

pointwise, hence
∑

k+l∈Z

‖f̃kψ‖2 =
〈
Ψ,

∑

k∈Z

(f̃k)2Ψ
〉

≤ 〈Ψ,1{f>0}Ψ〉 ≤ ‖Ψ‖2.

For the second term, we note
∥
∥
∥
∑

n≤1

rn g̃n−kΦ̂
∥
∥
∥

2

=
∑

n1,n2≤1

rn1+n2〈Φ̂, g̃n1−kg̃n2−kΦ̂〉 =
∑

n≤1

r2n〈Φ̂, (g̃n−k)2Φ̂

since g̃n1−k and g̃n2−k have disjoint supports when n1 �= n2. In addition, we
also have

∑
k∈Z

(g̃n−k)2 ≤ 1 for any n ∈ Z, hence
∑

k∈Z

∥
∥
∥
∑

n≤1

rn g̃n−kΦ̂
∥
∥
∥

2

=
∑

n≤1

r2n
〈
Φ̂,

∑

k∈Z

(g̃n−k)2Φ̂ ≤
∑

n≤1

r2n‖Φ̂‖2 =
r4

r2 − 1
‖Φ̂‖2

follows. So we get the bound

‖Bα,r‖ ≤ α

(
r4

r2 − 1

)1/2

for the operator norm of Bα,r.
The bound of the Hilbert–Schmidt norm of Hα is a simple calculation.

It is convenient to consider the operator H̃α = f(x)F−1g(η), since H∗
αHα is

unitarily equivalent to H̃∗
αH̃α, so their Hilbert–Schmidt norms are the same.

The advantage is that one can easily read off the kernel of H̃α, for which we
have the bound

|H̃t(x, η)| ≤ (2π)−d/2
∑

k+l≥2

fk(x)gl(η) = (2π)−d/2
∑

k+l≥2

fk(x)gl(η)1{f(x)g(η)>α}

≤ (2π)−d/2f(x)g(η)1{f(x)g(η)>α},

since the supports of fk, gl, respectively, are pairwise disjoint and for (x, η) in
the support of fkgl we have f(x)g(η) = fk(x)gl(η) > trk+l−2 ≥ t by construc-
tion of fk and gl and since k + l ≥ 2 in the above sum. Thus with Tonelli’s
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theorem one sees

‖Hα‖2
HS = ‖H̃α‖2

HS =
∫∫

|H̃α(x, η)|2 dxdη

≤ (2π)−d

∫∫

f(x)g(η)>α

f(x)2g(η)2 dηdx

=
∫

f(x)2
∫

f(x)g(η)>α

g(η)2
dηdx

(2π)d
=
∫

Rd

G̃α(f(x)) dx

with

G̃α(u) = u2

∫

ug(η)>α

g(η)2
dη

(2π)d
.

as claimed. �

Now we come to the

Proof of Theorem 1.3. The usual arguments, see [56, Lemma 6.26] or [53, The-
orem 7.8.3], show that the essential spectrum does not change, σess(T (p)+V ) =
σess(T (p)), when V is a relatively form compact perturbation of T (p). That
σess(T (p)) = σ(T (p)) ⊂ [0,∞) is clear, since T (p) is a Fourier multiplier with
a positive symbol T .

It remains to prove the bound (1.3): As already discussed in the beginning
of this section, setting f = V

1/2
− and g = gE = (T + E)−1/2, the Birman

Schwinger principle and the variational theorem yield

N(T (p) + V,−E) = n(
√

V−(T (p) + E)−1/2; 1) = #{n : sn(f(x)g(p)) ≥ 1}

≤
∑

n∈N

(sn(f(x)g(p)) − μ)2+
(1 − μ)2

=
∑

n∈N

(sn(Bα + Hα) − μ)2+
(1 − μ)2

(6.2)
for any 0 ≤ μ < 1, where the inequality follows from the simple bound (s −
μ)2+/(1 − μ)2 ≥ 1 for all s ≥ 1 and where we split f(x)g(p) = Bα + Hα, with
the optimal choice of r = 2.

Ky–Fan’s inequality for the singular values and the first part of Lemma
6.1 gives

sn(Bα + Hα) ≤ s1(Bα) + sn(Hα) = ‖Bα‖ + sn(Hα) ≤ 2α + sn(Hα).

So choosing μ = 2α in (6.2), we arrive at the bound

N(T (p) + V,−E) ≤ (1 − 2α)−2‖Hα‖2
HS ≤ (1 − 2α)−2

∫

Rd

G̃α(f(x)) dx,
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for all 0 < α < 1/2. Since g = gE = (T + E)−1/2 and f =
√

V− a straightfor-
ward calculation and a simple monotonicity argument shows

G̃α(u) = u2

∫

T+E<u2/α2

1
T (η) + E

dη

(2π)d

≤ u2

∫

T<u2/α2

1
T (η)

dη

(2π)d
= α2G

(
u2

α2

)

with G from (1.2). So, since f(x) =
√

V−(x), we have

N(T (p) + V,−E) ≤ α2

(1 − 2α)2

∫

Rd

G(V−(x)/α2) dx (6.3)

and letting E → 0 finishes the proof. �

6.2. Proof of Theorem 1.5: Dichotomy

We start with

Lemma 6.4. Under the conditions of Theorem 1.5 we have
∫

Zδ

1
T

dη = ∞ for some δ > 0 =⇒
∫

T<u

1
T

dη = ∞ for all u > 0

=⇒
∫

Zδ

1
T

dη = ∞ for all δ > 0.

Remark 6.5. Lemma 6.4 clearly shows
∫

Zδ

1
T

dη = ∞ for some δ > 0 ⇐⇒
∫

Zδ

1
T

dη = ∞ for all δ > 0

and
∫

Zδ

1
T

dη < ∞ for some δ > 0 ⇐⇒
∫

T<u

1
T

dη = ∞ for some u > 0,

which explains Remark 1.6.iii.

Proof of Lemma 6.4. Note the simple identity
∫

T<u

1
T

dη =
∫

{T<u}∩Zδ

1
T

dη +
∫

{T<u}∩Zc
δ

1
T

dη

=
∫

Zδ

1
T

dη −
∫

{T≥u}∩Zδ

1
T

dη +
∫

{T<u}∩Zc
δ

1
T

dη (6.4)

where
∫

{T<u}∩Zc
δ

1
T dη < ∞ for all δ > 0 and all small enough u > 0, depending

on δ, because of (1.7). Also
∫

{T≥u}∩Zc
δ

1
T dη ≤ |Zδ|/u < ∞ by assumption. So

the left hand side of (6.4) is infinite for all small enough u > 0 if for some
δ > 0 we have

∫
Zδ

1
T dη = ∞. But by monotonicity, then also

∫
T<u

1
T dη = ∞

for all u > 0, which proves the first implication in Lemma 6.4.
On the other hand, once

∫
T<u

1
T dη = ∞ for all u > 0, one sees from

(6.4) that
∫

Zδ

1
T dη = ∞ for any δ > 0, since the last two terms in (6.4) are

finite for all small enough u > 0. �
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Now we come to the

Proof of Theorem 1.5. For part (a) we note that by Lemma 6.4 one has
∫

Zδ

1
T

dη = ∞ for some δ > 0 ⇐⇒
∫

Zδ

1
T

dη = ∞ for all δ > 0

so one can use Theorem 1.1 to see that one weakly coupled bound states exist
once (1.8) holds.

On the other hand, assume that (1.8) fails. Then, again by Lemma 6.4,
we have

∫
T<u

1
T dη < ∞ for all small enough u > 0. Thus G(u) defined in

(1.2) is finite for all small enough u > 0 and limu→0+ G(u) = 0. Then a simple
argument, see Remark 1.4.i, yields a strictly negative potential V such that
T (p)+V has no negative spectrum. Thus condition (1.8) is equivalent to having
weakly coupled bound states.

For part (b) we simply note that Lemma 6.4 shows that
∫

Zδ

1
T dη < ∞

for some δ > 0 implies
∫

T<0
1
T dη < ∞ for all small enough u > 0. Then The-

orem 1.3 shows that a quantitative bound on the number of strictly negative
eigenvalues of T (p) + V in the form (1.3) holds.

Conversely, assume that (1.9) fails. Then Theorem 1.1 applies. Thus
weakly coupled bound states always exist for any non-trivial attractive poten-
tials, hence no quantitative bound on the number of strictly negative bound
states can exist. �
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Appendix A. Applications

In this section we discuss the following applications of Theorems 1.1 and 1.3
and their corollaries.

A.1 Schrödinger operators with a fractional Laplacian.
A.2 Relativistic one-particle operators with positive mass.
A.3 Relativistic pair operators with positive mass.
A.4 Ultra-relativistic pair operators.
A.5 Relativistic pair operators: one heavy and one extremely light particle.
A.6 Operators arising in the mathematical treatment of the Bardeen–Cooper–

Schrieffer theory of superconductivity (BCS).
A.7 Discrete Schrödinger operators on a lattice.

In all cases, except one, when there exists a finite bound for the number of
bound states, these bounds agree, up to constants, exactly with what one
would guess from semi-classics.

While not all of the applications we discuss in this appendix are com-
pletely new, they can be straightforwardly analyzed within our framework.
We do not need to bound singular values of compact operator or show that a
Birman–Schwinger type operator has a singular part. All we need is to analyze
a real-valued integral, which, in most cases, is straightforward.

The one example, where we do not get a semi-classical type bound, is
considered in Theorem A.12 in section A.3. In this critical case one expects to
have corrections to the semi-classical picture and our quantum correction gives
the right logarithmic correction term to the semi-classical picture. Moreover,
the analysis of weakly coupled bound states in section A.4 solves a conjecture
in [57].

We would also like to emphasize that Theorem 1.3 easily allows to get
these semi-classical bounds even for kinetic energies which are not homogenous !

A.1 Schrödinger Operators with a Fractional Laplacian

We consider the operator (−Δ)γ/2 + V = |p|γ + V in R
d assuming that V

satisfies the conditions of Theorems 1.1 and 1.3. It follows immediately from
Corollary 3.7 that

Theorem A.1. Suppose V �= 0 is an attractive potential in the sense that∫
V dx ≤ 0. Then for γ ≥ d the operator |p|γ + V has at least one striclty

negative eigenvalue.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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On the other hand, Theorem 1.3 implies for this operator that

Theorem A.2. Assume that, γ < d then the number of negative eigenvalues of
the operator |p|γ + V satisfies

N(|p|γ + V ) ≤
(

4d

d − γ

)2d/γ
d − γ

d(4γ)2
|Bd

1 |
(2π)d

∫

Rd

V−(x)d/γ dx, (A.1)

where |Bd
1 | denotes the the volume of the unit ball in R

d.

Proof. Inequality (A.1) follows from (1.3) for the optimal choice of α =
d−γ
4d . �

Of course, if γ ≥ d, then there cannot be a quantitative bound on the
number of negative eigenvalues, but for β > 0 the number of eigenvalues below
−β, which we denote by N(|p|γ + V,−β), can be bounded.

Define, for γ > d and β > 0,

Gd,γ,β(u) = β
d−γ

γ
|Bd

1 |
(2π)d

u min
((u

β
− 1

) d
γ

+
,

πd/γ

sin(πd/γ)

)

(A.2)

and, for γ = d,

Gd,d,β(u) =
|Bd

1 |
(2π)d

u ln
(

1 +
(u

β
− 1

)

+

)

(A.3)

for u ≥ 0. Then we have

Theorem A.3. Assume that γ ≥ d and β > 0. Then for all 0 < α < 1/2

N(|p|γ + V,−β) ≤ α2

(1 − 2α)2

∫

Rd

Gd,γ,β(α−2V−(x)) dx.

Remarks A.4. (i) If V− ≤ β, then |p|γ + V cannot have any spectrum below
−β and the bound from Theorem A.3 reflects this.

(ii) Note that Lcl
0,d = |Bd

1 |
(2π)d is one of the so-called classical Lieb–Thirring

constants [23,33].

Proof. Of course, N(|p|γ + V,−β) = N(β + |p|γ + V ) = N(T (p) + V ) with
T (η) = β + |η|γ by a simple shifting argument. Thus Theorem 1.3 shows that
a bound of the form of (1.3) holds for N(|p|γ + V,−β) with G given by

G(u) = u

∫

T<u

1
T (η)

dη

(2π)d
= u

∫

|η|γ<u−β

1
β + |η|γ

dη

(2π)d
. (A.4)

We have
∫

|η|γ<βs

1
β + |η|γ dη = β

d
γ −1

∫

|η|γ<s

1
1 + |η|γ dη = |Sd−1|β d

γ −1

∫ s
1
γ

0

rd−1

1 + rγ
dr

by scaling and going to spherical coordinates, |Sd−1| is the surface area of the
unit sphere in R

d. Thus, if γ = d, then

G(u) =
|Sd−1|
d(2π)d

u ln
(

1 +
(u

β
− 1

)

+

)
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and since |Bd
1 | = |Sd−1|/d this proves the claim for γ = d. If γ > d, then
∫ ∞

0

rd−1

1 + rγ
dr =

1
γ

∫ ∞

0

t
d
γ −1(1 + t)−1 dt =

π/γ

sin(πd/γ)
by a contour integral over a keyhole contour encircling the positive real axis

[2]. On the other hand,
∫ s

1
γ

0
rd−1

1+rγ dr ≤ ∫ s
1
γ

0
rd−1 dr = s

d
γ

d , so
∫

|η|γ<u−β

1
β + |η|γ

dη

(2π)d
≤ |Sd−1|

d(2π)d
min

((u

β
− 1

) d
γ

+
,

πd/γ

sin(πd/γ)

)

which shows G(u) ≤ Gd,d,β(u) if γ > d. This proves the theorem. �
A.2 Relativistic one-Particle Operators with Positive Mass

If one wants to include relativistic effects, one is often lead to pseudorelativistic
operators where the kinetic energy is of the form Tc2m(p) =

√|p|2 + c4m2 −
c2m [3,12,13,20,21,32,34]. Here m is the mass of the particle and c is the
velocity of light. In the limit of c → 0, i.e., the ultra-relativistic limit, and in
the limit of vanishing mass, i.e., massless particles, this becomes simply the
operator |p|, which was already discussed in Section A.1. For non-vanishing
mass, one can set c = 1 by absorbing c2 into m with a simple scaling argument.
We have

Theorem A.5. Let d = 1, or d = 2, V ∈ L1(Rd) is relatively form compact
with respect to Tm(p) and an attractive potential in the sense that V �= 0 and∫

V dx ≤ 0, then the operator
√|p|2 + m2 − m + V has at least one strictly

negative eigenvalue.

Proof. Since
√|η|2 + m2−m = |η|2

2m +O( |η|4
m3 ), the claim follows from Corollary

3.6. �
For larger dimensions, we have a quantitative bound on the number of

negative eigenvalues, counting multiplicity.

Theorem A.6. For d ≥ 3 and m ≥ 0 let

Gd,m(u) :=
d

d − 2
|Bd

1 |
(2π)d

ud/2(u + 2m)d/2,

where |Bd
1 | denotes the volume of the ball of radius one in R

d. Then the number
of negative eigenvalues of

√|p|2 + m2 − m + V on L2(Rd) satisfies, for any
0 < α < 1

2 ,

N(
√

|p|2 + m2 − m + V ) ≤ α2

(1 − 2α)2

∫

Rd

Gd,m(α−2V−(x)) dx. (A.5)

Remarks A.7. (i) We have

Gd,m(u) =
d

d − 2
|Bd

1 |
(2π)d

∣
∣
{
η ∈ R

d : Tm(η) < u
}∣
∣,

where |A| denotes the volume of a Borel set A ⊂ R
d. So up to a factor

of d/(d − 2), the function Gd,m is exactly what one would expect from a
semi-classical guess.
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(ii) In the limit m → 0, one recovers, with a slightly worse constant, the
bound from Theorem A.2 as long as d ≥ 3.

(iii) Physical intuition suggests that for bound states large (negative) values
of the potential correspond to a large momentum and small values to a
small momentum. Since

√|η|2 + m2−m � |η| for large and
√|η|2 + m2−

m � |η|2
2m for small momentum, physical heuristics thus suggests that a

pseudo-relativistic system has a finite number of bound states if the “large
values” of V− are in Ld(Rd) and the “small values” are in Ld/2(Rd). It is
easy to see that

Gd,m(u) ∼ min(u, 1)d/2 + max(u, 1)d,

where the implicit constants depend only on m and d, so our bound (A.5)
corroborates this physical heuristic argument quantitatively.

Proof of Theorem A.6. With T (η) = Tm(η) =
√|η|2 + m2 − m we rewrite G

from (1.2) as

G(u) = u

∫

T<u

1
T (η)

dη

(2π)d
=
∫

T/u<1

∫ ∞

0

s−21{T (·)/u<s}(η) ds
dη

(2π)d

=
1

(2π)d

∫ ∞

0

s−2
∣
∣{T < min(1, s)u}∣∣ ds

=
1

(2π)d

[
∣
∣{T < u}∣∣ + u

∫ u

0

s−2
∣
∣{T < s}∣∣ ds

]

. (A.6)

Since
∣
∣{T < u}∣∣ =

∫
|η|<(u(u+2m))1/2 dη = |Bd

1 |ud/2(u + 2m)d/2, we get from
(A.6)

G(u) =
|Bd

1 |
(2π)d

[

ud/2(u + 2m)
d
2 + u

∫ u

0

s
d
2 −2(s + 2m)d/2 ds

]

.

Using the simple bound

u

∫ u

0

s
d
2 −2(s + 2m)

d
2 ds ≤ u(u + 2m)

d
2

∫ u

0

s
d
2 −2 ds =

2
d − 2

u
d
2 (u + 2m)

d
2 ,

we get the upper bound

G(u) ≤ d

d − 2
|Bd

1 |
(2π)d

u
d
2 (u + 2m)

d
2 = Gd,m(u)

and Theorem 1.3 applies. �

A.3 Relativistic Pair Operators with Positive Masses

Considering two relativistic particles of masses m± interacting with each other
one is lead to study the operator

√
p2
+ + m2

+ − m+ +
√

p2− + m2− − m− + V (x+ − x−)

on L2(R2d), with p± = −i∇x± , the momenta of the first (+) and second
particle (−), where R

2d � x = (x+, x−) ∈ R
d × R

d. See, for example, [28],
where they study the essential spectrum, the extension of the famous HVZ
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Theorem to semi-relativistic particles, for an arbitrary but fixed number of
particles.

It turns out that, due to the fact that this operator does not transform
in a simple way under Gallilei transformations, this system has some unusual
features. Transforming this two-particle operator into center of mass coordi-
nates, one gets a direct integral decomposition

∫ ⊕
Rd Hrel,m±(P ) dP , see [28,57],

where Hrel,m±(P ) is the pair-operator

Hrel,m±(P ) :=
√

|μ+P − q|2 + μ2
+M2 +

√
|μ−P + q|2 + μ2−M2

−
√

P 2 + M2 + V (y)

=: TP,M,μ±(q) + V (y) (A.7)

on L2(Rd). Here y ∈ R
d is the relative coordinate and q = −i∇y the relative

momentum of the two particles, M = m− + m+ is the total mass, P ∈ R
3 the

total momentum, and we set μ± := m±/M .
Note that the dependence on the total momentum is much more compli-

cated than in the non-relativistic case, where the two particle operator

p2
+

2m+
+

p2
−

2m−
+ V (x+ − x−)

on L2(Rd) is unitarily equivalent to a direct integral
∫ ⊕
Rd Hnon-rel(P ) dP with

the non-relativistic pair-operator

Hnon-rel(P ) :=
M

2m+m−
p2 + V (y) +

P 2

2M
.

Here the term P 2

2M is simply the kinetic energy of the center of mass frame and
the shift by P 2

2M corresponds to the covariance of non-relativistic Schrödinger
operators under Galilei transformations.

Bounds for the number of bound states for the relativistic pair-operator
(A.7) were considered in [57]. Here we want to show how their results are an
easy consequence of our approach. Moreover, in the following section, we will
consider the ultra-relativistic pair-operator and prove a conjecture made in
[57] concerning the limit of vanishing masses when both particles are ultra-
relativistic in Section A.4. Moreover, we will also see how within our approach
one can easily discuss a mixed relativistic-ultra relativistic case, where one
particle has positive mass while the other one has zero mass, see Section A.5.

For positive masses and low dimensions we have

Theorem A.8. Suppose that V �= 0, V ∈ L1(Rd) is relatively form-compact
with respect to TP,M,μ±(p) and is an attractive potential in the sense that∫

V dx ≤ 0. Then for d = 1, 2 and any P ∈ R
d, m± > 0 the operator

Hrel,m±(P ) has at least one negative eigenvalue.
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Proof. Using the Taylor expansion
√

1 + x = 1+ x
2 − x2

8 +O(x3) and μ++μ− =
1 one sees

TP,M,μ±(η)

=
√

P 2 + M2

(

μ+

√

1 +
η2 − 2μ+P · η

μ2
+(P 2 + M2)

+ μ−

√

1 +
η2 + 2μ−P · η

μ2−(P 2 + M2)
− 1

)

=
(P 2 + M2)η2 − (P · η)2

2μ+μ−(P 2 + M2)3/2
+ O

( |η|4 + μ±η2|Pη|
μ3±(P 2 + M2)3/2

)

=
M2η2 + P 2η2

⊥
2μ+μ−(P 2 + M2)3/2

+ O

( |η|4 + μ±η2|Pη|
μ3±(P 2 + M2)3/2

)

where M = m+ +m− > 0, μ± = m±/M > 0, and η = sP +η⊥ with s ∈ R and
η⊥ orthogonal to P if P �= 0. Thus the kinetic energy vanishes quadratically
near η = 0 and Corollary 3.6 applies. �

To give a quantitative bound on the number of negative bound states we
need a little bit more notation. Let d ∈ N, P ∈ R

d, M ≥ 0, gP,M =
√

P 2 + M2,
−1/2 ≤ μ̃ ≤ 1/2, and define

Gd
P,M,μ̃(u) :=

3|Bd
1 |

(4π)d

ud/2(u + gP,M) (u + 2gP,M)d/2

(u2 + 2ugP,M + M2)1/2

×
(

u2 + 2ugP,M + (1 − 4μ̃2)M2

u2 + 2ugP,M + M2

)d/2

. (A.8)

Remark A.9. The function Gd
P,M,μ̃ is quite natural. Up to a factor of three it

is exactly what one would guess semi-classically, that is,

Gd
P,M,μ̃(u) =

3
(2π)d

∣
∣{η ∈ R

d : TP,M,μ±(η) < u}∣∣

with μ̃ = (μ− − μ+)/2. For the convenience of the reader, we sketch the
calculation of

∣
∣{η ∈ R

d : TP,M,μ±(η) < u}∣∣ from [57] in Appendix D.

In four and more dimensions we have a simple bound for the number of
bound states of the relativistic pair-operator.

Theorem A.10. (Bound states in high dimension) If d ≥ 4, then the number
of negative eigenvalues of the relativistic pair-operator Hrel,m±(P ) on L2(Rd)
satisfies for 0 < α < 1

2

N(Hrel,m±(P )) ≤ α2

(1 − 2α)2

∫

Rd

Gd
P,M,μ̃

(
α−2V−(x)

)
dx. (A.9)

Remark A.11. For positive total mass M > 0 we have

Gd
P,M,μ̃(u) ∼ min(u, 1)d/2 + max(u, 1)d

where the implicit constants depend only on the total momentum P ∈ R
d and

the total mass M > 0. So the right hand side of (A.9) is finite if and only
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if the interaction potential is locally Ld(Rd) and globally Ld/2(Rd), as in the
single particle case.

In the limit of zero total mass one has

Gd
P,0(u) = lim

M→0
Gd

P,M,μ̃(u) =
3|Bd

1 |
(4π)d

u(d−1)/2(u + |P |)(u + 2|P |)(d−1)/2

∼ min(u, 1)(d−1)/2 + max(u, 1)d

Compared to the massive case, where V ∈ there is a loss of one dimension in
the massless case: the negative part of the interaction potential V− has to be
locally in Ld(Rd) and globally in L(d−1)/2(Rd) so that the right hand side of
semi-classical bound (A.9) is finite.

Informally, setting d = 3, one sees that G3
P,0 contains a term linear in u.

This hints at the fact that in this case a quantitative bound on the number of
bound states should not exist. As Theorem A.12 below shows, this is indeed
the case. Moreover, any bound for positive masses m± > 0 should diverge as
M = m+ + m− → 0. We will see in the next theorem, that this divergence is
at most logarithmic in the limit of vanishing total mass M when d = 3. That
such a divergent term is necessary is shown in Theorem A.13.

Proof of Theorem A.10. With

T (η) = TP,M,μ±(η) =
√

|μ+P − η|2 + μ2
+M2

+
√

|μ−P + η|2 + μ2−M2 −
√

P 2 + M2 (A.10)

we rewrite G from (1.2) as

G(u) = u

∫

T<u

1
T (η)

dη

(2π)d
=

1
(2π)d

∫ ∞

0

s−2
∣
∣{TP,M,μ± < min(1, s)u}∣∣ ds

=
1

(2π)d

{
∣
∣{TP,M,μ± < u}∣∣ + u

∫ u

0

s−2
∣
∣{TP,M,μ± < s}∣∣ds

}

(A.11)

From Appendix D, see formula (D.2), we know

∣
∣{TP,M,μ± < u}∣∣ =

|Bd
1 |

2d

ud/2(u + gP,M)(u + 2gP,M)d/2

(u2 + 2ugP,M + M2)1/2

×
(

u2 + 2ugP,M + (1 − 4μ̃2)M2

u2 + 2ugP,M + M2

)d/2

where μ̃ = (μ− − μ+)/2 and gP,M =
√

P 2 + M2. So it is enough to show that

u

∫ u

0

s−2
∣
∣{TP,M,μ± < s}∣∣ds ≤ 2

∣
∣{TP,M,μ± < u}∣∣. (A.12)

Since the map

0 ≤ u �→ u2 + 2ugP,M + (1 − 4μ̃2)M2

u2 + 2ugP,M + M2
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is increasing, we have for d ≥ 4

2d|Bd
1 |−1

∫ u

0

s−2
∣
∣{TP,M,μ± < s}∣∣ ds

≤ u
d
2 −2(u + 2gP,M)d/2

(
u2 + 2ugP,M + (1 − 4μ̃2)M2

u2 + 2ugP,M + M2

)d/2

×
∫ u

0

s + gP,M

(s2 + 2sgP,M + M2)1/2
ds

and
∫ u

0

s + gP,M

(s2 + 2sgP,M + M2)1/2
ds = (u2 + 2ugP,M + M2)1/2 − M

=
u2 + 2ugP,M

(u2 + 2ugP,M + M2)1/2 + M

≤ 2u(u + gP,M)
(u2 + 2ugP,M + M2)1/2

.

Putting the above bounds together shows (A.12) and with Theorem 1.3 we
conclude the proof. �

In tandem with Theorem A.12, the following result shows that the rela-
tivistic pair-operator is “critical” in three dimensions.

Theorem A.12. (Bound states in dimension 3) Let P ∈ R
3, m± > 0 and set

M = m+ + m−, μ± = m±/M , μ̃ = (μ− − μ+)/2, gP,M =
√

P 2 + M2 and

Gmod
P,M,μ̃(u)

:= G3
P,M,μ̃(u) + u

|B3
1 |

21/2(2π)3
(P 2 + M2) ln

(√
1 + P 2/M2 +

√
2 + P 2/M2

)
.

Then the number of negative eigenvalues of the relativistic pair-operator
Hrel,m±(P ) on L2(R3) satisfies for 0 < α < 1

2

N(Hrel,m±(P )) ≤ α2

(1 − 2α)2

∫

R3
Gmod

P,M,μ̃

(
α−2V−(x)

)
dx. (A.13)

Proof. As in the proof of Theorem A.10, Theorem 1.3 yields a bound on the
number of bound states with

G(u) =
1

(2π)3

{
∣
∣{TP,M,μ± < u}∣∣ + u

∫ u

0

s−2
∣
∣{TP,M,μ± < s}∣∣ ds

}

where now |A| denotes the volume of a Borel set A ⊂ R
3. So it is enough to

show

u

∫ u

0

s−2
∣
∣{TP,M,μ± < s}∣∣ ds

≤ 2
∣
∣{TP,M,μ± < u}∣∣ + u25/2g2|B3

1 | ln(g/M +
√

1 + (g/M)2)
(A.14)
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where we abbreviated g =
√

P 2 + M2 and τ = |P |/M . Using (D.2) for∣
∣{TP,M,μ± < s}∣∣, we have, similarly as in the proof of Theorem A.10,

23

|B3
1 |
∫ u

0

s−2
∣
∣{TP,M,μ± < s}∣∣ ds

≤
(

u2 + 2ug + (1 − 4μ̃2)M2

u2 + 2ug + M2

)3/2 ∫ u

0

s−1/2(s + 2g)3/2(s + g)
(s2 + 2sg + M2)1/2

ds

and an integration by parts shows
∫ u

0

s−1/2(s + 2g)3/2(s + g)

(s2 + 2sg + M2)1/2
ds

=
[
s−1/2(s + 2g)3/2

(
(s2 + 2sg + M2)1/2 − M

)]u

0

−
∫ u

0

(

−1

2
s−3/2(s + 2g)3/2 + s−1/2 3

2
(s + 2g)1/2

)(
(s2 + 2sg + M2)1/2 − M

)
ds

=
u1/2(u + 2g)5/2

(u2 + 2ug + M2)1/2 + M
+

∫ u

0
s−3/2(s + 2g)1/2 (g − s)s(s + 2g)

(s2 + 2sg + M2)1/2 + M
ds

≤ 2u1/2(u + g)(u + 2g)3/2

(u2 + 2ug + M2)1/2
+

∫ g

0

s−1/2(s + 2g)3/2(g − s)

(s2 + 2sg + M2)1/2
ds.

Since (s + M2/g)(s + g) ≤ s2 + 2sg + M2, we have
∫ g

0

s−1/2(s + 2g)3/2(g − s)
(s2 + 2sg + M2)1/2

ds

≤
∫ g

0

s−1/2(s + 2g)3/2(g − s)
(s + g)1/2(s + M2/g)1/2

ds

≤ 23/2g2

∫ g

0

s−1/2(s + M2/g)−1/2 ds = 25/2g2

∫ √
g

0

(s2 + M2/g)−1/2 ds

= 25/2g2

∫ g/M

0

(s2 + 1)−1/2 ds = 25/2g2 ln(g/M +
√

1 + (g/M)2)

where we also used that s �→ (s+2g)3/2(g−s)
(s+g)1/2 is decreasing on [0, g]. The last

three bounds together with the trivial bound u2+2ug+(1−4μ̃2)M2

u2+2ug+M2 ≤ 1 show that
(A.14) holds, which finishes the proof. �

A.4 Ultra-relativistic Pair Operators

In the ultra-relativistic limit one takes the velocity of light to zero. Equiva-
lently, one takes the limit of vanishing masses. The kinetic energy symbol of
the pair operator becomes

TP,0,μ±(η) = lim
M→0

TP,M,μ±(η) = |μ+P − η| + |μ−P + η| − |P |. (A.15)

The triangle inequality shows TP,0,μ±(η) = |μ+P − η| + |μ−P + η| − |P | ≥
|P | − |P | = 0, so T is positive.8 It was noted already in [57] that the kinetic
energy TP,0,μ± is, for P �= 0, zero on a ‘large set’: If η is parallel to P we can

8This also follows from the fact that TP,0,μ± is the limit of positive terms.
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write it as η = sP with s ∈ R, and then, assuming also −μ− ≤ s ≤ μ+, one
has

TP,0,μ±(η) = |μ+P − sP | + |μ−P + sP | − |P |
= (μ+ − s)|P | + (μ− + s)|P | − |P | = 0,

since μ− + μ+ = 1, so the kinetic energy symbol has the whole segment
[−μ−P, μ+P ] as a zero set. This observation led to the conjecture in [57] that
the ultra-relativistic pair operator TP,0,μ± + V should possess weakly coupled
bound states in three dimensions whenever the total momentum does not van-
ish. Our next theorem confirms this.

Theorem A.13. Assume that d = 3, the total momentum P ∈ R
3\{0}, V is

relatively form compact with respect to TP,0,μ± and an attractive potential in
the sense that V �= 0 and

∫
V dx ≤ 0. Then TP,0,μ± + V has at least one

strictly negative eigenvalue and if, in addition, V ≤ 0 then it has infinitely
many strictly negative eigenvalues.

Proof. We already convinced ourselves that TP,0,μ± is non-negative and zero
on the line segment [−μ−P, μ+P ].

Now let η = sP + η⊥, where −μ− < s < μ+ and η⊥ is perpendicular to
P . Then

TP,0,μ±(η) =
√

(μ+ − s)2P 2 + η2
⊥ +

√
(μ− + s)2P 2 + η2

⊥ − |P |

=
η2

⊥
2(μ+ − s)(μ− + s)|P | + O

( |η⊥|4
|μ± ∓ s|3|P |3

)

using the Taylor expansion
√

1 + x = 1 + x
2 + O(x2).

Since the line segment [−μ−P, μ+P ] on which the kinetic energy vanishes
has codimension 2 in R

3, we can apply Corollary 3.7. �
In dimension d ≥ 4, there is a useful bound on the number of bound

states even in the ultra-relativistic limit. It has the interesting feature that
even though the kinetic energy of the massless pair still remembers, through
μ±, the ratio of the two masses before taking the limit of vanishing total mass,
the semiclassical bound is independent of this.

Theorem A.14. Let d ≥ 4 and define

Gd
P,0(u) :=

(d − 1)|Bd
1 |

(d − 3)(4π)d
u(d−1)/2(u + |P |) (u + 2|P |)(d−1)/2

.

Then the number of negative bound states of the ultra-relativistic pair operator
TP,0,μ± + V on L2(Rd) is bounded by

N(TP,0,μ±(q) + V ) ≤ α2

(1 − 2α)2

∫

Rd

Gd
P,0

(
α−2V−(x)

)
dx, (A.16)

for all 0 < α < 1/2.

Remarks A.15. (i) Note Gd
P,0(u) = d−3

d−1 limM→0 Gd
P,M,μ̃(u) < limM→0

Gd
P,M,μ̃(u). So Theorem A.14 improves upon the M → 0 limit in Theorem

A.10.



Quantitative bounds versus existence...

(ii) Since Gd
P,0(u) � min(u, 1)(d−1)/2 + max(u, 1)d, one needs min(V−, 1) ∈

L(d−1)/2 and max(V−, 1) ∈ Ld in order that the right hand side of (A.16)
is finite.

A.5 Relativistic Pair Operators: One Heavy and One Massless Particle

Considering a pair of relativistic particles in the center of mass frame when
the particles have very different masses, say the first one is much heavier
than the other, it makes sense to consider the idealized limit where m+ =
m is kept fixed, while m− → 0. In this case μ+ = m+/(m+ + m−) → 1,
μ−m−/(m+m−) → 0, and μ̃ = (μ− − μ+)/2 → −1/2, so the kinetic energy of
the pair becomes

TP,m,1,0(η) := lim
μ−→0

TP,M,μ±(η) =
√

|P − η|2 + m2 + |η| −
√

P 2 + m2.

(A.17)

In this case

|{TP,m,1,0 < u}| = lim
μ+→1

∣
∣{TP,M,μ± < u}∣∣ =

|Bd
1 |

2d

ud/2(u + gP,m) (u + 2gP,m)d

(u2 + 2ugP,m + m2)(d+1)/2

(A.18)

where we recall gP,m =
√

P 2 + m2. We define

Gd
P,m,1(u) :=

|Bd
1 |

(4π)d

{
ud/2(u + gP,m)(u + 2gP,m)d

(u2 + 2ugP,m + m2)(d+1)/2

+ 2d
(gP,m

m

)d ud/2(u + 2gP,m)
(u2 + 2ugP,m + m2)1/2 + m

}

. (A.19)

With this function we have

Theorem A.16. For all d ≥ 2 the number of negative bound states of the rela-
tivistic pair operator TP,m,1,0(q)+V on L2(Rd), describing one heavy and one
massless particle, is bounded by

N(TP,m,1,0(q) + V ) ≤ α2

(1 − 2α)2

∫

Rd

Gd
P,m,1

(
α−2V−(x)

)
dx, (A.20)

for all 0 < α < 1/2.

Proof. Using a by now familiar argument, Theorem 1.3 yields a bound for
N(TP,m,1,0(q) + V ) with

G(u) =
1

(2π)d

{
∣
∣{TP,m,1,0 < u}∣∣ + u

∫ u

0

s−2
∣
∣{TP,m,1,0 < s}∣∣ ds

}
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and we have (A.18) for
∣
∣{TP,m,1,0 < u}∣∣. Since the map 0 ≤ s �→ (s+2gP,m)2

(s2+2sgP,m+m2)

is decreasing,

|Bd
1 |−1

∫ u

0

s−2
∣
∣{TP,m,1,0 < s}∣∣ ds

=
1
2d

∫ u

0

s
d
2 −2(s + gP,m) (s + 2gP,m)d

(s2 + 2sgP,m + m2)(d+1)/2
ds

≤ u
d
2 −2

(gP,m

m

)d
∫ u

0

s + gP,m

(s2 + 2sgP,m + m2)1/2
ds

= u
d
2 −2

(gP,m

m

)d (
(u2 + 2ugP,m + m2)1/2 − m

)

= u
d
2 −1

(gP,m

m

)d u + 2gP,m

(u2 + 2ugP,m + m2)1/2 + m
.

So G(u) ≤ Gd
P,m,1(u) for all u ≥ 0. �

A.6 BCS Type Operators

In the Bardeen–Cooper–Schrieffer theory of super-conductivity the symbol of
the kinetic energy is given by the function

Kβ,μ(η) = (η2 − μ)
eβ(η2−μ) + 1
eβ(η2−μ) − 1

where β = 1
T is the inverse temperature and μ the chemical potential, i.e.,

the Fermi energy of the system, see [19] for a review. A-priori, the function
R

d � η �→ Kβ,μ(η) is only defined for η2 �= μ, but we can extend it to η2 = μ,
by setting Kβ,μ(η) = 2β−1 whenever η2 = μ. Extended in this way, Kβ,μ is
even C∞(Rd), see the proof of Theorem A.17 below, and

lim
η→∞ Kβ,μ(η) = ∞, Kβ,μ(η) ≥ 2β−1 for all η ∈ R

d and

Kβ,μ(η) = 2β−1 ⇔ |η| =
√

μ.

Hence σ(Kβ,μ(p)) = σess(Kβ,μ(p)) = [2β−1,∞).
The function Kβ,μ decreases pointwise in β > 0 and the limit of the

kinetic energy as β → ∞, i.e., the zero temperature limit, is given by

K∞,μ(p) = |p2 − μ|.
In In BCS theory the operator

Kβ,μ(p) + V,

models the binding of Cooper pairs of electrons, where V describes the inter-
action of electrons. The free kinetic energy is modified to the above form to
take into account the filled Fermi sea and finite temperature effects, μ is the
Fermi energy.

The critical inverse temperature is given by

Tcr(V )−1 := βcr(V ) := sup{β > 0 : inf σ(Kβ,μ(p) + V ) ≥ 0}. (A.21)
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It was shown in [17] that the BCS gap equation has a non-trivial solution if
β > βcr(V ) while for 0 ≤ β ≤ βcr(V ) it does not. Thus the phase transition
from a normal state to the superconducting state is determined by βcr(V ) and
there is a phase transition at positive temperature if and only if βcr(V ) > 0.
Our method yields a painless simple criterion for it.

Theorem A.17. Assume that V �= 0,
∫

V dx ≤ 0, and the Fermi energy μ > 0.
Then

(i) The operator |p2 − μ| + V in R
d, d ≥ 2 has at least one strictly negative

eigenvalue and if, in addition, V ≤ 0, then it has infinitely many strictly
negative eigenvalues.

(ii) For all β > 0 the operator Kβ,μ(p)+V has at least one eigenvalue strictly
below 2β−1 and if, in addition, V ≤ 0, then it has infinitely many eigen-
values strictly below 2β−1. Its ground state eigenvalue is strictly decreas-
ing and becomes strictly negative for large enough β > 0.

(iii) βcr(V )defined in (A.21) is finite, hence the critical temperature Tcr(V ) >
0. Moreover, if 0 < β < βcr, then inf σ(Kβ,μ(p)+V ) > 0, and if β > βcr,
then inf σ(Kβ,μ(p) + V ) < 0.

Remarks A.18. (i) Our theorem shows that for arbitrary weak attractive
interaction, even in the limiting case where V �= 0 but

∫
V dx = 0,

Cooper pairs will always bind. This is a key ingredient for the BCS theory
of superconductivity.

(ii) In [16,18] a criterion was proven which implies positivity of the critical
temperature for the BCS model for potentials λV for arbitrary small
coupling λ once a suitable integral operator has a strictly negative eigen-
value. However, their approach, modeled after the one of Simon [50],
identifies a singular part of the Birman–Schwinger operator, which forces
weakly eigenvalues to exists. But, in order that this ‘singular part’ is
not vanishing, this requires V̂ to be non-vanishing in a centered ball
B2

√
μ(0) = {η ∈ R

d : |η| < 2
√

μ}. On the other hand, our Theorem
shows that the full Birman–Schwinger operator is singular, even for po-
tentials whose Fourier transform vanishes on B2

√
μ(0): Just take for V̂

any spherically symmetric Schwartz function which is supported on a cen-
tered annulus disjoint from B2

√
μ(0). Then our Theorem A.17 shows the

existence of weakly coupled bound states, whereas the criteria in [16,18]
are not applicable.

(iii) According to Theorem 1.1 the operator |p2 − μ| + V has weakly coupled
bound states for arbitrarily small V also in the one-dimensional case.
However, in this case the number of negative eigenvalues is finite.

(iv) One can generalize the results of Theorem A.17 (i) and consider the
operator |p2 − μ|γ + V for γ > 0 and d ≥ 2. Theorem 1.1 implies in this
case that the operator has an infinite number of weakly coupled bound
states for all γ ≥ 1, independently of d ≥ 2. On the other hand, for
γ < 1 Theorem 1.3 implies a quantitive bound on the number of negative
eigenvalues.
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Proof. Of course, part (iii) follows from part (ii), since the supremum on the
right hand side of (A.21) is finite once the lowest eigenvalue of Kβ,μ(p) + V is
strictly negative for large enough β > 0.

For part (i) we simply note that the zero set of η �→ |η2 − μ| is equal to
the centered sphere Sd−1√

μ of radius
√

μ > 0 and

|η2 − μ| = (|η| − √
μ)(|η| +

√
μ) ∼ dist

(
η, Sd−1√

μ

)
.

Since Sd−1√
μ has codimension 1 in R

d Corollary 3.7 applies.
Instead of using Corollary 3.7, we could use Theorem 3.4, since for any

point ω ∈ Sd−1√
μ one can easily see that

∫
Bδ(ω)

|η2 −μ|−1 dη = ∞ for any δ > 0.

For the proof of part (ii) consider the map R � a �→ a eβa+1
eβa−1

, at first
defined only for a �= 0. Since

a
eβa + 1
eβa − 1

= β−1 eβa + 1
eβa−1

βa

→ 2β−1 as a → 0,

we can extend this to all a ∈ R by continuity. Moreover, this map is clearly
infinitely often differentiable for a �= 0, close to zero a short calculation reveals

a
eβa + 1
eβa − 1

− 2β−1 =
βa(eβa + 1) − 2 eβa−1

βa

eβa−1
βa

=
1
6β

(
(βa)2 + O((βa)3)

)
(A.22)

and one sees that it is even infinitely often differentiable for all a ∈ R and
growing linearly in a for large a. Moreover,

∂

∂a

(

a
eβa + 1
eβa − 1

)

=
1
2
e−βa sinh(β) − βa

(sinh(βa))2
=
{

> 0 for a > 0
< 0 for a < 0 ,

so

Kβ,μ(η) ≥ 2β−1 for all η ∈ R
d and Kβ,μ(η) = 2β−1 ⇔ |η| =

√
μ,

that is, Kβ,μ attains its minimal value 2β−1 exactly at the sphere Sd−1√
μ .

Furthermore,

∂

∂β
a
eβa + 1
eβa − 1

=

{
−2 a2eβa

(eβa−1)2
if a �= 0

−2β−2 if a = 0
< 0.

So the symbol Kβ,μ(η) is strictly decreasing in β > 0. In particular, Kβ,μ(η) >
|η2 − μ| for all β > 0 and η ∈ R

d.
The asymptotics (A.22) shows

Kβ,μ(η) − 2β−1 =
β

6
dist

(
η, Sd−1√

μ

)2

+ O

(

β2 dist
(
η, Sd−1√

μ

)3
)

,

and again Corollary 3.7, or Theorem 3.4, show that Kβ,μ(p)+V has infinitely
many eigenvalues strictly below 2β−1.

Let Eβ := inf σ(Kβ,μ(p)+V ) be the ground state energy of Kβ,μ(p)+V .
We claim that it is strictly decreasing in β > 0 and limβ→∞ Eβ = E∞ =
inf(|P 2 − μ| + V ) < 0.
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Let β2 > β1 > 0 and let ψ1 be an eigenfunction of Kβ1,μ(p) + V corre-
sponding to the ground state energy Eβ1 . Then the variational principle and
the strict monotonicity of the symbol Kβ,μ(η) in β > 0 implies

Eβ2 − Eβ1 ≤ 〈ψ1,Kβ2,μ(p) + V )ψ1〉 − 〈ψ1,Kβ1,μ(p) + V )ψ1〉
= 〈ψ̂1, (Kβ2,μ(·) − Kβ1,μ(·))ψ̂1〉 < 0,

so the ground state energy is strictly decreasing in β > 0. Moreover this implies
Eβ > E∞ := inf σ(|p2 − μ| + V ), the ground state energy of |p2 − μ| + V and,
again by the variational principle, letting ψ∞ be a ground state of |p2 −μ|+V ,
we have

Eβ ≤ 〈ψ∞, (Kβ,μ + V )ψ∞〉 → 〈ψ∞, (|p2 − μ| + V )ψ∞〉 = E∞ < 0 as β → ∞.

So Eβ decreases strictly to E∞ < 0. In particular, there is a unique βcr > 0
such that inf σ(Kβ,μ(p)+V ) > 0 for all 0 < β < βcr and inf σ(Kβ,μ(p)+V ) < 0
for all β > βcr. �
A.7 Discrete Schrödinger Operators

We give the details of the method for discrete Schrödinger operators on Z
d.

In principle, one can consider a general d-dimensional lattice. One just has to
use the dual lattice and adjust the notion of the discrete Fourier transform
accordingly.

On l2(Zd) we consider operators T (p) similar to (2.2) given by

T (p) := F−1TF , (A.23)

where for this section F now denotes the discrete Fourier transform given by

Fh(η) =
∑

n∈Zd

e−iηnh(n)

for η ∈ Γ∗, the d-dimensional Brillouin zone9 Γ∗ = [−π, π)d. The inverse
Fourier transform is given by

F−1g(n) =
∫

Γ∗
eiηng(η)

dη

(2π)d
,

where dη/(2π)d is the normalized Haar measure on the torus. A priori they are
defined when h ∈ l1(Zd) and g ∈ L1(Γ∗), and it is well-known that F extends to
a unitary operator F : l2(Zd) → L2(Γ∗) with adjoint F−1. We call the function
T admissible if T (η) ∈ [0, Tmax] for some finite Tmax and inf(σ(T (p))) = 0.
This is, for example, the case if T is continuous with minη∈Γ∗ T (η) = 0 and
Tmax := maxη∈Γ∗ T (η). In this case one even has σ(T (p)) = [0, Tmax].

Our Theorems 1.1 and 1.3 easily extend to this setting, yielding

Theorem A.19. (Weakly coupled bound states for discrete Schrödinger opera-
tors) Let T : Γ∗ → [0, Tmax] be measurable. Assume that there exists a compact
set M ⊂ Γ∗ such that

∫

Mδ

T (η)−1 dη = ∞ for all δ > 0, (A.24)

9Here simply the torus
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where Mδ := {η ∈ Γ∗ : dist(η,M) ≤ δ}. Then inf σ(T (p)) = 0 and, if the
potential V ∈ l1(Zd), also inf σess(T (p) + V ) = 0. Moreover, if V �= 0 with∑

n∈Zd V (n) ≤ 0, then the operator T (p) + V has at least one strictly negative
eigenvalue.

Assume that there exists a compact set N ⊂ Γ∗ such that
∫

Nδ

(Tmax − T (η))−1 dη = ∞ for all δ > 0, (A.25)

where Nδ := {η ∈ Γ∗ : dist(η,N) ≤ δ}. Then supσ(T (p)) = Tmax, and, if
the potential V ∈ l1(Zd), also supσess(T (p) + V ) = Tmax. Moreover, if V �= 0
with

∑
n∈Zd V (n) ≥ 0, then the operator T (p) + V has at least one eigenvalue

strictly greater than Tmax.

Theorem 1.3 also has a counterpart in the discrete setting.

Theorem A.20. Let T : Γ∗ → [0, Tmax] be measurable,

G−
α (u) := u

∫

T<u/α2
T (η)−1 dη

(2π)d
for u ≥ 0, (A.26)

and

G+
α (u) := u

∫

Tmax−T<u/α2

(
Tmax − T (η)

)−1 dη

(2π)d
for u ≥ 0. (A.27)

Then
(i) G−

α (u) < ∞ for all α, u > 0 ⇔ T−11{T<δ} ∈ L1(Γ∗) for some δ > 0.

(ii) G+
α (u) < ∞ for all α, u > 0 ⇔ (Tmax − T )−11{Tmax−T<δ} ∈ L1(Γ∗) for

some δ > 0.

(iii) Assume that the potential V is bounded and inf σess(T (p)+V ) ≥ 0. Then
one has, for all 0 < α < 1

2 , the bound

N−(T (p) + V ) ≤ 1
(1 − 2α)2

∑

n∈Zd

G−
α (V−(n)), (A.28)

where V− = max(0,−V ) is the negative part of V and N−(T (p) + V ) is
the number eigenvalues of T (p) + V which are strictly negative.
Similarly, if supσess(T (p) + V ) ≤ Tmax, then one has, for all 0 < α < 1

2 ,
the bound

N+(T (p) + V ) ≤ 1
(1 − 2α)2

∑

n∈Zd

G+
α (V+(n)), (A.29)

where V+ = max(0, V ) is the positive part of V and N+(T (p) + V ) is the
number of eigenvalues of T (p) + V which are strictly above Tmax.

Remarks A.21. (i) Theorem A.20 is a generalization of the results by Bach,
de Siqueira Pedra, and Lakaev [1], who considered the case that T is a
Morse function, in particular it is smooth and has no degenerate singular
points, and T has exactly one zero. The work of Rozenblum and Solomyak
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[44,45] considers only the standard discrete Schrödinger operator, which
is given by a Morse function, but their approach also needs the fact
that the standard discrete Schrödinger operator generates a positivity
preserving semi-group on l2(Zd). In contrast, Theorems A.19 and A.20
hold and are complementary to each other when the kinetic energy symbol
T is, for example, lower semi-continuous. In particular, T may have an
arbitrary sub-manifold, or even a more general set, as its zero set.

(ii) The proofs of the two theorems above are a literal translation of the
continuous case to the discrete setting. We leave the proofs as an exercise
to the interested reader.

(iii) In the case of the usual discrete Schrödinger operator Δd on l2(Zd) one
has T (η) =

∑d
j=1 2(1 − cos(ηj)) =

∑d
j=1 4 sin2(ηj/2). So in this case we

can take M = {0} and N = {(π, . . . , π)t}. Since T behaves quadratically
near M and N , one sees that (A.24) and (A.25) hold in dimension d ≤ 2.

(iv) Our Theorem 3.4 and Corollaries 3.6 and 3.7 have a natural counterpart
in the discrete world with virtually the same proofs as in the continuous
setting.

Remarks A.22. (i) If G±
α (u) is finite for some α and u, then it is finite for

all α, u > 0. Moreover, since the integration in (A.24) and (A.25) is over
a subset of the compact set Γ∗, the functions G±

α (u) behave linearly in
u for u large, once they are finite. We can improve this a little bit, see
Corollary A.24.

(ii) As in the continuous case, one can reformulate the bounds on the discrete
spectrum as

N±(T (p) + V ) ≤ (1 − 2α)−2

∫ ∞

0

N cl
±(max(α2, s)T + V ) ds (A.30)

with the semiclassical expressions

N cl
−(T + V ) :=

∑

n∈Zd

∫

Γ∗
1{T (η)+V <0}

dη

(2π)d

and

N cl
+ (T + V ) :=

∑

n∈Zd

∫

Γ∗
1{T (η)+V >Tmax}

dη

(2π)d
.

The proof of Theorem A.20 is a straightforward adaptation of the proof
in the continuous case. We leave it to the interested reader.

In the case of the usual discrete Schrödinger operator Δd on l2(Zd) The-
orem A.20 gives us the following explicit bounds.

Theorem A.23. The numbers N−(−Δd +V ) and N+(−Δd +V ) of eigenvalues
of −Δd + V below 0 and above 4d, respectively, satisfy for any α ∈ (0, 1/4)

N−(−Δd + V ) ≤ (1 + 2α)−2 |Sd−1|
22d(d − 2)αd−2

×
∑

n∈Zd

V−(n)min(V−(n), 4dα2)d/2−1, (A.31)
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and

N−(−Δd + V ) ≤ (1 + 2α)−2 |Sd−1|
22d(d − 2)αd−2

×
∑

n∈Zd

V+(n)min(V+(n), 4dα2)d/2−1. (A.32)

Proof. Using that

sin(x/2) ≥ x

π

for x ∈ [−π, π] we estimate

T (η) ≥ 4
π2

|η|2.

To get the first bound (A.31) we have to estimate G−
α (u). We have

G−
α (u) = u

∫

{η∈[−π,π]d|∑d
j=1 4 sin2(ηj/2)<u/α2}

⎛

⎝
d∑

j=1

4 sin2(ηj/2)

⎞

⎠

−1

dη

(2π)d

≤ u

∫

|η|≤π min( u1/2
2α ,d1/2)

π2

4
|η|−2 dη

(2π)d

=
|Sd−1|

22d(d − 2)αd−2
u min(u, 4dα2)

d
2 −1. (A.33)

Now, the claimed inequality follows immediately from (A.28).
For the proof of the second bound (A.32), we need to investigate

G+
α (u) = u

∫

{η∈[0,2π]|4d−∑d
j=1 4 sin2(ηj/2)<u/α2}

×
⎛

⎝4d −
d∑

j=1

4 sin2(ηj/2)

⎞

⎠

−1

dη

(2π)d
. (A.34)

But by the change of variables ηj = ζj + π, 1 ≤ j ≤ d, we see that (A.34) and
(A.34) are exactly the same. Now, the claim follows from (A.29). �

Copying a simple trick from [36], that exploits special properties of the
discrete setting, we can improve our result a little bit.

Corollary A.24. The numbers N−(−Δd +V ) and N+(−Δd +V ) of eigenvalues
of −Δd + V below 0 and above 4d, respectively, satisfy for any α ∈ (0, 1/4)

N−(−Δd + V ) ≤ (1 + 2α)−2 |Sd−1|
22d(d − 2)αd−2

∑

V−≤4dα2

V−(n)d/2

+ #{n ∈ Z
d | V−(n) > 4dα2}, (A.35)
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and

N+(−Δd + V ) ≤ (1 + 2α)−2 |Sd−1|
22d(d − 2)αd−2

∑

V+≤4dα2

V+(n)d/2

+ #{n ∈ Z
d | V+(n) > 4dα2}. (A.36)

Proof. We split the potential V = V+ −V− = V+,1 +V+,2 −V−,1 −V−,2, where

V±,1(n) ≤ h, and V±,2(n) > h

for all n ∈ Z
d and some h > 0. Furthermore, let

n±(h, V ) = #{n ∈ Z
d | V±(n) > h}

denote the number of values n ∈ Z
d for which the positive and negative part

of the potential, respectively, are greater than h. Assuming that V is suitably
summable, both n+(h, V ) as well as n−(h, V ) are finite and V−,2 and V+,2 can
be considered finite rank perturbations.
Thus, for any ε > 0

N−(−Δd + V ) ≤ N−(−(1 − ε)Δd − V−,1) + N−(−εΔd − V−,2)

≤ N−(−(1 − ε)Δd − V−,1) + n−(h, V ),

and

N+(−Δd + V ) ≤ N+(−(1 − ε)Δd + V+,1) + N+(−εΔd + V+,2)

≤ N+(−(1 − ε)Δd + V+,1) + n+(h, V ).

Now, we choose h = 4dα2 and apply Theorem A.23 to −(1 − ε)Δd − V−,1 and
−(1 − ε)Δd + V+,1. Since the resulting estimates are valid for any ε > 0, we
pass to the limit ε → 0 and end up with inequalities (A.35) and (A.36). �

Remark A.25. Of course, with virtually the same proof a version of Corollary
A.24 holds also for more general kinetic energies T than just the discrete
Laplacian.

Appendix B. Invariance of the Essential Spectrum

The following Lemma was used in Remark 2.1.ii.

Lemma B.1. Assume that |V |, the modulus of the potential V , is relative form
small with respect to T (p), where T : Rd → [0,∞) is a measurable function
with limη→∞ T (η) = ∞ and p = −i∇.

(a) If V ∈ L1(Rd), then

σess(T (p) + V ) = σess(T (p)) = essrange(T ). (B.1)

(b) More generally, if the operator |V |1/2(T (p)+1)−1 is compact, then again
(B.1) holds.
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Recall that the essential range of T is given by

essrange(T ) = {E ∈ R : |T−1((E − δ, E + δ))| > 0 for all δ > 0}.

If T is continuous, then essrange(T ) = range(T ).
For the second compactness criterium we need one more notation. Let

G1(u) = u

∫

T+1<u

1
T (η) + 1

dη

(2π)d
(B.2)

for u ≥ 0.

Lemma B.2. Assume that∫

Rd

G1(s|V (x)|)dx < ∞ for all s > 0.

Then |V |, in particular V , is relatively form compact with respect to T (p).

Proof of Lemma B.1. We will show that the resolvent difference (T (p) + V +
λ)−1−(T (p)+λ)−1 is a compact operator for large enough λ > 0. Then Weyl’s
theorem, see, e.g., [56, Theorem 6.24] shows that σess(T (p)+V ) = σess(T (p)) =
essrange(T ), where the last equality holds since T (p) is a Fourier multiplier.

Let λ > 0 and Cλ = (T (p) + λ)−1/2V (T (p) + λ)−1/2, i.e., Cλ is the
operator given by the quadratic form

〈ψ,Cλψ〉 = 〈|V |1/2(T (p) + λ)−1/2ψ, sgn(V )|V |1/2(T (p) + λ)−1/2ψ〉.
Since |V | is relatively form small with respect to T (p) we know that Cλ is
bounded with operator norm ‖Cλ‖ < 1 for large enough λ, see [56, Theorem
6.30].

Tiktopoulos’ formula, see [49] or [56, Theorem 6.30] then shows

(T (p) + V + λ)−1 = (T (p) + λ)−1/2(1 + Cλ)−1(T (p) + λ)−1/2 (B.3)

for any λ > 0 such that ‖Cλ‖ < 1. Using (B.3) and (1 + Cλ)−1 − Cλ =
−(1 + Cλ)−1Cλ, the difference of the resolvents is given by

(T (p) + V + λ)−1 − (T (p) + λ)−1

= −(T (p) + λ)−1/2(1 + Cλ)−1Cλ(T (p) + λ)−1/2

= −(T (p) + λ)−1/2(1 + Cλ)−1(T (p) + λ)1/2|V |1/2sgn(V )|V |1/2(T (p) + λ)−1

(B.4)

Since |V | is relatively form small with respect to T (p) the operators |V |1/2

(T (p)+λ)1/2 and (T (p)+λ)1/2|V |1/2 are bounded. Thus also (T (p)+λ)1/2|V |1/2

sgn(V ) is bounded on L2(Rd).
(1 + Cλ)−1 is bounded since ‖Cλ‖ < 1 for large λ. So (B.4) shows that

the difference of the resolvents is a compact operator when λ is large as soon
as |V |1/2(T (p) + λ)−1 is a compact operator and, in this case, the essential
spectra of T (p) + V and T (p) will be the same. So we only need to show that
|V |1/2(T (p) + λ)−1 is compact.

If |V |1/2(T (p) + 1)−1, then for all λ > 0 also

|V |1/2(T (p) + λ)−1 = |V |1/2(T (p) + 1)−1(T (p) + 1)(T (p) + λ)−1
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is compact. This proves the second claim of the lemma.
Fix λ > 0 so large that ‖Cλ‖ < 1. Let 1≤L = 1{|η|≤L} be the characteris-

tic function of the closed centered ball of radius L in momentum space, 1≤L(p)
the corresponding Fourier multiplier, and 1>L(p) = 1−1≤L(p). If V ∈ L1(Rd),
then

AL = |V | 1
2 (T (p) + λ)− 1

21≤L(p)

is compact, in fact, it is a Hilbert–Schmidt operator. To see this, it is enough
to show that BL = |V | 1

2 F−1(T (η)+1)− 1
2 is a Hilbert–Schmidt operator, since

A∗
LAL is unitarily equivalent to B∗

LBL. The operator BL has the kernel

BL(x, η) = (2π)− d
2 |V (x)| 1

2 eix·η(T (η) + λ)− 1
21≤L(η)

and from V ∈ L1(Rd) it follows that the kernel of BL is square-integrable
with respect to (x, η) ∈ R

d × R
d, which shows that BL, hence also AL is a

Hilbert–Schmidt operator. Since T (η) → ∞ as η → ∞ one sees that

‖|V | 1
2 (T (p) + λ)−1 − |V | 1

2 (T (p) + λ)−11≤L(p)‖
= ‖|V | 1

2 (T (p) + λ)− 1
2 (T (p) + λ)− 1

21≥L(p)‖
≤ ‖|V | 1

2 (T (p) + λ)− 1
2 ‖ sup

|η|≥L

(T (η) + λ)− 1
2 → 0

as L → ∞. Thus |V | 1
2 (T (p) + λ)−1 is the norm limit of compact operators,

hence compact. This proves the first claim of the Lemma. �

Proof of Lemma B.2. Note that Corollary 6.3 applies with the choice f =
|V |1/2 and g = (T + 1)−1/2 since then G1(su) = s−2G̃α(s2

√
u). �

Appendix C. Nearest Point Projection

In this section we give a sketch of the proof of Lemma 5.3 for completeness
and, more importantly, we could not find a reference in the C2 setting, which
we need. We follow the presentation of [54] where it was done in the analytic
setting.

Proof of Lemma 5.3. We assume that M is a C2 submanifold of codimension
n embedded in R

d. At each point ω0 ∈ Σ, there exists an open set ω ∈ O ⊂ R
d

and a chart, i.e., an open set 0 ∈ U1 ⊂ R
d−n and a C2 map Φ : U1 → Σ such

that every point ω ∈ Σ ∩ O can be uniquely written as ω = Φ(y) for y ∈ U1.
Without loss of generality we can always assume ω0 = Φ(0).

The vectors {∂jφ(y)}d−n
j=1 form a basis of the tangent space of M at φ(y).

Using the Gram–Schmidt orthogonalization, we can find n additional vectors
ν1(y), . . . , νn(y) ∈ R

d such that the vectors

∂1φ(y), . . . , ∂d−nφ(y), ν1(y), . . . , νn(y)

form a basis of Rd at the point φ(y). Additionally, since Φ is C2, we have that
the above basis vectors of Rd depend continuously differentiable on y ∈ U1.
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Now define a map on U1 × R
n by

ψ(y, t) := Φ(y) +
n∑

j=1

tjνj(y).

A computation shows Dψ(0, 0) = Id×d, so by the inverse function theorem, ψ is
a C1-diffeomorphism on a suitable neighborhood U1 ×U2 of (0, 0) ∈ R

d−n ×R
n.

For all η in a small enough δ neighborhood of Σ ∩ O, the problem of
minimizing

|φ(y) − η|2

over y ∈ U1 has a unique solution for which we must have that all partial
derivatives of |φ(y) − η|2 vanish, i.e.,

0 = ∂j

d∑

l=1

(Φl(y) − ηl)2 = 2
d∑

l=1

∂jΦl(y)(Φl(y) − ηl) = 2∂jΦ(y) · (Φ(y) − η).

Thus for y minimizing the distance |Φ(y) − η|, the vector Φ(y) − η is perpen-
dicular to the tangent plane of Σ at ω = Φ(y). It follows that φ(y) − η can be
written as a linear combination

Φ(y) − η =
n∑

j=1

tjνj(y),

or

η = Φ(y) +
n∑

j=1

tjνj(y) = ψ(y, t).

So locally the function ψ yields a parametrization of a neighborhood of Σ in R
d

with the property that for η = ψ(y, t) we have dist(η,Σ) = dist(ψ(y, t),Σ) =
|t|. �

Appendix D. The Classical Phase Volume of the Relativistic
Pair Operator

Recall that the kinetic energy of the relativistic pair operator in (A.7) is given
by

TP,M,μ±(η) =
√

|μ+P − η|2 + μ2
+M2 +

√
|μ−P + η|2 + μ2−M2 −

√
P 2 + M2

(D.1)

η ∈ R
d is the the relative momentum of the two particles, M = m− + m+ is

the total mass, P ∈ R
3 the total momentum, and we set μ± := m±/M .
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The the volume of the set {TP,M,μ± < u} = {η ∈ R
d : TP,M,μ±(η) < u}

is given by

|{TP,M,μ± < u}|

=
|Bd|ud/2(u + gP,M)(u + 2gP,M)d/2(u2 + 2gP,Mu + (1 − 4μ̃2)M2)d/2

2d(u2 + 2gP,Mu + M2)(d+1)/2

(D.2)

with gP,M =
√

P 2 + M2. The calculation of the volume |{TP,M,μ± < u}| was
done in [57, Appendix I]. Since we need it in a slightly different form and
notation, we sketch the calculation for the convenience of the reader.

Using a suitable rotation, we can assume P = |P |e1, with e1 = (1, 0, . . . ,
0)t, the standard first unit vector in R

d, and by scaling one has

|{TP,M,μ± < u}| = |P ||{ζ ∈ R
d : Tτ,g,μ±(ζ) < u/|P |}|

with τ = M/|P |, g =
√

1 + τ2, and

Tτ,g,μ±(ζ) =
√

|μ+e1 − ζ|2 + μ2
+τ2 +

√
|μ−e1 + ζ|2 + μ2−τ2 − g.

Split ζ = (ϑ, ξ) ∈ R × R
d−1 and put T± =

√
|ξ|2 + |μ± ∓ ϑ|2 + μ2±τ2. Then

Tτ,g,μ±(ζ) < s is equivalent to T+ + T− < s + g, that is,

2T+T− < (s + g)2 − T 2
+ − T 2

−
= (s + g)2 − (2|ξ|2 + |μ+ − ϑ|2 + |μ− + ϑ| + (μ2

+ + μ2
−)τ2).

(D.3)

Define μ̃ = 1
2 (μ− − μ+). Clearly 4μ̃2 = (μ− − μ+)2 and since μ+ + μ− = 1 we

also have 1 = (μ+ + μ−)2. Thus

μ2
+ + μ2

− = 2
(

1
4

+ μ̃2

)

.

Set ϑ = ϕ − μ̃ and A = s + g. Then μ± ∓ ϑ = 1
2 ∓ ϕ, so (D.3) is equivalent to

T+T− <
A2

2
−
(

|ξ|2 + ϕ2 +
1
4

+
(

1
4

+ μ̃2

)

τ2

)

, (D.4)

in particular, the right hand side of (D.4) is positive. Note that

μ2
+ =

μ2
+

2
+

μ2
−
2

+
μ2

+

2
− μ2

−
2

=
μ2

+ + μ2
−

2
+

(μ+ + μ−)(μ+ − μ−)
2

=
1
4

+ μ̃2 − μ̃
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and similarly μ2
− = 1

4 + μ̃2 + μ̃. Thus T 2
+T 2

− equals
(

|ξ|2 + ϕ2 +
1
4

+
(

1
4

+ μ̃2

)

τ2 − (
ϕ + μ̃τ2

)
)

(

|ξ|2 + ϕ2 +
1
4

+
(

1
4

+ μ̃2

)

τ2 +
(
ϕ + μ̃τ2

)
)

=
(

|ξ|2 + ϕ2 +
1
4

+
(

1
4

+ μ̃2

)

τ2

)2

− (
ϕ + μ̃τ2

)2
,

hence (D.4) is equivalent to

A2

(

|ξ|2 + ϕ2 +
1
4

+
(

1
4

+ μ̃2

)

τ2

)

− (
ϕ + μ̃τ2

)2
<

A4

4
,

which in turn is equivalent to

|ξ|2 +
A2 − 1

A2

(

ϕ − μ̃τ2

A2 − 1

)2

<
A2

4
−
(

1
4

+
(

1
4

+ μ̃2

)

τ2

)

+
1

A2 − 1
(
μ̃τ2

)2

=
(A2 − 1)(A2 − 1 − (1 + 4μ̃2τ2)) + 4μ̃2τ4

4(A2 − 1)

=
(A2 − 1 − τ2)(A2 − 1 − 4μ̃2τ2)

4(A2 − 1)
.

So the set where Tτ,g,μ±(ζ) < s is an ellipse with d − 1 semiaxis of length

1
2

√
(A2 − 1 − τ2)(A2 − 1 − 4μ̃2τ2)

A2 − 1
and one semiaxis of length

1
2

A
√

(A2 − 1 − τ2)(A2 − 1 − 4μ̃2τ2)
(A2 − 1)

.

Thus its volume is given by

|{Tτ,g,μ± < s}| =
|Bd|
2d

A(A2 − 1 − τ2)d/2(A2 − 1 − 4μ̃2τ2)d/2

(A2 − 1)(d+1)/2

=
|Bd|
2d

sd/2(s + g)(s + 2g)d/2(s2 + 2gs + (1 − 4μ̃2)τ2)d/2

(s2 + 2gs + τ2)(d+1)/2
,

since A = s + g and g =
√

1 + τ2. Rescaling this one arrives at (D.2).
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[9] Brüning, J., Geyler, V., Pankrashkin, K.: On the discrete spectrum of spin-orbit
Hamiltonians with singular interactions. Russ. J. Math. Phys. 14(4), 423–429
(2007). Preprint arXiv:0709.0213v2

[10] Buell, W.F., Shadwick, B.A.: Potentials and bound states. Am. J. Phys. 63, 256
(1995)

[11] Cwikel, M.: Weak type estimates for singular values and the number of bound
states of Schrödinger operators. Ann. Math. 106, 93–100 (1977)

[12] Daubechies, I.: An uncertainty principle for fermions with generalized kinetic
energy. Commun. Math. Phys. 90(4), 511–520 (1983)

[13] Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Mat.
Iberoam. 2(1–2), 119–213 (1986)

[14] Frank, R.: Cwikel’s theorem and the CLR inequality. J. Spectr. Theory 4, 1–21
(2014)

[15] Frank, R.: Eigenvalue bounds for the fractional Laplacian: a review. In: Re-
cent Developments in Nonlocal Theory, pp. 210–235. De Gruyter Open, Warsaw
(2017)

[16] Frank, R., Hainzl, C., Naboko, S., Seiringer, R.: The critical temperature for the
BCS equation at weak coupling. J. Geom. Anal. 17(4), 559–567 (2007)

[17] Hainzl, C., Hamza, E., Seiringer, R., Solovej, J.P.: The BCS functional for general
pair interactions. Commun. Math. Phys. 281, 349–367 (2008)

[18] Hainzl, C., Seiringer, R.: Asymptotic behavior of eigenvalues of Schrödinger type
operators with degenerate kinetic energy. Math. Nachr. 283(3), 489–499 (2010)

[19] Hainzl, C., Seiringer, R.: The Bardeen–Cooper–Schrieffer functional of super-
conductivity and its mathematical properties. J. Math. Phys. 57, 021101 (2016).
Preprint arXiv:1511.01995 [math-ph]

[20] Hardekopf, G., Sucher, J.: Critical coupling constant for relativistic equations
and vacuum breakdown in quantum electrodynamics. Phys. Rev. A 31, 2020–
2029 (1985)

[21] Herbst, I.W.: Spectral theory of the operator (p2 + m2)1/2 + Ze2/r. Commun.
Math. Phys. 53(3), 285–294 (1977)

http://arxiv.org/abs/0709.0213v2
http://arxiv.org/abs/1511.01995


V. Hoang et al. Ann. Henri Poincaré
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[58] Weidl, T.: Another look at Cwikel’s inequality. In: Differential Operators and
Spectral Theory. M.Sh. Birman’s 70th Anniversary Collection. AMS Transla-
tions Series 2, vol. 189, pp. 247–254 (1999)

[59] Weidl, T.: Remarks on virtual bound states for semi-bounded operators. Com-
mun. Part. Differ. Equ. 24(1–2), 25–60 (1999)



V. Hoang et al. Ann. Henri Poincaré
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