
Graphical Abstract
Continuous Integration of Architectural Performance Models with Parametric Dependencies –
The CIPM Approach
Manar Mazkatli,David Monschein,Martin Armbruster,Robert Heinrich,Anne Koziolek

1

Highlights
Continuous Integration of Architectural Performance Models with Parametric Dependencies –
The CIPM Approach
Manar Mazkatli,David Monschein,Martin Armbruster,Robert Heinrich,Anne Koziolek

• Commit-based updates of architectural performance models at Dev-time.
• Automated adaptive instrumentation of source code parts changed by the recent commit.
• Incremental calibration of performance models parameters with parametric dependencies
• Measurements-based updates of architectural performance models at Ops-time.
• Self-validation and continuous improvement of architectural performance models.

Continuous Integration of Architectural Performance Models with
Parametric Dependencies – The CIPM Approach
Manar Mazkatli∗, David Monschein, Martin Armbruster, Robert Heinrich and Anne Koziolek
KASTEL – Institute of Information Security and Dependability, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany

ART ICLE INFO
Keywords:
Software Architecture, Architecture-
based Performance Prediction, Models’
Consistency, Models Parametrization
with Parametric Dependencies, Self-
Validation, DevOps Pipeline

ABSTRACT
Explicitly considering the software architecture supports efficient assessments of quality attributes. In
particular, Architecture-based Performance Prediction (AbPP) supports performance assessment for
future scenarios (e.g., alternative workload, design, deployment, etc.) without expensive measurements
for all such alternatives.

However, accurate AbPP requires an up-to-date architectural Performance Model (aPM) that is
parameterized over factors impacting performance like input data characteristics. Especially in agile
development, keeping such a parametric aPM consistent with software artifacts is challenging due to
frequent evolutionary, adaptive and usage-related changes. The shortcoming of existing approaches
is the scope of consistency maintenance since they do not address the impact of all aforementioned
changes. Besides, extracting aPM by static and/or dynamic analysis after each impacting change would
cause unnecessary monitoring overhead and may overwrite previous manual adjustments.

In this article, we present our Continuous Integration of architectural Performance Model (CIPM)
approach, which automatically updates the parametric aPM after each evolutionary, adaptive or usage
change. To reduce the monitoring overhead, CIPM calibrates just the affected performance parameters
(e.g., resource demand), using adaptive monitoring. Moreover, CIPM proposes a self-validation process
that validates the accuracy, manages the monitoring and recalibrates the inaccurate parts. As a result,
CIPM will automatically keep the aPM up-to-date throughout the development time and operation time,
which enables AbPP for a proactive identification of upcoming performance problems and evaluating
alternatives at low costs.

CIPM is evaluated using three case studies, considering (1) the accuracy of the updated aPMs
and associated AbPP and (2) the applicability of CIPM in terms of the scalability and the required
monitoring overhead.

1. Introduction
Software systems can fail or not be used as expected

if they do not meet the performance objectives. Nowadays,
most developers follow agile practices (e.g., DevOps software
development [10]) and apply application performance man-
agement to measure the current performance of the system.
Here, architectural design decisions are made throughout the
development [67] since there usually is no dedicated architec-
ture design phase nor architecture model. However, assessing
the impact of such design decisions on performance is ex-
pensive because it requires setting up test environments and
measurements for all design alternatives (P1).

Instead of relying on measurements in real environments,
software performance engineering [90, 67] uses models to
predict the software performance, identify potential issues
and respond to them earlier [5]. In particular, architectural
performance modeling approaches [63] model the system
at an architecture level, without implementation details. In
general, architecture models help in increasing the human

mazkatli@kit.edu (M. Mazkatli); david.monschein@alumni.kit.edu
(D. Monschein); martin.armbruster@kit.edu (M. Armbruster);
robert.heinrich@kit.edu (R. Heinrich); koziolek@kit.edu (A. Koziolek)

https://mcse.kastel.kit.edu/staff_Mazkatli_Manar.php (M.
Mazkatli); https://dsis.kastel.kit.edu/staff_robert_heinrich.php (R.
Heinrich); https://mcse.kastel.kit.edu/staff_Koziolek_Anne.php (A.
Koziolek)

ORCID(s): 0000-0003-4261-8477 (M. Mazkatli); 0000-0003-4303-0712
(D. Monschein); 0000-0002-2554-4501 (M. Armbruster);
0000-0003-0779-9444 (R. Heinrich); 0000-0002-1593-3394 (A. Koziolek)

understandability of the system and consequently the produc-
tivity of software development [59]. Moreover, architecture
models can be a good basis for predicting the performance
of architectural design decisions [63].

A problem of applying Architecture-based Performance
Prediction (AbPP) in agile development is that modeling is
a time-consuming process (P2). Moreover, agile developers
do not trust the models since they are just approximations
[91] and there is no validation of the accuracy of AbPP (P3).

Moreover, accurate AbPP is challenging for various rea-
sons. First, aPMs can be outdated due to frequent software
changes (P4). For example, continuous integration of source
code at the Development time (Dev-time) can affect the ac-
curacy of aPMs (P4.1). Similarly, the adaptive changes at
Operation time (Ops-time), like changes in system composi-
tion and deployment, also affect the aPMs (P4.2). Second,
the accuracy of AbPP depends mainly on the estimated Perfor-
mance Model Parameters (PMPs), such as resource demand.
These parameters can depend on influencing factors that may
vary over Ops-time, e.g., usage profile and execution environ-
ment. Considering these factors during parameterizing PMPs
allows AbPP for unseen states, e.g., AbPP for unseen work-
loads. Ignoring the so-called parametric dependencies [7])
can lead to inaccurate AbPP for design alternatives (P5). The
parameterized PMPs can also be falsified over time by the
aforementioned software changes. Re-estimating all PMPs
frequently after each impacting change causes monitoring
overhead (P6), because PMPs are mostly calibrated by dy-

Mazkatli et al.: Preprint submitted to Elsevier Page 1 of 28

https://mcse.kastel.kit.edu/staff_Mazkatli_Manar.php
https://dsis.kastel.kit.edu/staff_robert_heinrich.php
https://mcse.kastel.kit.edu/staff_Koziolek_Anne.php

The CIPM Approach

namic analysis of the whole system [68].
Keeping the aPMs as well as their parameterized PMPs

consistent with the running system, which is iteratively and
incrementally evolving over time, requires repeated manual
effort (P7). Hence, the efficient maintenance of the consis-
tency between the parameterized architectural Performance
Model (aPM) and the software system is an important as-
pect for more comprehensive of the system’s architecture and
proactive performance management with an accurate AbPP.
1.1. State of the Arts

Some approaches suggested partial automation of the
consistency maintenance between software artifacts. These
approaches can be divided into two main categories (C1 and
C2): The first Category (C1) includes approaches that reverse-
engineer the current architecture based on static analysis of
source code [2, 48, 6], dynamic analysis [8, 84, 85] or both
[40, 44, 46, p. 137]. These approaches suffer from three short-
comings: First, the accuracy of an extracted aPM is uncertain
(P3) since not all impacting changes at Dev-time or Ops-time
are observed and addressed (P4). The second shortcoming is
that extracting and calibrating aPMs frequently would cause
high monitoring overhead (P6). The third shortcoming is
that the possible manual modifications of the extracted aPMs
would be discarded by the next extraction (P7). The second
category includes approaches that maintain the consistency
incrementally (C2) either at Dev-time based on consistency
rules [47, 18, 81, 79, 38, 13] or at Ops-time [28, 70, 77] based
on dynamic analysis. Like C1, none of the C2 approaches
succeed in updating aPMs according to both evolution and
adaption nor provide a statement on the accuracy. Thus, the
accuracy of the resulting architecture model and its AbPP
is still uncertain and cannot be trusted (P3). This applies as
well to approaches that estimate parametric dependencies to
increase the accuracy of AbPP, e.g., [45, 44, 23].
1.2. Approach and contribution

In this article, we propose the Continuous Integration of
Performance Models (CIPM) approach [51, 52]. This ap-
proach maintains the consistency between the aPM and soft-
ware artifacts (source code and measurements). As shown in
Figure 1, CIPM automatically updates aPMs according to ob-
served Dev-time and Ops-time changes to enable AbPP (P4,
P1, P2 and P7). CIPM calibrates also aPMs with paramet-
ric dependencies (P5) and reduces the required overhead for
updating and calibrating aPMs through adaptive instrumen-
tation and monitoring (P6) [52]. Moreover, CIPM provides
a statement on the accuracy of the AbPP and automatically
recalibrates inaccurate parts [58] (P3). In this way, the result-
ing aPMs allows an accurate AbPP (P1) and more compre-
hension of the system architecture. This supports adopting
proactive actions for upcoming performance issues and an-
swering what-if questions about design alternatives. The
contributions of our approach can be summarized as follows:
• Automated consistency maintenance at Dev-time: The

proposed commit-based strategy automatically (section 5)
updates the models (e.g., aPMs) that are affected by the

Continuous Integration (CI) of the source code (P4.1).
Contrary to other approaches, it uses regular Git commits
as input and does not require a specialized editor, which
eases its integration with CI.

• Automated adaptive instrumentation: We propose model-
based instrumentation of changed parts in source code
(P6), cf. section 6. Comparing to existing approaches, our
instrumentation detects automatically where and how to
instrument the source code.

• Incremental calibration: We propose a novel incremen-
tal calibration of the PMPs based on adaptive monitoring
[52]. Our calibration uses statistical analysis to learn para-
metric dependencies. It also optimizes them based on a
genetic algorithm if necessary [82]. In comparison to ex-
isting approaches, CIPM can be performed at Ops-time
and addresses P7, P6 and P5.

• Automated consistency maintenance at Ops-time: The
Ops-time calibration observes Ops-time changes based on
dynamic analysis and updates the aPMs accordingly [58]
(cf. section 9). In comparison to existing approaches,
CIPM automatically updates the aPMs including PMPs,
system composition and resource environment using adap-
tive monitoring (P4.2).

• Self-validation of updated aPMs: The self-validation (cf.
section 8) estimates the accuracy of AbPP compared with
real measurements (P3). It manages the adaptive monitor-
ing by activating and deactivating monitoring probes based
on the validation results. This reduces the required over-
head to a minimum (P6). According to our knowledge, our
approach is the first approach that enables self-validation of
aPMs and dynamic management of monitoring overhead.

• Model-based DevOps pipeline: The proposed pipeline
[52] integrates and automates the CIPM activities to en-
able continuous AbPP during DevOps. To implement it,
we designed and implemented a transformation pipeline
[58] based on [28] using the tee and join pipeline archi-
tecture [14]. In contrast to existing pipelines, our pipeline
maintains the consistency during the whole DevOps life
cycle and enables AbPP.
This paper is an extension of our previous work [52, 58,

28, 82]. New contributions are the automated consistency
maintenance at Dev-time with its novel commit-based strat-
egy (section 5) as well as an evaluation of the adaptive in-
strumentation (subsection 10.4) and the scalability of the
approach (subsection 10.6)1

1To make the review easier, here we provide a detailed list of which
sections we have reused from our previous work and which sections are
new or extended: The abstract and introduction (Sec. 1) have been newly
written with a detailed discussion of the problems tackled by our approach.
The foundations (Sec. 2) are reused and only the description of genetic
algorithms has been added. The running example (Sec. 3) is reused and
has been adapted to this paper. The overview of our approach (Sec. 4) is
reformulated from previous publications and has been extended to include
the new contributions. Section 5 on the CI-based update of software models
is new contribution in this paper except for Section 5.4. However, Section
5.4 is newly written. Most of Section 6 on adaptive instrumentation is new
written. Although the idea of the adaptive instrumentation is introduced

Mazkatli et al.: Preprint submitted to Elsevier Page 2 of 28

The CIPM Approach

Figure 1: Overview on CIPM approach and the main actors. Red boxes shows the problems that CIPM addresses. The lower part
of the figure abstracts some aspects of aPM (architecture and deployment on the right side and the behavior on the left side) using
the TeaStore example [83] (c.f. section 3) and the annotations of Palladio Component Model (PCM) [63] (c.f. subsection 2.1)

2. Foundations
In the following, we introduce the foundations on the

approaches that we build upon throughout this article.
2.1. Palladio Component Model

The Palladio Component Model (PCM) is a model-based
approach for the analysis of software architectures [63]. The
PCM focuses on the evaluation of performance aspects, such
as the detection of bottlenecks and scalability problems. The
PCM supports predicting the impact of design decisions to
avoid high costs resulting from wrong decisions. The PCM
divides the specification of the software architecture into
five different meta-models. The Repository Model contains
a repository with components and interfaces. In addition,
it includes the descriptions of the abstract behavior of ser-
vices provided by these components using Service Effect
Specifications (SEFFs). The System Model describes the com-
position of the software architecture based on the compo-
nents and interfaces specified in the repository. The Resource

Environment Model reflects the actual hardware environment,
which is composed of containers with processing resources
(e.g., central processing unit (CPU)) and links between them.
The mapping from the system composition (System Model)
to the resources (Resource Environment Model) is described
by the Allocation Model. Finally, the Usage Model defines the
previously in [52], in particular we have re-implemented the approach for the
now used EMF-based Java model and now also evaluated it. Section 7 on the
incremental calibration of the models is partially reused and extended, but
sections 7.2.4 and 7.3 are new. Sections 8 on self-validation and section 9
on Ops-time Calibration are reformulated from previous works. In the
evaluation section (Sec. 10), evaluation questions EQ 1.1, 1.2, 1.2.1, 1.5 and
2.1 are new and we newly conducted experiment 1 for them. Additionally,
we newly conducted experiment 5 to validate EQ 3 in detail. Section 10.4.,
10.5, and 10.6 describe these new results. We rewrote Section 11 on related
work and provided a table for a systematic comparison. To reflect all changes,
we extended the conclusions (Sec. 12). We will delete this footnote in a
potential later camera-ready version.

behavior of users (the way they interact with the system).
The Palladio SEFF [7] describes the behavior of a compo-

nent service on an abstract level using different control flow
elements (see the left lower part of Figure 1): internal actions
(a combination of internal computations that do not include
calls to required services), external call actions (calls to re-
quired services), loops and branch actions. SEFF loops and
branch actions include at least one external call. Other loops
and branches in the service implementation are combined
into internal actions to increase the level of abstraction.

To predict the performance measures (response times,
CPU utilization and throughput) the architects have to en-
rich the SEFFs with PMPs. Examples of PMPs are resource
demands (processing amount that internal action requests
from a certain active resource, such as a CPU or hard disk),
the probability of selecting a branch, the number of loop’s
iterations and the arguments of external calls.

Palladio uses the stochastic expression (StoEx) [42] to
define PMPs as expressions that contain random variables
or empirical distributions. StoEx expresses calculations and
comparisons using parameter characterization (e.g., value,
number of lists elements or size of file).
2.2. Co-evolution approach with VITRUVIUS

The co-evolution approach [47, 46] keeps the architecture
model and the source code consistent during the software sys-
tem evolution. It defines change-driven Consistency Preserva-
tion Rules (CPRs) to propagate changes in source code to the
architecture model and vice versa using model-based transfor-
mations. These rules are defined based on VITRUVIUS [36],
a view-based framework that encapsulates the heterogeneous
models of a system and the semantic relationships between
them in a Virtual Single Underlying Model (VSUM) in order
to keep them consistent. VITRUVIUS defines mappings and
reactions languages. The first one declares the bidirectional
specifications of consistency rules on the metamodel-level,

Mazkatli et al.: Preprint submitted to Elsevier Page 3 of 28

The CIPM Approach

which are transformed into imperative unidirectional specifi-
cations using the reactions language. The reactions language
describes then the CPRs that describe the consistency re-
pair logic for each kind of changes, i.e., which and how the
artifacts of a metamodel must be changed to restore the con-
sistency after a change in a related metamodel has occurred.
Thus, VITRUVIUS stores the mapping between corresponding
model elements, in a correspondence model to reuse them by
the consistency preservation process.

Using VITRUVIUS, the co-evolution approach keeps Java
source code (using an intermediate model [25] for Java 6 [33])
and PCM consistent. The CPRs update the Repository Model

of a PCM model and its behavior (SEFFs without PMPs) as
a reaction to changes in the source code. Similarly, changes
in PCM model are propagated to the Java source code.
2.3. iObserve

iObserve considers the adaptation and evolution of cloud-
based systems as two interwoven processes [27]. The main
idea is to use Ops-time observations to detect changes during
the operation and to reflect them by updating an architecture
model which is then applied for quality predictions. The
PCM is used as the basis for the quality predictions and
Kieker is used for monitoring the system during operation
[78, 27]. Briefly summarized, iObserve collects monitoring
data at Ops-time with the help of Kieker and applies neces-
sary changes to the architecture model (PCM instance) which
originated at Dev-time. Adaptation and evolution are inter-
woven and shared models are used throughout the application
life-cycle to close the gap between Ops-time and Dev-time.
The mapping between elements in the architecture model and
corresponding elements in the source code is based on the
runtime architecture correspondence model [28, 61].
2.4. Genetic Algorithm

The genetic algorithm [43] is a heuristic algorithm to
resolve optimization problems. It is based on the evolution-
ary Principe. It starts from initial solutions as candidates
for optimum solutions and evolves them. The algorithm
starts with a set of solutions representing the first popula-
tion, which can be modeled by experts. After that, the main
evolutionary loop of the genetic algorithm generates new
offspring based on two major operators: ’crossover’ and ’mu-
tation’. These operators generate new candidates for the new
offspring population in two different ways. The crossover
generates the candidate solutions by combining genetic ma-
terials from the parents, whereas mutation generates them by
applying random changes. After crossover and mutation, the
new candidates must be evaluated based on their ability to
solve the optimization problem. This evaluation is done by
‘phenotype mapping’ of candidates (genotype) to the actual
solution in order to avoid introducing a bias. This step can be
escaped if the genotype represents the solution itself. After
that, the new offspring population is evaluated by the ’fitness
function’. The goal of the fitness function is to evaluate the
quality of the solutions in order to select the best offspring to
be parents in the new parental population. This achieves the
progress towards finding the optimal solution. However, the
main evolutionary loop should have a termination condition

that determines when the search for optimal solution must
be stopped. The condition can be predefined number of gen-
erations or acceptable quality degree of the found solutions.
Usually the termination condition is related to the time and
cost of the designed fitness function.
3. Running Example

The TeaStore is a web-based application, which imple-
ments a shop for tea. The application is based on a distributed
microservice architecture and designed to be suitable for the
evaluation of approaches for performance modeling [83].

The TeaStore consists of six microservices: Registry,
Image Provider, Auth, Persistence, Recommender andWebUI.
All microservices register themselves at the registry, which
makes them available for the individual components. This
enables client-side load balancing. Communication between
the components is based on the widely used representational
state transfer (REST) standard [21].

TeaStore includes four different Recommender imple-
mentations that suggest related products to the users. The
developers implemented these versions along different de-
velopment iterations. These implementations have different
performance characteristics. Performance tests or monitoring
can be used to discover these characteristics for the current
state, i.e., for the current implementation, current deploy-
ment, current environment, current system composition and
the current workload. However, predicting the performance
for another state (e.g., different deployment, workload, envi-
ronment ...) is expensive and challenging because it requires
setting up and performing several tests for each implemen-
tation alternative. In our example, answering the following
questions is challenging based on application performance
management [24]: “Which implementation would perform
better if the load or the deployment is changed?” or “How
well does the Recommender perform during yet unseen work-
load scenarios?” An example for the latter question would
be an upcoming offer of discounts, where architects expect
an increased number of customers and also a changed behav-
ior of customers in that each customer is expected to order
more items. Another question can be: “How does the cur-
rent system composition look like? What the performance
would be if the system composition is changed?”. Changes
in the system landscape of TeaStore at Ops-time are common
due to the load balancing, which allows replications and de-
replications without great effort. Therefore, it is inevitable to
constantly update the associated architecture model to remain
consistent with the system. An up-to-date architecture model
can answer questions regarding performance, scalability and
other quality aspects. Therefore, the goal of our approach is to
provide an accurate architecture model at any point time and
to keep the required manual effort and monitoring overhead
as low as possible.
4. Overview

CIPM can be considered as an extension of the itera-
tive software development process (e.g., agile or DevOps).
Currently, the developers rely on an automated build, a test

Mazkatli et al.: Preprint submitted to Elsevier Page 4 of 28

The CIPM Approach

automation, a Continuous Integration (CI) and a Continuous
Delivery (CD). CIPM aims to increase this level of automa-
tion in the development process by providing fast feedback
on the performance by enabling AbPP for design alternatives.

The next section (subsection 4.1) describes the models
that CIPM updates in order to execute the AbPP using Palla-
dio simulator, whereas subsection 4.2 explains how to inte-
grate the CIPM processes into DevOps pipeline.
4.1. Models to Keep Consistent

ExecutingAbPP using the Palladio simulator requires hav-
ing an up-to-date PCM containing the following sub-models:
(A) Repository, (B) System, (C) Resource Environment, (D)
Allocation and (E) Usage Model (cf. subsection 2.1).

To update the Repository Model (A), CIPM extends the
Co-evolution approach [47, 49, 46] to incrementally update
the software structure using commit-based consistency preser-
vation rules, cf. section 5. For estimating the PMPs of the
Repository Model, CIPM uses an adaptive instrumentation
and monitoring to collect the required data while the appli-
cation is running cf. section 6. It is called adaptive instru-
mentation, because only selected parts of source code are
fine-granular instrumented. Besides, it is adaptive monitor-
ing, because the fine-grained monitoring can be deactivated
after the calibration to reduce the monitoring overhead. The
Repository Model is calibrated at Dev-time using test-data (cf.
section 7) and refined at Ops-time using the monitoring data
from production environment (cf. section 9). The incremen-
tal calibration (cf. section 7) estimates the PMPs, such as
the resource demand (cf. subsection 7.1) considering the
parametric dependencies (cf. subsection 7.2). If necessary,
adaptive optimization of PMPs can be activated to estimate
the possible complex dependencies (cf. subsection 7.3). The
processes mentioned in this paragraph keeps the Repository

Model (A) of aPM up-to-date at both Dev-time and Ops-time.
Regarding System Model (B), we provide semi-automatic

extraction at Dev-time based on static analysis of source code
and automatic updates at Ops-time based on dynamic analy-
sis of monitoring data. More detail is found in subsection 5.4
and subsection 9.3. CIPM updates the Resource Environment

Model (C) based on the dynamic analysis too (cf. subsec-
tion 9.2). To update the Allocation Model (D) and Usage

Model (E), CIPM integrates the dynamic analyses of iObserve
approach [28] (cf. subsection 9.4 and subsection 9.5).

As a result, CIPM processes update the aPM parts (A-E)
continuously to keep it consistent with the running system.
To ensure the accuracy of the AbPP based on the updated
aPM, CIPM provides a self-validation process (cf. section 8).
It compares the simulation results with the monitoring data
to recognize the deviations and to eliminate them.

The following section (subsection 4.2) describes how we
integrate CIPM processes within the DevOps pipeline.
4.2. MbDevOps Pipeline

DevOps practices aim to close the gap between devel-
opment and operations through integrating them into one
reliable process [10]. We extend these practices to inte-
grate and automate the CIPM approach in a Model-based

DevOps (MbDevOps) pipeline. This enables AbPP during
DevOps oriented development as the next paragraphs explain.

The MbDevOps pipeline (shown in Figure 2) starts on
the “development” side with the Continuous Integration (CI)
process [55] that merges the source code changes of the de-
velopers. CI triggers the first process, CI-based update of
software models (1) (cf. section 5). This process updates
the source code model in the VSUM of VITRUVIUS (1.1)
(cf. subsection 5.1). Then, the predefined CPRs in VITRU-
VIUS respond to the changes in source code with updating the
Repository Model (1.2) (cf. subsection 5.2). Similarly, CPRs
update the InstrumentationModel (IM) (1.3) with new probes
corresponding to the recently updated parts of Repository

Model to calibrate them later (subsection 5.3). Besides, the
first process extracts the System Model semi-automatically
(1.4) (cf. subsection 5.4). The second process, the adap-
tive instrumentation (2), instruments the changed parts of
source code using the instrumentation points from IM (sec-
tion 6). The following process is the performance testing
(3) using the instrumented source code. It generates the nec-
essary measurements for calibration. The pipeline divides
the measurements into 80% training and 20% validation set
[92]. Using the training set, the incremental calibration (4)
estimate the PMPs considering the parametric dependencies
and enriches the Repository Model with them (cf. section 7).
After the calibration, the pipeline starts the self-validation (5)
with the test data, which uses the validation set to evaluate the
calibration accuracy. If the model is deemed accurate, devel-
opers can use the resulting aPM to answer the performance
questions using AbPP (6). If not, they can either change the
test configuration to recalibrate aPM again or wait for the
Ops-time calibration. Answering the what-if performance
questions using AbPP instead of the test-based performance
prediction reduces both the effort and cost to perform this
prediction before the operation.

The “operation” side of Figure 2 starts on the continuous
deployment (7) in the production environment. The Monitor-
ing (8) in the production environment generates the required
run-time measurements. The measurements in a customiz-
able time interval are grouped and sent to the subsequent
processes: self-validation (9) and Ops-time calibration (10).
The self-validation (9) is an essential process to improve the
accuracy of the aPM. It compares between the monitoring
data and monitored simulation results to validate the esti-
mated aPM. The result of self-validation is used as an input
to the Ops-time calibration and used to manage the mon-
itoring overhead. If the aPM is not accurate enough, the
Ops-time calibration process (section 7) recalibrates the inac-
curate parts based on the feedback of the self-validation, e.g.,
updating PMPs of Repository Model, Resource Environment

Model, System Model, Allocation Model or Usage Model (cf.
section 9). Moreover, the self-validation deactivates the fine-
grained monitoring of the accurate parts. To keep in mind,
self-validation (9) and calibration at Ops-time (10) are trig-
gered frequently according to customizable trigger time to
react to the new monitoring data, improve the accuracy of
aPM and to respond to the possible Ops-time changes.

Mazkatli et al.: Preprint submitted to Elsevier Page 5 of 28

The CIPM Approach

VSUM

re
co

n
fi

gu
ra

ti
o

n

DevOps

valid

CI-based update of
software models

yes

Instrumented code

Development
planning

Architecture-based
performance

prediction

TAllocation

yes
no

Instrumentation Model

Incremental
calibration

Performance testing

Self-validation

valid
TRepository

Code

generates

Adaptive
instrumentation

Adaptive
instrumentation

1 2

3

4

5

6

12

aPM-Resource Env. Model

a P M - S y s t e m M o d e l

aPM - Allocation Model

aPM-Repository Model

a P M - U s a g e M o d e l

aPM-Resource Env. Model

a P M - S y s t e m M o d e l

aPM - Allocation Model

aPM-Repository Model

a P M - U s a g e M o d e l

no

Model-based
analyses

11

Model-based
analyses

11

Ops-time calibration
10

Ops-time calibration
10

Self-validation
9

Self-validation
9

Monitoring
8

Monitoring
8

Continuous
deployment

7

Continuous
deployment

7

TUsage

TSystemComposition

TResourceEnvironment

a
d

ju
s
t

1.2

Continuous Integration (CI)

T
F

in
a

liz
e

1.3

1.
4

 e
xt

ra
ct

s

ModelProcess ModelProcess Control flow conditionNew process Contribution View
SynchronizationVSUMModelProcess Control flow conditionNew process Contribution View
SynchronizationVSUM Optional

control flow
Semi-automatic

 update

1.1 updates

calibrates

Automatic
 update

Figure 2: Model-based DevOps pipeline

Finally, the developers can perform more model-based
analyses (11) on the resulting model, e.g., model-based auto
scaling. Additionally, having an up-to-date descriptive aPM
supports the development planning (12) . This is due to the
advantages of models: increasing the understandability of the
current version, modeling and evaluating design alternatives
and answering what-if questions.

The following Sections (5-9) describe the new processes
that are marked as contributions in the Figure 2.
5. CI-based Update of Software Models

This section describes updating the models that are af-
fected by the changes in source code. The process is based
on (A) the static analyses of the source code and (B) the
predefined Consistency Preservation Rules (CPRs) within
VITRUVIUS platform. This process updates four models:

• The source code model within the VSUM of VITRU-
VIUS based on (A) as subsection 5.1 explains.

• The structure of Repository Model based on CPRs of
VITRUVIUS as subsection 5.2 describes.

• The IM based on CPRs of VITRUVIUS as explained in
subsection 5.3.

• The System Model based on (A) as explained in more
detail in subsection 5.4.

The following subsections describe how updating the
source code model in the VSUM (subsection 5.1) triggers
the CPRs of VITRUVIUS. CPRs update in their turn both of
Repository Model (subsection 5.2) and IM (subsection 5.3).
Additionally, subsection 5.4 explains the extraction of System
Model at Dev-time after the commit.
5.1. CI-based Update of the Source Code Model

The goal of this update process is to extract all source
code changes from a commit and to apply them on the source
code model in the VSUM of the VITRUVIUS platform. As
a result, it is not required to develop the source code within

the VITRUVIUS platform, i.e., developers can use their own
external tools for developing the source code and managing
the different versions. CIPM updates the aPM solely based
on the commits of the continuous integration of source code.

To achieve the update goal, all files in the repository with
the changes of the recent commit are parsed (cf. Figure 3).
The result of the parsing must be an EMF model to be com-
parable with the corresponding model in the VSUM. This
allows the extraction of EMF changes which can be applied
on the source code model in the VSUM.

PCM

IM

CI

Repository

Commit

Java Parser

CPRs

CPRs

Recent Java
Model

 Java Model

ProcesscontrolData Model VSUM

VSUM

synchronise

Components
Detector

update

Processcontrol

state-based propagation

Figure 3: Commit-based Update of the aPM

Our implementation considers the Java programming lan-
guage versioned in Git repositories. For the Java models,
we build upon the existing Java Model Parser and Printer
(JaMoPP) [25]. We extended the metamodel of JaMoPP to
enable the support of the Java versions 7-15. Our extensions
expand the metamodel with new features, for instance, the
diamond operator, lambda expressions, or modules. More-
over, we implemented our own printer and parser. The parser
implementation is based on the Eclipse Java Development
Tools (JDT) [80] from which Abstract Syntax Trees (ASTs)
and binding information are retrieved. The ASTs are con-
verted to EMF model instances while the bindings support
the resolution of references between model instances intro-
duced by, e.g., imports. In contrast, the printer outputs model
instances into valid Java code. More detail on our extension
is documented in a technical report [4] 2.

2The source code is available on https://github.com/

PalladioSimulator/Palladio-Supporting-EclipseJavaDevelopmentTools

Mazkatli et al.: Preprint submitted to Elsevier Page 6 of 28

https://github.com /PalladioSimulator/Palladio-Supporting-EclipseJavaDevelopmentTools
https://github.com /PalladioSimulator/Palladio-Supporting-EclipseJavaDevelopmentTools

The CIPM Approach

As a result, we use the extended JaMoPP to parse the files
after a commit. To include the source code’s dependencies in
order to retrieve complete code models, a build of the source
code can be performed before parsing it to obtain and include
libraries the source code depends on. Additionally, we im-
plemented a trivial recovery which creates model elements
for missing dependencies and which can also be used when
no build is performed to gain complete models. After pars-
ing the source code, EMF Compare [88] extracts the EMF
changes by comparing the parsed model with the source code
model in the VSUM. The extracted changes are sorted and
applied on the Java model within the VSUM. This triggers
the CPRs that update the related models as described in the
following subsections.
5.2. CI-based Update of the Repository Model

The goal of this process is to update the Repository Model

according to the changes that are transformed into the source
code model in the last step (see subsection 5.1). It is mainly
based on the CPRs defined by the Co-evolution approach [46]
that we adapted for our applications.The adjustments in the
CPRs are mainly related to technology-specific component
and interface detection.

In the case of microservice-based applications, the com-
ponent detection aims to find the microservices to generate
a component for each microservice. Currently, our VSUM
includes the source code model without any models of the
configuration files, which rises the difficulty of model-based
detection of the microservices within the VSUM. Therefore,
we added a pre-processing step after the parsing of the last
commit to provide the source code model with additional
information on the components based on the file structures
of code and the configuration files. For instance, in our im-
plementation, a microservice is identified if a set of classes is
complemented by a Docker and build file (e.g., a pom.xml file
for Maven). If there is only a build file without a Docker file,
the set of classes is considered as a component candidate, and
the developer is asked to decide whether the candidate is a
component or not. While the CPRs are focused on microser-
vices, we allow regular components. When the developer
decides that a component candidate is a component, they also
determine what the component represents: a microservice or
a regular component. After all components have been identi-
fied, a Java module model is created for each component. As
a result, our CPRs map the Java module to a corresponding
PCM component and consequentially generate a component
for each created module.

Moreover, we defined the CPRs that detect the interfaces
of microservices. Typically, microservices define a Represen-
tational State Transfer (REST) API as their interface. Thus,
we implemented CPRs for the Jakarta RESTful Web Services
(JAX-RS, formerly Java API for RESTful Web Services) and
Jakarta Servlet (formerly Java Servlet) specification [31], be-
cause these technologies are used in our case study. In the
context of JAX-RS, classes that are annotated with @Path or
@ApplicationPath constitute a REST API [15], so that an in-
terface is created for such annotated classes. HttpServlets

as a specialization of Servlet provides another possibility to
implement a REST API by overriding HTTP-specific meth-
ods in subclasses of HttpServlet [32]. Consequently, classes
that inherit from HttpServlet are also modeled as interfaces.
The interfaces of regular components are identified by public
classes and interfaces in a particular regular component.

During the execution of the CPRs, a mapping between
the source code and the aPM is established. This is necessary
for the consistency preservation process in VITRUVIUS. An
important extension of CPRs is the mapping between SEFF
actions and their correlated source code statements. If a SEFF
action, e.g., an internal action, is updated, then, the mapping
between this internal action and the related statements will
be stored in the correspondence model of VITRUVIUS.

In addition to the consistency preservation process, we
use the mapping between source code and aPM for two pro-
cesses in the context of CIPM: (A) the adaptive instrumenta-
tion (cf. subsection 5.3 and section 6) and (B) the Dev-time
System Model extraction, which is explained in subsection 5.4.
5.3. CI-based Update of the Instrumentation

Model
For this step, we defined CPRs that update the IM accord-

ing to the changes in a commit (cf. Figure 3). The defined
CPRs generate probes referring to SEFF actions whose source
code statements have changed in the most recent commit.

The adaptive instrumentation uses collected probes in
the IM and the mappings in the correspondence model to
generate the instrumented source code as section 6 explains.
5.4. Dev-time Extraction of System Model

This section presents a semi-automatic process for extract-
ing the System Model. This process can reduce the required
time and effort of creating the System Model manually. This
helps in applying AbPP at the Dev-time and supporting the
design decision at this stage (e.g., proactive model-based as-
sessment of the deployment plan). The process is composed
of two main steps: extracting the so-called Service-Call-
Graph (SCG) that represents the calls between the services
and extracting the system composition based on SCG.

In the following, we introduce the structure of the SCG.
After that, subsubsection 5.4.2 describes the SCG extraction
at Dev-time. The extraction of System Model from the SCG,
follows in subsubsection 5.4.3
5.4.1. Service-Call-Graph (SCG)

Conceptually, a SCG describes “calls-to” relationships
between services. We also consider the resource container
(computer) on which the respective services are executed.
Graphically, this can be displayed as a directed graph where
the pair of a service and resource container is a node. The
edge indicates that a service on a particular container calls
a service on a certain container. Figure 4 shows a truncated
version of the SCG from the TeaStore case study, which was
introduced in Sec. 3 and visualized in Figure 1.

Mazkatli et al.: Preprint submitted to Elsevier Page 7 of 28

The CIPM Approach

Persistence.persistOrder

Auth.placeOrder

WebUIServerHost

WebUI.confirmOrder

ApplicationServerHost

Registry.placeOrder

Registry.persistOrder

DataBaseServerHost

Persistence.persistItems

host

service

call

Figure 4: SCG extracted from an excerpt of TeaStore example

5.4.2. SCG Extraction at Dev-time
The extraction of SCG begins with a bytecode-level anal-

ysis that indicates the invocation dependencies between Java
methods [75]. Based on the mapping between the source code
and the Repository Model that has been stored in VITRUVIUS
(cf. subsection 5.2), the method call graph of the services
and the related components are transformed into an SCG. In
some cases, e.g., inheritance or conditions, it is uncertain
which call paths will be chosen at Ops-time. Therefore, the
extraction of SCG at Dev-time considers all possible execu-
tion semantics. Moreover, at Dev-time it is unknown where
the components of the services will be hosted. Therefore, we
leave this information leer, what causes conflicts by extract-
ing System Model, cf. subsubsection 5.4.3. These conflicts
are resolved by the user.
5.4.3. System Model Extraction from SCG

The extraction of System Model starts from modeling the
boundary interfaces that the system provides (provided role),
which the user determines (architect or developer). In our
example, the provided role is CartActions interface that pro-
vides services for purchasing products and managing orders.

For each provided role, the Repository Model is searched
for the components that provided it. If more than one com-
ponent provide the same interface, the user will be asked
to select the correct one. Then assembly contexts for the
selected components are created and linked to the provided
roles using delegations. In our running example, just the
WebUI component provides the CartActions interface. There-
fore, an instance of the WebUI component is created and added
to System Model, cf. the lower part side of Figure 1.

To complete the system model, the required roles of the
added assembly contexts must be satisfied. For that, the SCG
is traversed to detect all services called by the services of pro-
vided roles (as shown in Figure 4, the service confirmOrder

calls PlaceOrder). Like the previous step, the components that
provide the called services are detected based on Repository

Model. If more than one component provides the same re-
quired role, the user should resolve the so-called connection
conflict and select the right component (This is not the case for
Registry component that provides PlaceOrder). In the next
step, an assembly context for each selected component is
created and added if no one is available in System Model. Oth-
erwise, the user must resolve the so-called "assembly context
conflict" by deciding whether to use the available assembly
context or to add a new one (in our example, an instance of
Registry component is added and no conflict at this stage oc-
curs). Afterwards, the required roles are connected with the
related provided roles. Recursively, each required role of the

recently added assembly contexts is satisfied by adding the
required component instance or by connecting to a previously
added one, until all required roles are satisfied. In our ex-
ample, the required roles of Registry are satisfied by adding
instances of components that provide them (e.g., Auth and
Persistence) . Subsequently, the required role of Auth is sat-
isfied, since “Auth.placeOrder” callls “Registry.persistOrder”
as shown in Figure 4. In this case, an "assembly context con-
flict" occurs because an instance of the Registry component
is already available. As shown in Figure 1, the user can re-
solve this conflict by using the available instance of Registry
instead of creating a new one.
6. Adaptive Instrumentation

The goal is to instrument the parts of source code, which
have been changed and their changes may affect the validity
of related PMPs. In our running example, if Auth.PlaceOrder
service shown in (cf. section 3 is newly added then the
adaptive instrumentation injects monitoring points (probes)
to provide measurements for calibrating its PMPs: the re-
source demands of prepareOrder and finalizeOrder, the loop
execution number of loopAction and the parameters of
Rigistry.persistOrder and Rigistry.persistOrderItem exter-
nal calls. If the source code of the remaining services have
not been changed, the old estimations of their PMPs remain
valid and they are not instrumented fine-granular.

To automate the adaptive instrumentation, we, first, ex-
tend the CPRs between the source code model and PCM
[46], which respond to changes in the method body (e.g.,
adding/ updating statements) by reconstructing the SEFF us-
ing a reverse engineering tool [44]. Our extension extracts
the mapping between code statements and their related SEFF
actions and saves it in VITRUVIUS correspondence model.

Second, we define the CPRs that react to changes in SEFF
by providing IM with the corresponding probes (e.g., service
probe, internal action probe, loop probe or branch probe).
Consequently, IM includes probes related to SEFF elements
that code statements have been changed. However, both ar-
chitect and the self-validation process can also add additional
deactivated probes to IM, which can be activated by the self-
validation, if their related PMPs are not accurate enough.

Third, we define the measurements metamodel (cf. Fig-
ure 5), which consists of monitoring record types correspond-
ing to the probe types that are mentioned in the second step:

• ServiceContextRecord monitors the input parameters
properties (e.g., type, value, number of list elements,
etc.) to be considered as candidates for parametric de-
pendency investigation (parameters), the caller of this
service execution (callerExecutionID) to build SCG
and calibrate the SEFF external call (externalCallID),
the allocation context that captures where the com-
ponent offering this service is deployed (hostID,
hostName) and the service execution time to be used as a
reference by the self-validation (entryTime, exitTime).

• InternalActionRecord monitors the execution time of
internal actions (entryTime, exitTime) to estimate their
resource demands.

Mazkatli et al.: Preprint submitted to Elsevier Page 8 of 28

The CIPM Approach

InternalActionRecordInternalActionRecord
ServiceContextRecord

PCMContextRecordPCMContextRecord

SessionContextRecordSessionContextRecord

+ sessionID: String

+ exitTime: long

+ requestedResourceID: String

+ callerExecutionID: String

+ parameters: String

+ serviceID: String

+ exitTime: long

+ entryTime: long

+ internalActionID: String

LoopActionRecordLoopActionRecord

+ loopIterationCount: long

InternalActionRecordInternalActionRecord

+ executedBranchID: String

+ branchID: String

+ loopID: String

+ entryTime: long

+ externalCallID: String

HostContextRecordHostContextRecord

+ hostID: String

+ hostName: String

ResourceUtilizationRecordResourceUtilizationRecord

+ resourceID: String

+ timestamp: long

+ utilization: double

+ returnValue: String

Figure 5: The Measurements Metamodel
• ResourceUtilizationRecord monitors the utilization

of a resource (resourceID) in a time stamp (timestamp).
• LoopActionRecord monitors the number of loop itera-

tions (loopIterationCount).
• BranchActionRecord monitors the selected branch
(executedBranchID).

For implementing our specific monitoring records, we used
the instrumentation record language [34] of Kieker [78].

Finally, we implemented a model-based instrumentation
to generate the instrumented source code as a VITRUVIUS
view. This view combines the information from two models:
the source code model and the IM. The instrumentation starts
with generating the instrumentation code for each probe in
the IM according to the probe type. Then it injects the in-
strumentation code into a copy of the source code model. To
detect the correct places for the instrumentation codes, the in-
strumentation process uses the mapping stored in VITRUVIUS
correspondence model (cf. subsection 5.2), i.e., the relation
between probes and SEFF elements as well as the relation
between SEFF elements and their source code statements.
After the injection of the instrumentation code finishes, the
instrumented source code model is ready to be printed and
deployed in test/ production environment. This provides the
measurements for the calibration described in section 7.
7. Incremental Calibration of PMPs

The goal of incremental calibration of PMPs is to en-
able AbPP. Applying this process at the Dev-time before
the deployment in the production environment enables AbPP
for design alternatives instead of the expensive test-based
prediction. However, the calibration of Repository Model at
Dev-time is similar to the calibration at the Ops-time. The
only difference is that at Dev-time we use measurements from
the test environment instead of the production environment.
Therefore, the Dev-time calibration step can be skipped. In
this case, the PMPs will be calibrated for the first time at the
Ops-time using measurements from production environment–
section 9 explains the Ops-time calibration in more detail.

We mean with the incremental calibration that we just
calibrate the new or updated SEFF actions. Moreover, the
incremental calibration recalibrates also the inaccurate PMPs
that are detected with the self-validation.

As explained in subsection 2.1, the PMPs are the param-
eters of SEFF actions. They can be (1) the resource demand
of an internal action, (2) the iterations’ number of a SEFF

loop, (3) the branch transitions of SEFF branch and finally (4)
the arguments and return value of an SEFF external call.

Contrary to the PMPs (2-4), we cannot measure the re-
source demand directly by monitoring. Therefore, we envi-
sion an incremental estimation of resource demands based on
the adaptive monitoring, cf., subsection 7.1. Then, we iden-
tify the parametric dependencies to estimate all PMPs (1-4) in
relation to the impacting factors, cf. subsection 7.2. Finally,
we describe the adaptive optimization of the found parametric
dependencies using the genetic algorithm, cf. subsection 7.3.
7.1. Incremental Estimation of Resource Demands

The incremental calibration of the internal actions with
Resource Demand (RD) is challenging because we aim to
estimate the RD of internal actions incrementally without
high monitoring overhead. The existing Resource Demand
Estimation (RDE) approaches either estimate the RDs at the
service level [68] or require expensive fine-grained monitor-
ing [9, 45]. Therefore, we propose in the following paragraph
a light-weight RDE process that is based on adaptive instru-
mentation and monitoring to allow for an incremental RDE.

Our incremental RDE extends the approach of Brosig et
al. [9] to estimate the RDs in the case of adaptive monitoring,
i.e., monitoring the changed parts of source code.
Basis: Non-incremental resource demand estimation:
Brosig et al. approximate the RDs with measured response
times in the case of low resource utilization, typically 20%.
Otherwise, they estimate the RD of internal action i (a part
of SEFF, see subsection 2.1) for resource r (Di,r) based on
service demand law [54] shown in equation (1). Here, Ui,rthe average utilization of resource r due to executing internal
action i andCi is the total number of times that internal action
i is executed during the observation period of fixed length T :

Di,r =
Ui,r

Ci∕T
=

Ui,r ⋅ T
Ci

(1)

Brosig et al. measure the Ci and estimate Ui,r by using the
weighted response time ratios of the total resource utilization,
which is not applicable in our adaptive case where not all
internal actions are monitored. Therefore, we extend their
approach to estimate Ui,r and as a result Di,r based on the
available measurements and the old RDs estimations.
Incremental estimation of resource demands: Our ap-
proach distinguishes internal actions into two categories
based on whether they have been modified in the source
code commit preceding the incremental calibration. We
denote internal actions whose corresponding code regions
have been modified in the preceding source code commit
as Monitored Internal Actions (MIAs), – these code regions
are instrumented (cf. section 6) and monitored to produce
measurements for RDE. We denote internal actions whose
corresponding code regions have not been changed in the

Mazkatli et al.: Preprint submitted to Elsevier Page 9 of 28

The CIPM Approach

preceding source code commit as Not Monitored Internal
Actions (NMIAs), – monitoring data for these code regions
has already been observed in a previous iteration and, conse-
quently, we have already an estimation of their RDs.

Based on the fact that the total utilizationUr is measurable
and the utilization due to executing NMIAs can be estimated
based on the old estimations of RDs, we can estimateUr,MIAsand estimate the RD of each internal action i ∈ MIAs ac-
cordingly as it will be explained in the following paragraphs.

To estimate (Ur,NMIAs), we estimate which internal ac-
tions nmi ∈ NMIAs are processed in this interval and how
many times nmi are called (Cnmi). For that, we analyze the ser-vice call records (see section 6) to determine which services
are called in an observation period T and which parameters
are passed. Then we traverse the service’s control flows (i.e.
their SEFFs) to get NMIAs and predict their RD using the in-
put parameters. This requires evaluating branches and loops
of the control flow to decide which branch transition we have
to follow and how many times we have to handle the inner
control flow of loops. Our calibration, adjusts the new or
outdated branches and loops using the monitoring data (as
will be described in Sections 7.2.2 and 7.2.3) before starting
this incremental RDE. Thus, we make sure that we can tra-
verse the SEFFs control flow. Consequently, we can sum up
the predicted RDs for all calls of the NMIAs and divide the
result by T to estimate the Ur,NMIAs based on the utilizationlaw as shown in the equation 2:

Ur,NMIAs =

∑

nmi∈NMIAs

∑

k≤Cnmi

Dnmik,r

T
(2)

Accordingly, we estimate the utilization due to executing
theMIAs (Ur,MIAs) using the measuredUr and the estimated
Ur,NMIAs as shown in equation (3):

Ur,MIAs = Ur − Ur,NMIAs (3)
Hence, we can estimate the utilization Ui,r due to exe-

cuting each internal action i ∈ MIAs using the weighted
response time ratios as shown in equation (4), where Ri and
Ci are the average response time of i and its throughput. Rjis the average response time of the internal action j ∈ MIAs
and Cj is its throughput in T .

Ui,r = Ur,MIAs.
Ri ⋅ Ci

∑

j∈MIAs
Rj ⋅ Cj

(4)

Using Ui,r we can estimate the resource demand for i
(Di,r) based on the service demand law (equation (1)).

In the case that the host has multiple processors, our
approach uses the average of the utilizations as Ur.Note that we assume that each internal action is domi-
nated by a single resource. If this is not the case, we follow
the solution of Brosig et al. [9] to measure processing times
of individual execution fragments, so that the measured times
of these fragments are dominated by a single resource. To
differ between the CPU demands and disk demands, we sug-
gest detecting the disk-based services in the first activity of
CIPM using specific notation or based on the used libraries.

7.2. Identification of Parametric Dependencies
This process estimates the PMPs in relation to the im-

pacting input data and their properties, e.g., the number of
elements in a list or the size of a file. We begin by estimating
the dependencies of loops, branches, arguments of external
calls because the incremental RDE requires traversing the
SEFF control flow to estimate the utilization of NMIAs (sub-
sections: 7.2.2, 7.2.3 and 7.2.4). Then, we learn relations be-
tween PMPs and input data using decision trees for branches
and regression analysis for remaining PMPs. Based on the
cross-validation results of PMPs, an adaptive optimization
by the genetic algorithm can be started (cf. subsection 7.3).
7.2.1. Resource demands

To learn the parametric dependency between the resource
demand of an internal action i and input parameters P , we
first estimate the resource demand on resource r for each com-
bination of the input parameters (Di,r(P)) using the proposedincremental RDE as described in section 7.1.

Second, we adjust the estimated RDs of an internal action
using the processing rate of the resource, where it is executed,
to extract the resource demand independently of the resource’
processing rate Di(p).Third, if the input parameters include enumerations, we
perform additional analysis to test the relation between RDs
and enumeration values using the decision tree. If a relation
is found, we build a data set for each enumeration value.
Otherwise, we create one data set for each internal action
that includes the estimated RDs and their related numeric
parameters. The goal is to find potential significant relations
by the regression analysis of equation (5):

Di(P) = (a ∗ p0 + b ∗ p1 +⋯ + z ∗ pn+

a1 ∗ p20 + b1 ∗ p21 +⋯ + z1 ∗ p2n+

a2 ∗ p30 + b2 ∗ p31 +⋯ + z2 ∗ p3n+

a3 ∗
√

P0+b3 ∗
√

p1+⋯+z3 ∗
√

pn+C)
(5)

p0, p1.. pn are the numeric input parameters and the numeric
attributes of objects that are input parameters.

a... z, a1... z1, a2... z2 and a3... z3 are the weights of theinput parameters and their transformations using quadratic,
cubic and square root functions. C is a constant value.

Fourth, we perform the regression analysis to find the
weights of the significant relations and the constant C .

Fifth, we replace the constant value C with a stochastic
expression that describes the empirical distribution ofC value
instead of the mean value delivered by the regression analysis.
This step is particularly important when no relations to the
input parameters are found. In that case, the distribution
function will represent the RD of internal action better than
a constant value. To achieve that, we iterate on the resulting
equation that includes the significant parameters and their
weights to recalculate the value of C for each RD value and
their relevant parameters. Then, we build a distribution that
represents all measured values and their frequency.

Mazkatli et al.: Preprint submitted to Elsevier Page 10 of 28

The CIPM Approach

Finally, we build the stochastic expression of RD that
may include the input parameters and the distribution of C .
7.2.2. Loop iterations count

To estimate how the number of loop iterations depends on
input parameters, we need both the loop iterations’ count and
the input parameters for each service call. To achieve that,
we use our loop records that log the loop iterations’ count,
every time a loop finishes (see section 6). These records refer
to the service call record that contains the input parameters.

The reason of using additional records instead of counting
the total amount of enclosing service calls, is that the loop
may have a nested branch or loop, which does not allow one
to infer the correct count of loop iterations.

To estimate the dependency of the loop iteration count on
input parameters, we combine the monitored loop iterations
with the integer input parameter into one data set. To do so,
we filter out all non-integer parameters and take into account
their integer properties like the number of list elements or
size of files. Then, we add transformations (quadratic and
cubic) of parameters to the data set to test more relations.
Finally, we use regression analysis to estimate the weights
of the influencing parameters. Due to the restriction that
the loop iterations count is an integer number, we have to
ensure that the output value is always an integer value, which
is not always the case. Therefore, we have to approximate
the non-integer weights or express them as a distribution of
integer values. For instance, we can express the value 1.6
using a Palladio distribution function of an integer variable
which takes the value 1 in 40% of all cases and the value
2 in 60% of cases. Similar to the fifth step of parameter-
ized RDE in subsubsection 7.2.1, we replace the constant
value of the resulting stochastic expression with an integer
distribution function. This will be especially useful when the
cross-validation (e.g., based on correlation coefficient) finds
no relation to the input parameters.
7.2.3. Branch transitions

To estimate the parameterized branch transitions, we use
the predefined branch monitoring records that log which
branch transitions are chosen in addition to a reference to
the enclosing service call.

We monitor each branch instead of predicting the selected
transition according to the external call execution enclosed in
the branch due to potential nested control flows (e.g., nested
branches), where we cannot infer the selected transition.

The used monitoring records allow us to build a data set
for each branch, which includes the branch transitions and
the input parameters. To estimate the potential relations, we
use the J48 decision tree of the Weka library, an implemen-
tation of the C4.5 decision tree [60]. We filter out the non-
significant parameters based on cross-validation. Finally, we
transform the resulting tree into a boolean stochastic expres-
sions for each branch transition. If no relation is found, the
resulting stochastic expression will be a boolean distribution
representing the probability of selecting a branch transition.

7.2.4. External call arguments
This step predicts the parameters of an external call in

relation to the input parameters of the calling service.
For each parameter of an external call, we check whether

it is constant, identical to one of input parameters, or depend
on some of them. Moreover, we check the dependency to
the data flow, i.e., the return value of the previous internal/
external actions.

To identify the dependencies, we apply linear regression
in the case of numeric parameters and build a decision tree
in the case of boolean/ enumeration one. For the remaining
types of parameters, we build a discrete distribution.
7.3. Adaptive Optimization of Parametric

Dependencies
As the previous subsection described, we estimate the

PMPs with the parametric dependencies as a StoEx.
The optimization process is triggered just for the PMPs

that have high cross-validation errors. For the cross-
validation we used theMean Squared Error (MSE) as ametric.
The MSE threshold was set empirically. The goal of the opti-
mization process is to improve the accuracy of the inaccurate
PMPs and to reduce the complexity of the resulting StoEx.

The input of the optimization is the estimated StoEx and
the output is an StoEx with cross-validation error less or equal
to the error before the optimization.

For the optimization, we used the Genetic Programming
(GP). We define the genes as a mathematical function repre-
sented as an Abstract Syntax Tree (AST) similar to [44].

Then we set up GP with a data set of the possible de-
pendencies. We limited ourselves to the numeric candidates,
i.e., the numeric characterization of the input data. Then we
transform the initial StoEx that should be optimized to an
AST and pass it as a starting individual. Then, the main evo-
lutionary loop of the GP generates a new population based on
’crossover’ and ’mutation’. We defined the ’crossover’ that
randomly swaps two subtrees belonging to two trees. The
’mutation’ alters some genes to ensure the diversity in the
new population, e.g., altering subtree or some values.

In the next step, the fitness function evaluates the indi-
viduals based on two criteria: the prediction accuracy using
MSE and the complexity of the mathematical expression us-
ing the depth of the AST. These two metrics must be reduced
by the GP. Based on the defined fitness function, the selector
chooses the individuals for the next generation.

The evolution is terminated, if an optimal solution is
found, i.e., the best fitness is lower than a given minimum
threshold, the maximum execution time of GP is exceeded
or fixed number of generations have evolved.

Finally, the resulting AST is converted to stochastic ex-
pression and transferred to Repository Model. More detail on
the adaptive optimization is found in [82].

After the incremental calibration finishes, the self-
validation process with the test data is triggered to inform the
user about the accuracy of the calibrated aPM (cf. section 8).

Mazkatli et al.: Preprint submitted to Elsevier Page 11 of 28

The CIPM Approach

8. Self-Validation
The goal of Self-Validation is to continuously evaluate

the accuracy of the performance predictions related to the up-
dated aPM. In order to determine the prediction accuracy of
a model, it is necessary to have a baseline. We use measure-
ments from the real system as reference, which are available
in the form of monitoring data. At Dev-time we use the mon-
itoring data from test environment and at Ops-time we use
monitoring data from the production environment.

By comparing simulation data of the models with the
monitoring data, it can be assessed how well the models rep-
resent the actually observed system in its current state. In case
of high deviations, it is possible to intervene. The simulation
results are grouped into so-called measuring points, i.e., the
points at which measurements were taken. For example, a
typical measuring point is the response time of a service. To
be able to compare the simulation results with the monitoring
data, we have tomap themonitoring data to the corresponding
measuring points. This assignment is based on the mapping
between the Repository Model and the source code. After the
monitoring data has been mapped to the measuring points of
the simulation results, we have two distributions for each mea-
suring point. These are compared and different metrics are
calculated to determine how close the simulation results are
to the actual measured values. We use the following metrics
to compare the two distributions: Wasserstein distance [65],
Kolmogorov–Smirnov test (KS test) [19] and the difference
of conventional statistical measures (e.g., average and quar-
tiles). More details on the metrics are in subsubsection 10.2.2.
These metrics give the user feedback on the accuracy of aPM.
If the model is considered accurate, developers can trust it
and use it to answer What-if performance questions. Other-
wise, the self-validation determines the inaccurate parts to
be recalibrated. The re-calibration can access the calculated
metrics and use them to reduce the deviation and improve
the accuracy of the resulting aPM. In addition, the metrics
are used to adjust the granularity of the monitoring.

With this extension, the monitoring for certain services
can be deactivated if predefined criteria are met. As a result,
it is possible to balance the trade-off between effort and gran-
ularity of the monitoring. This feature is important to reduce
the monitoring overhead especially if the self-validation is
executed at Ops-time.

If the self-validation is executed in test environment and
the re-calibration fails by increasing the accuracy, then the
tester may change the test configuration to get more repre-
sentative measurements for the re-calibration aPM. Another
option is to wait for the Ops-time calibration. At Ops-time,
measurements based on the real usage of system can be con-
tinuously monitored until the accuracy degree is accepted and
the monitoring is deactivated. Besides, the self-validation can
activate the fine-granular monitoring for some parts if their
accuracy degree is not enough. In the case that the inaccurate
parts are not instrumented, new probes for them are added to
IM to recalibrate these parts after the next deployment.

9. Ops-time Calibration
The goal of Ops-time Calibration is to update the aPM

according to monitoring data of the production environment.
For that, we use a transformations pipeline similar to iObserve
[27]. To realize the transformation pipeline we used a tee and
join pipeline architecture [14], based on parts of iObserve.

The transformation pipeline (shown in Figure 2) con-
sists of the following transformations: TPreprocess for pre-processing monitoring data, TResourceEnvironment for updat-ing Resource Environment Model, TSystemComposition for updat-ingSystem Model, TAllocation for updating Allocation Model,
TRepository for updating Repository Model, TUsage for updating
Usage Model, and TF inalize for validating aPM and managing
the monitoring data. The following subsections explain the
processes within these transformations in more detail.
9.1. Pre-processing of Ops-time Calibration

The TPreprocess (the first step in the transformation
pipeline) filters the monitoring data and converts them into
suitable data structures. One example is the construction of
service call traces, which can be used to analyze the struc-
ture of the system composition. Furthermore, the monitoring
data is divided into two sets. One set is used as input for the
following transformations (training set) and the second set
is used for the validations of the architecture model (valida-
tion set). The reason for this split is that the validation is
much more meaningful when it is carried out on data that the
transformations have never seen.
9.2. Ops-time Updating of Resource Environment

After the monitoring data has been pre-processed,
the current Ops-time environment is analyzed by
TResourceEnvironment. The Ops-time information (moni-
toring) is written to the so-called Runtime Environment
Model (REM). The REM contains details about the hosts
and the connections between them. We defined CPR based
on the VITRUVIUS platform [36] to keep our REM consistent
with the resource environment in the corresponding aPM
(PCM). The advantages and the idea behind the REM are
twofold: REM ensures the separation of concerns principle
(Dev-time vs. Ops-time concerns) and it allows to establish
a mapping between the Ops-time environment and the
elements in the architecture model via the correspondence
mechanism of VITRUVIUS.
9.3. Ops-time Updating of System Model

Similar to Dev-time, extracting a System Model at Ops-
time requires a SCG that is used to update the System Model.
The next two paragraphs explain how we extract SCG from
monitoring data and how we use it to update the System Model.
SCG Extraction at Ops-time To build trees of service
calls, TT race analyses the monitoring data that refer directly
to the related services in Repository Model. The mapping to
Repository Model is woven into the source code by the instru-
mentation (cf. section 6). As a result, The service call traces

Mazkatli et al.: Preprint submitted to Elsevier Page 12 of 28

The CIPM Approach

can easily reflect which services call each other, which is the
information required for the construction of the SCG.

In this context, it is crucial that we know explicitly which
methods have been called, so the information quality is much
higher compared to SCG extracted at Dev-time from the
static code analysis (cf. subsubsection 5.4.2). Moreover, we
can attach the information about the host to the SCG nodes,
because this information is included in the monitoring data.

Even service call traces that extend beyond system bound-
aries are recorded by the monitoring. When a call leaves a
system, the necessary information is attached so that the
traces can be merged. For our approach, we have imple-
mented this exemplary for HTTP requests. A header is added
to each request, which indicates by which service call trace
it was triggered. The monitoring data is finally bundled and
sent to a backend, which can reassemble the traces based on
this information [56].
Updating the System Model The TSystemComposition up-
dates the System Model based on the extracted SCG and the
methodology that subsubsection 5.4.3 introduced. The only
difference is that no conflict happens, because the SCG at
Ops-time is more accurate and includes the host information.
9.4. Ops-time Updating of Allocation Model

After the extraction of the SCG (cf. subsection 9.3), the
system deployment is investigated in parallel to updating
the System Model. The TAllocation recognizes deployments
and undeployment events because the SCG also contains
information about the hosts (cf. Figure 5 and section 6).
As a result, TAllocation can add/ delete allocation context to/from Allocation Model. This supports TSystemComposition withthe required information about the current allocation of the
system components. More detail is found in [56].
9.5. Ops-time Updating of Repository Model

The TRepository calibrates the inaccurate PMPs that are
revealed by the self-validation using the monitoring data.
The calibration process is similar to the process at Dev-time
(cf. section 7) and includes the validation results to optimize
the PMPs. The simple optimization is based on the applied
regression analysis. It adjusts the regressions’ parameters
based on the resulting validation. i.e., the error between the
measured response time and monitored one. According to
the resulting validation, an optimization of PMPs based on
the genetic algorithm can be triggered, cf. subsection 7.3. In
parallel, TUsage analyses the user behavior and updates the
Usage Model based on iObserve [28].
9.6. Finalization of Ops-time Calibration

The final step of Ops-time Calibration, TF inalize, exe-cutes the self-validation (cf. section 8). Based on the self-
validation results and configurable criteria, the granularity
of the monitoring is adjusted, i.e., fine-granular monitoring
can be activated/ deactivated. In our example, the measured
response times of confirmOrder service are compared with
those obtained by simulating the architecture model. If the
deviation matches defined criteria (e.g., distance of the means

is less than 5ms), the fine-grained monitoring for this service
is deactivated. Finally, the validation results are entered as
input into the next execution of the Ops-time calibration.
10. Evaluation

In our evaluation, we follow the Goal-Question-Metrics
(GQM) [73]. Accordingly, we define, first, the goals of the
evaluation in subsection 10.1. Second, we drive the Evalu-
ation Questions EQs that can check whether the described
goals are reached or not. Third, we define metrics that can an-
swer the evaluation question in subsection 10.2. Finally, we
performed goal-oriented experiments to calculate the metrics
and answer the EQs, cf. subsection 10.3.

The results of our evaluation are described in three subsec-
tions that are related to the evaluation’s goals: the accuracy of
AbPP using the updated aPMs in subsection 10.4, the required
monitoring overhead in subsection 10.5 and the scalability
of the approach in subsection 10.6. Finally, we discuss the
threats of validity in subsection 10.7.
10.1. Evaluation Goals and Questions

The main goal of the evaluation is to evaluate the ap-
plicability of the approach in the mean of accuracy (Goal 1
(G1)), monitoring overhead (G2) and scalability (G3): CIPM
should provide accurate models (G1.1) and allows accurate
AbPP (G1.2) without high monitoring overhead (G2). More-
over, CIPM have to avoid performance issues at Ops-time by
quickly identifying and resolving inconsistencies (G3).

In the following, we drive the EQs that check the afore-
mentioned goals:
• G1.1: Accuracy of the incrementally updated models:

– EQ-1.1: How accurately does CIPM reflect changes
from a Git commit to a source code model?

– EQ-1.2: How accurately do CIPM update the
Repository Model and the IM after a new commit?

– EQ-1.2.1: Is there a difference between the propaga-
tion of multiple commits and the propagation of these
commits as a single commit?

– EQ-1.3: How accurately is the extraction of the System

Model at Dev-time?
– EQ-1.4: How accurately does CIPM update the

Resource Environment Model, the Allocation Model and
the System Model at Ops-time when applying software
adaption scenarios?

– EQ-1.5: How accurately does the adaptive instrumenta-
tion instrument the source code based on the collected
instrumentation points in IM?

• G1.2: Accuracy of AbPP using the updated aPMs:

– EQ-1.6: How accurate is the AbPP using the incremen-
tally updated aPM?

– EQ-1.7: How correctly can CIPM identify the paramet-
ric dependencies and to what extent can the estimation
of them improve the accuracy of the AbPP?

Mazkatli et al.: Preprint submitted to Elsevier Page 13 of 28

The CIPM Approach

– EQ-1.8: What impact do Ops-time changes have on the
accuracy of the AbPP?

• G2: Monitoring Overhead

– EQ-2.1: How much can the adaptive instrumentation
reduce the monitoring overhead?

– EQ-2.2: To what extent does the adaptive monitoring
at Ops-time help to reduce the monitoring overhead?

• G3: Scalability of the transformation pipeline:

– EQ-3: How does the transformation pipeline of CIPM
scale with an increasing amount of monitoring records?

10.2. Evaluation Metrics
The metrics used in the evaluation can be divided into

the following two categories.
10.2.1. Model Conformity

The Jaccard similarity coefficient (JC) [20] is used to
quantify the equality of two sets (A and B) as follows:

JC(A,B) =
|A ∩ B|
|A ∪ B|

(6)

The range of resulting JC is from 0 to 1. The higher the value,
the more similar the two sets. JC is 1 if the sets are identical.

Since the models are sets of elements, we can also apply
this concept to models. For that we implement a matching
algorithm that determines the identical elements (intersec-
tion) in two models A and B based on different factors: the
types of elements, some of properties like the name of named
elements, some references like the implementing interface
of a SEFF and the model structure like the position of SEFF
actions. The matched elements will be considered as the
intersection of the models A ∩ B.

We implement JC to evaluate the equality of System

Models, Allocation Models and Resource Environment

Models [56, p. 69]. In the case of JaMoPP Models and
Repository Models, we implement the structural matching al-
gorithm based on EMF Compare [88], see [3, p. 37]. Regard-
ing JaMoPP, we used a custom language-specific matching
algorithm [39]: We combine the default matching algorithm
of EMF Compare with a hierarchical Java-specific matching
algorithm that we extended from SPLevo [37] to be com-
patible with Java 7-15. Thus, Java-specific properties and
structure is considered to provide accurate matching despite
of the high required implementation effort.
10.2.2. Distribution Comparison

To compare distributions, we use three types of met-
rics: conventional statistical measures [74], non parametric
tests (Kolmogorov–Smirnov test) [66] and distance functions
(Wasserstein) [53]. These metrics can be used to compare the
distributions of the monitored response times (reality) with
the simulated response times of the models (prediction).

As non-parametric test we used the Kol-
mogorov–Smirnov test (KS test) [19]. It calculates
the maximum distance between the Cumulative Distribution

Functions (CDFs). The minimum is 0 (if both distributions
are perfectly identical) and the closer to 1, the more different
are the distributions under observation. Normally, this
non-parametric test is used to check whether two random
variables originate from the same underlying distribution.
Additionally, KS test is sensitive to the shifts and shapes of
distributions, which may produce undesirable false positive
alerts (high values) [30]. For example, KS test may result
in high value, if two distributions with the same mean
have different shapes. Therefore, we use the KS test in
combination with other metrics during our evaluation.

The Wasserstein metric is a distance measure for dis-
tributions [53]. In simple terms, it describes how much a
distribution must be changed to be transformed into the other
one. An advantage of this metric is that, unlike the KS test,
it is not sensitive to shifts of the distributions. A drawback,
however, is that the result is an absolute number that cannot
be easily interpreted without having a baseline.

Classic statistics metrics (e.g., mean or quartiles) are
calculated for both distributions.

Using these three commonly known metrics, it is pos-
sible to get an overview of the two distributions and their
dissimilarities in a simple and quick way.
10.3. Experiment Setup

The evaluation of our approach is based on three case
studies: TeaStore [83] that is introduced in section 3, Com-
mon Component Modeling Example (CoCoME) [26], and
the real-world case study "TEAMMATES" [72].

CoCoME is a trading system for supermarkets [26]. It
supports several processes such as scanning products at a
cash desk or processing sales using a credit card. We used a
cloud-based implementation of CoCoME, where the enter-
prise server and the database are running in the cloud.

TEAMMATES is a cloud-based tool to manage feedback
students’ [72]. It consists of a Web-based frontend and a Java-
based backend, on which we concentrated in the evaluation.

In this article, we present five experiments that focus on
evaluating the following points: the accuracy of aPMs after
changes at Dev-time (E1, E2) and after changes at Ops-time
(E4), the accuracy of AbPP that is achieved by self-validation
(E3, E4) and after adaptions at Ops-time (E4), the required
overhead (E4) and the scalability (E5). We exclude from this
paper the experiments that evaluate the accuracy of AbPP (A)
after incremented calibrations of aPM based on the adaptive
instrumentation [52] and (B) after optimization of the PMPs
[82]. The main reason of excluding these experiments is to
avoid producing too long paper, since the incremental cali-
bration based on adaptive monitoring (A) is also evaluated
partly in our experiments (E3, E4). Regarding (B), the opti-
mization using genetic algorithm will not be triggered in our
case studies because they include no complex dependencies.
Anyway, we sum up the results of the excluded experiments
when we present the results of the following experiments 3.

3More information on source Code, replication packages and experi-
ments is on https://sdqweb.ipd.kit.edu/wiki/CIPM

Mazkatli et al.: Preprint submitted to Elsevier Page 14 of 28

https://sdqweb.ipd.kit.edu/wiki/CIPM

The CIPM Approach

Experiment 1 (E1) The goal of E1 is to evaluate the
commit-based update of the aPM and to answer EQ-1.1,
EQ-1.2 and EQ-1.2.1. To achieve this goal, we used two
case studies: TeaStore and TEAMMATES.

E1 on TeaStore: we propagate the changes between
version 1.2 and 1.3.1 of the TeaStore. The commits from
version 1.2 to version 1.3.1 can be split into 3 intervals (I)
[1.2, 1.2.1], (II) [1.2.1, 1.3], (III) and [1.3, 1.3.1]. The first
interval consists of 20 commits of which 12 commits affect 5
Java files with overall 141 added lines and one removed line.
Three Java files (123 lines in total) were added. In interval
(II), seven of 11 commits affect four Java files with overall
121 added and 134 removed lines while nine Java files with
overall 215 added and 227 removed lines are affected by 12
of 100 commits in interval (III).

The initial commit includes a lot of architectural-relevant
changes. Propagating this commit is like an incremental
reverse engineering of the version 1.2 of code (IRE). The
successive commits in interval (I) include three architectural-
relevant changes: (A) in the Auth service (A1) andWebUI ser-
vice (A2), a new REST endpoint for obtaining the readiness
has been added whereby both implementations are identical,
(B) a method corresponding to a SEFF was extended by one
statement, and (C), in a supporting service, a servlet has been
added which provides functions to control and access log
files. The remaining changes are not architectural-relevant.
Besides, there are no changes in the dependencies. Both
interval II and interval III contain no architectural-relevant
changes and no changes in the dependencies. Table 1 displays
the commits in which the architectural-relevant changes oc-
curred. The commits are continuously numbered beginning
with version 1.2 as commit 0.

Before the changes are propagated, we use the changes
between an empty repository and version 1.2 as an initial
commit to integrate it into VITRUVIUS. Then, we perform
the commit-based update of the models by using the com-
mits that transform the version 1.2 into the version 1.3.1. In
addition, we execute the adaptive instrumentation after the
update process.

In the next step, we evaluate whether the models of the
VSUM are correctly updated based on the changes in a com-
mit. This applies to the (1) source code model, (2) the
Repository Model, and (3) the IM. Afterwards, we evaluate
whether the instrumented source code is correctly generated
(4). Finally, we evaluate the reduction of monitoring over-
head resulting by the adaptive instrumentation (5).

Regarding (1), an updated source code model in the
VSUM shall be in the same state as if the complete code
model of a commit would have been integrated into the
VSUM. Therefore, the source code of the last commit is
parsed to be used as a reference for evaluating the updated on
in the VSUM. We compare the updated source code model
with the generated reference by calculating the JC metric.

For the evaluation of the automatically updated
Repository Model (2), we use a manually updated Repository

Model as a reference to compare with. For example, in the
manual update for (A1) and (A2), a new interface with one

Table 1
Overview of architectural-relevant changes over commits

Commit 0 10 11 13 17 18
Architectural-relevant change IRE (B) Reverts (B) (B), (C) (A1) (A2)

method is added for each new REST endpoint. Furthermore,
the WebUI and Auth components provide their interface and
contain a new SEFF for the method. The added statement
by change (B) is included in an internal action and requires
no adjustment of the corresponding SEFF. As a consequence
of (C), the servlet is added as a new interface provided by
the supporting service. For more evaluation of CPRs updat-
ing Repository Model, we propagate also the version 1.3.1 to
compare the updated model with a manual available one [57].

The expected changes in the SEFFs cause the generation
of new probes in the IM (3). Thus, for every SEFF, we check
that the IM contains a matching coarse-grained probe. The
IM also must include fine-granular probes for all actions of
the SEFFs that have recently been changed or created.

Regarding (4), we first check that no compilation er-
rors occur because of the instrumentation. Then, we check
whether the instrumentation statements that are related to the
probes in the IM are correctly injected in source code.

Regarding (5), we investigate how much the adaptive
instrumentation can reduce the monitoring overhead (EQ-
2.1) by calculating the ratio of adaptively instrumented probes
to all probes that required to calibrate the whole aPM. In
addition, the ratio of the fine-grained adaptively instrumented
probes to all possible fine-grained probes is determined.

To answer EQ-1.2.1, for each interval, we propagate all
commits individually and then the commits between two ver-
sions as a single commits. For example, the 20 commits
between version 1.2 and 1.2.1 is propagated as a single com-
mit. Then, we compare the resulting Repository Model to the
result of the propagation of multiple commits and a manually
updated Repository Model by calculating the JC. The resulting
source code model and IM are also checked as in (1) and (3).

E1 on TEAMMATES Similar to TeaStore, we repeated
E1 with the real git history of TEAMMATES. The evaluation
covers 17.859 commits that impacts 1.428 files. The consid-
ered commits are propagated in five steps, i.e., the commits
are integrated and propagated as five commits to show the re-
sults in a simple way, since EQ-1.2.1. evaluates the accuracy
of integrating multiple commits. Therefore, we propagate
the commit 64842 (TM-0) as the initial commit, and 48b67
(TM-1), 83f51 (TM-2), f33d0 (TM-3), and ce446 (TM-4) as
the following commits. While TM-0 spans 17832 commits
and adds 114468 code lines in 709 Java files, TM-1 spans
3 commits with 154 added and 129 removed lines in 122
Java files. Between TM-0 and TM-1, the maintainer role was
introduced. From TM-1 to TM-2, public fields were made
private including the addition of corresponding get and / or
set methods and an adaptation of the direct field accesses to
the new methods. TM-2 spans 2 commits with 3249 added
and 2978 removed lines in 227 Java files. With TM-3, 2
commits affected 65 Java files adding 502 lines and removing
340 lines. Static variables were made non-static while some

Mazkatli et al.: Preprint submitted to Elsevier Page 15 of 28

The CIPM Approach

classes were converted to singletons. In the last commit TM-
4, JavaDoc was updated and more classes were converted to
singletons. It spans 20 commits adding 3457 and removing
1293 lines in 147 Java files 4. Similar to TeaStore, we repeat
the E1 on TEAMMATES to answer the following questions:
EQ-1.1, EQ-1.5, EQ-1.2 and EQ-2.1.
Experiment 2 (E2) In this experiment, we evaluate the ex-
traction of a System Model at Dev-time that is explained in Sec.
5.4. The input is the source code of TeaStore and CoCoME.
Then, the resulting models are compared to reference models
that represent the actual system compositions. Based on the
results of this experiment, EQ-1.3 can be answered.
Experiment 3 (E3) The goal of this experiment is to evalu-
ate the accuracy of Ops-time calibration (G1) and answerEQ-
1.6. The Experiment starts with monitoring the application
under examination and execution of a load test. Meanwhile,
metrics about the monitoring are collected and the moni-
toring data is used as input for the transformation pipeline.
The monitoring data is then compared with the simulation
results of the derived models. Finally, metrics are calculated
to quantify the deviation between the monitoring data and
the simulation results. Here, monitoring data from a parallel
and independent run were used for comparison, and the ex-
periment ran 10 times for 180 minutes to eliminate possible
outliers. This experiment was performed for CoCoME and
the results allow initial answers to EQ-1.6.
Experiment 4 (E4) This experiment extends E3. It eval-
uates the accuracy of aPM (G1.1), the accuracy of AbPP
(G1.2) and the required monitoring overhead (G2) after sim-
ulated adaptions. The foundation is a number of predefined
change scenarios, such as replications, allocations, workload
changes and system composition changes. The Scenario Gen-
erator selects several change scenarios and for each of the
selected scenarios, a reference model is generated. Since
the Scenario Generator knows the executed change, it also
knows how the reference model must look like. Besides the
list of changes, another output is the Change Orchestration
component, which applies the selected changes at Ops-time.
The modified system is observed and the arising monitoring
data is used as input for the transformation pipeline. Finally,
the resulting models are compared to the reference models
and deviations are detected by applying the JC. We focus
on the System Model, the Resource Environment Model and
the Allocation Model (EQ-1.4). The Usage Model is excluded
from this paper, as it is extensively addressed in [28].

For evaluating the accuracy of AbPP, the monitoring data
is compared to simulation results of the derived models to
estimate how well the models are parameterized at Ops-time
and how well they represent the performance characteristics
of the actual system. Here, we used the metrics that were
introduced in Sec. 10.2.2 to answer EQ-1.6, EQ-1.7and EQ-
1.8. In order to quantify the accuracy of the performance
predictions, the following procedure is used:

4see https://sdqweb.ipd.kit.edu/wiki/CIPM_Evaluation_Details

1. Execution of the experiment, storage of the derivedmodels
and the associated monitoring data.

2. Examination of themodels at different points in time based
on simulations.

3. Comparison of the simulation results with the monitoring
data in two different ways:
(a) Comparison with monitoring data collected after the
construction of the model under consideration (forward
prediction). This allows us to make statements about
how well the derived model can be used to predict future
scenarios.
(b) Comparison with monitoring data that was collected
chronologically before the construction of the model under
consideration (backward prediction). In this way, it can
be determined how well the model is able to reproduce
previously observed situations.

It must be taken into account that in future/previous points
in time other system compositions, runtime environments
or user behavior are present (due to the simulated changes).
Therefore, the considered model must be adapted in such a
way that it correctly reflects the system at the respective point
in time.

The experiment was executed 10 times, each time with
different changes. Every 5 minutes the next change is exe-
cuted. In total, the experiment is carried out for 180 minutes.
To ensure that the forward prediction and the backward pre-
diction are meaningful, we eliminate the warm-up phase and
only consider the time period between the 30 and the 150
minute, to avoid side effects that falsify the measurement,
e.g., just in time compiling.

Within this experiment, we only consider the TeaStore
case study and focused on the service “confirmOrder”. To in-
crease the complexity of the service, it was slightly modified
to call service of Recommender. After the order has been pro-
cessed within the “confirmOrder” service, the Recommender
component is re-trained in our experiment. As a result, the
response time of the “confirmOrder” service increases with a
growing number of orders in the database, since the execution
time of the Recommender depends on the number of orders
and the applied recommending strategy. Thus, we want to
make sure, that our approach recognizes parametric depen-
dencies (EQ-1.7) and the system composition (EQ-1.4).

We also consider another dimension while performing
E4 is the measurement of the emerging monitoring overhead
and the amount of generated monitoring data in the worst
case, where the whole source code is fine-granular instru-
mented. This information is used to evaluate whether the
monitoring overhead can be reduced by the self-validation,
which answers EQ-2.2.
Experiment 5 (E5) In this experiment, synthetic monitor-
ing data is generated and used as input for the individual
transformations within the transformation pipeline. First, we
identify the parameters that influence the execution times and,
subsequently, we generate the monitoring data in such a way,

Mazkatli et al.: Preprint submitted to Elsevier Page 16 of 28

https://sdqweb.ipd.kit.edu/wiki/CIPM_Evaluation_Details

The CIPM Approach

Table 2
Overview over the propagated commits and their evaluation
results for the updated models
Commit 4 5 6 7 8 10 11 13 14 15 16 18
JC Java Model 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
JC Repository Model 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SEFFs / SEFF Ac-
tions without probes

0 0 0 0 0 0 0 0 0 0 0 0

that it produces worst-case execution times. By means of this
experiment, scalability questions can be answered (EQ-3).
10.4. Accuracy

In this section, we present the results of evaluating the
accuracy of updated aPM in subsubsection 10.4.1 and the
related AbPP in subsubsection 10.4.2.
10.4.1. Model Accuracy

In this section, we present the evaluation of models’ ac-
curacy after changes at Dev-time (E1,E2) and changes at
Ops-time E4. Table 2 shows the evaluation results for the
updated models in interval I of experiment E1. It reveals
that the calculated JC for the Java models is one, i.e., the
source code models in the VSUM are correctly updated an-
swering EQ-1.1. The comparison between the manually and
automatically updated Repository Model results in JC values
of one. This means the Repository Model is also correctly
updated. Considering the IM, the evaluation shows that the
right probes are generated, i.e., no SEFF or SEFF action that
shall be instrumented is without a probe in IM, see the last
line of Table 2. As a consequence for answering EQ-1.2,
these results indicate that the Repository Model and IM were
correctly updated. The results of interval II, interval III, and
TEAMMATES are identical. We obtained JC values of one
for all Java models and repository models comparisons.

By comparing the integrated version 1.2 and 1.3.1 with
the manually created Repository Model, we discovered that
both models contain components for the microservices and
the interactions between them. However, the resulting
Repository Models include more technical details which are
not present in the manually created one.

Additionally, we check the instrumented source code that
is generated during experiment E1 to ensure that it includes
all probes that were represented in IM.We find that the source
code is correctly instrumented, which answers EQ-1.5.

The evaluation results for the propagation of the changes
as one commit for answering EQ-1.2.1 are visualized in ta-
ble 3. It shows that all models in the VSUM are correctly
updated. This indicates there is no difference for the resulting
Repository Model if multiple commits are propagated or if the
commits are propagated as one commit. As a result, develop-
ers can choose to propagate, for example, every or specific
commits. Considering the IM, there is a difference because
the IM after the single propagation contains all newly gen-
erated probes at once while the IM is continuously updated
during the propagation of multiple commits.

Next, based on in experiment E2, the accuracy of the
System Model extraction at Dev-time is investigated. The key

Table 3
Evaluation results for the propagation of commits between two
versions of the TeaStore as a single commit

Versions 1.2.1 1.3 1.3.1
Java Model 1.0 1.0 1.0

Updated Repository Model and references one 1.0 1.0 1.0
Repository Model after single and multiple propagations 1.0 1.0 1.0

SEFFs/ SEFF Actions without probes 0 0 0

Table 4
Results for deriving the System Model at Dev-time

Casestudy JC Model Elements Conflicts
CoCoME 1.0 16 2
TeaStore 1.0 18 5

Table 5
Model accuracy when simulating adaption scenarios

Change Type Minimum Jaccard Index
System Allocation Resource Environment

(De-)/Allocation 1.0 1.0 1.0
(De-)/Replication 1.0 1.0 1.0

Migration 1.0 1.0 1.0
System Composition 1.0 1.0 1.0

Workload 1.0 1.0 1.0

findings of the experiment for the selected case studies are
shown in Table 4. It can be seen that in both cases an identical
model to the reference model is built, as the JC equals to
one. Furthermore, the table shows the number of elements
in the final model and the number of conflicts that had to be
resolved manually during the process. According to these
results, EQ-1.3 can be answered, as it became clear that the
system compositions were reflected correctly in the extracted
System Models.

Finally, Table 5 shows the results of experiment E4 and
lists the minimal JC for all considered change scenarios at
Ops-time. The results show that three model types are cor-
rectly inferred in all cases. Consequently, it can be concluded
for EQ-1.4 that the change scenarios were recognized and
correctly propagated to the models.
Summary: We conclude that CIPM can update the software
models automatically and accurately. This applies to the fol-
lowing models: source code (JaMoPP), instrumented source
code, Repository Model, System Model, Allocation Model and
Resource Environment Model. Exceptional case was the update
of System Model and Repository Model at the Dev-time, where
the update process is not fully-automatically: the user can be
asked to confirm the detected components of the Repository

Model or to decide whether to create or reuse available com-
ponent’s instances for the System Model.
10.4.2. Prediction Accuracy

In this section, we present the results regarding the ac-
curacy of the AbPP, broken down according to the two case
studies, CoCoME and TeaStore.
CoCoME (E3): Figure 6 (a) shows the Wasserstein dis-
tance between the simulations of the derived models and the
monitoring data for the response times of the “bookSale”

Mazkatli et al.: Preprint submitted to Elsevier Page 17 of 28

The CIPM Approach

service, which is triggered when a purchase is initiated.

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

Elapsed time in minutes (m)

W
as
se
rs
te
in

di
st
an
ce

(a) Wasserstein distance over time

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

Elapsed time in minutes (m)

K
S
te
st

(b) KS test over time

Figure 6: Overview of the metrics over time for the CoCoME
case study (comparing the distributions which result from the
analysis and the monitoring)

These results provide initial answers to EQ-1.6. It can
be seen that the Wasserstein distance decreases very rapidly
at the beginning and then settles below a value of 20 with
minor fluctuations. This means that the accuracy of the sim-
ulations increases over time and consequently the accuracy
of the derived PCM models increases too. This observation
conforms to the chart on the KS test (Figure 6 (b)). In both
graphs the metrics decrease over time and then stabilize at a
low level. The fluctuations in the graphs are caused by the
fact that the simulations are stochastic processes. In other
words, it is very unlikely that two simulations produce identi-
cal results, even if the used models are equal. Consequently,
the accuracy of the models increases over time and then re-
mains at a constant level. The improvement in accuracy over
time can be explained by two factors: first, the pipeline re-
ceives more and more data over time and thus information
about the performance characteristics of the application. Sec-
ond, the repository transformation learns over time from the
monitoring data (see Section 9).

TeaStore (E4): Figure 7 shows the median of the Wasser-
stein distance over time for the forward and backward pre-
diction, regarding the response times of the “confirmOrder”
service. In addition, Table 6 summarizes the accuracymetrics
over time.

30 60 90 120 150
0

50

100

150

200

250

300

Time in minutes

W
as
se
rs
te
in

di
st
an
ce

Forward Prediction Backward Prediction

Figure 7: Median Wasserstein distance of the forward and
backward prediction for a model derived at a given point in
time - regarding the response times of TeaStores confirmOrder
service

The Wasserstein distance of the forward prediction is
still very high at the beginning. The main reason for this is
that the amount of data is not yet sufficient to estimate the
behavior in general. After a short time, however, it decreases
significantly and gets closer to the values of the backward
prediction. Thereafter, the value settles at a level close to the
backward prediction. Consequently, the derived models are
very well suited to make predictions about the performance
characteristics of the application.

The results also imply that the parametric dependency of
the response time on the number of orders in the database
is detected. The advantage of parameterized models has
been studied in detail in our previous work [52]. The ex-
periments compared the accuracy of AbPP using an aPM
that CIPM parameterized with dependencies to AbPP using
a non-parameterized one. The results show that AbPP using
parameterized aPM is obviously more accurate in case of
predicting the performance for unseen state [52] (EQ-1.7).
Additionally, the PMPs in E4 are well calibrated without an
optimization since TeaStore includes no non-linear paramet-
ric dependencies. Therefore, the optimization of the genetic
algorithm is not triggered in this scenario. However, the in-
cremental optimization of PMPs is evaluated in a previous
work in more detail [82]. The results show that the optimiza-
tion can improve the accuracy of AbPP for unseen state till
five times if the PMPs have non-linear dependencies.

The observations can be confirmed using additional met-
rics (see Table 6). The interpretation of the mean distance
depends on the average response time of the “confirmOrder”
service, which amounted to approximately 1000 ms in the
experiment. In addition, it is important to note that the aver-
age and standard deviation of the forward prediction metrics

Mazkatli et al.: Preprint submitted to Elsevier Page 18 of 28

The CIPM Approach

Table 6
Aggregated metrics of the forward prediction and backward
prediction over time

Metric Q1 Q2 Q3 Mean Std Dev
Forward Prediction

Wasserstein 44.732 47.179 52.718 70.991 68.524
KS test 0.125 0.143 0.168 0.199 0.131

Mean distance 13.198 25.965 41.924 61.573 91.482
Backward Prediction

Wasserstein 32.622 35.011 41.246 37.268 7.618
KS test 0.098 0.112 0.121 0.114 0.031

Mean distance 15.560 26.981 34.373 23.329 9.053

are strongly affected by the high values at the beginning of
the experiment. With the help of these findings, EQ-1.6 and
EQ-1.8 can be answered: all metrics show that the derived
models represent the already observed behavior very well and
on the other hand can also be used to predict the performance
for scenarios that have not been observed so far.
Summary: The Experiment E3 confirmed that the accuracy
of the aPMs at Ops-time is increasing over the time by learn-
ing from more monitoring data. Then, the accuracy stabilizes
at a good level: In case of CoCoME themaximumKS test was
0.075947 and the maximum Wasserstein distance amounted
to 12.384184. Similar results are obtained by applying E3 to
TeaStore [56, page 86]. Applying E4 on TeaStore confirmed
also the accuracy of aPMs despite of the simulated Ops-time
changes.

Additional experiments on TeaStore and CoCoME in [52]
studied the incremental calibration based on adaptive instru-
mentation in more detail and confirmed also the accuracy of
AbPP (EQ-1.6). The experiments result in KS test values
that do not exceed in average 0.16 and Wasserstein distances
that are in average lower than 39.6.
10.5. Monitoring Overhead

First, we calculated the reduced monitoring overhead that
the adaptive instrumentation is able to achieve according to
the last evaluation step of experiment E1 (5). According to
E1’s results shown in Table 7, the adaptive instrumentation
can reduce the monitoring overhead for all probes between
46.0% and 68.1% (EQ-2.1). On the level of the fine-granular
probes, the reduction of the monitoring overhead is between
72.8% and 99.5%. Even if the developer decides to instru-
ment the whole source code, the monitoring overhead will
be reduced by the adaptive instrumentation because it only
activates the probes that changed after the last commit.

Besides, the overall monitoring overhead is analyzed and
observed over time in the worst case, where the source code
is fully instrumented. Every 5 minutes, the sum of the moni-
toring overhead from the last 5 minutes is calculated. When
considering the entire overhead, it is important to note that
there are parts of the monitoring that are independent of the
granularity of the monitoring, such as observing resource
utilizations. Figure 8 shows the results which are obtained
by forming the median from multiple experiment executions.

The dashed line in the graph highlights the point in time

Table 7
Reduction of the monitoring overhead caused by the adaptive
instrumentation according to experiment E1

Case
study

Commit The reduction ra-
tio of probes

The reduction ratio of
fine-granular probes

T
ea
st
or
e 10 67.8% 96.3%

11 67.8% 96.3%
13 67.8% 96.3%
18 68.1% 97.6%

T
ea
m
m
at
e 1 55.4% 88.9%

2 46.0% 72.8%
3 62.8% 99.5%
4 60.7% 96.4%

0 40 80 120 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Elapsed time in minutes (m)

M
on

it
or
in
g
ov
er
he
ad

in
se
co
nd

s

Figure 8: Median of the arising monitoring overhead over time
when considering five minute intervals

when the first switch from fine-granular monitoring to coarse-
granular monitoring happened. Based on this graph, an an-
swer toEQ-2.2 can be given. After the self-validation process
begins to find individual services that are well calibrated, the
granularity of monitoring is reduced since some fine-grained
probes will be deactivated. This happens after about 20 min-
utes. At the peak, a monitoring overhead of approx. 1.362s
(i.e. 0,454% of 5 minutes) arises and then decreases to an
average of 0.822s as the experiment progresses. This cor-
responds to a reduction of 39.65%. Together with the eval-
uation results about the model and the prediction accuracy,
it can be concluded that the validation process successfully
identified services that are well represented in the model
and then reduced the granularity of the monitoring accord-
ingly. Ultimately, this leads to a significant reduction of the
monitoring overhead. In a previous work [52], we obtained
similar results in evaluating the monitoring overhead in case
of adaptive-instrumentation.
10.6. Scalability

We address EQ-3 by examining the scalability properties
of all sub-transformations in the pipeline separately in the
upcoming sections.
10.6.1. Repository Model Transformation

First of all, the scalability of the repository model transfor-
mation has been analyzed. The transformation can roughly be

Mazkatli et al.: Preprint submitted to Elsevier Page 19 of 28

The CIPM Approach

divided into two parts. In the first part the validation results
are analyzed and the results of this analysis are used as input
for the second step which executes the optimizations. The
analysis of the validation results is irrelevant regarding the
execution times. The results are iterated only once and even
if the simulations are configured with excessive simulation
times and measuring points, the execution time is negligible
within the overall context. Therefore, we will only consider
the second part in the following scalability analysis.

In our case study the optimization is performed based on
the regression. However, if the genetic algorithm would be
applied, it can be configured so that its execution time does
not exceed a specific threshold. As a result, there is a tradeoff
between the execution time and the accuracy of the resulting
Repository Model, requiring a more detailed scalability anal-
ysis that also considers possible side effects. This point will
be evaluated in a future work. For these reasons, we focused
here on the scalability of the transformation when using the
regression.

The regression is performed for each stochastic expres-
sion that needs to be calibrated. The number of data points
within a regression is variable and depends on the monitoring
data. This can be well illustrated using the example of inter-
nal actions whose resource demands need to be calibrated.
There are two factors that influence the execution time of
the transformation: the number of internal actions that are
observed and the number of data points that are recorded
for each internal action. The number of observed internal
actions corresponds to the number of triggered regressions
and the number of data points directly affects the duration
of the regressions. Based on this, we built the scenarios that
are considered in the scalability analysis. First, we examined
the execution times of the transformation for an increasing
number of internal actions. Subsequently, we observed the
runtimes for an increasing number of data points for a single
internal action. The results are summarized in Figure 9.

In both cases it is visible that the duration of the transfor-
mation scales linearly with increasing parameters. Even for a
high number of internal actions (a), the growth of the execu-
tion time remains linear. Exactly the same can be observed
when increasing the data points per internal action. In sum-
mary, it can be concluded that the transformation also scales
linearly in worst-case scenarios and therefore no unexpected
side-effects emerge.
10.6.2. Resource Environment Transformation

The resource environment transformation identifies
changes to the hosts and the network connections within the
Ops-time environment. The detected hosts and connections
are inserted into the Runtime Environment Model (REM).
Using the consistency rules based on VITRUVIUS, the cor-
responding resource containers and linking resources are
created in the Resource Environment Model. The execution
time of the transformation is dominated by the change prop-
agation via VITRUVIUS. In the following, we will examine
the execution times of the transformation with an increas-
ing number of new hosts and connections. Therefore, we

0 200 400 600 800 1,000
0

4

8

12

16

20

Number of executed, distinct internal actions

E
xe
cu
ti
on

ti
m
e
[s
]

(a) Scalability of the transformation with an increasing number
of executed distinct internal actions

2 ⋅ 105 4 ⋅ 105 6 ⋅ 105 8 ⋅ 105 1 ⋅ 106

4

8

12

16

20

Number of executions of a single internal action

E
xe
cu
ti
on

ti
m
e
[s
]

(b) Scalability of the transformation with an increasing number
of executions of a single internal action

Figure 9: Exploration of the scalability of the repository trans-
formation under various circumstances

consider two scenarios:
1. Increasing number of new hosts; sparse meshed - indi-

cating that each of the new hosts has only one network
connection

2. Increasing number of new hosts; fully meshed - indi-
cating that each of the new hosts has a connection all
other hosts

The chart (a) in Figure 10 shows the scalability of sparse
meshed Ops-time environments. The execution time scales
almost perfectly linear with up to 180 new hosts. For realistic
values of about 20 new hosts or less (within a single execution
of the transformation), an execution time of 2 seconds is
not exceeded in our test setup. In contrast, the execution
time rises exponentially when adding fully meshed hosts as
chart (b) in Figure 10 shows. This is simply because the
connections between hosts need to be synchronized one by
one. The number of connections increases exponentially with
the number of hosts when considering a fully meshed network.
However, it can still be concluded that the transformation
provides adequate execution times for most use cases, as an

Mazkatli et al.: Preprint submitted to Elsevier Page 20 of 28

The CIPM Approach

40 80 120 160

1

5

10

15

Number of newly added hosts

E
xe
cu
ti
on

ti
m
e
[s
]

(a) Scalability of the transformation with an increasing number
of newly added hosts; each new host has only one connection
to another host

1 5 10 15 20

1

5

10

15

Number of newly added hosts

E
xe
cu
ti
on

ti
m
e
[s
]

(b) Scalability of the transformation with an increasing number
of newly added hosts; each new host has a connection to all
other hosts (fully meshed)

Figure 10: Scalability analysis of the transformation of Resource
Environment Model in different scenarios

appearance of more than 10 new fully meshed hosts between
two executions of the pipeline will rarely occur in practice.

In summary, the scalability analysis for the Resource

Environment Model transformation has shown that the exe-
cution times scale appropriate for realistic use cases.
10.6.3. System Model and Allocation Model

Transformation
The transformations that are responsible for updating the

Allocation Model and the System Model are reviewed together
within the scalability analyses. For the derivation of updates
in the System Model, the number of changes in the system
composition is crucial. On the other hand, for the derivation
of updates in the Allocation Model, the number of changes in
the deployments is crucial. Consequently, these two parame-
ters determine the design of the scalability analysis. First, the
number of changes is determined, one half is populated with
deployment changes and the other half with changes to the
system composition. These change scenarios are generated
with different sizes and used as input for the combination

of both transformations (TSystemComposition and TAllocation).Figure 11 shows the cumulated execution time of both trans-
formations for an increasing number of changes. The chart

300 600 900 1,200
0

2

4

Number of changes in the system composition

E
xe
cu
ti
on

ti
m
e
[s
]

Figure 11: Execution times of System Model transformation
with an increasing number of changes in the system composition

shows that the execution times scale approximately linearly,
with a slightly lower slope at the beginning compared to
a higher but stable slope from about 500 changes onwards.
Even for a total number of 1200 changes the execution time
is lower than 4 seconds. Because such a number of changes
between two pipeline executions probably never occurs in
practice, it can be concluded that both transformations scale
well.
10.6.4. Usage Model Transformation

The Usage Model transformation is adopted from iObserve
and ported to our monitoring data structure. Hence, both
approaches are conceptually identical. A detailed scalability
analysis has already been done for iObserve [28]. The goal
of the scalability analysis in the context of CIPM is to show
that the results are consistent with those of iObserve. We
consider two different cases. First, an increasing number
of users, all of them triggering exactly one service call and
second, an increasing number of service calls triggered by a
single user. Figure 12 shows the scalability analysis for both
scenarios. Here, (a) shows the increase in execution times
for a rising number of users and (b) shows the growth for an
increasing number of service calls initiated by a single user.
When looking at the sub figure (b) it should be noted that
the axes are scaled logarithmically. In this way, we wanted
to ensure that the results can be compared to those obtained
from the iObserve scalability analysis.

The first experiment shows that the execution time scales
almost perfectly linear with an increasing number of users.
The same conclusion can be drawn from the results of iOb-
serve’s scalability analysis [28]. We also obtained consistent
results when analyzing the execution time for an increasing
number of service calls initiated by a single user. For 100
or less initiated service calls, the execution time increases
sublinearly and thereafter superlinearly with an explosive
growth in execution time above 10000 initiated service calls.

Mazkatli et al.: Preprint submitted to Elsevier Page 21 of 28

The CIPM Approach

0.3 0.6 0.9 1.2 1.5
⋅106

1

3

5

Number of user sessions

E
xe
cu
ti
on

ti
m
e
[s
]

(a) Scalability of the transformation when the number of users
increases; each user triggers a single service call

100 101 102 103 104 105

100

101

102

103

104

105

Number of services called

E
xe
cu
ti
on

ti
m
e
[m

s]

(b) Scalability of the transformation with an increase in the
number of triggered service calls for a single user (axes are
scaled logarithmically)

Figure 12: Scalability analysis of the Usage Model transformation

In the superlinear segment, the execution time is dominated
by the loop detection [28]. The extreme increase of the execu-
tion time with a high number of triggered service calls is not
critical, because such a user behavior is unlikely in practice.

In summary, it can be stated that the results of our scala-
bility analysis are in line with those of iObserve. Therefore,
it can also be concluded that the execution times of the Usage

Model transformation are appropriate.
10.7. Threats of Validity

The identification of the threats to validity is based on
guidelines for case study research [64]. Therefore, we distin-
guish between four dimensions of validity: internal validity,
external validity, construct validity and conclusion validity.
Internal Validity: A threat to validity is the selection of
metrics within the evaluation. For comparing distributions we
used the Wasserstein distance, the KS-test and conventional
statistical measures. These have been used in related studies
[29, 50, 82] and by combining them we minimize the risk
that a single metric distorts the evaluation results. The same
applies for the JC, which has also been used in related work
[28]. Another threat concerns the execution of experiment

E2 (see Sec. 10.3). The conflicts that occurred during the
execution of the experiment were resolved manually, so the
outcome depends on the person who performs the experiment.
If this person does not know the system composition well
enough andmakes incorrect decision, the calculated JCwould
be lower. A threat to validity by applying E1 on Teammates,
is that we do not have a reference PCM to evaluate the first
PCM, which we obtained by propagating the initial commit.
However, we evaluated the resulting PCM by the comparison
with the available well-documented architecture5.
External Validity: Another threat to validity is the selec-
tion of case studies. It may be possible that the results ob-
tained from the case studies are not representative. To avoid
this, we selected CoCoME, TeaStore and Teammates, which
are widely used in research and address common business
use cases [62, 83]. By combining the several case studies,
the risk of non-representative results is further reduced.
Construct Validity: In the evaluation we rely on a combi-
nation of synthetically generated monitoring data and moni-
toring data generated directly by executing a case study. For
the synthetically generated data, external factors such as the
Ops-time environment or the type of load testing can be ex-
cluded. When observing the case study, however, the quality
of the monitoring events must be ensured. Therefore, we
decided to use the Kieker framework with extensions that
have already been implemented in previous projects [78, 50].
Conclusion Validity: The subjectivity of a researcher must
be avoided when interpreting the evaluation results. Many
different, well known metrics have been used which are easy
to interpret. All conclusions and arguments are well struc-
tured and based on metrics, making them easy to understand.

11. Related Work
There are a lot of approaches that aim to achieve the

consistency between the software artifacts automatically. As
we explained in the introduction, these approaches belong to
two main categories: the first one (C1) generates the up-to-
date artifacts as a batch process (marked as Bin Table 8),e.g., reverse engineering approaches. The second one checks
the consistency and try to eliminate it (called as incremental
approach and marked as inc in Table 8). Both C1 and C2can be also classified in three subcategories based on the
phase, in which the consistency is maintained: at Dev-time,
at Ops-time or at both. The Table 8 summarizes the related
works and just assigns them to these subcategories, since the
main category is labeled as Bfor C1 and incfor C2.
Consistency management at Dev-time As shown in Ta-
ble 8, there are a lot of approaches that focus on consistency
maintenance at Dev-time. For that, they either extract an
architecture model or maintain an existing one (C2). The
reverse engineering approaches at Dev-time (C1) is based
mainly on static analysis of source code. For example, So-
MoX [6] and Extract [48] extract parts of PCM. Similarly,

5see https://teammates.github.io/teammates/design.html

Mazkatli et al.: Preprint submitted to Elsevier Page 22 of 28

https://teammates.github.io/teammates/design.html

The CIPM Approach

the ROMANTIC-RCA [2] extracts component-based archi-
tecture from an object-oriented system based on relational
concept analysis. A shortcoming of C1 is that they ignore the
possible manual optimization of the extracted model by the
next extraction. The incremental consistency maintenance at
Dev-time (C2) includes the approaches that minimize, pre-
vent, or repair architecture erosions [17].A good summary of
these approaches is presented in [17]. Moreover, Knodel and
Popescu compare the approaches that minimize the architec-
ture erosion by detecting architectural violations at Dev-time
[38]. JITTAC tool [13], for instance, detects the inconsis-
tencies between architecture models and source code, but
does not eliminate them automatically. Archimetrix [81]
detects also the most relevant deficiencies through continu-
ous architecture reconstruction based on reverse engineering.
Examples of C2 approaches that prevent the inconsistency
between source code and architecture model at Dev-time are
the co-evolution approaches, e.g., the mbeddr approach [79]
and Langhammer’s approach [46]. The mbeddr approach
uses a single underlying model for implementing, testing
and verifying system artifacts like component-based archi-
tecture. Similarly, the approach of Langhammer [46] uses
virtual single underlying model to allow the co-evolution of
PCM and source code. The Focus approach [18] avoids the
inconsistencies by recovering the architecture and using it as
a basis of evolution of object-oriented application. The main
limitation of the consistency management at Dev-time is that
the provided models are mostly considered as system docu-
mentation and should be enriched with PMPs if the AbPP
is to be support. Therefore, some of these approaches are
extended to allow AbPP. For example, Langhammer [46]
calibrated the co-evaluated approach with an approximation
of resource demand (response times) to show that it can be
used for AbPP. Similarly, Krogmann extended SoMoX with
a calibration of PMPs with the parametric dependencies [45]
based on the dynamic analysis (Beagle approach [44]). How-
ever, the approach of Krogmann requires high monitoring
overhead which restricting collecting the monitoring data
from the production environment rather from test environ-
ment. Therefore, we assign Krogmann’s approach to the
Dev-time approaches rather the hybrid approaches. In gen-
eral, the calibration of the whole project after each adjust-
ment in the models causes monitoring overhead and ignores
possible manual adjustments of PMPs, which our approach
overcomes by the incremental calibration. Moreover, all the
consistency management approaches at Dev-time ignore the
effect of adaption at Ops-time on the accuracy of aPMs.
Consistency management at Ops-time The approaches
that maintain the consistency at Ops-time are based mainly
on the dynamic analysis of monitoring events. For example,
the approach of Brosig et al. [8], PMX [85] and PMW [12]
are reverse engineering approaches (c1) that extract parts of
the aPM based on dynamic analysis to allow AbPP. Further-
more, the SLAstic approach [77, 76, 84] extracts aPM and
can detect some changes at Ops-time such as migrations and
reflect them in the model (C2). A previous work of us, iOb-

serve [28], can also respond to changes in deployment and
usage by updating the related parts in PCM (C2), what we
also integrated in this work (CIPM). Other approaches that
extract/ update performance models at Ops-time are summa-
rized in [71]. The Drawbacks of the Ops-time approaches are
that continuously high monitoring effort required to extract/
update models. Moreover, they cannot model system’s parts
that have not been called and consequentially not covered
by the monitoring. Besides, the source code changes are
ignored and the accuracy of the models is not validated by
these approaches.
Hybrid approaches The scope of hybrid approaches spans
Dev-time and Ops-time. For example, Langhammer intro-
duces also a reverse engineering tool (EjbMox) [46, P. 140]
that extracts the behavior of the underlying Enterprise Java
Bean source code, by analyzing it at Dev-time and calibrating
it based on the dynamic analysis at Ops-time. The Koners-
mann’s approach integrates information about the architecture
model into the code via annotations [40]. This enables the
dynamic generation of an architecture model from the source
code via transformations [40]. Moreover, the approach of
Konersmann synchronizes allocation models with running
software [41]. Spinner et al. [70] propose an agent-based
approach to update architectural performance models (C2).
As an input of the Spinner et al. approach, a static analysis of
the source code is performed to detect the components and
apply the instrumentation. However, the above-mentioned
approaches show a much smaller scope of consistency preser-
vation (e.g., limited recognition of evolution and adaption
scenarios).
Instrumentation Similar to CIPM, Kiciman et al. propose
a platform (AjaxScope) for the instrumentation of JavaScript
code [35] to allow performance analysis and usability evalua-
tion. Based on coarse-grained monitoring, AjaxScope identi-
fies where the source code runs slowly and instruments it to
find the cause of the slowness. AIM [87] provides adaptable
instrumentation of the services of application under test to
get more accurate measurements for estimating the resource
demands of an architectural performance model. Contrary,
our approach detects what parts should be instrumented fine-
granular. The measurements are collected then from test or
production environments.
Resource Demands The related approaches estimate the
resource demands either based on coarse-grained monitor-
ing data [68, 69] or fine-grained data [9, 89]. The latter
approaches give a higher accuracy by estimating PMPs but
have a downside effect because of the overhead of instru-
mentation and the monitoring. Our approach reduces the
overhead by the automatic adaptive instrumentation and mon-
itoring. Similar to CIPM, Grohmann et al. [22] update the
resource demand continuously at Ops-time. For that, they
tune, select, and execute an ensemble of resource demand
estimation approaches to adapt to changes at Ops-time. The
resulting estimation is a constant value. In contrast, CIPM
considers the parametric dependencies and optimizes the

Mazkatli et al.: Preprint submitted to Elsevier Page 23 of 28

The CIPM Approach

Table 8
An Overview of the Related work

sc
op

e

Consistency Management Approaches

aPM

PMPs AbPP Parametric Self-

R
ep
os
it
or
y

Sy
st
em

A
llo

ca
ti
on

R
es
.
E
nv
.

U
sa
ge

dependencies Validation

D
ev
-t
im

e

Co-evolution [46, p. 35] inc B
Mbeddr [79], Focus [18] inc
Consistency checker [38], [13], [81] inc
Extract [48] B B
ROMANTIC-RCA [2] B
SoMoX+Beagle [45, 44] B B

O
ps
-t
im

e Brosig et al.[8] B B B B B
PMX[85] B B B B
Brunnert et al. [12], PMW [11] B B B B B
SLAstic [77, 76], SLAstic.SIM [84] inc inc inc
iObserve [28] inc inc inc

H
yb
rid

EjbMoX [46, P. 140] B
Konersmann´s approach [40, 41] B
PRISMA [70] inc inc inc inc inc B
CIPM inc inc inc inc inc inc

estimated stochastic expression at Ops-time.
Parametric dependencies In addition to the approach of
Krogmann (SoMoX+Beagle) [44], the works of Ackermann
et al. [1] and Curtois et al. [16] characterize the parametric de-
pendencies. Additionally, Grohmann et al. [23] considers the
characterization of parametric dependencies in performance
models at Ops-time. Similarly, CIPM allows die character-
ization of parametric dependencies during an incremental
update and calibration of the aPM at Ops-time.
12. Conclusion

Considering the software architecture model increases the
understandability as well as the productivity of software de-
velopment [59]. Moreover, Applying AbPP promises proac-
tive detection of performance problems by simulation instead
of the expensive measurement-based performance prediction.

In this article, we presented the continuous integration
of the architectural performance model that keeps the aPM
continuously up-to-date. Our approach maintains the consis-
tency between software artifacts at Dev-time andOps-time. It
updates aPM after the evolution and adaptation of the system.

At Dev-time, the commit-based strategy extracts source
code changes from commits and updates the structure of aPM
including abstract behavior and the system composition.

To allow the simulation of aPM, our calibration estimates
the parameterized PMPs incrementally and uses a novel in-
cremental resource demand estimation based on adaptive
monitoring. The calibration identifies the parametric depen-
dencies and optimize it based on the genetic algorithm.

In addition to PMPs, the Ops-time calibration observes
the adaptive changes and updates the affected parts of aPM
accordingly. This applies to changes in deployment, resource
environment, usage and even system composition. The pro-
posed self-validation continuously analyses the accuracy of
the AbPP. The results of self-validation is used to manage

the monitoring and calibrate aPM at Ops-time.
For the evaluation we performed various experiments

based on two case studies: CoCoME [26] and TeaStore [83].
We were able to update the structure of the aPM based on
the commit. The accuracy of the updated models and the
applicability of the consistency maintenance process were
demonstrated. Besides, we measured the emerging monitor-
ing overhead and revealed, that by continuously adjusting
the monitoring based on the validation results, the arising
overhead can be reduced. Finally, we analyzed the scalability
characteristics of the transformation pipeline and discovered
that all transformations within the pipeline scale adequately.

In future works, we will expand the scope of the opti-
mization of the accuracy using genetic algorithm to cover
the whole abstract behavior of the services (SEFFs) instead
of just the performance parameters. Moreover, we plan to
evaluate the scalability of our approach in the case of the
optimization using genetic algorithm, since there are trade
between the impact of the algorithm’s configuration on PMPs
(their accuracy) and the overhead that this configuration re-
quires. Besides, we are aware that our implementation of
CPRs are currently just suitable for the domain of microser-
vice applications that are based on Java language and spe-
cific technologies mentioned in subsection 5.2. However,
our approach is based on the VITRUVIUS platform, that al-
lows defining domain-specific metamodels and consistency
preservation rules [36]. The required overhead to adjust meta-
models and CPRs for other domains in future works should be
acceptable comparing to the gained advantages by applying
CIPM approach. We also plan to consider technology-based
calls explicitly, for example calls to REST interfaces or calls
to messaging queues [86]. Then, CIPM can consider such
specific calls and calibrate them at Ops-time based on the
dynamic analysis of our extendable incremental calibration.
This will result in more accurate AbPP and avoid asking the
developers during the CI-based update of aPM about the

Mazkatli et al.: Preprint submitted to Elsevier Page 24 of 28

The CIPM Approach

real target of such technology-based calls. Currently, we
are adapting the CIPM approach so it is applicable to Lua-
based Industrial Internet of Things (IIoT) applications. Our
adaption covers parsing and printing LUA source code and
adjusting the CPRs to detect the IIoT components. The goal
of this extension is to evaluate the applicability of CIPM with
a Real-world IIoT applications from the industrial sector.
13. Acknowledgment

This work was supported by funding from the topic Engi-
neering Secure Systems of the Helmholtz Association (HGF)
and byKASTEL Security Research Labs (46.23.01) as well as
by the DFG (German Research Foundation) – project number
432576552, HE8596/1-1 (FluidTrust).
References
[1] V. Ackermann, J. Grohmann, S. Eismann, and S.

Kounev. Black-box learning of parametric dependen-
cies for performance models. In Proceedings of 13th
Workshop on Models@run.time (MRT), co-located
with MODELS 2018 (Oct. 14, 2018), CEUR Work-
shop Proceedings, Copenhagen, Denmark, Oct. 2018.

[2] Alae-Eddine El Hamdouni, Abdelhak-Djamel Seriai,
and Marianne Huchard. Component-based architec-
ture recovery from object oriented systems via rela-
tional concept analysis. In pages 259–270. University
of Sevilla, 2010.

[3] M. Armbruster. Commit-Based Continuous Integra-
tion of Performance Models. Master Thesis, Karl-
sruher Institut für Technologie, Sept. 14, 2021.

[4] M. Armbruster. Parsing and Printing Java 7-15 by
Extending an Existing Metamodel. Technical report,
2022. Also available as https : / / publikationen .

bibliothek.kit.edu/1000149186.
[5] S. Balsamo, A. Di Marco, P. Inverardi, and M. Sime-

oni. Model-based performance prediction in software
development: a survey. IEEE Transactions on Software
Engineering, 30(5):295–310, May 2004.

[6] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and
J. Kofron. Reverse Engineering Component Models
for Quality Predictions. In Proceedings of the 14th
European Conference on Software Maintenance and
Reengineering, European Projects Track, pages 199–
202. IEEE, 2010.

[7] S. Becker, H. Koziolek, and R. Reussner. The Palla-
dio component model for model-driven performance
prediction. 82:3–22, 2009.

[8] F. Brosig, N. Huber, and S. Kounev. Automated ex-
traction of architecture-level performance models of
distributed component-based systems. In Proceedings
of the 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’11,
pages 183–192, USA. IEEE Computer Society, 2011.

[9] F. Brosig, S. Kounev, and K. Krogmann. Automated
Extraction of Palladio Component Models from Run-
ning Enterprise Java Applications. In Proceedings of
the 1st International Workshop on Run-time mOdels
for Self-managing Systems and Applications (ROSSA
2009). In conjunction with the Fourth International
Conference on Performance Evaluation Methodolo-
gies and Tools (VALUETOOLS 2009), 10:1–10:10,
Pisa, Italy. ACM, New York, NY, USA, Oct. 2009.

[10] A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu,
W. Hasselbring, C. Heger, N. R. Herbst, P. Jamshidi, R.
Jung, J. von Kistowski, A. Koziolek, J. Kroß, S. Spin-
ner, C. Vögele, J. Walter, and A. Wert. Performance-
oriented DevOps: A Research Agenda. Technical re-
port SPEC-RG-2015-01, SPEC Research Group - De-
vOps Performance Working Group, Standard Perfor-
mance Evaluation Corporation (SPEC), Aug. 2015.

[11] A. Brunnert, C. Vögele, A. Danciu, M. Pfaff, M.
Mayer, and H. Krcmar. Performance management
work. Business & Information Systems Engineering,
6(3):177–179, 2014.

[12] A. Brunnert, C. Vögele, and H. Krcmar. Automatic per-
formance model generation for java enterprise edition
(ee) applications. In Computer Performance Engineer-
ing, pages 74–88. Springer, 2013.

[13] J. Buckley, S. Mooney, J. Rosik, and N. Ali. Jittac: a
just-in-time tool for architectural consistency. 2013
35th International Conference on Software Engineer-
ing (ICSE):1291–1294, 2013.

[14] F. Buschmann. Pattern-orientierte Software-
Architektur: ein Pattern-System. Professionelle
Softwareentwicklung. Addison-Wesley, 1998.

[15] Contributors to Jakarta RESTful Web Services.
Jakarta RESTful Web Services, version 3.0, Sept. 23,
2020.

[16] M. Courtois and M. Woodside. Using regression
splines for software performance analysis. In Proceed-
ings of the 2nd Int. Workshop on Software and Perfor-
mance, 2000.

[17] L. de Silva and D. Balasubramaniam. Controlling soft-
ware architecture erosion: a survey. Journal of Systems
and Software, 85(1):132–151, 2012.

[18] L. Ding and N. Medvidovic. Focus: a light-weight,
incremental approach to software architecture recovery
and evolution. In Proceedings Working IEEE/IFIP
Conference on Software Architecture, pages 191–200,
2001.

[19] Y. Dodge. Kolmogorov–smirnov test. In The Concise
Encyclopedia of Statistics. Springer New York, New
York, NY, 2008, pages 283–287.

[20] H.-F. Eckey, R. Kosfeld, and M. Rengers.Multivariate
Statistik. Jan. 2002.

Mazkatli et al.: Preprint submitted to Elsevier Page 25 of 28

https://publikationen.bibliothek.kit.edu/1000149186
https://publikationen.bibliothek.kit.edu/1000149186

The CIPM Approach

[21] O. F. F. Filho and M. A. G. V. Ferreira. Semantic
Web Services: A RESTful Approach. In IADIS Inter-
national Conference WWWInternet 2009, pages 169–
180. IADIS, 2009.

[22] J. Grohmann, S. Eismann, A. Bauer, S. Spinner, J.
Blum, N. Herbst, and S. Kounev. Sarde. ACM Transac-
tions on Autonomous and Adaptive Systems, 15(2):1–
31, 2021.

[23] J. Grohmann, S. Eismann, S. Elflein, M. Mazkatli, J.
von Kistowski, and S. Kounev. Detecting Parametric
Dependencies for Performance Models Using Feature
Selection Techniques. In Proceedings of the 27th IEEE
Int. Symposium on the Modelling, Analysis, and Simu-
lation of Computer and Telecommunication Systems,
MASCOTS ’19, Rennes, France, Oct. 2019.

[24] C. Heger, A. van Hoorn, M. Mann, and D. Okanović.
Application performance management: state of the art
and challenges for the future. In Proceedings of the
8th ACM/SPEC on Intl. Conference on Performance
Engineering, ICPE ’17, pages 429–432, L’Aquila, Italy.
ACM, 2017.

[25] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende.
Closing the gap between modelling and java. InM. van
den Brand, D. Gašević, and J. Gray, editors, Software
Language Engineering. Volume 5969, Lecture Notes
in Computer Science, pages 374–383. Springer Berlin
Heidelberg, 2010.

[26] R. Heinrich, S. Gärtner, T. Hesse, T. Ruhroth, R. Reuss-
ner, K. Schneider, B. Paech, and J. Jürjens. The Co-
CoME platform: a research note on empirical stud-
ies in information system evolution. Int. Journal of
Software Engineering and Knowledge Engineering,
25(09&10):1715–1720, 2015.

[27] R. Heinrich. Architectural run-time models for perfor-
mance and privacy analysis in dynamic cloud appli-
cations. ACM SIGMETRICS Performance Evaluation
Review, 43(4):13–22, 2016.

[28] R. Heinrich. Architectural runtime models for inte-
grating runtime observations and component-based
models. Journal of Systems and Software, 169, 2020.

[29] R. Heinrich, P. Merkle, J. Henss, and B. Paech. Inte-
grating business process simulation and information
system simulation for performance prediction. Soft-
ware & Systems Modeling, 16(1):257–277, 2017.

[30] C. Huyen. DESIGNING MACHINE LEARNING SYS-
TEMS: An iterative process for production-ready ap-
plications. O’REILLYMEDIA, INC, USA, [S.l.], first
edition edition, 2022.

[31] Jakarta EE Platform Team. Jakarta EE Platform, ver-
sion 8, Aug. 26, 2019.

[32] Jakarta Servlet Team. Jakarta Servlet Specification,
version 5.0, Sept. 7, 2020.

[33] B. Joy, G. Steele, J. Gosling, and G. Bracha. The
Java Language Specification, Third Edition. Addison-
Wesley Reading, 2000.

[34] R. Jung, R. Heinrich, and E. Schmieders. Model-
driven instrumentation with kieker and palladio to fore-
cast dynamic applications. In Symposium on Software
Performance, volume 1083, pages 99–108. CEUR,
2013.

[35] E. Kiciman and B. Livshits. Ajaxscope: a platform for
remotely monitoring the client-side behavior of web
2.0 applications. ACM Trans. Web, 4(4), 2010.

[36] H. Klare, M. E. Kramer, M. Langhammer, D. Werle, E.
Burger, and R. Reussner. Enabling consistency in view-
based system development – The Vitruvius approach.
Journal of Systems and Software, 171, 2021.

[37] B. Klatt. Consolidation of Customized Product Copies
into Software Product Lines. PhD thesis, Karlsruhe
Institute of Technology (KIT), Karlsruhe, Germany,
Oct. 2014.

[38] Knodel Jens and Popescu Daniel. A comparison of
static architecture compliance checking approaches.
In 2007 Working IEEE/IFIP Conference on Software
Architecture (WICSA’07), page 12, 2007.

[39] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F.
Paige. Different models for model matching: an anal-
ysis of approaches to support model differencing. In
2009 ICSE Workshop on Comparison and Versioning
of Software Models, pages 1–6, 2009.

[40] M. Konersmann. Explicitly Integrated Architecture -
An Approach for Integrating Software Architecture
Model Information with Program Code. PhD thesis,
May 2018.

[41] M. Konersmann and J. Holschbach. Automatic syn-
chronization of allocation models with running soft-
ware. Softwaretechnik-Trends, 36(4), 2016.

[42] H. Koziolek. Modeling Quality. In Modeling and sim-
ulating software architectures: the Palladio approach.
MIT Press, Cambridge, Massachusetts, 2016.

[43] M. E. Kramer. Specification Languages for Preserving
Consistency between Models of Different Languages.
PhD thesis, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany, 2017. 278 pages.

[44] K. Krogmann. Reconstruction of Software Component
Architectures and Behaviour Models using Static and
Dynamic Analysis, volume 4 of The Karlsruhe Series
on Software Design and Quality. KIT Scientific Pub-
lishing, 2012.

[45] K. Krogmann, M. Kuperberg, and R. Reussner. Using
Genetic Search for Reverse Engineering of Parametric
Behaviour Models for Performance Prediction. IEEE
Transactions on Software Engineering, 36(6):865–
877, 2010. M. Harman and A. Mansouri, editors.

Mazkatli et al.: Preprint submitted to Elsevier Page 26 of 28

The CIPM Approach

[46] M. Langhammer. Automated Coevolution of Source
Code and Software Architecture Models. PhD thesis,
Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany, 2017. 259 pages.

[47] M. Langhammer and K. Krogmann. A co-evolution ap-
proach for source code and component-based architec-
ture models. In 17. Workshop Software-Reengineering
und-Evolution, volume 4, 2015.

[48] M. Langhammer, A. Shahbazian, N. Medvidovic, and
R. H. Reussner. Automated extraction of rich software
models from limited system information. In 2016 13th
Working IEEE/IFIP Conference on Software Architec-
ture (WICSA). IEEE, 2016.

[49] M. Langhammer, A. Shahbazian, N. Medvidovic, and
R. H. Reussner. Automated extraction of rich software
models from limited system information. In 2016 13th
Working IEEE/IFIP Conference on Software Architec-
ture (WICSA), pages 99–108, Apr. 2016.

[50] M. Mazkatli, D. Monschein, J. Grohmann, and A.
Koziolek. Incremental calibration of architectural per-
formance models with parametric dependencies. In
IEEE 17th International Conference on Software Ar-
chitecture (ICSA 2020); Salvador, Brazil, November
2-6, 2020. 17th International Conference on Software
Architecture. ICSA 2020 (Salvador da Bahia, Brasilien,
Nov. 2–6, 2020), pages 23–34. IEEE Computer Soci-
ety, Los Alamitos, 2020.

[51] M. Mazkatli and A. Koziolek. Continuous integra-
tion of performance model. In Companion of the 2018
ACM/SPEC Int. Conference on Performance Engi-
neering, ICPE ’18, Berlin, Germany. ACM, 2018.

[52] M. Mazkatli, D. Monschein, J. Grohmann, and A.
Koziolek. Incremental calibration of architectural per-
formance models with parametric dependencies. In
IEEE International Conference on Software Archi-
tecture (ICSA 2020), pages 23–34, Salvador, Brazil,
2020.

[53] F. Mémoli. Gromov-wasserstein distances and the met-
ric approach to object matching. Foundations of Com-
putational Mathematics, 11(4):417–487, 2011.

[54] D. A. Menasce, V. A. Almeida, L. W. Dowdy, and L.
Dowdy. Performance by design: computer capacity
planning by example. Prentice Hall Professional, 2004.

[55] M. Meyer. Continuous integration and its tools. IEEE
software, 31(3):14–16, 2014.

[56] D. Monschein. Enabling Consistency between Soft-
ware Artefacts for Software Adaption and Evolution.
Master Thesis, Karlsruher Institut für Technologie,
2020.

[57] D. Monschein. Enabling Consistency between Soft-
ware Artefacts for Software Adaption and Evolution.
Master Thesis, Karlsruher Institut für Technologie,
2020.

[58] D. Monschein, M. Mazkatli, R. Heinrich, and A. Kozi-
olek. Enabling consistency between software artefacts
for software adaption and evolution. In 2021 IEEE
18th International Conference on Software Architec-
ture (ICSA), pages 1–12, 2021.

[59] T. Olsson, M. Ericsson, and A. Wingkvist. Motivation
and impact of modeling erosion using static architec-
ture conformance checking. In 2017 IEEE Interna-
tional Conference on Software ArchitectureWorkshops
(ICSAW), pages 204–209. IEEE, 4/5/2017 - 4/7/2017.

[60] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1993.

[61] R. Heinrich, E. Schmieders, R. Jung, K. Rostami, A.
Metzger, W. Hasselbring, R. Reussner, and K. Pohl. In-
tegrating run-time observations and design component
models for cloud system analysis. 9th Int’l Workshop
on Models@run.time:41–46, 2014.

[62] R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-
Heuser, J. Keim, and L. Märtin. Managed Software
Evolution. Springer, Cham, June 2019.

[63] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A.
Koziolek, H. Koziolek, M. Kramer, and K. Krogmann.
Modeling and Simulating Software Architectures – The
Palladio Approach. MIT Press, Cambridge, MA, Oct.
2016. 408 pages.

[64] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case
Study Research in Software Engineering: Guidelines
and Examples. Wiley Publishing, 1st edition, 2012.

[65] F. Santambrogio.Optimal Transport for Applied Math-
ematicians: Calculus of Variations, PDEs, and Model-
ing. Progress in Nonlinear Differential Equations and
Their Applications. Springer International Publishing,
2015.

[66] D. J. Sheskin. Handbook of Parametric and Nonpara-
metric Statistical Procedures. Chapman andHall/CRC,
4th edition, 2007.

[67] C. U. Smith and L. G. Williams. Performance Solu-
tions: A Practical Guide to Creating Responsive, Scal-
able Software. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2003.

[68] S. Spinner, G. Casale, F. Brosig, and S. Kounev. Eval-
uating approaches to resource demand estimation. Per-
formance Evaluation, 92, 2015.

[69] S. Spinner, G. Casale, X. Zhu, and S. Kounev. Li-
brede: a library for resource demand estimation. In
Proceedings of the 5th ACM/SPEC Int. Conference on
Performance Engineering, ICPE ’14. ACM, 2014.

[70] S. Spinner, J. Grohmann, S. Eismann, and S. Kounev.
Online model learning for self-aware computing in-
frastructures. Journal of Systems and Software, 147:1–
16, 2019.

Mazkatli et al.: Preprint submitted to Elsevier Page 27 of 28

The CIPM Approach

[71] M. Szvetits and U. Zdun. Systematic literature review
of the objectives, techniques, kinds, and architectures
of models at runtime. Softw. Syst. Model., 15(1):31–69,
Feb. 2016.

[72] Teammates developer web site, June 29, 2022.
[73] The goal question metric approach. 1994.
[74] G. Upton and I. Cook. A Dictionary of Statistics. Ox-

ford University Press, 2008.
[75] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,

and V. Sundaresan. Soot: a java bytecode optimization
framework. InCASCON First Decade High Impact Pa-
pers, CASCON ’10, pages 214–224, Toronto, Ontario,
Canada. IBM Corp., 2010.

[76] A. van Hoorn, M. Rohr, A. Gul, and W. Hasselbring.
An adaptation framework enabling resource-efficient
operation of software systems. In N.Medvidovic and T.
Tamai, editors, Proceedings of theWarmUpWorkshop
for ACM/IEEE ICSE 2010 on -WUP ’09, page 41, New
York, New York, USA. ACM Press, 2009.

[77] A. van Hoorn.Model-Driven Online Capacity Man-
agement for Component-Based Software Systems,
number 2014/6 in Kiel Computer Science Series. De-
partment of Computer Science, Kiel University, Kiel,
Germany, 2014. Dissertation, Faculty of Engineering,
Kiel University.

[78] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A framework for application performance monitor-
ing and dynamic software analysis. In Proceedings
of the 3rd ACM/SPEC International Conference on
Performance Engineering (ICPE 2012), pages 247–
248, Boston, Massachusetts, USA, April 22–25, 2012.
ACM, Apr. 2012.

[79] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. Mbeddr:
an extensible c-based programming language and ide
for embedded systems. In Proceedings of the 3rd
Annual Conference on Systems, Programming, and
Applications: Software for Humanity, SPLASH ’12,
pages 121–140, Tucson, Arizona, USA. Association
for Computing Machinery, 2012.

[80] L. Vogel, S. Scholz, and F. Pfaff. Eclipse jdt - abstract
syntax tree (ast) and the java model. vogella GmbH,
2009-2020.

[81] M. von Detten. Archimetrix: a tool for deficiency-
aware software architecture reconstruction. In WCRE
2012, [Piscataway, N.J.] IEEE, 2012.

[82] S. Voneva, M. Mazkatli, J. Grohmann, and A. Kozi-
olek. Optimizing parametric dependencies for incre-
mental performance model extraction. In H. Muccini,
P. Avgeriou, B. Buhnova, J. Camara, M. Caporuscio,
M. Franzago, A. Koziolek, P. Scandurra, C. Trubiani,
D. Weyns, and U. Zdun, editors, Software Architec-
ture, pages 228–240, Cham. Springer International
Publishing, 2020.

[83] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J.
Grohmann, and S. Kounev. Teastore: a micro-service
reference application for benchmarking, modeling and
resource management research. In 2018 IEEE 26th Int.
Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MAS-
COTS), pages 223–236. IEEE, 2018.

[84] R. von Massow, A. van Hoorn, and W. Hassel-
bring. Performance simulation of runtime reconfig-
urable component-based software architectures. In
I. Crnkovic, V. Gruhn, and M. Book, editors, Soft-
ware Architecture, pages 43–58, Berlin, Heidelberg.
Springer Berlin Heidelberg, 2011.

[85] J. Walter, C. Stier, H. Koziolek, and S. Kounev. An
Expandable Extraction Framework for Architectural
Performance Models. In Proceedings of the 3rd Inter-
national Workshop on Quality-Aware DevOps (QU-
DOS’17). ACM, Apr. 2017.

[86] D.Werle, S. Seifermann, and A. Koziolek. Data stream
operations as first-class entities in component-based
performance models. In A. Jansen, I. Malavolta, H.
Muccini, I. Ozkaya, and O. Zimmermann, editors, Pro-
ceedings of the 14th European Conference on Software
Architecture, ECSA 2020, volume 12292 of Lecture
Notes in Computer Science, pages 148–164. Springer,
2020.

[87] A. Wert, H. Schulz, and C. Heger. Aim: adaptable in-
strumentation and monitoring for automated software
performance analysis. In 2015 IEEE/ACM 10th Inter-
national Workshop on Automation of Software Test,
pages 38–42. IEEE, 5/23/2015 - 5/24/2015.

[88] What is emf compare?, 2019.
[89] F. Willnecker, M. Dlugi, A. Brunnert, S. Spinner, S.

Kounev, W. Gottesheim, and H. Krcmar. Comparing
the accuracy of resource demand measurement and
estimation techniques. In European Workshop on Per-
formance Engineering. Springer, 2015.

[90] M. Woodside, G. Franks, and D. C. Petriu. The future
of software performance engineering. In 2007 Future
of Software Engineering, FOSE ’07, pages 171–187,
USA. IEEE Computer Society, 2007.

[91] M. Woodside, G. Franks, and D. C. Petriu. The Future
of Software Performance Engineering. In Proceedings
of ICSE 2007, Future of SE, pages 171–187. IEEE
Computer Society, Washington, DC, USA, 2007.

[92] Y. Xu and R. Goodacre. On splitting training and val-
idation set: a comparative study of cross-validation,
bootstrap and systematic sampling for estimating the
generalization performance of supervised learning.
Journal of analysis and testing, 2(3):249–262, 2018.

Mazkatli et al.: Preprint submitted to Elsevier Page 28 of 28

