
Partitioning the Cressie-Read divergence
statistic for three-way contingency tables: a
study on environmental sustainability data.
Decomposizione delle statistiche divergenti di
Cressie-Read per tabelle di contingenza a tre-vie. Test su
dati di sostenibilità ambientale.
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Abstract When studying the association between the variables of a three-way con-
tingency table, Lancaster [10] proposed different partitions of Pearson’s three-way
chi-squared statistic. This statistic is a special case of the three-way generalisation
of the Cressie-Read divergence statistic [6]. To test the association among environ-
mental sustainability variables, this paper presents an additive orthogonal partition
of the generalised Cressie-Read divergence statistic under the assumption of com-
plete independence between the variables.
Abstract Per l’analisi dell’associazione tra le variabili di una tabella di contin-
genza a tre-vie, Lancaster [10] propose differenti partizioni del chi-quadrato a tre-
vie di Pearson. Questa statistica è anche vista come un caso particolare della sta-
tistica divergente di Cressie-Read [6], generalizzata per tabelle a tre-vie. Per veri-
ficare la significativà statistica dell’associazione tra alcune variabili della sosteni-
bilità ambientale, questo lavoro presenta una partizione ortogonale additiva della
statistica divergente di Cressie-Read generalizzata, sotto l’ipotesi di indipendenza
completa tra le variabili.

Key words: Orthogonal Partition, Cressie-Read divergence statistic, Testing asso-
ciation

1 Three-way Cressie-Read Divergence Statistic

To determine whether there exists a statistically significant association between the
row, column and tube variables of a three-way contingency table, one may calculate
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any number of measures. The most common that are used for such a purpose include
the three-way generalisation of Pearson’s chi-squared statistic [10, 5] and the log-
likelihood ratio statistic. These statistics can be shown to be special cases of the
three-way Cressie-Read divergence statistic [6, 14, 15, 16] as are generalisations of
the Freeman-Tukey statistic [7], the modified chi-squared statistic [12, 13] and the
modified log-likelihood ratio statistic [9]. All of these statistics, and other special
cases of the divergence statistic, are chi-squared random variables with (IJK −1)−
(I −1)− (J−1)− (K −1) degrees of freedom.

Here, we propose a three-way extension of the Cressie-Read divergence statis-
tic and then examine a method of orthogonally partitioning this statistic. Doing so
provides a means of generalising to three categorical variables the benefits of the
Cressie-Read divergence statistic. The partition can also be used to examine and test
the association between three categorical variables under the assumption of com-
plete independence and in the presence of sparse data. Further generalisations of the
partition to the multi-way case can certainly be considered but we shall examine this
extension at a later date.

Let N be an I × J × K three-way contingency table belonging to the space
ℜI×J×K , where the (i, j, k)th cell entry has a frequency of ni jk for i = 1, 2, . . . , I,
j = 1, 2, . . . , J and k = 1, 2, . . . , K. Define n the grand total of N and let the ma-
trix of relative frequencies be P so that its (i, j,k)th cell entry is pi jk = ni jk/n
where ∑

I
i=1 ∑

J
j=1 ∑

K
k=1 pi jk = 1. Define the ith row marginal proportion by pi•• =

∑
J
j=1 ∑

K
k=1 pi jk. Similarly, let p• j• = ∑

I
i=1 ∑

K
k=1 pi jk be the jth column marginal pro-

portion, and p••k = ∑
I
i=1 ∑

J
j=1 pi jk the kth tube marginal proportion.

The Cressie-Read divergence statistic [6] has been extensively studied for two-
way contingency tables and has been extended for studying the association in a
three-way contingency table; see, for example, [15]. Such a divergence statistic is
defined here as
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2n

δ (δ +1)

I
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, (1)

where δ ∈ (−∞, ∞). The general nature of (1) ensures that specific values of δ lead
to specific measures of association, all of which are chi-squared random variables.

The most common special cases of (1) were considered by [14]. In this paper, we
focus our attention on some of those special cases. Specifically, we focus our atten-
tion on Pearson’s chi-squared statistic (when δ = 1), on the Cressie-Read statistic
(when δ = 2/3) and on the Freeman-Tukey statistic (δ =−1/2) which are, respec-
tively,
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Other measures, which are notable members of the family of Cressie-Read di-
vergence statistics, can be generalised to three-way data and include the modi-
fied chi-squared statistic N2 = CR(δ =−2), the log-likelihood ratio statistic G2 =
CR(δ = 0) and its modified version M2 =CR(δ =−1).

In the context of goodness-of-fit testing for two categorical variables, Cressie and
Read [6] examine the appropriate values of δ that one should use. For a two-way
contingency table, such that δ ̸=−1, 0, they also recommend that δ ∈ (0, 3/2] when
n > 10 and min(npi•p• j)> 1 for all i = 1, 2, . . . , I and j = 1, 2, . . . , J. Cressie and
Read [6] advised that an appropriate choice of δ is 2/3 leading to their statistic;
CR(δ = 2/3) = CR. The selection criteria for δ for a three-way contingency table
can be made in an analogous manner.

The term pi jk/(pi••p• j•p••k) in (1) is defined as the Pearson ratio of the
(i, j, k)th cell of the contingency table and is just the ratio of the observed cell
frequency to what is expected under complete independence; see [2, p. 123] and
[3, 8] for a definition of this ratio in the context of correspondence analysis.
When this ratio is equal to 1 for all cells, (1), and hence its special cases (includ-
ing X2, G2, T 2, N2 and M2), is zero providing evidence that the three variables
of N are completely independent. One advantage of considering the Pearson ra-
tio’s is that they ensure that the log-transformation of the cell’s proportion, pi jk,
is “triple-centred” by the log-transformed row, column and tube proportions, i.e.
ln
(

pi jk/(pi••p• j•p••k)
)
= ln

(
pi jk

)
− ln(pi••)− ln(p• j•)− ln(p••k).

1.1 Partitioning the Cressie-Read divergence statistics

Here, we present an additive orthogonal, and ANOVA-like, partition of CR(δ ), de-
fined by (1), from which the Pearson’s chi-squared statistic and its companion mea-
sures of association can be derived in a straightforward manner. As an ANOVA-like
partition, we consider the classical definition of inner products and orthogonality
conditions for partitioning a measure of association belonging to the space ℜI×J×K ;
for more details see [5, 11] and [2, Chapter 11]. Therefore, the general partition of
(1) can be written as
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+
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= CRIJ (δ )+CRIK (δ )+CRJK (δ )+CRIJK (δ ) . (5)

Here we can see that there are four terms in the partition. The first three terms,
CRIJ (δ ), CRIK (δ ) and CRJK (δ ), are the bivariate Cressie-Read divergence statis-
tics that assess the row-column, row-tube and column-tube association, respectively.
Therefore, these measures are asymptotically chi-squared random variables with
(I −1)(J−1), (I −1)(K −1) and (J−1)(K −1) degrees of freedom, respectively.
The last term, CRIJK , is the measure of three-way, or trivariate, association be-
tween all three variables and is asymptotically a chi-squared random variable with
(I −1)(J−1)(K −1) degrees of freedom.

2 Application

In recent years, sustainable development goals (SDG) have become increasingly
important. Decision makers everywhere need data and statistics that are accu-
rate, timely, sufficiently disaggregated, relevant, accessible and easy to use. Here
among the plethora of authoritative SDG data sources (available at https://unstats-
undesa.opendata.arcgis.com/), we study the association between the Renewable en-
ergy share in the total final energy consumption indicator (RES), the indicator of ad-
justed emission growth rate for black carbon indicator (BCA) and the Geographical
area (Africa, America, Asia, Australia, Caribbean islands, Europe) of 186 countries
in 2018 (GEO). These three variables (RES, BCA and GEO) can be cross-classified
to produce the 4×4×6 contingency of Table 1. We now describe the nature of the
three variables and examine the partition of CR(δ ) – see (5) – for the table where
δ = 1, 1/2 and 2/3.

The four categories of the row variable RES are (0, 34.5], (34.5, 53.7], (53.7,
80.7] and (80.7, 100]. The column variable BCA also has four ordered categories;
(0, 8.13], (8.13, 23.1], (23.1, 49.7] and (49.7, 96.4]. These variables are formed
by dividing each continuous variable into quantiles. While both are ordinal variables
we shall be treating them as nominal. The categories of the tube variable GEO are
the six areas mentioned above.

We study the association of these three variables through the partition of (1); see
(5). Since Table 1 has many zero cell frequencies, we compare the results of the par-
tition of Pearson’s chi-squared statistic with the results obtained from the partition
of the three-way versions of the Freeman-Tukey statistic (T 2) and the Cressie-Read
statistic (CR). We consider these last two statistics since there is a strong presence
of overdispersion in data; see [4].

Pearson’s chi-squared of Table 1 is CR(1) = 290.035. With 84 degrees of free-
dom, this statistic has a p-value that is less than 0.001 and so a statistically signifi-
cant association exists between the three variables. Table 2 summarises the partition
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of this statistic which can be obtained by considering the three-way Cressie-Read
divergence statistic with δ = 1. All four terms of the partition are statistically signif-
icant with a p-value less than 0.001 except for the trivariate association term whose
p-value is 0.002.

We take into account the presence of sparse data by investigating the partition of
the Freeman-Tukey statistic (δ = 1/2) and of the Cressie-Read statistic (δ = 2/3).
These two statistics are CR(1/2) = 250.491 and CR(2/3) = 259.305, respectively,
and like CR(1) = X2 each has a p-value that is less than 0.001 thereby confirming
that there exists a statistically significant association between the variables. Table 2
provides a summary of the partition of T 2 and CR and shows, like X2, that each
of the bivariate terms have a p-value that is less than 0.001. However, the trivariate
association term is no longer statistically significant; see Table 2. This is likely due
to the sparsity of many of the cell frequencies. Thus we can make the following

Table 1 Cross-classification of RES, BCA and GEO
BCA

RES (0, 8.13] (8.13, 23.1] (23.1, 49.7] (49.7, 96.4]
Africa

( 0, 34.5] 1 0 4 8
(34.5, 53.7] 0 2 4 19
(53.7, 80.7] 3 2 1 4
(80.7, 100] 1 1 0 1

America
(0, 34.5] 1 0 6 2
(34.5, 53.7] 0 2 0 1
(53.7, 80.7] 0 3 1 0
(80.7, 100] 1 3 2 1

Asia
(0, 34.5] 5 1 2 0
(34.5, 53.7] 6 2 3 1
(53.7, 80.7] 5 3 3 3
(80.7, 100] 4 2 0 0

Australia
(0, 34.5] 1 0 0 0
(34.5, 53.7] 0 1 2 0
(53.7, 80.7] 1 1 5 0
(80.7, 100] 1 0 0 0

Carribean
(0, 34.5] 3 2 0 0
(34.5, 53.7] 1 1 0 1
(53.7, 80.7] 0 0 0 0
(80.7, 100] 2 3 0 0

Europe
(0, 34.5] 1 0 0 0
(34.5, 53.7] 0 0 1 0
(53.7, 80.7] 0 7 5 0
(80.7, 100] 3 11 7 3
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Table 2 Partition of CR(δ )

Association Term % df p-value

CR(1) = X2

I × J 34.970 12% 9 <0.001
I ×K 82.816 29% 15 <0.001
J×K 95.677 33% 15 <0.001
I × J×K 76.573 26% 45 0.002
X2 290.035 100% 84 <0.001

CR(1/2) = T 2

I × J 35.112 14% 9 <0.001
I ×K 83.340 33% 15 <0.001
J×K 92.4207 37% 15 <0.001
I × J×K 39.619 16% 45 0.699
T 2 250.491 100% 84 <0.001

CR(2/3) =CR
I × J 34.988 13% 9 <0.001
I ×K 82.653 32% 15 <0.001
J×K 93.105 36% 15 <0.001
I × J×K 48.559 19% 45 0.332
CR 259.305 100% 84 <0.001

conclusions about the nature of the association between the variables of Table 1.
There is a statistically significant association between

• the total final energy consumption and the indicator of adjusted emission growth
rate for black carbon,

• total final energy consumption and the geographical area,
• the indicator of adjusted emission growth rate for black carbon and the geograph-

ical area,

while no such association exists between all three variables.
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