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The data sets and regression models presented here are re- 

lated to the article “Point and interval estimation of decom- 

position error in discrete-time open tandem queues” [1] . The 

data sets are the first to analyze the approximation qual- 

ity of the discrete-time decomposition approach and con- 

tain independent and dependent (explanatory) variables for 

the analysis of decomposition error, which were obtained us- 

ing discrete-time queueing models and discrete-event simu- 

lation. Independent variables are the utilization parameters 

of the queues, and variability parameters of the service and 

arrival processes. Dependent variables are decomposition er- 

ror with respect to the expected value and 95-percentile of 

the waiting time distribution at the downstream queue. This 

article presents multiple linear regression and quantile re- 

gression to explain the variance of the dependent variables 

for tandem queues with equal traffic intensity at both queues 

and for tandem queues with downstream bottlenecks, re- 

spectively. 
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pecifications Table 

Subject Mathematical Modelling 

Specific subject area Discrete-time queueing theory 

Type of data Table, Chart 

How the data were acquired Data were acquired using discrete-time queueing theory and discrete-event 

simulation. For a given parametrization of the tandem queue (arrival and 

service rates, and variability parameters) we computed the expected value and 

the 95th-percentile of waiting time using both methods. Decomposition error 

is the relative divergence between the results obtained with simulation and 

discrete-time queueing theory, respectively [1] . 

Data format Analyzed, Filtered 

Description of data collection The expected values of inter-arrival and service times (that is, the flow 

parameters) have been varied in the range [1.0, 30.0], the variability 

parameters have been varied in the range [0.1, 3.0]. The external arrival process 

was Poisson and the service times at both stations were gamma-distributed. 

Data source location • Institution: Karlsruhe Institute of Technology (KIT) 

• City/Town/Region: Karlsruhe 

• Country: Germany 

Data accessibility Repository name: Repository KITopen, hosted by the Karlsruhe Institute of 

Technology (KIT), Karlsruhe, Germany 

Data identification number: https://doi.org/10.5445/IR/10 0 0148460 

Direct URL to data (research data): 

https://bwdatadiss.kit.edu/dataset/461#headingFileList 

Related research article C. Jacobi, K. Furmans, Point and interval estimation of decomposition error in 

discrete-time open tandem queues, Operations Research Letters 50(5) (2022) 

529-535, https://doi.org/10.1016/j.orl.2022.07.009 . 

alue of the Data 

• Decomposition approaches for open queuing networks are known to yield approximate re-

sults for the analysis of non-renewal downstream arrival processes [1] . The data sets de-

scribed and analyzed in this article are the first to investigate the approximation quality (that

is, decomposition error) of the discrete-time decomposition approach. Decomposition error is

the relative divergence between the waiting time (expected value and 95th-percentile), ob-

tained with simulation and discrete-time queueing theory, respectively [1] . 

• The regression analyses reveal statistically significant correlations between the variability and

utilization parameters of the tandem queue and decomposition error. This suggests that de-

composition error can be efficiently estimated with only the input parameters of the tandem

queue at hand. Researchers deploying decomposition approaches can use the data and re-

gression models to alert severe decomposition errors with high forecasting accuracy. 

• This data may also help for the design of experiments of the analysis of the approximation

quality of decomposition approaches for other network typologies (e.g. stochastic splits and

merges), as well as for the validation of exact decomposition methods. 

. Data Description 

The data repository supplied with this article contains raw data for the analysis of decom-

osition error in discrete-time open tandem queues. The data is formatted for the computation

nd validation of point and interval estimates for decomposition error as well as for the analysis

f decomposition error in bottleneck queues. 

https://doi.org/10.5445/IR/1000148460
https://bwdatadiss.kit.edu/dataset/461#headingFileList
https://doi.org/10.1016/j.orl.2022.07.009
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The repository contains two folders: 

“01 Equal Traffic Intensities”: Raw data for the analysis of decomposition error in tandem

queues with equal traffic intensities, stored in two .csv-files (training and test data), 

“02 Bottleneck Analyses”: Raw data for the analysis of decomposition error in tandem queues

with bottleneck, stored in three .csv-files (downstream bottlenecks, upstream bottlenecks, and

equal traffic intensities). The definition of all variables that appear in the data set is as follows: 

1. EV Arrivals External: Expected value of the external arrival process 

2. EV Service Upstream: Expected value of the upstream service process 

3. EV Service Downstream: Expected value of the downstream service process 

4. Utilization Upstream: Utilization of the upstream queue 

5. Utilization Downstream: Utilization of the downstream queue 

6. SCV Arrivals Downstream: Squared coefficient of variation of the downstream arrival pro-

cess (that is, the upstream departure process) 

7. SCV Service Upstream: Squared coefficient of variation of the upstream service process 

8. SCV Service Downstream: Squared coefficient of variation of the downstream service pro-

cess 

9. EV Waiting Decomposition: Expected value of waiting time at the downstream queue, ob-

tained with the discrete-time decomposition approach 

10. EV Waiting Simulation: Expected value of waiting time at the downstream queue, ob-

tained with discrete-event simulation 

11. 95-perc Waiting Decomposition: 95th-percentile of waiting time at the downstream

queue, obtained with the discrete-time decomposition approach 

12. 95-perc Waiting Simulation: 95th-percentile of waiting time at the downstream queue,

obtained with discrete-event simulation 

13. EV Decomposition Error: Decomposition error with respect to the expected value of wait-

ing time 

14. 95-perc Decomposition Error: Decomposition error with respect to the 95th-percentile of

waiting time 

In this article, we present data and regression models for two tandem queue configurations

[2] . First, we consider tandem queues with equal traffic intensity, and second, we present data

for tandem queues with downstream bottlenecks. For both configurations, we present OLS re-

gression and quantile regression to explain the variance of decomposition error with respect to

the expected value and 95th-percentile of waiting time. 

To this end, Table 1 specifies the variables used in the regression analyses. We use the

squared coefficient of variation to describe the variability of the arrival and service processes

and the utilization to describe the traffic intensity at the upstream and downstream queue, re-

spectively. 

Table 1 

Specification of variables. 

Variable Description 

scv(A_u), scv(A_d) Squared coefficient of variation of the external (downstream) arrival process 

scv(B_u), scv(B_d) Squared coefficient of variation of the upstream (downstream) service process 

rho_u, rho_d Utilization parameters of the upstream (downstream) queue 

2. Equal Traffic Intensities 

This data set contains 1,166 data points that we partition into two subsets. The training data

set consists of 932 randomly chosen data points, and the test data set consist of the remaining

234 data points. 
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Fig. 1 shows the empirical cumulative distribution of decomposition error for the entire data

et. It shows that the discrete-time decomposition approach both overestimates and underesti-

ates waiting time in the same proportion. We find the relative errors in the range of −21 . 9%

nd 32 . 5% (referring to decomposition error with respect to the expected value) and −30 . 8% and

6 . 7% (referring to decomposition error with respect to the 95th-percentile). The mean absolute

alues of decomposition error equal 3 . 93% and 4 . 51% regarding decomposition error with respect

o the expected value and the 95th-percentile of waiting time, respectively. 

ig. 1. Empirical cumulative distribution functions of the decomposition error of waiting time regarding the expected

alue and 95th-percentile. 

Table 2 provides the summarizing statistics for the IVs in the training data set and the flow

arameters for the tandem queue. Note that the expected values for the service processes at

he upstream and the downstream queue are equal, and thus, we list E(B ) for both queues. We

ormalize the IVs of both subsets with the mean- and STD-values listed in Table 2 . 

able 2 

ummary statistics of the IVs and flow parameters in the training data set. 

Mean STD Min Max 

Rho 0 .59 0 .24 0 .06 0 .99 

scv(B_u) 1 .30 0 .80 0 .10 2 .96 

scv(B_d) 1 .45 0 .79 0 .10 2 .95 

scv(A_d) 1 .18 0 .41 0 .18 2 .79 

E(B) 12 .32 6 .35 1 .23 29 .0 

E(A_d) 21 .22 6 .27 2 .72 30 .0 

Table 3 presents the OLS and quantile regression coefficients and standard errors for decom-

osition error with respect to the expected value. The training data set was used to compute

he coefficients. The OLS regression analysis is found to be statistically significant ( F (10 , 921) =
123 , p > . 001 ), explaining the majority of the variance of the relative error of the expected

alue of waiting time ( R 2 
Adj. 

= 0 . 958 ). The ANOVA reveals all direct effects and the majority of

he interaction effects (with the exception of the interaction between downstream service time

ariability and utilization) to be statistically significant. 
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Table 3 

OLS and quantile regression estimates for decomposition error (dependent variable is the expected value of waiting 

time) in tandem queues with equal traffic intensity. 

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995) 

const. 0 .0048 ∗∗∗ -0 .0068 ∗∗∗ -0 .0065 ∗∗∗ -0 .0039 ∗∗∗ 0 .0228 ∗∗∗ 0 .0309 ∗∗∗ 0 .0361 ∗∗∗

0 .0 0 07 0 .0012 0 .0013 0 .0011 0 .0035 0 .0034 0 .0036 

scv(B_u) -0 .0668 ∗∗∗ -0 .0460 ∗∗∗ -0 .0471 ∗∗∗ -0 .0551 ∗∗∗ -0 .0713 ∗∗∗ -0 .0770 ∗∗∗ -0 .0768 ∗∗∗

0 .0017 0 .0033 0 .0046 0 .0037 0 .0084 0 .0072 0 .0074 

scv(B_d) -0 .0039 ∗∗∗ -0 .0020 ∗∗∗ -0 .0011 ∗ -0 .0013 ∗∗ -0 .0081 ∗∗∗ -0 .0093 ∗∗∗ -0 .0076 ∗∗

0 .0 0 05 0 .0 0 06 0 .0 0 05 0 .0 0 05 0 .0015 0 .0015 0 .0024 

scv(A_d) 0 .0591 ∗∗∗ 0 .0437 ∗∗∗ 0 .0424 ∗∗∗ 0 .0530 ∗∗∗ 0 .0585 ∗∗∗ 0 .0676 ∗∗∗ 0 .0731 ∗∗∗

0 .0027 0 .0056 0 .007 0 .0058 0 .0129 0 .0111 0 .0108 

Rho -0 .0325 ∗∗∗ -0 .0306 ∗∗∗ -0 .0301 ∗∗∗ -0 .0311 ∗∗∗ -0 .0300 ∗∗∗ -0 .0291 ∗∗∗ -0 .0283 ∗∗∗

0 .0 0 09 0 .0014 0 .0017 0 .0015 0 .0042 0 .0041 0 .0047 

scv(B_u) × scv(B_d) -0 .0048 ∗∗∗ -0 .0087 ∗∗∗ -0 .0081 ∗∗∗ -0 .0064 ∗∗∗ -0 .0057 ∗∗∗ -0 .0052 ∗∗∗ -0 .0043 ∗

0 .0 0 08 0 .0013 0 .0016 0 .0013 0 .0013 0 .0011 0 .0019 

scv(B_u) × scv(A_d) 0 .0194 ∗∗∗ 0 .0128 ∗∗∗ 0 .0133 ∗∗∗ 0 .0128 ∗∗∗ 0 .0241 ∗∗∗ 0 .0229 ∗∗∗ 0 .0291 ∗∗∗

0 .0 0 05 0 .0 0 08 0 .0 0 07 0 .0 0 07 0 .0033 0 .0031 0 .0054 

scv(B_u) × rho -0 .0441 ∗∗∗ -0 .0293 ∗∗∗ -0 .0292 ∗∗∗ -0 .0366 ∗∗∗ -0 .0475 ∗∗∗ -0 .0488 ∗∗∗ -0 .0475 ∗∗∗

0 .0011 0 .0027 0 .0033 0 .0028 0 .0052 0 .0046 0 .0058 

scv(B_d) × scv(A_d) 0 .0080 ∗∗∗ 0 .0049 ∗∗∗ 0 .0057 ∗∗∗ 0 .0052 ∗∗∗ 0 .0112 ∗∗∗ 0 .0107 ∗∗∗ 0 .0058 

0 .0 0 08 0 .0014 0 .0016 0 .0012 0 .0027 0 .0025 0 .0043 

scv(B_d) × rho -0 .0 0 06 0 .0 0 08 0 .001 0 .0017 ∗∗ -0 .0 0 05 -0 .0014 0 .0 0 06 

0 .0 0 05 0 .0 0 07 0 .0 0 08 0 .0 0 08 0 .0018 0 .0017 0 .003 

scv(A_d) × rho -0 .0405 ∗∗∗ -0 .0411 ∗∗∗ -0 .0396 ∗∗∗ -0 .0391 ∗∗∗ -0 .0407 ∗∗∗ -0 .0450 ∗∗∗ -0 .0518 ∗∗∗

0 .0011 0 .0023 0 .0023 0 .0019 0 .0041 0 .0043 0 .0051 

Adj. / Pseudo R 2 0 .958 0 .917 0 .902 0 .895 0 .829 0 .843 0 .872 

Notes: standardized regression coefficients with standard errors listed below. The standard errors of quantile regression 

estimates are based on 100 bootstrapping replications. The sample is training data set with sample size 932. 
∗p < .1 ∗∗p < .05 ∗∗∗p < .001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The remaining columns of Table 3 present the coefficients of quantile regressions. The stan-

dard errors are obtained with 100 bootstrapping replications, respectively. The Pseudo R 

2 of each

model is well above 0.8. All quantile regression equations show similar patterns of changes in

coefficient values as the OLS regression. We find the majority of direct and interaction effects

to be statistically significant. As in the OLS regression, the interaction effect between the ser-

vice process variability (at the upstream queueing system) and the utilization is found to be

non-significant among each model. While the absolute sizes of the coefficients for most factors

vary little across the equations, it should be noted that the weights of the service process vari-

ability at the upstream queueing system, and the arrival process variability at the downstream

queueing system rise with increasing quantile. 

Table 4 presents the OLS regression coefficients for decomposition error with respect to

the 95th-percentile of waiting time. We find a statistically significant OLS regression equation

( F (10 , 921) = 1064 , p > . 001 ), which explains the majority of the variance ( R 2 
Adj. 

= 0 . 920 ) of de-

composition error. All direct effects are statistically significant. The impact patterns of the inter-

action effects are the same as in Table 3 . 

The remaining columns of Table 4 show the regression coefficients of quantile regressions.

The standard errors are computed with 100 bootstrapping replications, respectively, with Pseudo

R 

2 of all models well above 0.6. Except for the service process variability at the downstream

queueing system, which is non-significant for the models with τ ≤ . 05 , all direct effects are

found to be statistically significant among each regression model. The majority of interaction

coefficients is found to be significant or marginally significant. However, we did find non-

significant coefficients among the interaction effect of the service process variability and the

arrival process variability (both at the downstream queueing system), as well as in the Q(.975)

model. As in Table 3 , the absolute sizes of coefficients vary little for most factors across the
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Table 4 

OLS and quantile regression estimates for decomposition error (dependent variable is the 95th-percentile of waiting 

time) in tandem queues with equal traffic intensity. 

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995) 

const. 0 .0052 ∗∗∗ -0 .0169 ∗∗∗ -0 .0107 ∗∗∗ -0 .0093 ∗∗∗ 0 .0289 ∗∗∗ 0 .0349 ∗∗∗ 0 .0838 ∗∗∗

0 .0012 0 .0023 0 .0022 0 .002 0 .0033 0 .0064 0 .0163 

scv(B_u) -0 .0735 ∗∗∗ -0 .0671 ∗∗∗ -0 .0631 ∗∗∗ -0 .0547 ∗∗∗ -0 .0847 ∗∗∗ -0 .0931 ∗∗∗ -0 .1010 ∗∗∗

0 .0028 0 .0082 0 .0089 0 .0074 0 .0109 0 .0129 0 .0146 

scv(B_d) -0 .0046 ∗∗∗ -0 .0036 0 .0 0 02 0 .0 0 04 -0 .0093 ∗∗∗ -0 .0120 ∗∗∗ -0 .0413 ∗∗∗

0 .0 0 08 0 .0031 0 .0021 0 .0012 0 .0019 0 .0044 0 .0097 

scv(A_d) 0 .0680 ∗∗∗ 0 .0916 ∗∗∗ 0 .0776 ∗∗∗ 0 .0554 ∗∗∗ 0 .0735 ∗∗∗ 0 .0777 ∗∗∗ 0 .0591 ∗∗∗

0 .0046 0 .0146 0 .0163 0 .0116 0 .0169 0 .0198 0 .0236 

Rho -0 .0381 ∗∗∗ -0 .0351 ∗∗∗ -0 .0360 ∗∗∗ -0 .0321 ∗∗∗ -0 .0439 ∗∗∗ -0 .0471 ∗∗∗ -0 .0636 ∗∗∗

0 .0015 0 .0029 0 .0031 0 .0022 0 .0052 0 .0071 0 .012 

scv(B_u) × scv(B_d) -0 .0038 ∗∗∗ -0 .0134 ∗ -0 .0052 ∗∗ -0 .0066 ∗∗∗ -0 .0095 ∗∗ -0 .0035 0 .0254 ∗∗

0 .0013 0 .0062 0 .0019 0 .0014 0 .0032 0 .0069 0 .0114 

scv(B_u) × scv(A_d) 0 .0189 ∗∗∗ 0 .0078 ∗∗∗ 0 .0091 ∗∗∗ 0 .0113 ∗∗∗ 0 .0241 ∗∗∗ 0 .0322 ∗∗∗ 0 .0263 ∗∗∗

0 .0 0 08 0 .0012 0 .0015 0 .0013 0 .003 0 .005 0 .0073 

scv(B_u) × rho -0 .0476 ∗∗∗ -0 .0291 ∗∗∗ -0 .0378 ∗∗∗ -0 .0338 ∗∗∗ -0 .0649 ∗∗∗ -0 .0676 ∗∗∗ -0 .0342 ∗∗∗

0 .0019 0 .0086 0 .0067 0 .0053 0 .0072 0 .0097 0 .0128 

scv(B_d) × scv(A_d) 0 .0092 ∗∗∗ 0 .0089 0 .0 0 05 0 .0049 ∗ 0 .0148 ∗∗∗ 0 .009 -0 .0046 

0 .0014 0 .0063 0 .0032 0 .0019 0 .0039 0 .0058 0 .0081 

scv(B_d) × rho 0 .0 0 08 0 .0109 ∗∗∗ 0 .0056 ∗ 0 .0030 ∗ 0 .0038 0 .0065 0 .0218 ∗∗∗

0 .0 0 08 0 .0028 0 .0022 0 .0015 0 .0026 0 .0045 0 .0071 

scv(A_d) × rho -0 .0522 ∗∗∗ -0 .0740 ∗∗∗ -0 .0597 ∗∗∗ -0 .0520 ∗∗∗ -0 .0468 ∗∗∗ -0 .0476 ∗∗∗ -0 .0503 ∗∗∗

0 .0019 0 .0061 0 .0055 0 .0029 0 .0048 0 .006 0 .011 

Adj. / Pseudo R 2 0 .920 0 .809 0 .798 0 .807 0 .698 0 .681 0 .635 

Notes: standardized regression coefficients with standard errors listed below. The standard errors of quantile regression 

estimates are based on 100 bootstrapping replications. The sample is training data set with sample size 932. 
∗p < .1 ∗∗p < .05 ∗∗∗p < .001. 
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quations. However, the weight of the utilization increases by rising quantiles, while (in con-

rast to Table 2 ) the weight of the arrival process variability decreases. 

. Downstream bottlenecks 

As Suresh and Witt [3] mention, in a narrower sense, the bottleneck is the queue with the

ighest traffic intensity. However, increasing the traffic intensity of a queue by only a small

mount may shift the bottleneck position. Therefore, it is intuitive to state that either of the

ueues is the bottleneck if it’s utilization is substantially greater than some ε, | ρu − ρd | > ε. 

We created a data set that contains 969 data points and choose ε = 0 . 1 to split the data into

hree subsets. In the first data set (403 data points), the downstream queue is the bottleneck,

n the second data set (131 data points), the traffic intensities are similar ( | ρu − ρd | ≤ ε), and in

he third data set (435 data points), the upstream queue is the bottleneck. 

Analogous to the analyses of tandem queues with equal traffic intensities, we use OLS and

uantile regression to model decomposition error with respect to the expected value and 95th-

ercentile of waiting time. We use the first and the second data set to compute the regression

oefficients. Table 5 and Table 6 show the results with respect to the expected value and the

5th-percentile of waiting time, respectively. 
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Table 5 

OLS and quantile regression estimates for decomposition error (dependent variable is the expected value of waiting 

time) in tandem queues with downstream bottlenecks (cont. on next page). 

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995) 

const. -0 .0704 ∗∗∗ -0 .2019 ∗∗∗ -0 .1530 ∗∗∗ -0 .1332 ∗∗∗ -0 .0426 ∗∗ -0 .0184 -0 .0184 

0 .0072 0 .0492 0 .0359 0 .0266 0 .013 0 .0176 0 .0211 

scv(B_u) 0 .1314 ∗∗∗ 0 .1222 0 .2307 ∗∗ 0 .2125 ∗ 0 .1324 ∗∗ 0 .0767 0 .1116 

0 .0233 0 .1615 0 .0989 0 .072 0 .0411 0 .0542 0 .0708 

scv(B_d) 0 .0082 ∗∗∗ -0 .021 0 .0079 0 .0099 ∗ 0 .0059 0 .0057 0 .0052 

0 .0015 0 .023 0 .0116 0 .0051 0 .0036 0 .0041 0 .0044 

scv(A_d) -0 .3605 ∗∗∗ -0 .4273 -0 .5899 ∗∗ -0 .5556 ∗∗∗ -0 .3532 ∗∗∗ -0 .2373 ∗∗ -0 .2985 ∗∗

0 .0473 0 .3194 0 .1963 0 .1492 0 .0847 0 .1126 0 .1434 

rho_u 0 .10 0 0 ∗∗∗ 0 .1741 ∗ 0 .1725 ∗∗ 0 .1558 ∗∗ 0 .0964 ∗∗∗ 0 .0680 ∗∗ 0 .0848 ∗∗

0 .0145 0 .0961 0 .0619 0 .0477 0 .0249 0 .0321 0 .0407 

rho_d -0 .0255 ∗∗∗ -0 .0738 ∗∗∗ -0 .0442 ∗∗∗ -0 .0361 ∗∗∗ -0 .0090 ∗∗ -0 .0098 ∗∗ -0 .0036 

0 .002 0 .0121 0 .0094 0 .0055 0 .004 0 .0048 0 .0049 

scv(B_u) × scv(B_d) 0 .0019 -0 .0319 ∗ -0 .0087 -0 .0071 ∗∗ 0 .0054 ∗∗ 0 .0075 ∗∗ 0 .0056 ∗

0 .0022 0 .0182 0 .0127 0 .0035 0 .002 0 .0026 0 .0032 

scv(B_u) × scv(A_d) 0 .0097 ∗∗∗ 0 .0071 0 .0 0 06 0 .0 0 09 0 .0259 ∗∗∗ 0 .0261 ∗∗∗ 0 .0242 ∗∗∗

0 .0018 0 .0087 0 .0074 0 .0049 0 .0064 0 .0062 0 .0063 

scv(B_u) × rho_u 0 .1006 ∗∗∗ 0 .1671 0 .1721 ∗∗ 0 .1668 ∗∗ 0 .0914 ∗∗ 0 .0486 0 .0786 

0 .0189 0 .1234 0 .0694 0 .0546 0 .0324 0 .042 0 .0551 

scv(B_u) × rho_d 0 .0045 ∗ -0 .0202 0 .0058 0 .0 0 04 0 .0071 ∗∗∗ 0 .0059 ∗∗ 0 .0049 ∗

0 .002 0 .0208 0 .0138 0 .0056 0 .0018 0 .0021 0 .0025 

scv(B_d) × scv(A_d) 0 .0142 ∗∗∗ 0 .0329 ∗∗ 0 .0229 ∗∗ 0 .0204 ∗∗ 0 .0028 0 .0 0 05 0 .0037 

0 .0024 0 .0159 0 .0103 0 .0067 0 .006 0 .0066 0 .0067 

scv(B_d) × rho_u -0 .0058 ∗∗ 0 .0313 0 .0026 0 .0 0 09 -0 .0061 ∗ -0 .0057 -0 .0064 

0 .0018 0 .0192 0 .0111 0 .0044 0 .0033 0 .0036 0 .0043 

scv(B_d) × rho_d 0 .0091 ∗∗∗ -0 .0107 0 .002 0 .0039 0 .0082 ∗∗∗ 0 .0064 ∗∗∗ 0 .0059 ∗∗∗

0 .0017 0 .0147 0 .0079 0 .003 0 .0014 0 .0014 0 .0017 

scv(A_d) × rho_u 0 .1022 ∗∗∗ 0 .0953 0 .1661 ∗∗ 0 .1548 ∗∗∗ 0 .0931 ∗∗∗ 0 .0675 ∗∗ 0 .0743 ∗∗

0 .0108 0 .0784 0 .0518 0 .0383 0 .0202 0 .0265 0 .0314 

scv(A_d) × rho_d -0 .0712 ∗∗∗ -0 .0356 -0 .0700 ∗∗∗ -0 .0647 ∗∗∗ -0 .0643 ∗∗∗ -0 .0673 ∗∗∗ -0 .0584 ∗∗∗

0 .0044 0 .0281 0 .0192 0 .0133 0 .0109 0 .0115 0 .012 

rho_u × rho_d 0 .0 0 08 -0 .008 -0 .0038 -0 .0048 ∗ 0 .0097 ∗∗ 0 .0107 ∗∗ 0 .0117 ∗∗

0 .0023 0 .0053 0 .0042 0 .0028 0 .0036 0 .0034 0 .0042 

Adj. / Pseudo R 2 0 .833 0 .698 0 .687 0 .717 0 .715 0 .760 0 .824 

Notes: standardized regression coefficients with standard errors listed below. The standard errors of quantile regression 

estimates are based on 100 bootstrapping replications. The sample size is 534. 
∗p < .1 ∗∗p < .05 ∗∗∗p < .001. 
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Table 6 

OLS and quantile regression estimates for decomposition error (dependent variable is the 95th-percentile of waiting 

time) in tandem queues with downstream bottlenecks (cont. on next page). 

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995) 

const. -0 .0831 ∗∗∗ -0 .2828 ∗∗∗ -0 .2213 ∗∗∗ -0 .1591 ∗∗∗ -0 .0492 ∗∗ -0 .0275 -0 .0156 

0 .0087 0 .0695 0 .056 0 .0414 0 .0149 0 .0173 0 .0186 

scv(B_u) 0 .1549 ∗∗∗ 0 .2868 0 .3651 ∗∗ 0 .2204 ∗ 0 .1474 ∗∗ 0 .0941 ∗ 0 .0841 

0 .0281 0 .2243 0 .1577 0 .1132 0 .0479 0 .0549 0 .058 

scv(B_d) 0 .0101 ∗∗∗ -0 .0162 0 .0099 0 .0097 0 .0033 0 .0041 0 .0056 

0 .0018 0 .025 0 .0137 0 .0074 0 .0041 0 .0039 0 .0043 

scv(A_d) -0 .4181 ∗∗∗ -0 .7720 ∗ -0 .8768 ∗∗ -0 .5957 ∗∗ -0 .3892 ∗∗∗ -0 .2792 ∗∗ -0 .2494 ∗∗

0 .0569 0 .4493 0 .3167 0 .2368 0 .1006 0 .1145 0 .1197 

rho_u 0 .1184 ∗∗∗ 0 .2926 ∗∗ 0 .2665 ∗∗ 0 .1663 ∗∗ 0 .1078 ∗∗∗ 0 .0805 ∗∗ 0 .0773 ∗∗

0 .0175 0 .141 0 .1032 0 .0751 0 .0301 0 .0333 0 .0343 

rho_d -0 .0322 ∗∗∗ -0 .0818 ∗∗∗ -0 .0535 ∗∗∗ -0 .0457 ∗∗∗ -0 .0117 ∗∗ -0 .0146 ∗∗ -0 .0165 ∗∗

0 .0025 0 .013 0 .0107 0 .0084 0 .0043 0 .0044 0 .0055 

scv(B_u) × scv(B_d) 0 .0014 -0 .0181 -0 .0086 -0 .0085 0 .0068 ∗∗ 0 .0060 ∗∗ 0 .0075 ∗∗

0 .0026 0 .0182 0 .0152 0 .0057 0 .0025 0 .0028 0 .0032 

scv(B_u) × scv(A_d) 0 .0068 ∗∗ 0 .0046 0 .0 0 04 -0 .0015 0 .0225 ∗∗∗ 0 .0218 ∗∗ 0 .0215 ∗∗

0 .0022 0 .0115 0 .0086 0 .0068 0 .0065 0 .0067 0 .0071 

scv(B_u) × rho_u 0 .1202 ∗∗∗ 0 .3086 ∗ 0 .2814 ∗∗ 0 .1779 ∗∗ 0 .1013 ∗∗ 0 .0594 0 .0535 

0 .0227 0 .1856 0 .1211 0 .0827 0 .0368 0 .0421 0 .0441 

scv(B_u) × rho_d 0 .0053 ∗ -0 .0228 0 .0085 -0 .0025 0 .0064 ∗∗ 0 .0077 ∗∗∗ 0 .0074 ∗∗

0 .0025 0 .0236 0 .0185 0 .0091 0 .002 0 .002 0 .0025 

scv(B_d) × scv(A_d) 0 .0197 ∗∗∗ 0 .0287 ∗ 0 .0254 ∗∗ 0 .0273 ∗∗∗ 0 .0069 0 .0071 0 .0064 

0 .0029 0 .0166 0 .0114 0 .007 0 .0061 0 .0061 0 .0082 

scv(B_d) × rho_u -0 .0054 ∗ 0 .0334 0 .0054 -0 .0 0 08 -0 .0083 ∗∗ -0 .0074 ∗∗ -0 .0055 

0 .0022 0 .0243 0 .015 0 .0068 0 .0027 0 .0031 0 .0039 

scv(B_d) × rho_d 0 .0087 ∗∗∗ -0 .012 -0 .001 0 .0041 0 .0060 ∗∗∗ 0 .0052 ∗∗∗ 0 .0056 ∗∗

0 .0021 0 .0168 0 .0097 0 .0045 0 .0016 0 .0016 0 .0018 

scv(A_d) × rho_u 0 .1162 ∗∗∗ 0 .1625 0 .2289 ∗∗ 0 .1711 ∗∗ 0 .1048 ∗∗∗ 0 .0827 ∗∗ 0 .0728 ∗∗

0 .013 0 .0987 0 .0789 0 .0646 0 .0256 0 .0278 0 .0295 

scv(A_d) × rho_d -0 .0830 ∗∗∗ -0 .0385 -0 .0854 ∗∗ -0 .0841 ∗∗∗ -0 .0675 ∗∗∗ -0 .0740 ∗∗∗ -0 .0761 ∗∗∗

0 .0052 0 .0354 0 .029 0 .0209 0 .0096 0 .0091 0 .0111 

rho_u × rho_d -0 .0 0 01 -0 .0077 -0 .0047 -0 .0022 0 .0091 ∗∗ 0 .0082 ∗∗ 0 .0074 ∗

0 .0028 0 .0075 0 .0061 0 .005 0 .003 0 .0031 0 .0038 

Adj. / Pseudo R 2 0 .826 0 .637 0 .602 0 .626 0 .703 0 .753 0 .822 

Notes: standardized regression coefficients with standard errors listed below. The standard errors of quantile regression 

estimates are based on 100 bootstrapping replications. The sample size is 534. 
∗p < .1 ∗∗p < .05 ∗∗∗p < .001. 
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. Experimental Design, Materials and Methods 

We use the algorithm described in [4] to generate 1,166 data points in a four-dimensional

pace-filling latin hypercube design (data sets with equal traffic intensities), and 969 data points

n a five-dimensional space-filling latin hypercube design (data sets for bottleneck analyses). The

xpected values of the external inter-arrival and the service times are independently randomly

elected from the interval [1.0, 30.0]. To create the data points with equal traffic intensity, the

xpected values of service time are equal for the upstream and the downstream queue. The vari-

bility parameters of the service time distributions are independently randomly selected from

he interval [0.1, 3.0]. 

In our analyses [1] we assume that the random variables describing the service processes are

escribed by discretized gamma distributions. Let X be a gamma-distributed random variable

ith shape parameter k and scale parameter θ . The probability density function of X is given by

1 , 5] 

f ( x ; k, θ ) = 

x k −1 e −x/θ

θ k �( k ) 
, x, k, θ > 0 , 
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where �(k ) is the gamma function. In order to generate gamma-distributed random variables X

with predefined values for E(X ) and scv (X ) , we use the well-known closed-form expressions for

the shape and scale parameters of the gamma function [1 , 5] , 

E ( X ) = kθ, V ar ( X ) = kθ2 . 

We use the squared coefficient of variation ( scv ) as normalized measure of statistical disper-

sion to measure the process variability. Let E(X ) define the expected value of, and V ar(X ) its

variance. The variability of X is defined as [1] 

scv ( X ) = V ar ( X ) /E 2 ( X ) . 
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