

Longitudinal Bunch Diagnostic at the KARA Booster Synchrotron

10th MT ARD ST3 Meeting 2022 (Berlin)

M.-D. Noll, D. El Khechen, J. L. Steinmann, E. Huttel, M. Schuh, A.-S. Müller | 08.09.2022/10:41

www.kit.edu

Facility Overview

KARA Injection Facility

- 90 keV electron gun
- 53 MeV racetrack microtron (f_{RF} = 3 GHz)
- Injection line (\rightarrow booster)
- 500 MeV booster synchrotron (f_{RF} = 500 MHz)
- Extraction line (\rightarrow storage ring)

The booster synchrotron

- 26 m circumference (Similar to cSTART ring)
- Ramps energy from 53 MeV to 500 MeV in 650 ms
- Re-bunching from 3 GHz to 500 MHz

Measurement Setup for First Test

- Button BPM signals are combined with a RF power combiner into a sum signal
- After 35 m coaxial line, sum signal is amplified and read out with an oscilloscope
- Minimum re-arm time and maximum data transfer rates prohibit turn-by-turn measurements
- $\blacksquare \Rightarrow$ Move towards FPGA-based digitizers and KAPTURE

First Bunch Length Results

First Bunch Length Results

 \Rightarrow See you later at my poster!