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Abstract: Modelling and reconfiguration of production processes require knowledge across different
domains. This in-depth knowledge is necessary to avoid possible side effects that could threaten the
production plant, the workpiece or the worker. Therefore, process modelling approaches allow adding
additional data to the steps of a process. Such additions can be constraints, which need to be fulfilled
before a step can be executed. Upon reconfiguration of production processes, these constraints need
to be validated to ensure that the objective of the process is still met. However, this task demands
expertise in the field of process modelling as well as in the domain of the production process and
the production plant. To the best of our knowledge, state-of-the-art production process modelling
approaches are unable to determine the semantic validity of a reconfigured production process. In this
paper, we introduce a domain-specific modelling language dedicated to model and validate constraints
between production steps. With this approach, we aim to assist the operator in reconfiguring production
processes. We evaluate this approach in three case studies and show that our approach can detect
violated constraints in production processes.

Keywords: domain-specific modelling language; process modelling; process validation; resilience;
cyber-physical production systems

1 Introduction

The increasing prevalence and availability of Internet of Things (IoT) technology like
sensors, actuators, nodes, and tags create a much higher and more dynamic integration into
the physical world and new challenges for future software systems. The interconnection
of IoT components increases the complexity of such systems and the potential for errors
and failures grows, as well. Hence, also the risk of errors and failures increases. Due to the
complexity of IoT systems and the human interaction with such systems, not all errors can
be predicted. IoT are frequently confronted with unknown input and output values due to
the constantly changing and uncontrollable execution context of the system. As a result,
processes have to deal with highly volatile resources and states at runtime, which can fail at
any time and result in the need for reconfiguration of process. Reconfiguring a failed process
is complex, because the partial state of the system until the failure needs to be considered.
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In this paper, we present a Domain-Specific Modelling Language (DSML) that enables
people who are not experts on the production system but are experts on the production
process to model and modify production processes in an IoT system. In the development of
the DSML, besides computer scientists, experts of mechanical and electrical engineering
and experts in the field of modelling production processes were involved. The DSML allows
the domain expert to model sub-processes with conditions that must be fulfilled. These
conditions can be pre-conditions that must be fulfilled before a sub-process can be executed
as well as post-conditions that are fulfilled after a sub-process has been executed. In case
the conditions are not met, the automated verification detects such errors. As a result,
non-domain experts can use the DSML given in this paper to model production processes
in an IoT system.

Our contributions in this paper are: 1. A DSML that allows to model production processes in
an IoT system. In contrast to general-purpose process modelling approaches, our approach
focuses on the conditions and constraints of production processes. 2. A verification process
that allows to validate reconfigured production processes. More details regarding the
state-of-the-art is provided in Sect. 2.

The remainder of the paper is structured as follows: State-of-the-art of process verification
is presented in Sect. 2. The requirements for the DSML are discussed in Sect. 3. The DSML
is presented in Sect. 4. In Sect. 5, we evaluate the DSML by modelling three production
processes based on two real world production lines and on one laboratory case study. The
paper concludes in Sect. 6.

2 State of the Art

Business Process Model and Notation 2 (BPMN2) is a historically grown, monolithic
DSML for modelling and simulating business processes. Due to the strong coupling of
the entities, Business Process Model and Notation (BPMN) is hard to maintain [Ro17]
and to extend [HSR19]. However, the BPMN2 specification and other process modelling
approaches likeDECLARE [PSA07] do not support the validation of pre- and post-conditions
of process models and extending these approaches would increase their complexity. With
increasing complexity of process models, the need for automatic and reliable testing of these
models increases, as well. This arises from the necessity to follow regulations in certain
fields, e. g., patient care [Ly12] or pharmaceutical quality assurance [Al03], but also from
the need for validating rescheduled manufacturing processes as a result of risk mitigation in
Cyper-physical Production Systems (CPPS) [Ih21].

Validating process models during the modelling process can help to find failures and improve
the quality [Kü10]. Previous research focuses on annotating business processes with semantic
information regarding the constraints between certain process steps [WGH08; WHM08]
and considers general business processes such as sales orders. Furthermore, declaring
constraints between process steps has been examined as a vehicle to synthesise emergency
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response workflows on the basis of predefined templates [ML17] and to dynamically
generate and adapt process models describing software engineering workflows [GOR10a;
GOR10b; GOR11]. Processes can also be represented as a combination of Unified Modeling
Language (UML) and Object Constraint Language (OCL). This can be converted into logical
expressions, which in turn can be used for validation [EST15]. Furthermore, Petri nets were
used to allow verification of Event-driven Process Chain (EPC) models [Va99], but EPC
does not provide a concise syntax for modelling constraints between process steps. Instead,
linking multiple events to a process step requires the combination with logical connectors.
It is also possible to model production processes using imperative languages such as Prolog,
RuleML [BPS10] or Stanford Research Institute Problem Solver (STRIPS) [FN71]. The
process structure is modelled as a set of facts and rules and the Prolog or RuleML engine is
then used to validate the modelled process. In STRIPS, a set of states and actions with pre-
and post-conditions can be defined. Due to the imperative nature of these languages, they
are harder to comprehend than our approach.

While the risk of modelling processes that are not valid are reduced by these approaches,
domain knowledge is still required to model these processes. In addition, the applicability
of these approaches has not been empirically examined in the context of CPPS, yet. Finally,
UML and OCL are General-purpose programming languages (GPPLs) and therefore
significantly more difficult than a dedicated DSML for modelling and evaluating production
processes.

3 Requirement Elicitation

We identified the following requirements that the language needs to comply with: Certain
processes cannot be executed when certain conditions are not fulfilled at the beginning of the
process. Thus, the first requirement R1 for the language is to specify the preconditions of a
process. After a processes is executed, the state of the plant or the workpiece can be changed,
thus we derive R2 that the language must be able to also model the postconditions of a
process. It is also possible that after a process is executed, previously specified conditions are
no longer relevant, thus we derive R3 that the language must be able to remove conditions. A
process can also explicitly exclude a condition, thus we derive R4 that the language must be
able to exclude conditions. Besides the syntactic requirements, we also require the language
to verify whether a modelled process meets the specified condition, thus we derive R5 that
the language must be able to verify whether a process is valid.

4 A Language for Validating Reconfigured Production Processes

4.1 DSML Implementation

In this section, we introduce the language engineering framework used in our approach.
Furthermore, we will explain key parts of the grammar of our language.
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Xtext5 is a framework for language engineering that allows to design and implement editing
tools for textual Domain-Specific Languages (DSLs). The DSL is based on a grammar, like
the Extended Backus–Naur Form (EBNF). The Xtext framework generates plug-ins for
the Eclipse6 Integrated Development Environment (IDE) without any additional effort. We
chose Xtext, as it is integrated with the Eclipse Modelling Framework (EMF)7, which is a
modelling framework for code generation.

ProcessCondition

TaskStep
0..*

0..*

tasks
λ ε π τλ: 0..* requires

ε: 0..* provides

π: 0..* excludes
τ: 0..* removes

Legend

subProcess

1..1

step

next

0..1

Fig. 1: Reduced illustration of the Process Model Validation Language (PMVL) syntax.

Fig. 1 shows a reduced model of the PMVL. A process consists of a sequence of further
(sub)processes or tasks. We decided to introduce subprocesses to enable modularisation
of processes and to allow reducing the size of a process. Thus, it is possible to reuse
already existing processes and to reduce code duplication. The tasks in a process represent
a sequence of steps that are executed in a certain order. One task of a process consists of a
step. A step can have conditions that are either required (𝜆) and must be fulfilled, so that
the step can be executed, or a step can provide (𝜖) conditions that are fulfilled after a step
is executed. A step can also remove (𝜏) conditions that were fulfilled until the step was
executed. Finally, a step can also exclude (𝜋) conditions that would prevent the execution of
the task.

The PMVL is divided in the declaration of processes, tasks, steps, and states. Conditions
are part of steps and cannot be declared separately. Due to space limitations, the textual
syntax of a process it described in more detail in our supplementary material [Ko22].

4.2 Production Process Validation

Besides the language definition, the implementation of validation steps is also supported by
the Xtext framework. We distinguish between the following kinds of validation: 1) Inconsis-
tent preconditions: Due to the backward references, the algorithm traverses through all steps
leading to the current step. By traversing through these steps, contradicting preconditions
can be identified and the corresponding steps are highlighted. 2) Inconsistent preconditions:
Due to the forward references, the algorithm traverses through all steps following the current

5 https://www.eclipse.org/Xtext/
6 https://www.eclipse.org/eclipse/
7 https://www.eclipse.org/modeling/emf
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step. By traversing through these steps, contradicting postconditions can be identified and the
corresponding steps are highlighted. 3) Branch inconsistency: If processes are determined
to run in parallel, the algorithm checks contradicting conditions of the steps in a branch.
If errors are found, the corresponding steps are highlighted. 4) Conditions already met:
If a step does provide the same set or a sub-set of postconditions as the preceding step,
the algorithm identifies the previous step via the backward reference. If the conditions are
already met by a preceding step, the redundant step is highlighted. 5) Cycle detection: Via
a depth-first search utilising the forward and backward references, the algorithm checks
whether the process reaches the last step. If the depth-first search does not reach the last
step in the processes, the corresponding processes that form a cycle are highlighted.

5 Evaluation

This section presents the evaluation of the PMVL based on three case studies. The evaluation
design is explained in Sect. 5.1. The case studies are presented in Sect. 5.2. The evaluation
results are presented in Sect. 5.3 and discussed in Sect. 5.4.

5.1 Evaluation Design

The evaluation of the PMVL follows the Goal Question Metric (GQM) approach [Ba94].
The goal is to analyse the PMVL to evaluate the accuracy of the PMVL instances with
respect to precision and completeness of the identified errors from the point of view of the
production plant domain experts in the context of reconfiguring and validating production
processes.

To evaluate the accuracy of the PMVL instances, we compare a list of the identified warnings
and errors to a reference list. The list of errors has been created using PMVL. The reference
list has been created manually by the best available experts in developing and maintaining
the respective case study production plant and its production processes. For the filling line
case study, we asked the co-authors from the Karlsruhe University of Applied Sciences.
For the assembly line case study, we asked the co-authors from the Fraunhofer Institute for
Machine Tools and Forming Technology IWU. For the production line case study, we asked
the plant experts from SITEC Industrietechnologie GmbH. Where the co-authors fulfill also
the role of the domain experts who provide a reference list, we consider the list as correct
and complete.

For evaluating the accuracy of the PMVL, we ask the research question:How is the accuracy
of our approach? To answer this question, we use the metric 𝑭1 score. 𝐹1 is a harmonic
mean of precision and recall, by aggregating the amount of true positives, false positives,
and false negatives. The amount of true positives, false positives, and false negatives is
calculated by comparing the list of identified errors with the reference list. An error derived
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by PMVL is considered as a true positive, if the error is also marked in the reference list
(i. e., there is an error in the reference list for the same line as in the derived list). An error
derived by PMVL is considered as a false positive, if the error is not marked in the reference
list (i. e., there is no error in the reference list for an error found by PMVL). An error not
derived by PMVL is considered a false negative, if the error is marked in the reference list
(i. e., there is an error in the reference list with no corresponding error in the derived list).

After calculating the numbers for true positives (𝑡𝑝), false positives ( 𝑓𝑝), and false negatives
( 𝑓𝑛), precision and recall are calculated as follows: precision =

𝑡𝑝
𝑡𝑝 + 𝑓𝑝

and recall = 𝑡𝑝
𝑡𝑝 + 𝑓𝑛

.

𝐹1 score is calculated as the harmonic mean of precision and recall: 𝐹1 = 2 precision× recall
precision+ recall .

5.2 Case Studies

This section gives an overview of the three case studies used to evaluate PMVL.

Filling Line: For evaluation and demonstration purposes, the filling line was set up
in the Karlsruhe University of Applied Sciences laboratory. It has nine pump stations
and a carriage that transports a cup to them. The carriage and the pump stations are
considered separate systems. There is a pump and a scale to weigh the bottle from which
the liquid is pumped. A stepper motor moves the carriage horizontally and a scale holds
the cup. The Workflow Management System (WfMS) sends Message Queuing Telemetry
Transport (MQTT) messages to control the filling line. The pumps’ positions must be
measured in motor steps before the carriage can be utilised. The carriage is moved to the
start point, then two liquids are filled at distinct stations, and finally the carriage is moved to
the end place.

Assembly Line: The second case study comprises a six-station assembly line connected by
a conveyor belt. The assembly line handles an aluminium piece that will be cut by a mill and
dot peened by a dot peen marking machine. The dot peen marking machine engraves an Data
Matrix code (DMC), allowing traceability of the manufacturing process. The workpiece also
features a hole for a steel ball to be pressed into. The hole is measured either mechanically
by inserting a cone or visually using a camera. A successful manufacturing process requires
four criteria: 1. The engraving is cut into the workpiece. 2. The DMC is engraved. 3. A steel
ball is forced into the workpiece’s hole. 4. The finished object is put into the tray. While the
engravings are independent of the other procedures, the steel ball may only be pressed in
once the hole diameter has been confirmed. Moreover, the steps can be performed in any
order as long as the skid on the conveyor belt, the mill, and the dot peen marking machine
can fit a workpiece that has already been joined with the steel ball. As a result, certain
production steps can be rescheduled to make the process more resilient while still meeting
the criteria mentioned above.

Electrochemical Machining Line: The Electrochemical Machining (ECM) case study is
based on a production line of our industrial partner SITEC Industrietechnologie GmbH. In
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terms of non-disclosure agreements, details about the exact functionality of the stations are
changed, but the overall process stays the same. The ECM line handles one workpiece at a
time in three stations. The workpiece is sealed at the start of the process. At the line’s entry
point, there must be at least one workpiece. A conveyor belt transports the workpiece to the
first station to remove the sealing. The workpiece is then conveyed to the second station.
Station 2 takes workpieces from the conveyor belts and performs ECM. The workpiece is
then conveyed to the third station to re-seal the workpiece and transports it out. To finish the
production process, the workpiece must be machined and resealed.

5.3 Evaluation Results

In Tab. 1 and Tab. 2, we present the evaluation results for each process model. The evaluation
data can be found in our supplementary material [Ko22]. In Tab. 1, the numbers of true
positives (𝑡𝑝), false negatives ( 𝑓𝑛), and false positives ( 𝑓𝑝) are shown for each plant. The
table includes precision, recall, and the 𝐹1 metric. The table separates the results for
inconsistent preconditions, inconsistent postconditions, conditions already met, branch
inconsistency, and cycle detection. The results of using PMVL are compared to the experts’
estimation.

Filling Station Assembly Line Sealing Line
Pr. Po. Met. Br. Cy. Pr. Po. Met. Br. Cy. Pr. Po. Met. Br. Cy.

𝑡𝑝 4 5 3 1 2 4 2 3 1 1 4 4 3 2 1
𝑓𝑛 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
𝑓𝑝 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tab. 1: Results for the individual case studies (Pr.: preconditions, Post.: postconditions, Met.: conditions
already met, Br.: branch, Cy.: Cycle).

The results for the filling line case study show that all pre- and postcondition errors,
already-met-condition-errors, branching-errors, and cycling-errors identified by the domain
experts were also correctly identified by PMVL (𝑡𝑝). No additional errors were identified
by PMVL ( 𝑓𝑝). None of the errors from the experts’ list were missing ( 𝑓𝑛).

The results for the assembly line case study show that all pre- and postcondition errors,
already-met-condition-errors, branching-errors, and cycling-errors identified by the domain
experts were also correctly identified by PMVL (𝑡𝑝). No additional errors were identified
by PMVL ( 𝑓𝑝). None of the errors from the experts’ list were missing ( 𝑓𝑛).

The results for the ECM line case study show that all postcondition errors, already-met-
condition-errors, and cycling-errors identified by the domain experts were also correctly
identified by PMVL (𝑡𝑝). No additional errors were identified by PMVL ( 𝑓𝑝). Two of the
errors the experts identified were missing ( 𝑓𝑛). First, one precondition error required a time
constraint, which the PMVL is currently not able to model, and one branching error was
masked by a second branching error. When the second branching error was fixed, the second
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error was identified by PMVL, as well. Although the first error could be identified after a
fix, we still consider it as a 𝑓𝑛.

Prec. Postc. Met con. Branch Cycle Total
𝑡𝑝 12 11 9 4 4 40
𝑓𝑛 1 0 0 1 0 2
𝑓𝑝 0 0 0 0 0 0
Precision 1.0 1.0 1.0 1.0 1.0 1.0
Recall 0.92 1.0 1.0 0.8 1.0 0.95
𝐹1 0.96 1.0 1.0 0.89 1.0 0.98

Tab. 2: Evaluation results for the case studies combined (Prec.: preconditions, Post.: postconditions,
Met con.: conditions already met).

In Tab. 2, the precision, recall, and F-measure are depicted. The results show that PMVL
does only identify errors that are also present in the reference list (Precision). When
modelling and validating production processes, we do not highlight problems that are not
true errors, so we do not mislead the user. However, we are unable to identify all of the
errors in the reference list (Recall).

5.4 Discussion and Limitations

The results of the evaluation show that all postcondition errors, already-met-condition-errors,
and cycle errors have been identified correctly by PMVL. The missing precondition error
could not be modelled with PMVL. We have to extend the language in order to be able to
add runtime constraints and thereby model such errors. The missing branching error could
be identified after fixing the error, masking the missing error. The user of PMVL must be
aware that after fixing the identified errors, more errors could occur. Overall, PMVL shows
promising results regarding validating reconfigured production processes. Regarding the
requirement R5, we come to the conclusion that in general, PMVL is able to model and
validate reconfigured production processes, but needs to be extended to model and validate
time-constrained production processes.

6 Conclusion and Future Work

In this paper, we introduced PMVL, a language for the modelling and validation of
production processes in the context of IoT and CPPS. It allows domain experts to specify
sub-processes with conditions that can be used by non-domain experts. The design process
of PMVL is driven by the input of industry partners with the need to model and validate
production processes. The evaluation of PMVL demonstrates that the DSML can be used
to specify real-word production processes and identify errors such as inconsistent pre- and
postconditions, branching errors or cycles. Future work includes the application of PMVL to
further disciplines and augmenting PMVLwith additional features likemodelling production
processes with time constraints and to include more complex production processes.
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