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Abstract: Machine Learning models are susceptible to attacks, such as noise, privacy invasion, replay,
false data injection, and evasion attacks, which affect their reliability and trustworthiness. Evasion
attacks, performed to probe and identify potential ML-trained models’ vulnerabilities, and poisoning
attacks, performed to obtain skewed models whose behavior could be driven when specific inputs
are submitted, represent a severe and open issue to face in order to assure security and reliability to
critical domains and systems that rely on ML-based or other AI solutions, such as healthcare and
justice, for example. In this study, we aimed to perform a comprehensive analysis of the sensitivity of
Artificial Intelligence approaches to corrupted data in order to evaluate their reliability and resilience.
These systems need to be able to understand what is wrong, figure out how to overcome the resulting
problems, and then leverage what they have learned to overcome those challenges and improve their
robustness. The main research goal pursued was the evaluation of the sensitivity and responsiveness
of Artificial Intelligence algorithms to poisoned signals by comparing several models solicited with
both trusted and corrupted data. A case study from the healthcare domain was provided to support
the pursued analyses. The results achieved with the experimental campaign were evaluated in terms
of accuracy, specificity, sensitivity, F1-score, and ROC area.

Keywords: data poisoning attacks; fake and untrusted data; healthcare monitoring; resilient artifi-
cial intelligence

1. Introduction

In recent years, the emergence of intelligent systems enhanced by Artificial Intelligence
(AI) techniques has led to several benefits in different aspects of human life. These systems
can play a vital role in finance, marketing, data analysis, healthcare, and much more.
In fact, AI systems predict what a user is typing into a search engine by speeding up their
search. They serve personalized ads based on previous purchases and browsing history.
In addition, advanced AI systems can especially help medical experts diagnose and monitor
patients’ illnesses [1–3].

Unfortunately, AI algorithms are vulnerable to several attacks: (1) poisoning of train-
ing data can decrease model accuracy or lead to specific errors; (2) a carefully designed
disturbance in the test input (adversarial examples) can cause the model to fail in correctly
predicting the obtained result; (3) model inversion attacks and membership inference
attacks can recover sensitive training data or steal model parameters; (4) a well-designed
backdoor in training data can set dangerous consequences for a system [4].

These security threats can lead to serious consequences for intelligent systems, espe-
cially in data security-critical applications such as those belonging to the healthcare sector.
Any breach of patient data security could be very critical. Security attacks can be performed
in several scenarios. Intelligent network systems present, certainly, high security vulnera-
bility. A common practice for these systems is the data poisoning, in which the attacker
manipulates the observations (e.g., sensory data) in the wireless sensor networking system.
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Fake data were used in training [5] or during the testing [6] phase of the model, corrupt-
ing all systems. In addition to compromising the performance of the algorithm through
misdiagnosis, this can lead users to distrust the AI algorithm, increasing the distrust of
experts to use such AI techniques as a valid support to diagnoses. The resulting erroneous
conclusions can lead to a serious negative impact on people, institutions, and healthcare
services. The propagation of fake news can influence public opinion and become dangerous
in some cases [7].

Resilience can be defined as the ability of the system to continue the required function
under adverse operating conditions. A resilient system first detects an adverse condition
(e.g., data poisoning) that causes it to perform poorly; then, it recovers the required function
of the service by mitigating the impact of the adverse condition. In this study, we evaluated
the resilience and reliability of several AI approaches to classify correctly appropriate
samples in the presence of poisoned data.

The remaining sections of the paper are organized as follows. Section 2 identifies the
motivation of this study and some aspects of data poisoning and its effects on AI, while
Section 3 discusses related defense mechanisms against security attacks. The use-case is
described in Section 4, while the conclusions are presented in Section 5.

2. Motivation and Background

Recently, Machine Learning (ML) has become of paramount importance in several
domains, including healthcare, where the increasing availability of solutions able to support
the early detection of diseases and monitoring of patient vital signs has contributed to in-
crease interesting from health research and the industry. Unfortunately, ML can be subject to
numerous attacks, and, in security-sensitive applications, the success of Machine Learning
depends on a thorough checking of their resistance and resilience to adversarial data.

Organizations should ensure the resilience of such systems, just as they would for
any other critical asset. However, the “black box” approach typical for ML and, more
generally, for AI, may make assessing and ensuring resilience different when compared to
traditional IT systems. This section provides an overview of the emerging field of resilient
ML research, along with a brief literature review on the main security and reliability
issues currently affecting ML-based systems, and, more precisely, adversarial attacks to ML
solutions and strategies.

2.1. Adversarial Attacks to ML

The robustness and resilience to attacks of AI-based systems [8] have received increas-
ing attention, following the evidence of vulnerabilities exhibited by Deep Neural Networks
(DNNs) and, more generally, by ML-based systems, to small perturbations.

Adversarial Machine Learning (AML), which achieved great popularity thanks to the
work of [9], has become more and more subtle and specific in addressing its attacks to
precise targets and by adopting specific strategies.

ML system security threats can be classified into three dimensions: attack influence,
security violations, and attack specificity. Influence attacks can be of two types: causative,
in which one seeks to gain control over the data; or exploratory, in which ML model
misclassification is used for the attack without intervening in model training. Instead,
security violations relate to the availability and integrity of services. They can be categorized
into three types: integrity attack, in which an attempt is made to alter the performance of
the classifier by increasing the number of false negatives; availability attack, in which the
number of false positives is increased in order to alter the performance of the classifier; and
privacy violation attack, in which sensitive and confidential information such as training
data is violated. Finally, attack specificity can be defined as a targeted attack, where the
attack is targeted at a specific input sample or a group of samples, or an indiscriminate
attack that causes the failure of the ML model indiscriminately [10].

To identify vulnerabilities in ML models, adversarial attacks have been devised.
The generation of contradictory examples through the addition of small, carefully crafted
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perturbations in ML model samples to attack their integrity is the main objective of an
adversarial attack. Two types of adversarial attacks are mainly used: poisoning and eva-
sion attacks. The first includes attacks that affect the model training, manipulating the
training data, for example, to alter the performance of the ML trained model. Instead,
evasion attacks act on the inference phase of the training process. In these cases, test data
are manipulated to compromise the reliability of ML models. In healthcare applications,
Poisoning Attacks (PA) are very critical because the manipulation of training data and its
detection can be very difficult [11].

To drive both theoretical and methodological research on adversarial attacks and
potential countermeasures to design more robust and reliable ML-based systems, the work
of [12] provides a significant systematic literature review, in which the concepts, types,
harms, and ongoing trends of adversarial attacks along with several common defense
mechanisms for ML, are discussed.

2.2. Evasion Attacks to ML

The widespread usage of ML in several application domains has boosted the focus of
research toward adversarial threats to these models, and, consequently, toward dependable
and secure ML systems. ML models have shown vulnerabilities not only to training-time
poisoning and evasion attacks but also to model inference attacks [13]. During an evasion
attack, an adversary may attempt to evade a deployed system at test time by carefully
crafting a legitimate input to obtain an adversarial sample that cheats the target model to
lead an incorrect prediction and affect the model performances.

In the work of [14], a gradient-based approach is presented, aiming to systematically
assess the security of the most widely used classification algorithms against evasion attacks.
This work was based on a framework for security evaluation, where attack scenarios,
with different risk levels, are simulated in order to break a classifier by increasing the
attacker’s knowledge of the system and its ability to craft attack samples. This experiment
provides useful insights to design and tune more robust and reliable classification systems
under evasion attack conditions.

2.3. Poisoning Attacks to ML

PA to machine learning [15] are an old security problem that is currently making a
comeback. There are two main types of PA, which are distinguished according to its target:
(1) those targeting ML availability and (2) those targeting ML integrity (better known
as “backdoor attacks). PA have been studied in several application fields, e.g., malware
detection, sentiment analysis, intrusion detection, and social media chatbots. There are
some key dimensions to consider in PA scenarios that identify the capability of attackers to
penetrate and manipulate a victim system. Likely information access, adversarial access
can be grouped in levels, as follows: logic corruption, data manipulation, data injection,
and transfer learning.

PA [16,17] have found fertile ground when targeted against ML and Deep Learning
(DL) systems. A data poisoningattack [18,19] occurs when an attacker injects bad data
into a model’s training data set, thus leading to a decline of the overall ML model, which
produces erroneous results [20,21].

Fake data and, more generally, false and misleading information are artificially crafted,
pursuing the goal of deceiving users typically by creating streams of fake data and opinions
to influence an idea upon a specific subject, thus impairing the platform’s integrity. These
Fake Data Checker and Detection Support Systems are suitable candidates targeted by
adversarial attacks, since several defense systems rules are based on automatic learning of
behaviors and classifications provided by ML or DL systems. In this way, when Fake News
from a source are detected as reliable ones, according to a wrong prediction of a classifier,
this situation would lead to learn different rules by permissions or defense systems.

The uncontrolled spread of Fake News has generally negative effects on the gen-
eral well-being of the society, but these effects can develop in catastrophic and severe
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consequences when this misleading information deals with health, medicine, and critical
fields. Tangible evidence of the Fake News effects has been provided mostly during the
starting phase of the recent COVID-19 pandemic, when several infodemics surrounding
the coronavirus made it difficult for people to find reliable guidance and take the appro-
priate measures without resorting to panic or falling into complacency. The uncertainty
and fears caused by the lack of knowledge of the disease, as well as by the measures of
social distancing used to contain it, mean that this threat to public health is potentially
even higher.

Data poisoning is particularly dangerous in healthcare and medical applications.
In fact, such attacks can not only lead to incorrect analyses and consequent misdiagnoses
with possible fatal repercussions on patients’ lives, just as a false positive classification can
cause unnecessary concern, but also reduce the confidence of medical experts and patients
in the proposed AI system. Therefore, it is opportune to adopt reliable countermeasures to
reduce the effects of these attacks [22–24]. For example, several studies report adversarial
attacks to the ML model in medical image processing to alter results by adding noise [25,26].

3. Related Works

Intelligent smart systems are integrating into healthcare, reshaping the healthcare
industry with multiple health monitoring devices and applications. Solutions such as smart
sensors, wearable devices, and health monitoring systems are playing significant roles
in the development of healthcare systems (smart hospitals, mobile healthcare) and the
healthcare industry. Resilience is the ability of such systems to continue their normal
operations and respond effectively in the event of any unexpected or unforeseen situation.
The importance of resilience is multiplied in sensitive systems such as healthcare where
systems continuing their normal operations and responding effectively in the event of
any unexpected or unforeseen situation is desirable from diagnosis to treatment and the
care process.

A lightweight security scheme for ensuring both information confidentiality and
transmission resiliency in the Internet-of-Things (IoT) communication was proposed in [27].
A single antenna transmitter communicates with a half-duplex single-antenna receiver
in the presence of a sophisticated multiple antenna-aided passive eavesdropper and a
multiple-antenna-assisted hostile jammer (HJ). A Blockchain-based Authentication and
Key Management Scheme for Internet of Medical Things (BAKMP-IoMT) was described
in [28]. This provides a secure key management between cloud servers and personal
servers as well as between personal servers and implantable medical devices. The authors
demonstrate the resilience of the proposed system against several known active/passive
attacks. Instead, Strielkina et al. [29] proposed a Markov Queuing approach for taking into
account the security and safety issues of healthcare IoT infrastructure. Meanwhile, in [30],
a preliminary study aiming to investigate the improvement of reliability in the Machine
Learning-based classification by extending Random Forests with Bayesian Network models
was performed.

Furthermore, from the literature, there are several studies describing the possibility
of defending against adversarial attacks by exploiting generative models. For example,
a framework named Defense Generative Adversarial Networks (GAN) was presented
in [31]. This approach was trained on the distribution of unperturbed samples, while
during the testing phase, it finds similar output without adversarial perturbations that are
given as input to the original DL model. In addition, in [32], GANs models, trained on the
same dataset, were used to clean adversarial examples.

GANs, properly trained, are one of the most efficient methods of defending AI ap-
proaches from various attacks. Other methods are also described in the literature, such as
the augmentation of the training dataset with adversarial examples [9,33]. This approach
was particularly effective to defend against adversarial noise. The adversarial examples are
generated using an attack model and added to the training dataset. When the attack model
used to generate the augmented set is the same used by the attacker, the model reacts with
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promising robustness to the attack. However, this performance does not occur when the
attack pattern is not the same.

4. Use Cases

An evaluation of effects of corrupted data on several ML approaches to corrupted
data, in order to assess their resilience and reliability, was performed in this study. In detail,
an extension of study conducted in [20] was presented. The resilience and reliability
of the most widely used ML approaches in the literature were evaluated in terms of
classification accuracy to distinguish healthy and pathological subjects in the presence of
data poisoning. Several health time series were analyzed to assess the effects of poisoned
signals on these ML approaches and whether these effects depend on the data and/or
the noise used to corrupt the data. In particular, two of the main biomedical signals
analyzed in the literature were evaluated: voice and Electrocardiographic (ECG) signals.
These were processed to estimate the presence, respectively, of psychogenic dysphonia
and REM Behavior Disorder (RBD).

Appropriate features were extracted by these signals, as indicated in the follow-
ing Sections 4.1 and 4.2. Instead, ML approaches evaluated in this study are indicated
in Section 4.3, while performance metrics and the obtained results were discussed in
Sections 4.4 and 4.5.

4.1. Voice Signals

Voice signals were evaluated to estimate the presence of psychogenic dysphonia. The
effects of this disorder usually manifest as voice alterations; a very breathy or whispery,
aphonic, or hyperacute voice is typical of psychogenic dysphonia. An universal etiology of
psychogenic dysphonia is not accepted. Psychogenic voice disorders are often multifac-
torial, resulting from psychosocial stress and triggered by conflicting events in the family
or at work. Often, people suffering from psychogenic voice disorders are struggling with
negative emotions and are reluctant to express them [34].

Voice quality was evaluated by estimating appropriate acoustic features extracted by
voice signals. In detail, the sound of vowel /a/ was evaluated. The recordings of 182 sub-
jects were analyzed. Ninety-one voices of patients suffering from psychogenic dysphonia
(mean age, 49.6 ± 10.6 years) and 91 ones of healthy subjects (mean age, 33.3 ± 17.3 years)
were selected from an available database, the Saarbruecken Voice Database (SVD) [35].
This is a collection of over 2000 recordings of sustained /a/, /i/, and /u/ vowels and a
speech sequence, which was recorded at the Caritas Clinic St. Theresia in Saarbruecken
by the Institute of Phonetics of the University of Saarland together with the Department
of Phoniatrics and Ear, Nose, and Throat (ENT). Only adult voices were considered in
this study in order to limit influences and alterations due to the instabilities of younger
voices [36,37].

Several acoustic features were considered as inputs of ML approaches. In addition
to the features considered in [20], such as Fundamental Frequency (F0), jitter, shimmer,
and Harmonic to Noise Ratio (HNR), Mel-Frequency Cepstral Coefficients (MFCC) and
their derivatives were added. These were chosen because they constitute the most relevant
features useful to identify specific changes in voice quality, each of them representing a
characteristic of the speech production process and therefore able to evaluate the presence of
possible alterations [38–40]. F0, in fact, represents the rate of oscillating of vocal folds useful
to evaluate the laryngeal function. Instead, the variations from cycle to cycle of frequency
and amplitude of voice signal are estimated through, respectively, jitter and shimmer.
Meanwhile, HNR is the ratio of signal information over noise due to the turbulent airflow
caused by an incomplete vocal fold closure, which is calculated according to de Krom’s
algorithm. Finally, MFCC are useful to analyze the vocal tract independently of the vocal
folds. F0, jitter, shimmer, and HNR are estimated by using Praat, which is a software widely
used in clinical and research practice to estimate acoustic parameters [41]. Meanwhile,
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MFCCs and their derivatives are calculated adopting the function audioFeatureExtractor by
using MATLAB version R2021b [42].

All voice samples were recorded with a sampling frequency of 50 KHz at 16-bit
resolution. In order to reproduce the ”poisoned” data, the noise was added to selected
recordings. In detail, noise due to the speech bubble of a crowd of people with a Signal
to Noise Ratio (SNR) of 5 dB, selected from AURORA database [43], was added to clean
signals by using the Audacity tool [44].

4.2. Electrocardiographic Signals

Analysis of ECG signals constitutes the most frequently used technique to diagnose
and reveal several pathologies. Cardiovascular diseases are the most commonly diagnosed
diseases from the evaluation of these signals, but recently, several studies discussed the
possibility of detecting sleep disorders by analyzing ECG signals [45,46]. Since each sleep
phase has different cardiac dynamics, it is possible to assess Heart Rate Variability (HRV)
to evaluate the presence of sleep disorders [47,48]. Although the standard method for
diagnosing sleep disorders is Polysomnography (PSG), analysis of ECG signals is preferable,
due to it being less time-consuming and costly, and the acquisition of these signals is less
invasive and troublesome for patients [49].

Several sleep disorders can be diagnosed, such as insomnia, Restless Legs Syndrome
(RLS), RBD, or Sleep-Disordered Breathing (SDB). In this study, ECG signals were analyzed
for RBD detection. Rapid eye movement (REM) sleep behavior disorder is a condition in
which abnormal behavior occurs during sleep. Sudden body movements and vocalizations
during REM sleep are typical symptoms of this disorder. Samples selected by the Cyclic
Alternating Pattern (CAP) database [50], acquired at the Sleep Disorders Center of the
Ospedale Maggiore of Parma, Italy, available on Physionet website [51], were processed
to evaluate the resilience and reliability of the considered ML algorithms. In detail, ECG
samples of 14 healthy subjects (mean age, 32.2 ± 5.5 years) and 22 subjects suffering from
RBD disease (mean age, 70.7 ± 6.4 years) were analyzed.

HRV features were extracted from ECG signals, distinguishing between non-linear fea-
tures and those calculated in the frequency and time domain. In this study, the considered
HRV features estimated in time domain are: Mean of RR intervals (Mean RR), Standard
deviation of the RR intervals (SDRR), Standard deviation of NN intervals (SDNN), Stan-
dard deviation of the successive difference RR intervals (SDSD), and Square root of the
mean of the squares of the successive differences between adjacent NNs (RMSSD), where
NN intervals refer to the intervals between normal R-peaks. Meanwhile, three spectral
components, such as Very Low Frequency (VLF), Low Frequency (LF), and High Frequency
(HF) were considered as features estimated in the frequency domain, where the HF band is
from 0.15 Hz to 0.40 Hz, LF band is from 0.04 to 0.15 Hz, and the VLF band is from 0 to
0.04 Hz. Finally, it is possible to estimate other HRV parameters using non-linear methods,
through, for example, the Ponicaré plot. Poincaré plot analysis is a quantitative analysis
that can provide visual information about the behavior of the cardiovascular system; it is a
representation of a time series in a phase space, where each RR interval is plotted against
the next RR interval. In this study, the standard deviations of the instantaneous beat-to-
beat R-R variability and the long term R-R interval variability, respectively, indicated as
Standard Deviation1 (SD1) and Standard Deviation2 (SD2), were considered. These HRV
parameters were estimated using Kubios HRV [52], which is a tool widely used in research
and clinical practice.

All samples were recorded with a sampling frequency of 512 Hz. The “poisoned”
data were obtained by adding the baseline wander noise to the selected samples. Baseline
wander is a low-frequency noise having non-linear and non-stationary nature, mainly
due to movement during breathing, patient movements, and poor contact between the
electrode cables due to inadequate preparation of the skin where the electrode is placed and
dirty electrodes. This noise was selected from the MIT-BIH Noise Stress Test Database [53]
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available on the Physionet website [51]. MATLAB, version R2021b [42], was used to
“poison” clean ECG signals.

4.3. Machine Learning Techniques

The capability to distinguish healthy and pathological subjects of several ML tech-
niques were evaluated. In addition to the performance of the Random Forest algorithm,
evaluated in [20], the reliability and resilience of other used ML approaches were analyzed.
The performance of the following ML models was analyzed:

• Support Vector Machine (SVM) [54]: this is one of the most used ML approaches in
the literature due to its reliability in classification task and resistence to overfitting.
SVM represents a discriminative approach defined by a hyperplane that divides data
of different classes.

• BayesNet [55]: this method belongs to the class of Bayesian classifiers, which is a type
of probabilistic graphical model where probability computations were performed by
using Bayesian inference.

• Random Forest (RF) [56]: this is an ensemble model among methods used in literature
classification tasks as an SVM algorithm. A multitude of decision trees was constructed
in training time. The class selected by most trees constitutes the output of the model.

• k-Nearest Neighbor (Ibk) [57]: this represents an instance-based learning algorithm
where the k-nearest neighbors are evaluated to indicate the class of relevance.

• Adaptive Boosting (Adaboost) [58]: this is an ensemble learning algorithm that uses
the boosting method. The algorithm formulates H hypotheses via the ensemble
boosting algorithm from a training set of N examples. It assigns a weight z to each
hypothesis to measure its effectiveness. Finally, the algorithm formulates the final
weighted majority hypothesis.

4.4. Performance Metrics

The resilience of selected ML approaches was evaluated in terms of classification
accuracy to distinguish pathological and healthy subjects also in the presence of poisoned
data. The accuracy is defined as the number of correct predictions over all the datasets,
which was evaluated according to the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where the True Positive (TP) and True Negative (TN) are the samples correctly classified,
respectively, as pathological and healthy. Meanwhile, the False Positive (FP) and False
Negative (FN) represent the samples incorrectly classified, respectively, as pathological
and healthy.

Additionally, the performance of the considered ML algorithms was assessed in terms
of sensitivity, specificity, F1-score, precision, and Receiver Operating Characteristic (ROC)
area. The sensitivity and specificity represent the percentage of, respectively, pathological
or healthy cases correctly predicted over all the pathological or healthy cases in the dataset.
These were estimated as follows:

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

Defining the precision as the number of pathological predictions correctly classified,
this was calculated as:

Precision =
TP

TP + FP
(4)
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The F1-score is the harmonic mean of the sensitivity and precision, and it was estimated
according to the following equation:

F1 − score = 2 ∗ precision ∗ sensitivity
precision + sensitivity

(5)

Finally, the area under the ROC curve was estimated. When this is minimum, the
algorithm classified all samples incorrectly, while when this area is maximum, all samples
were classified correctly.

For both analyses, on voice and ECG signals, three scenarios were observed: tests
were performed only on clean data (scenario 1), on poisoned data (scenario 2), and, finally,
each ML model was trained with poisoned data and tested on clean ones (scenario 3).

4.5. Results and Discussion

Tables 1–6 show the results obtained evaluating the performance of several ML classi-
fiers in the absence or presence of poisoned data for two different biomedical signals, voice
and ECG, in three scenarios described previously. The results obtained by analyzing voice
signals were reported in Tables 1–3, while those achieved evaluating ECG samples were
shown in Tables 4–6. In both cases, for scenarios 2 and 3, in addition to the percentages
obtained for performance metrics, the difference between the values obtained for each
metric between the observed scenario (2 or 3) and scenario 1 is reported, which are shown
respectively as ∆2−1 and ∆3−1.

Table 1. Results obtained considering clean voice signals in the training and testing sets (scenario 1).

Classifier Set Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-Score (%) AUC

SVM [54]
Training 95.89 100.00 97.95 100.00 97.90 0.979
Testing 72.22 77.78 75.00 76.47 74.29 0.750

BayesNet [55]
Training 84.93 78.08 81.51 79.49 82.12 0.911
Testing 83.33 72.22 77.78 75.00 78.95 0.858

RF [56]
Training 100.00 100.00 100.00 100.00 100.00 1.000
Testing 83.33 66.67 75.00 71.43 76.92 0.855

Ibk [57]
Training 100.00 100.00 100.00 100.00 100.00 1.000
Testing 50.00 83.33 66.67 75.00 60.00 0.667

Adaboost [58]
Training 95.89 80.82 88.36 83.33 89.17 0.966
Testing 88.89 55.56 72.22 66.67 76.19 0.809

Table 2. Results obtained considering poisoned voice signals in the training and testing sets (scenario 2).

Classifier Set
Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-Score (%) AUC

2 ∆2−1 2 ∆2−1 2 ∆2−1 2 ∆2−1 2 ∆2−1 ∆2−1

SVM [54]
Training 100.00 +4.11 100.00 0 100.00 +2.05 100.00 0 100.00 +2.1 1.000 −0.02
Testing 66.67 −5.55 55.56 −22.23 61.11 −13.89 60.00 −16.47 63.16 −11.13 0.611 −0.139

BayesNet [55]
Training 87.67 +2.74 73.97 −4.11 80.82 −0.68 77.11 −2.38 82.05 −0.07 0.904 −0.007
Testing 72.22 −11.12 66.67 −5.56 69.44 −8.33 68.42 −6.58 70.27 −8.68 0.824 −0.034

RF [56]
Training 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 1.000 0
Testing 72.22 −11.12 77.78 +11.12 75.00 0 76.47 +5.04 74.29 −2.64 0.795 −0.059

Ibk [57]
Training 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 1.000 0
Testing 44.44 −5.56 72.22 −11.12 58.33 −8.33 61.54 −13.46 51.61 −8.39 0.583 −0.084

Adaboost [58]
Training 90.41 −5.48 97.26 +16.44 93.84 +5.48 97.06 +13.72 93.62 +4.44 0.993 −0.03
Testing 66.67 −22.23 72.22 +16.67 69.44 −2.78 70.59 +3.92 68.57 −7.62 0.762 −0.047

Observing the results achieved for voice and ECG signals, it is possible to note a
decrease in the performance of the different algorithms in terms of correct classification
between healthy and pathological subjects between scenarios 1 and 2, i.e., when clean and
poisoned data are evaluated. The presence of “noise” inevitably has an impact on the
reliability of the classifiers. This is particularly evident observing the values of accuracy
achieved into two scenarios (1 and 2). A decrease of accuracy to distinguish healthy and
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pathological samples when poisoned data are processed is observed. This decrease is also
achieved in the case where malicious data corrupted the training model, while the testing
is performed on clean data (scenario 3). The poisoned training models of the considered
ML algorithms achieve lower accuracy values than other scenarios.

Table 3. Results obtained considering poisoned voice signals in the training set and clean signals in
the testing set (scenario 3).

Classifier Set
Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-Score (%) AUC

3 ∆3−1 3 ∆3−1 3 ∆3−1 3 ∆3−1 3 ∆3−1 ∆3−1

SVM [54]
Training 100.00 +4.11 100.00 0 100.00 +2.05 100.00 0 100.00 +2.10 1.000 +0.021
Testing 72.22 0 61.11 −16.67 66.67 −8.34 65.00 −11.47 68.42 −5.86 0.667 −0.083

BayesNet [55]
Training 87.67 +2.74 73.97 −4.11 80.82 −0.68 77.11 −2.38 82.05 −0.07 0.904 −0.007
Testing 22.22 −61.12 100.00 +27.78 61.11 −16.67 100.00 +25 36.36 −42.58 0.759 −0.099

RF [56]
Training 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 1.000 0
Testing 38.89 −44.45 94.44 +27.78 66.67 −8.33 87.50 +16.07 53.85 −23.08 0.792 −0.063

Ibk [57]
Training 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 1.000 0
Testing 22.22 −27.78 83.33 0 52.78 −13.89 57.14 −17.86 32.00 −28 0.528 −0.139

Adaboost [58]
Training 90.41 −5.48 97.26 +16.44 93.84 5.48 97.06 +13.72 93.62 4.44 0.993 +0.027
Testing 44.44 −44.45 83.33 +27.78 63.89 −8.34 72.73 +6.06 55.17 −21.02 0.765 −0.044

Table 4. Results obtained considering clean ECG signals in the training and testing sets (scenario 1).

Classifier Set Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-Score (%) AUC

SVM [54]
Training 100.00 45.45 78.57 73.91 85.00 0.798
Testing 100.00 33.33 75.00 71.43 83.33 0.667

BayesNet [55]
Training 88.24 90.91 89.29 93.75 90.91 0.960
Testing 80.00 100.00 87.50 100.00 88.89 0.967

RF [56]
Training 100.00 100.00 100.00 100.00 100.00 1.000
Testing 100.00 66.67 87.50 83.33 90.91 1.000

Ibk [57]
Training 100.00 100.00 100.00 100.00 100.00 1.000
Testing 80.00 66.67 75.00 80.00 80.00 0.733

Adaboost [58]
Training 100.00 90.91 96.43 94.44 97.14 1.000
Testing 80.00 66.67 75.00 80.00 80.00 0.933

Table 5. Results obtained considering poisoned ECG signals in the training and testing sets
(scenario 2).

Classifier Set
Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-Score (%) AUC

2 ∆2−1 2 ∆2−1 2 ∆2−1 2 ∆2−1 2 ∆2−1 ∆2−1

SVM [54]
Training 94.12 −5.88 45.45 0 75.00 −3.57 72.73 −1.19 82.05 −2.95 0.698 −0.100
Testing 80.00 −20.00 33.33 0 62.50 −12.50 66.67 −4.76 72.73 −10.61 0.667 0

BayesNet [55]
Training 82.35 −5.88 81.82 −9.09 82.14 −7.14 87.50 −6.25 84.85 −6.06 0.941 −0.019
Testing 80.00 0 66.67 −33.33 75.00 −12.50 80.00 −20.00 80.00 −8.89 0.833 −0.134

RF [56]
Training 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 1.000 0
Testing 100.00 0 66.67 0 87.50 0 83.33 0 90.91 0 0.933 −0.067

Ibk [57]
Training 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 1.000 0
Testing 80.00 0 66.67 0 75.00 0 80.00 0 80.00 0 0.733 0

Adaboost [58]
Training 100.00 0 100.00 +9.09 100.00 +3.57 100.00 +5.55 100.00 +2.85 1.000 0
Testing 60.00 −20.00 33.33 −33.33 50.00 −25.00 60.00 −20.00 60.00 −20.00 0.558 −0.375

Concerning scenario 2, RF achieved the best performance compared to other ML
techniques. In this scenario, both for voice and ECG signals, the best classification accuracy
was, in fact, achieved by RF, recording not very high differences between the scenario
in which data are clean and when they are poisoned. Additionally, observing other per-
formance metrics, it is possible to note that not only the sensitivity is promising but also
the obtained specificity is higher than other algorithms. This means that RF is able to
distinguish accurately healthy subjects despite the poisoned data, both by evaluating voice
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and ECG signals. In particular, considering ECG signals, also, the Ibk algorithm achieved
good performance in terms of resilience, obtaining minimal differences between scenarios 1
and 2.

Table 6. Results obtained considering poisoned ECG signals in the training set and clean signals in
the testing set (scenario 3).

Classifier Set
Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

3 ∆3−1 3 ∆3−1 3 ∆3−1 3 ∆3−1 3 ∆3−1 ∆3−1

SVM [54]
Training 94.12 −5.88 45.45 0 75.00 −3.57 72.73 −1.19 82.05 −2.95 0.698 −0.100
Testing 80.00 −20.00 33.33 0 62.50 −12.50 66.67 −4.76 83.33 0 0.627 −0.040

BayesNet [55]
Training 82.35 −5.88 81.82 −9.09 82.14 −7.14 87.50 −6.25 84.85 −6.06 0.941 −0.019
Testing 60.00 −20.00 66.67 −33.33 62.50 −25.00 75.00 −25.00 66.67 −22.22 0.800 −0.167

RF [56]
Training 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 1.000 0
Testing 80.00 −20.00 66.67 0 75.00 −12.50 80.00 −3.33 80.00 −10.91 0.933 −0.067

Ibk [57]
Training 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 1.000 0
Testing 40.00 −40.00 66.67 0 50.00 −25.00 66.67 −13.33 50.00 −30.00 0.533 −0.200

Adaboost [58]
Training 100.00 0 100.00 9.09 100.00 3.57 100.00 5.56 100.00 2.86 1.000 0
Testing 40.00 −40.00 100.00 +33.33 62.50 −12.50 100.00 +20.00 57.14 −22.86 0.576 −0.357

However, considering the results obtained in the presence of poisoned data, RF obtains
the most resilient and reliable algorithms compared with the other algorithms.

Concerning scenario 3, SVM, instead, obtained the best performance. In the voice
signals evaluation, although SVM and RF algorithms achieved the same accuracy value to
discriminate healthy and pathological samples (about 67%), the sensitivity and specificity
values obtained by SVM are better than those achieved by RF. Therefore, SVM distinguishes
both healthy and pathological samples, unlike RF, which cannot discriminate well between
pathological voices as demonstrated by the low sensitivity value. Observing the results
obtained for theECG signals, the classification accuracy achieved by the algorithms SVM
and RF, as well as the sensitivity and specificity, there were no differences between the
case when the algorithms were trained using clean data (scenario 1) or using poisoned data
(scenario 3).

The results obtained in the different scenarios observed, considering different types of
health data, demonstrate that RF is the most resilient and reliable technique able to classify
with higher accuracy the presence of affected subjects despite corrupted data among the
analyzed ML techniques.

5. Conclusions

Nowadays, the continuous use of intelligent and smart sensors and devices contributes
to generate a large amount of data in various fields, such as healthcare. AI provides valu-
able tools for processing and analyzing this wide variety of data, which is very often useful
for supporting the correct diagnosis and treatment of people’s health status. Unfortunately,
while the wide availability of data allows for more robust and reliable analysis, the contin-
uous transfer of sensitive data could be subject to malicious attacks that could affect the
performance of AI algorithms.

In this study, we investigated the resilience and reliability of different ML approaches
when the analyzed data are poisoned. In detail, the reliability of these techniques in
correctly distinguishing healthy and pathological subjects was evaluated. The presence
of this disorder has been estimated by evaluating vocal signals, from which appropriate
acoustic features have been extracted, used as input of the ML algorithms. The results
obtained show that the best performance, in the presence of data poisoning, was achieved
by the RF model compared to other algorithms.

In future plans, we will explore efficient defense methods to safeguard the security of
AI models, which can reduce the sensitivity of these approaches to malicious attacks and
improve their ability to correctly classify samples. Additionally, we will extend the original
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dataset by exploiting a data augmentation strategy, based on harnessing a generative neural
network to obtain coherent artificial samples.
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AI Artificial Intelligence
ML Machine Learning
DNNs Deep Neural Networks
AML Adversarial Machine Learning
PA Poisoning Attacks
DL Deep Learning
IoT Internet-of-Things
BAKMP-IoMT Blockchain-based Authentication and Key Management

Scheme for Internet of Medical Things
GAN Generative Adversarial Networks
SVD Saarbruecken Voice Database
F0 Fundamental Frequency
HNR Harmonic to Noise Ratio
MFCC Mel-Frequency Cepstral Coefficients
SNR Signal to Noise Ratio
SVM Support Vector Machine
RF Random Forest
ibk k-Nearest Neighbor
Adaboost Adaptive Boosting
ROC Receiver Operating Characteristic
TP True Positive
TN True Negative
FP False Positive
FN False Negative
PSG Polysomnography
HRV Heart Rate Variability
SDB Sleep-Disordered Breathing
RBD REM Behavior Disorder
RLS Restless Legs Syndrome
REM Rapid eye movement
CAP Cyclic Alternating Pattern
Mean RR Mean of RR intervals
SDRR Standard deviation of the RR intervals
SDNN Standard deviation of NN intervals
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SDSD Standard deviation of the successive difference RR intervals
RMSSD Square root of the mean of the squares of the successive

differences between adjacent NNs
VLF Very Low Frequency
LF Low Frequency
HF High Frequency
SD1 Standard Deviation1
SD2 Standard Deviation2
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