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Abstract: Heavy metals are toxic environmental pollutants associated with severe ecological and
human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its
peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and
nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct
effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for
the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of
erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic
effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed
alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible
for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore,
following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering
of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce
a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering
that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary
components is also discussed.

Keywords: cardiovascular diseases; endothelium; erythrocytes; heavy metals; mercury; nutrition;
oxidative stress; polyphenol

1. Introduction

Heavy metals are a group of ubiquitous and non-biodegradable pollutants widely
distributed in the environment. Heavy metal pollution of the environment results not only
from natural sources such as volcanic activity and fossil fuels, but also from numerous
agricultural, medical, industrial, and technological human activities [1,2]. Exposure to
heavy metals in humans occurs mainly from contamination of water, soil, and food. The
exposure to low levels of heavy metals in the general population is widely recognized while
massive exposure affects specific subpopulations under certain circumstances, especially
occupational ones. Exposure to heavy metals is associated with both short-term adverse
effects and long-term diseases such as cancers, immune system dysfunctions, neurocogni-
tive impairments, behavioral abnormalities, hormonal and metabolic dysregulation, and
specific organ damage [3–5].

It should be emphasized that living systems interact in the environment not only
with a single heavy metal [6–9] but more often with a cocktail of compounds that can
have synergistic adverse effects on the organism [10–13]. Preclinical and clinical studies
have investigated the toxicity of mixtures of the main heavy metals [14] that pollute the
environment such as lead, mercury (Hg), chromium, cadmium, and arsenic on various
organs, systems, or conditions [15–19]. A close association has been reported with immune
system dysfunctions [20], bladder cancer [21], neurotoxicity [22,23], and embryogenesis

Int. J. Mol. Sci. 2021, 22, 6604. https://doi.org/10.3390/ijms22126604 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1266-6881
https://orcid.org/0000-0001-9603-0017
https://doi.org/10.3390/ijms22126604
https://doi.org/10.3390/ijms22126604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22126604
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22126604?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 6604 2 of 18

defects [24]. Although the toxicity mechanisms associated with heavy metals are still
poorly understood, common mechanisms underlying their toxicity both as single entities
or mixtures have been identified [25–28]. Reactive oxygen species (ROS) production and
oxidative stress (OS) are major mechanisms leading to protein alteration, lipid peroxidation,
and DNA damage [29–31]. Among the various heavy metals, Hg has drawn particular
attention, as it is a major environmental pollutant whose levels have been continuously
increasing in recent decades due to its increased release in the environment by industrial
waste or fuel extraction procedures [32]. Noteworthy is the fact that Hg has been ranked
among the 10 chemicals of greatest concern for human health risk by the World Health
Organization (WHO) [33].

2. Mercury Exposure and Toxicity

The global burden of Hg toxicity represents a serious public health concern worldwide.
Hg exists in the ecosystem in elementary, inorganic, and organic forms. Elemental mercury
(Hg0) is liquid and volatile at room temperature. This metal also exists as mercurous
(Hg+) and mercuric (Hg2+) cation and can form both inorganic and organic compounds,
methylmercury (MeHg) being the most widespread organic compound in the environment
and the most important biologically [33,34]. MeHg is readily absorbed by the human body,
which does not have an active excretion system for this element.

The different Hg molecular species can be environmentally as well as biologically
converted into each other in soil, water, and air, due to their peculiar geo-biochemical
cycle (Figure 1) as well as in our body. In aquatic sediments, a small fraction of Hg2+

is converted to organic forms by several kinds of anaerobic microorganisms which [35]
enter the food chain through the contamination of fish and shellfish. Here Hg undergoes
a process of bioaccumulation and biomagnification along the aquatic food chain until it
reaches humans [36]. Conversely, Hg inhaled in elemental form or introduced orally in
the form of MeHg, undergoes oxidation by catalase or demethylation in the liver [37,38].
Of the various sources of mercury contamination, food is certainly the most important in
the general population. Other sources of contact with mercury affecting a wider range
of individuals may be thermometers, batteries and some types of vaccines [39], which
are responsible for possible accidental intoxications [40]. Although Hg0 and inorganic
compounds are potentially dangerous to human health, exposure to these forms is generally
limited to individual occupational exposure. However, Hg0 can be released from dental
amalgams, thus representing one of the main sources of chronic exposure to low levels of
Hg in humans [41,42].

The molecular mechanisms underlying Hg-induced cytotoxicity are complex, with
likely contributions from genetic susceptibility [43] and exposure to the different molecular
forms of this metal.

This metal, endowed with a high binding capacity to the sulfhydryl (SH) group, reacts
with small molecular weight thiols, including alpha lipoic acid, and glutathione (GSH), thus
impairing key metabolic pathways as well as the antioxidant defense system [44,45]. In this
respect, Hg binding to selenium-containing proteins inhibits enzymes such as glutathione
peroxidase and hinders the restoration of intracellular redox balance, thus worsening
OS [46]. Interestingly, the genetic predisposition to the development of antioxidant system
dysfunctions is associated with polymorphisms that determine a greater susceptibility to
MeHg toxicity [43,47,48]. Specific pathways such as that of thioredoxin are also inhibited
by Hg [49–51].
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Figure 1. The Hg biogeochemical cycle. Hg pollution of the environment mainly results from natural 
sources such as volcanic activity and fossil fuels as well as human industrial activities. Hg exists in 
the ecosystem in elementary, inorganic, and organic forms. These different species can be environ-
mentally as well as biologically converted into each other in soil, air and especially water. In aquatic 
sediments, inorganic Hg is converted into its organic forms, mainly methylmercury, by microorgan-
isms. This form enters the trophic network via plankton and it accumulates in the passage through 
small to carnivorous fish at the top of the food chain, via the process of biomagnification, reaching 
humans through contaminated fish. 

In addition, by reacting with crucial cysteine (Cys) residues, Hg may interact with 
cellular proteins, thus altering and inhibiting their enzymatic and structural functions and 
potentially leading to severe dysfunction in cellular activities [52]. In particular, Hg inhib-
itory activity on the glycolytic enzymes hexokinase and phosphofructokinase has been 
reported [53]. Also, membrane proteins are modified by Hg, including tubulin [54] and 
erythrocyte (RBC) band 3 and 4.1 and 4.2 proteins [55]. 

An additional mechanism of Hg toxicity is the induction of mitochondrial dysfunc-
tion affecting the activity of F1-F0-ATPase [56], causing oxidative phosphorylation and 
electron transport defects. This can in turn increase ROS production [57] and redox home-
ostasis disruption [58]. Furthermore, the carnitine/acylcarnitine transporter has been iden-
tified as a possible target of Hg toxicity in mitochondria [59]. 

Mercury toxicity is also associated with an increase in intracellular Ca2+ due to both 
an increase in the influx of Ca2+ from the extracellular environment and an increase in the 
mobilization of intracellular reserves [60]. This effect on calcium homeostasis, associated 
with the effect of calcium increase due to OS, is responsible for the activation of proteases, 
lipases, and endonucleases. Figure 2 shows a simplified diagram of the main mechanisms 
of Hg toxicity. 

Figure 1. The Hg biogeochemical cycle. Hg pollution of the environment mainly results from
natural sources such as volcanic activity and fossil fuels as well as human industrial activities. Hg
exists in the ecosystem in elementary, inorganic, and organic forms. These different species can be
environmentally as well as biologically converted into each other in soil, air and especially water.
In aquatic sediments, inorganic Hg is converted into its organic forms, mainly methylmercury, by
microorganisms. This form enters the trophic network via plankton and it accumulates in the passage
through small to carnivorous fish at the top of the food chain, via the process of biomagnification,
reaching humans through contaminated fish.

In addition, by reacting with crucial cysteine (Cys) residues, Hg may interact with
cellular proteins, thus altering and inhibiting their enzymatic and structural functions
and potentially leading to severe dysfunction in cellular activities [52]. In particular, Hg
inhibitory activity on the glycolytic enzymes hexokinase and phosphofructokinase has
been reported [53]. Also, membrane proteins are modified by Hg, including tubulin [54]
and erythrocyte (RBC) band 3 and 4.1 and 4.2 proteins [55].

An additional mechanism of Hg toxicity is the induction of mitochondrial dysfunction
affecting the activity of F1-F0-ATPase [56], causing oxidative phosphorylation and electron
transport defects. This can in turn increase ROS production [57] and redox homeostasis
disruption [58]. Furthermore, the carnitine/acylcarnitine transporter has been identified as
a possible target of Hg toxicity in mitochondria [59].

Mercury toxicity is also associated with an increase in intracellular Ca2+ due to both
an increase in the influx of Ca2+ from the extracellular environment and an increase in the
mobilization of intracellular reserves [60]. This effect on calcium homeostasis, associated
with the effect of calcium increase due to OS, is responsible for the activation of proteases,
lipases, and endonucleases. Figure 2 shows a simplified diagram of the main mechanisms
of Hg toxicity.



Int. J. Mol. Sci. 2021, 22, 6604 4 of 18Int. J. Mol. Sci. 2021, 22, 6604 4 of 18 
 

 

 
Figure 2. Mechanisms of toxicity associated with Hg exposure, most of which lead to oxidative 
stress. 

3. Acute Poisoning and Long-Term Toxicity 
The health risk for mankind following Hg exposure has been well documented by a 

long series of epidemiological and experimental studies. Hg poisoning is usually caused 
by ingestion or inhalation of its vapors. Acute mercury poisoning can cause various dis-
orders, among which acrodynia is typical [61]. Other manifestations of mercury poisoning 
are pain in the extremities, neurological disorders such as ataxia, and confusional states 
(cardiovascular effects such as tachycardia and hypertension), and other non-specific 
symptoms such as fever, flu-like syndromes, skin rash, nausea, vomiting, and diarrhea 
[40,62,63]. A delay in treatment can cause serious consequences, such as pneumonitis, re-
nal tubular necrosis and neurological dysfunction [64]. 

The intoxication by the organic compound MeHg has been associated with the trag-
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damage to the blood-brain barrier or a general involvement of vascular dysfunction 
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Figure 2. Mechanisms of toxicity associated with Hg exposure, most of which lead to oxidative stress.

3. Acute Poisoning and Long-Term Toxicity

The health risk for mankind following Hg exposure has been well documented by a
long series of epidemiological and experimental studies. Hg poisoning is usually caused by
ingestion or inhalation of its vapors. Acute mercury poisoning can cause various disorders,
among which acrodynia is typical [61]. Other manifestations of mercury poisoning are pain
in the extremities, neurological disorders such as ataxia, and confusional states (cardiovas-
cular effects such as tachycardia and hypertension), and other non-specific symptoms such
as fever, flu-like syndromes, skin rash, nausea, vomiting, and diarrhea [40,62,63]. A delay
in treatment can cause serious consequences, such as pneumonitis, renal tubular necrosis
and neurological dysfunction [64].

The intoxication by the organic compound MeHg has been associated with the tragedy
of Minamata (Japan) in the 50 s. The discharge of this compound in the gulf adjacent
to the city caused a serious intoxication of the entire population [65]. The intoxication
caused mental disorders, paralysis, coma, and death within a few weeks of the first
symptoms [66]. A congenital form of the disease can be transmitted to the fetus during
pregnancy causing delayed psychomotor development in infants [67]. This tragic event
however has led to a deeper understanding of the mechanisms of MeHg toxicity. Although
the mechanism underlying the tissue-selective vulnerability of the central nervous system
(CNS) by MeHg remains to be elucidated, post-mortem studies of the above-mentioned
mercury intoxication have shown petechial hemorrhages and cerebral edema, suggesting
damage to the blood-brain barrier or a general involvement of vascular dysfunction [58,68].
These observations have been confirmed by the finding of a long-term increased incidence
of hypertension and myocardial ischemia in the population living in the neighboring areas
of Minamata [69].

Numerous studies have shown that long-term exposure to even small amounts of
MeHg also affects endothelial function [70,71]. Nowadays, it is widely accepted that Hg
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exposure may be a risk factor for cerebrovascular and cardiovascular diseases (CVD), even
without typical symptoms of Hg intoxication [58,72].

4. Mercury and Endothelial Dysfunction

The correlation between Hg exposure and endothelial dysfunction was confirmed
after follow-up studies on severe cases of poisoning, the first being that of Minamata
in Japan, which highlighted various cardiovascular anomalies [58,73]. Endothelial cells
are very vulnerable to Hg-induced OS caused either by increasing the production of
oxidative agents or by inducing a decrease in antioxidant activity [71,74]. The increase
of OS induces, via various pathways, endothelial inflammation first and then endothelial
dysfunction, ref. [73,75] followed by the development of atherosclerosis, thrombophilia
diathesis, and risk of ischemic phenomena through vessel obstruction or vasospastic
events [76]. Polymorphisms in genes involved in antioxidant activity in the populations
exposed to mercury have been shown to be associated with MeHg retention and increased
risk of myocardial infarction [76,77]. Another important mechanism of Hg toxicity on the
endothelium is the reduction of nitric oxide (NO) levels [78]. NO is an important cellular
signaling molecule, which plays a crucial role in endothelium physiology, synthesized from
the amino acid L-arginine by nitric oxide synthase (NOS) isoforms, mainly in endothelial
cells [79].

Reduced NO bioavailability, together with the Hg-induced increase in OS, predisposes
to CVD, such as carotid atherosclerosis, myocardial infarction, coronary heart disease and
hypertension [80,81]. Exposure to low concentrations of Hg in the rat tail artery caused
an increase in vascular resistance, mediated by an increase in ROS production, the pro-
duction of vasoconstrictor mediators and the reduction in the bioavailability of NO [82].
In particular, superoxide anion inactivates NO [83], a potent vasodilator, causing in turn
vasoconstriction of arteries [84]. Acute Hg exposure also produced vasoconstriction in
rat aortic rings by increasing ROS (via NADPH oxidase) and inhibition of NO produc-
tion [85]. The chronic exposure to low concentrations of Hg produced similar effects:
increased production of ROS, reduced bioavailability of NO and endothelial dysfunction
in the mesenteric, coronary, and basilar arteries [82,86]. Hg-induced endothelial damage
also involves vasoconstrictor proteinoids derived from the COX-2 pathway and plasma
angiotensin-converting enzyme (ACE) [87]. Concomitant mechanisms associated with
Hg-induced toxicity are decreased proliferation and migration of endothelial cells, ac-
tivation of coagulation pathways by promoting platelet aggregation and activation of
factor XIII [58]. Hg poisoning is thus associated with the risk of atherothrombotic diseases,
including hypertension, cerebrovascular disease, acute myocardial infarction, and renal
dysfunction [80,88–91]. The main organs to be damaged by endothelial dysfunction are
therefore the heart, kidneys, and brain [78,80,91]. Vascular dysfunction is also related to the
development of hypertension, which exponentially increases the aforementioned risks [90].

5. Mercury and Hypertension

Besides the traditional risk factors associated with hypertension (overweight/obesity,
sedentary lifestyle, cigarette smoke and excess salt intake) environmental exposures to
heavy metals may also play an important role [92,93]. The most important cohort stud-
ies addressed towards the risk of hypertension from Hg exposure are those that were
performed on miners or populations particularly exposed to this heavy metal such as
Eskimos, inhabitants of the Minamata region, workers and fish consumers. It was observed
that Hg miners showed a significant increase in systolic blood pressure which correlated
with lipid peroxidation and total OS and an increased risk of developing hypertension of
about 50% [94]. Other important studies have shown a close correlation between the Hg
content in hair (a marker of Hg exposure) and the incidence of hypertension [95,96]. Other
studies, in contrast, have correlated hypertension to the blood content of Hg, repeatedly
finding a close association between high levels and hypertension [97,98]. In addition to
hypertension, Hg exposure is also associated with a reduction in heart rate variability. The
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latter predisposes to arrhythmias, ventricular fibrillation, sudden cardiac death, angina,
myocardial infarction, CVD, and cerebrovascular accidents [99].

One of the main mechanisms through which both acute and chronic Hg intoxication
leads to hypertension is the binding of Hg to the sulfhydryl group of S-adenosyl methionine.
This bond causes inactivation of the enzyme catecholamine-O-methyl transferase (COMT)
which uses S-adenosyl-methionine as a cofactor. Since this enzyme operates the inactiva-
tion by O-methylation of adrenaline, noradrenaline, and dopamine [90]. Its inactivation
causes an increase in circulating catecholamines and a syndrome like a pheochromocytoma
crisis. This syndrome is characterized by malignant hypertension in acute intoxication and
increased urinary excretion of catecholamines in chronic Hg intoxication. Another mech-
anism associated with hypertension is Hg toxicity with regard to the kidney. This metal
concentrates in the renal tubules and glomeruli causing proteinuria and renal fibrosis and
failure [100]. Renal dysfunction contributes to water and sodium retention and ultimately
to hypertension [82,90,91]. In fact, an increased risk of renal failure of 55% was observed in
Hg miners compared to the general population [91].

6. The Role of Erythrocytes in Hg-Induced Endothelium Dysfunction

In this context, it is important to highlight the proposed role of RBC in endothe-
lial dysfunction and the risk of CVD. In fact, an increasing body of data has recently
been accumulated on the role of these cells in both hemostasis and coagulation. Based
on these findings, Weisel et Litvinov [101] defined RBC as “the forgotten actor” in en-
dothelial dysfunction, reviewing how both quantitative and qualitative changes could
affect bleeding or thrombosis [101]. Among the observed alterations, phosphatidylser-
ine (PS) exposure at the outside leaflet of the cellular membrane has been proposed as a
candidate hallmark of increased proatherogenic and prothrombotic activity of these cells.
Specifically, PS exposure facilitates RBC adhesion to the endothelium, contributing to clot
formation [102,103]. Furthermore, microvesicles (MVs) formation also leads to increased
pro-coagulating events [104]. The key role of extracellular vesicles from RBC in health,
coagulopathy and therapy has been recently reviewed [105].

Mammalian RBC are anucleate cells, deformable thanks to the shape of a biconcave
disc, also lacking all the intracellular organelles, and thus representing a simplified model
for metabolism studies. Moreover, they are deeply sensitive cells and important health
markers because they have a highly specialized and organized cell membrane, which
interacts with inflammatory oxidizing agents and mediators, leading to a variety of struc-
tural changes that readily signal an abnormal situation [106,107]. Late enucleation of
erythroblasts in mammals is considered an advantage in the investigation of particular
aspects of these cells as it defines a starting point of an average aging process of 120 days
until their elimination. Accordingly, RBC have been identified for use as a cellular aging
model [108] as well as being markers of OS-related pathologies, including CVD [106,108].
In fact, RBC are particularly advantageous for the study of OS caused by the high tension
of oxygen and the highly toxic free radicals derived from it. Interestingly, being endowed
with a powerful antioxidant defense machinery, these cells significantly contribute to other
blood cells as well as endothelium from the oxidative insult. However, if RBC reach highly
inflamed tissues, such as endothelium with atherosclerotic lesions, their behavior shifts
from the physiological activity of scavenger to the harmful role of ROS generator, inducing
an oxidative microenvironment, thus worsening the endothelial dysfunction. Therefore,
the antioxidant status of RBC might represent a marker in CVD [106,109].

Similarly, RBC have been proposed as a model for pharmacological and toxicological
studies which explore mechanisms underlying heavy metal toxicity, including Hg. The
effect that toxic substances have on these cells is often omitted, underestimating the concept
that blood is the major tissue in contact with exogenous molecules. Moreover, blood also
acts as a vehicle of substances, which reach all tissues. As far as heavy metal toxicity
is concerned, RBC are a preferential site for Hg accumulation, reaching in these cells a
concentration 20 times higher than that found in plasma [110].
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The direct toxicity effect of Hg on RBC has been amply investigated in the last few
years, both in vivo and in vitro. In a recent review, Vianna et al. [111] discuss the avail-
able evidence on potential hematological effects of human mercury exposure, including
lymphopenia, lymphocytosis, neutrophilia and basophilia. The possible occurrence of
anemia associated with Hg exposure has also been reported [111,112], likely due to hemol-
ysis [112–114], loss of blood from the direct effect on the gastrointestinal mucosa and
apoptosis [112,114]. Similarly to apoptosis of nucleated cells, RBC may undergo pro-
grammed cell death, also called eryptosis [115,116]. Interestingly, both eryptosis and
apoptosis of nucleated cells share the feature of externalization of PS [117]. This altered
membrane asymmetry results in the erythrophagocytosis of aged RBC, thus regulating
the life span of circulating mature cells as well as removal of stressed/damaged RBC in
pathological situations [118,119].

In recent years, particular attention has been focused on the mechanisms promoting
vascular dysfunction and thrombotic events as a consequence of Hg-induced RBC damage
(Figure 3). In this respect, workers occupationally exposed to Hg vapor show increased
blood concentration of the heavy metal, associated with significant alterations in the
coagulation system [120]. Among suggested mechanisms underlying the cardiovascular
effects of Hg exposure, alterations of membrane asymmetry, due to PS exposure, enhances
RBC adhesion to the endhothelial cells and clot formation. Hg-mediated SH depletion
inhibits flippase and activates scramblase, increasing protein adhesion expression on the
external surface of the cell and thrombin production [101]. In fact, PS-bearing RBC and MVs
provide a binding site for assembling the prothrombinase complex, leading to thrombin
generation, thus stimulating the coagulative cascade even at low-dose Hg2+ exposure.
Alterations of RBC membrane proteins, leading to changes in cell shape and deformability,
were also reported to be pro-thrombotic factors [121]. Changes in RBC shape have indeed
been reported after in vitro exposure to this metal [121,122]. The underlying mechanisms
are, also in this case, linked to the ability of this metal to bind SH groups. In fact, GSH
and metallothionein, rich in free SH groups, have a pivotal role in the maintenance of
erythrocyte integrity (e.g., the cytoskeleton) and ionic/energy balance (e.g., Na2+/K+-
ATPase) with ATP depletion and increased calcium. These mechanisms lead to increased
fragility of the RBC membrane and disruption and MVs liberation [101]. All together, these
effects design RBC as an active contributor to the increase in thrombotic events associated
with Hg intoxication (Figure 4) [121,123,124].
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An additional key mechanism in which a role of RBC in the endothelial dysfunction
has been suggested is NO production. Recent data point to RBC as key regulators of
vasodilatation in peripheral tissue. These cells express the isoform eNOS and they display
the ability to biosynthesize NO under oxygen deprivation, contributing to circulation
homeostasis [125–128]. In this respect, RBC exposure to HgCl2 has been reported to
decrease NOS activity, with consequent lowering of NO levels [78,129]. It is important to
emphasise that the reported Hg-induced damage to hemoglobin (Hb) may also contribute
to the decreased bioavailability of this key vasorelaxant molecule [130,131]. A tetrameric
mercurized form of Hb, supposed to be dysfunctional in physiological conformational
changes crucial for the oxygenation/deoxygenation process, can be observed after RBC
exposure to Hg2+ [55]. As discussed in the introduction, accessible Cys residues represent
the preferential site of Hg–protein interaction. It is worth noting, in this respect, that two
critical Cys in position 93 of the beta-chains have been identified in Hb as NO ligand,
playing a role in Hb-mediated NO release [130]. Consequently, the alteration of Cys-
93, following Hg2+ interaction, might impair the Hb-mediated regulation of blood flow,
therefore representing one of the physiologically important manifestations of Hg poisoning
in these cells, thus in turn affecting the cardiovascular system. As a result, based on these
findings, RBC acquired the title of surrogate model for the study of Hg-induced vascular
dysfunction with full rights [129,132,133]. Finally, a different mechanism that may induce a
decrease in NO availability is the generation of an oxidative microenvironment associated
with Hg exposure. Indeed, it is well known that NO production usually decreases following
endothelial dysfunction as well as under OS conditions [129,134]. In this context, when
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intact RBC are exposed in vitro to the presence of micromolar HgCl2 concentrations a
dramatic increase in ROS generation is observed. ROS production is a late event and
occurs subsequent to a decrease in the antioxidant thiol GSH, which significantly impairs
the antioxidant defense system. In addition, an Hg-induced nitrosative stress is also
reported [131].

7. Nutritional Aspects of Mercury Toxicity

Hg is a metal that is not essential for nutrition, in that it is not an essential component
of our body and is not involved in any metabolic pathway. However, as discussed in
the introduction, diet represents one of the most important routes of chronic exposure to
Hg in general populations [135]. The greatest risk comes from eating contaminated food,
especially fish, which accumulate high Hg content, due to its peculiar biogeochemical cycle.
The critical point for fish contamination is Hg cycling in the Aquatic Ecosystems, where
this metal is converted into its organic forms, mainly MeHg, by anaerobic microorgan-
isms. This form, in turn, enters the aquatic trophic network via plankton and it tends to
accumulate in biota in the passage through small fish, reaching its greatest concentration
in carnivorous fish at the top of the food chain [36] due to the so-called process of bio-
magnification [136]. Importantly, only Hg biomagnifies in the food chain [137]. Following
the water cycle, it pollutes surface and groundwater, involving crops, particularly cere-
als [138,139]. However, while there are foods responsible for Hg absorption in humans,
on the other hand, there are foods containing bioactive compounds which are claimed to
reduce its harmful health effects. Several naturally derived products have been tested as
potential protective agents, either for prevention and/or as treatment against Hg-induced
cytotoxicity [140]. In this context, dietary components capable of chelating heavy metals
are increasingly being used [141,142] including dietary fibers able to perform Hg chelation
during gastric-intestinal transit [143].

In recent years a possible utilization of garlic (Allium sativium L.) as an important
detoxifying agent against heavy metal toxicity, including Hg, has been proposed [144].
This spice, indeed, widely used in preparing food as well as nutraceutical products, con-
tains several organosulfur compounds, the most abundant being allicin [145] able to bind
directly to Hg. Interestingly, garlic is also rich in selenium, an essential mineral, which
hinders Hg toxicity by forming inactive selenium-Hg complexes as well as by prevent-
ing ROS-induced cellular damage. It is well known indeed that selenium strengthens
the antioxidant defense system [146], being a co-factor of antioxidant enzymes such as
glutathione peroxidase [147]. In this respect, as discussed in the introduction, since a key
mechanism underlying heavy metal toxicity is the impairment of the antioxidant defense
system, vitamin C and E have been tested as potential protective agents [148–150]. Further-
more, several phytochemicals with scavenging properties have been proved to actively
counteract the heavy metal-induced body burden and cellular biochemical alterations [151],
including curcumin [152,153] and epigallocatechin gallate [154].

Finally, several studies have revealed the role of olive oil polyphenols in the prevention
of Hg toxicity. There is general agreement, based on a large body of converging evidence,
that the antioxidant fraction, including polyphenols, significantly contributes to the health-
promoting effect [155,156] of this typical lipidic source of the Mediterranean Diet, a dietary
habit associated with a low incidence of several pathologies [157,158], including CVD [159].
Among these compounds, hydroxytyrosol (3,4-dihydroxyphenyl- ethanol; HT) is mainly
responsible for the antioxidant properties of this food due to efficient scavenger activ-
ity [160]. Besides its well-recognized anti-inflammatory and anticancer properties [161,162],
HT ameliorates the harmful effects of toxic agents, including acrylamide [163–165] and
acrolein [166–168] as well as the mycotoxin ochratoxin-A [169]. Moreover, recent data indi-
cate that this dietary component is able to counteract the toxic effects linked to exposure of
heavy metals, including Hg. Mohan et al. reported that the ability of HT to promote the
expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which in turn elevates GSH
levels, is crucial in ameliorating the neurotoxic effect of MeHg [170]. The protective effects
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of HT on the biochemical alterations induced in intact human RBC, subjected in vitro to
treatment with HgCl2, has been recently investigated by our group [122,171]. The reported
findings indicate that HT has the potential to modulate cytotoxicity and to counteract the
OS induced in RBC by Hg treatment. An additional study also provides experimental
evidence of the efficacy of HT in modulating the programmed suicidal death in these
anucleate cells, also devoid of mitochondria and thus lacking any mitochondria-mediated
apoptotic pathways. Cell preconditioning with an HT optimal dose, prior to exposure to
HgCl2, causes a noteworthy decrease in PS-exposing RBC, almost restoring ATP and GSH
content [117]. Also of clinical importance is the finding that HT prevents Hg-induced RBC
morphological alterations which potentially enhance the procoagulant activity of these
cells, resulting in a contributing factor to Hg-related thrombotic events. In recent years
nutritional research as well as in vitro studies have focused on the effects of HT in the
progression of atherosclerosis including the expression of adhesion molecules [172,173],
a key mechanism implicated in plaque formation. Furthermore, HT inhibits in vitro LDL
oxidation and counteracts the OS-induced endothelial dysfunction. The reported data on
HT protective effects on Hg-induced RBC alterations reveal that prevention of metal toxic-
ity should be regarded as an additional mechanism responsible for the health-promoting
potential of this dietary phenol on the cardiovascular system.

8. Conclusions

Human exposure to Hg, in its elementary and molecular forms, may cause severe
damage to the entire organism. If massive exposure is a rare event, mostly related to
accidents or occupational exposure, chronic intoxication, due to low-level Hg exposure,
is becoming a growing insidious concern for a larger portion of the population. In this
respect, the pro-oxidant effect of this metal even at low-dose exposure has shifted the focus
from a CNS-centred view to a more holistic view of Hg-induced health damage.

In this context, the data discussed in this review point to the involvement of the
cardiovascular system as a major target of long-term toxicity, ranging from endothelial
dysfunction to pro-coagulative transformation of RBC. Taken together, these effects expose
all organs and systems to increased thrombotic risk. Accordingly, anti-vascular endothelial
growth factor) monoclonal antibodies have been proposed, in preclinical settings based on
the upregulation of these mediators in Hg-induced endothelial dysfunctions. Moreover,
the data on the morphological and metabolic alteration in RBC induced by Hg point to
the key role of RBC in Hg-related endothelial dysfunction and let us propose potential
alternative targets for the prevention of systemic damage induced by this heavy metal.

Chelation therapy remains the therapy of choice in massive exposure to heavy metals,
including Hg. The rationale for using thiol-based chelators lies in their ability to form a
ring-like complex with the metal, facilitating its renal excretion. Chelation therapy, however,
is not without risks since chelator agents are endowed with a degree of toxicity. In addition,
the accurate choice of dosage and timing of administration is essential to avoid depletion
of essential metals, with consequent worsening of the general condition of the patient.

The possibility of reducing heavy metal toxicity through bioactive dietary components
has attracted great interest recently. Since contaminated food is the major source of chronic
Hg exposure in the general population, fighting it on the same battlefield is an intriguing
challenge. In addition to its primary role of providing adequate quantities of nutrients, a
healthy diet is a vital factor in reducing morbidity and mortality from chronic diseases. In
this context, fruit and vegetables contain thousands of phytochemicals, endowed with a
variety of biological and pharmacological activities, which are able to strengthen biological
functions with the aim of promoting human health and reducing the risk of disease. As
far as metal toxicity is concerned, nutritional components, including vitamin C and E and
selenium have been proved to be protective, representing an attractive tool to help our
body to fight off the adverse effects of heavy metals. Moreover, data discussed in this
review provide experimental evidence that antioxidant polyphenols, normally present in
our diet, especially the Mediterranean, have the potential to modulate Hg toxicity, therefore
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representing ideal candidates for nutritional/nutraceutical strategies to counteract the
clinical outcomes of chronic Hg exposure in humans, particularly related to CVD.
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