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Abstract: The use of behavioral models based on deep learning (DL) to accelerate electromagnetic
field computations has recently been proposed to solve complex electromagnetic problems. Such
problems usually require time-consuming numerical analysis, while DL allows achieving the topo-
logically optimized design of electromagnetic devices using desktop class computers and reasonable
computation times. An unparametrized bitmap representation of the geometries to be optimized,
which is a highly desirable feature needed to discover completely new solutions, is perfectly managed
by DL models. On the other hand, optimization algorithms do not easily cope with high dimensional
input data, particularly because it is difficult to enforce the searched solutions as feasible and make
them belong to expected manifolds. In this work, we propose the use of a variational autoencoder as a
data regularization/augmentation tool in the context of topology optimization. The optimization was
carried out using a gradient descent algorithm, and the DL neural network was used as a surrogate
model to accelerate the resolution of single trial cases in the due course of optimization. The varia-
tional autoencoder and the surrogate model were simultaneously trained in a multi-model custom
training loop that minimizes total loss—which is the combination of the two models’ losses. In this
paper, using the TEAM 25 problem (a benchmark problem for the assessment of electromagnetic
numerical field analysis) as a test bench, we will provide a comparison between the computational
times and design quality for a “classical” approach and the DL-based approach. Preliminary results
show that the variational autoencoder manages regularizing the resolution process and transforms a
constrained optimization into an unconstrained one, improving both the quality of the final solution
and the performance of the resolution process.

Keywords: convolutional neural networks; variational autoencoder; latent space optimization;
topology optimization; electromagnetic devices; training regularization

1. Introduction

Recently, many research areas have benefited from the potential offered by deep
learning (DL) tools, such as convolutional neural networks (CNNs) [1,2]. In fact, recent
works on the DL-assisted analysis of electromagnetic (EM) field computation problems
showed the promising potential of CNN applications [3–15].

The idea that properly trained DL models can substitute the direct calculation of
Maxwell’s equations [3,14], or provide an end-to-end solution for the performance analysis
of electric devices [5] is maturing in the community of computational electromagnetics.
A comprehensive review of recent works on machine learning for the design optimization of
electromagnetic devices can be found in [4], where the growing interest of the community
for DL is clearly evidenced. Some works have adopted DL models to predict the key perfor-
mance indicators of electrical machines [6,8,9,15], whilst others have focused on topology
optimization [10–13].

The main application of most of the mentioned works is the optimization of the geom-
etry of rotating electrical machines, in particular permanent magnet machines, in order to
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optimize an electromagnetic parameter such as maximizing the motor torque and/or mini-
mizing the cogging torque. Some works have faced additional theoretical problems such
as obtaining reduced models [9], or treating the optimization of special electromagnetic
devices [7,10].

We acknowledge that the literature regarding the application of DL to the design
and optimization of electromagnetic devices under low frequency is still relatively scarce,
and in many works, it is difficult to find detailed information regarding used DL models,
the size and number of hidden layers, the exact training algorithms used, the dimensions
of the input and output patterns, the dataset size and the generation method. In this
work, we try to give to the reader a detailed description of the models; in particular, we
provide the complete pseudo-codes of the algorithms used for the training and optimization
phases, and we also provide complete details regarding the models’ architectures and the
generation of the dataset.

Among the DL models and architectures, autoencoders enjoy particular attention in
applications where the high dimensional input space needs to be mapped and interpreted
in a lower dimensional space, as in the case of complex geometries of electromagnetic
devices [7,10]. Autoencoders can use fully connected and convolutional layers and perform
nonlinear compression through the encoder network of the input space to a lower dimen-
sional, called the latent space, and the compressed data can be decoded back (reconstructed)
to the original space through the decoder network. This unsupervised learning architecture
opens a number of possible applications:

1. The latent space features can be used for design and optimization in a low-dimensional
space;

2. The reconstructed patterns represent a regularized and denoised version of the in-
put patterns;

3. In the form of a variational autoencoder the model can generate new data;
4. The encoder can be trained in order to encode useful features for the optimization.

Among these, the third and particularly the fourth features are not exploited in the
literature as much as the first two, and they represent one of the main motivations and
contributions of this work. A variational autoencoder (VAE) [16,17] can be defined as
being an autoencoder whose training is regularized to avoid overfitting and ensure that the
latent space has good properties that enable a generative process. VAEs have a number of
applications, from intrusion detection [18,19] to the prediction of lung cancer [20], and some
works have employed VAEs and other generative models such as GANs (generative
adversarial networks [21]) to aid in optimization [22–24].

1.1. Related Works

In previous works, authors have introduced various deep learning-based optimization
algorithms [7,9,10], and their main characteristics are summarized in Table 1. In particular,
in [10], a standard autoencoder was used to represent the input geometries of a special
device as bitmaps, and the electromagnetic problem was optimized in the latent space
using an evolutionary optimization algorithm. In [7,9], deep learning models were de-
veloped to represent both the geometry and the relationship between the geometry and
the resulting electromagnetic fields, and the optimization was carried out using parti-
cle swarm optimization (PSO) [9] and a genetic optimization algorithm (GA) [7]. In the
aforementioned works, particularly [7,10], the problem of obtaining a surrogate model
to properly solve a given electromagnetic problem for different geometries was solved
using two main DL models: namely a model to represent the input image in a reduced
dimensional space, i.e., the latent space of the autoencoder; and a model to predict the
electromagnetic variables (to be optimized) as a function of geometry, that we shall denote
as a surrogate model (SM). The rationale of the SM is to substitute a costly finite element
analysis (FEA) inside the optimization loop. Some critical aspects of previous works [7,10]
can be evidenced, for example, the two DL models were separately trained without a
regularization procedure, aiming to minimize different objectives: the reconstruction error
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for the autoencoder and the mean square error (MSE) for the SM. Moreover, geometry opti-
mization was carried out using general purpose population-based optimization algorithms,
which are very computationally expensive, necessitate explicitly managing the constraints
and do not directly take into account the gradient of the objective function with respect to
the geometry.

Table 1. Main aspects of related works.

Reference Application DL Method Optimization Algorithm

[7] TEAM 25 problem AE GA, applied in the bitmap space

[9]
Minimize torque ripple of a

synchronous reluctance
motor

CNNs PSO, applied in the bitmap space

[10] Optimize a special EM
device AE Custom evolutionary algorithm

applied in the latent space

1.2. Main Features of the Proposed Model

In this work, a novel method based on a variational autoencoder is introduced, and the
optimization is performed in the latent space generated by the VAE.

In particular, we consider the same application treated in [7], i.e., the TEAM 25 problem,
consisting of the optimization of the geometry of an electromagnetic die press.

The main novelties of the proposed approach, with respect to previous ones, are
the following:

• The variational autoencoder and the surrogate model were simultaneously trained in
a custom multi-model training loop, aiming to minimize a combined loss function
that includes a regularization term;

• The optimization of the geometry was carried out in the regularized latent space
using gradient descent optimization, which is less computationally expensive than
evolutionary optimization algorithms;

• The optimization process in the latent space is totally unconstrained, because the
variational autoencoder only learns to map feasible solutions.

With respect to the latent space of a standard autoencoder, the latent space of a
variational autoencoder is, in general, smooth and well behaved: data are represented in
a continuous and convex space, which is particularly well suited for a gradient descent
search. This result was obtained thanks to a regularization term that is at the base of the
VAE learning process. Furthermore, we show that the simultaneous optimization of the
surrogate model and the VAE allows two main results:

• The encoder parameters are influenced by the performance of the surrogate model,
thus the VAE incorporates useful features for the optimization, generating a latent
space that is well regularized and optimized for the good operation of the surro-
gate model;

• The training of the surrogate model is naturally regularized, avoiding overfitting,
thanks to the regularization term of the VAE.

As a result, the subsequent gradient descent optimization in the latent space of the VAE
is feasible, fast and accurate. In contrast to previously used population-based optimization
approaches, the gradient descent optimization is based on a smooth and gradual progress
that can easily reveal geometry features that are desired or undesired.

The nature of the proposed algorithm allows to efficiently deal with problems with
a very high number of degrees of freedom. In fact, we are approaching the problem of
topological optimization, where the search domain is represented with a bitmap and every
pixel is a variable to be optimized. In standard parametric optimization, the geometry to
be optimized is usually represented by a small number of parameters, such as a radius,
segments or parameterized shape. In our case, the geometry can be chosen with more
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freedom, as each pixel can be freely selected to be full or empty (of ferromagnetic material).
In particular, in our test case, we have 900 degrees of freedom. The efficiency of the
algorithm is demonstrated by comparing its performance against other approaches, as
reported in the results section.

This paper is organized as follows: in Section 2, we present the variational autoencoder
and the custom training loop, as well as the autoencoder-based optimization loop. In
Section 3, the selected test case (TEAM 25 problem) is introduced, the FEA model is detailed
and a standard full FEA-based optimization is performed to be used as a comparison term.
In Section 3, we also describe the basis of the bitmap geometry representation and introduce
the generated dataset used to train the DL model. In Section 4, we perform the selection of
model architecture and meta-parameters, and we test the trained DL model. In Section 5,
we discuss the results and finally we conclude the paper in Section 6.

2. Deep Learning Model Based Optimization

The proposed DL model to be used for optimization is composed of two main parts,
which are depicted in Figure 1: a variational autoencoder and a surrogate model prediction
block. In this section, we introduce the theory behind VAEs. The surrogate model which
aims to predict the output physical variables (induction field values in our case), was also
introduced. Successively, we describe in detail the custom training loop where the VAE
and the SM are simultaneously trained. The optimization loop is then introduced and
discussed in detail.

Figure 1. Main elements of the DL model.

2.1. Variational Autoencoder

An autoencoder (AE) is a type of artificial neural network belonging to the unsuper-
vised learning category [1]. AEs can be used to learn the efficient encoding of the input
high-dimensional patterns, representing them in a lower dimensional space (latent space).
The performance of the encoding is validated and refined by attempting to regenerate the
input from its representation in the latent space. The autoencoder is typically used for
dimensionality reduction, by training the network to ignore irrelevant data.

A VAE is an autoencoder whose encoding is regularized during the training in order
to ensure that its latent space has good properties allowing the generation of new data.
Instead of encoding an input as a single point, a VAE encodes it as a distribution (a
mean value and standard deviation) over the latent space. First, the input is encoded as
distribution over the latent space; second, a point from the latent space is sampled from
that distribution using the so-called reparameterization trick; third, the sampled point
is decoded to form the reconstructed pattern. The reason for which an input is encoded
as a distribution with some variance instead of a single point is that it makes enables
the very natural expression of latent space regularization: the distributions returned by
the encoder are enforced to be close to a standard normal distribution. Thus, the loss
function that is minimized when training a VAE is composed of a “reconstruction term”,
that tends to enhance the encoding–decoding scheme’s performance as much as possible,
and a “regularization term”, that tends to regularize the organization of the latent space by
making the distributions returned by the encoder close to a standard normal distribution.
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This regularization term is expressed as the Kulback–Leibler divergence [17] between the
returned distribution and a standard Gaussian.

Autoencoder Regularization

The main aspects of a VAE are depicted in Figure 1. Given an input image X, the en-
coder neural network generates two nlat dimensional vectors as output, where nlat is the
dimension of the latent space. In particular, the encoder is a neural network that gener-
ates the vector of mean values µz ∈ <nlat×1 and the corresponding standard deviations
σz ∈ <nlat×1, representing the latent distribution associated with the input:(

µz
σz

)
= encoder(X). (1)

The reparameterization trick consists of sampling a random Z ∈ <nlat×1 vector from
the distribution:

Z = µz + ε · σz, (2)

where ε ∼ N (0, 1). The sampled Z point is then used as the input of the decoder neural
network, which aims to reconstruct the input image:

Xdec = decoder(Z). (3)

The loss in VAEs, also called the evidence lower bound (ELBO) loss, is defined as a
sum of two separate loss terms:

EELBO = Erec + EKL. (4)

The first term is the reconstruction loss that measures how close the decoder output is
to the original input by using the mean-squared error:

Erec =
1
2
||X− Xdec||2. (5)

The Kullback-Leibler divergence , or KL loss, measures the difference between two
probability distributions. Minimizing the KL loss in this case means ensuring that the
learned means and variances are as close as possible to those of the normal distribution.
For a latent dimension of size nlat, the KL loss is obtained as

EKL = −1
2

nlat

∑
k=1

(1 + log(σ2
z,k)− µz,k − σ2

z,k), (6)

where µz,k and σz,k are, respectively, the k-th element of vectors µz and σz obtained using
the encoder (1).

As a consequence of the trade-off between the reconstruction error and the Kullback–
Leibler divergence, the latent space of a variational autoencoder is, in general, smooth and
well behaved with respect to the latent space of a standard autoencoder that minimizes the
sole reconstruction error.

2.2. Surrogate Model for Optimization in the Encoded Latent Space

The surrogate model is a neural network that accepts a pattern Z (obtained from a
bitmap X using Equations (1) and (2)) belonging to the latent space as input and predicts
the output physical variables (i.e., induction filed values at desired points in space):

Ypred = surrogateModel(Z). (7)

The loss function of the SM training is the mean square error:
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Emod =
1
2
||Y− Ypred||2, (8)

where Y represents the ground truth target values of the physical variables corresponding
to the input geometry (induction field pattern corresponding to input image X obtained
from FEA simulations as described in Section 3.4).

Objective Function

In the proposed framework, the objective function to be minimized defines a scalar
physical quantity f which is a known analytical function of the physical variables Ypred, as
predicted by the surrogate model:

f = objectiveFunction
(

Ypred

)
= objectiveFunction(surrogateModel(Z)). (9)

As an alternative, if an analytical expression of the objective function is not available,
it can be defined as a direct output of the surrogate model:

f = surrogateModel(Z). (10)

In the latter case, evidently, the intermediate prediction of Ypred is not needed.

2.3. Multi-Model Custom Training Loop

In order to train the VAE and the SM, we define a custom training loop where the
learnable parameters of both models are updated by means of the gradient of a global loss
function, which is a combination of the loss functions of the two models:

E = EKL + α · Emod + β · Erec, (11)

where the weights α and β are empirically determined so that the three terms have roughly
the same order of magnitude. Figure 2 shows the corresponding flux diagram. The gradient
of the total loss E with respect to the learnable parameters of the models is calculated using
automatic differentiation [25]. The parameters can then be updated using the gradient
descent rule, or using more advanced update rules such as adaptive moment estimation
(Adam) [26].

Figure 2. Flux diagram of the custom training loop.

The complete pseudocode of the custom training loop is reported in Algorithm 1.
In particular, Algorithm 1 is a custom neural network training algorithm which has the
scope to train three neural networks at the same time: the decoder(·) and encoder(·) of
the VAE, and the surrogateModel(·), which are described by their learnable parameters,
respectively, θenc, θdec and θmod. Consequently, the input of the training algorithm is the
training set, represented by the input and target datasets Xtrain, Ytrain, which are shown
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at the top of Algorithm 1 (pseudo-code lines 1 and 2), and the output is represented by
the trained learnable parameters θenc, θdec and θmod, which are shown at the bottom of
Algorithm 1 (pseudo-code lines 28, 29 and 30). The learnable parameters include weights
and biases. The weights were initialized using Glorot [27] initialization, while the biases
were initialized with zero. The generation of the training dataset will be described in detail
in the following sections.

Algorithm 1 Multi-Model Custom Training Loop Pseudocode.

1: Xtrain ← input training dataset of geometry images . matrix of size 36× 25× 8000
2: Ytrain ← target training dataset of magnetic field values . matrix of size 18× 8000
3: nTrainingImages ← 8192 . initialization
4: nEpochs ← 100
5: nbatch ← 512 . batch size
6: lr ← 1e− 3 . learning rate for stochastic gradient optimization
7: nIterations ← nepochs · b

nTrainingImages
nbatch

c
8: θenc ← randomly initialize encoder(·) learnable parameters
9: θdec ← randomly initialize decoder(·) learnable parameters

10: θmod ← randomly initialize surrogateModel(·) learnable parameters
11: α← empirical value
12: β← empirical value
13: for i← 1, nIterations do . custom training loop
14: X ← nextBatchO f Data(Xtrain, nbatch, i) . matrix of size 36× 25× 512
15: Y ← nextBatchO f Data(Ytrain, nbatch, i) . matrix of size 18× 512

. nextBatchO f Data(data, nbatch, i) returns ith non overlapping subset of consecutive nbatch
points from data

16:

(
µz
σz

)
← encoder(X) . Apply variational encoder,

. µz and σz are matrices of size nlat × 512
17: ε ∼ N (0, 1) . pick a random scalar point from normal distribution
18: Z← µz + ε · σz . sampling: reparameterization trick

. Z is a matrix of size nlat × 512
19: Xdec ← decoder(Z) . decoded image: matrix of size 36× 25× 512
20: Ypred ← surrogateModel(Z) . predicted output: matrix of size 18× 512
21: EKL ← − 1

2 ∑nlat
k=1(1 + log(σ2

z,k)− µz,k − σ2
z,k) . Kullback–Leibler divergence

22: Erec ← 1
2 ||X− Xdec||2 . reconstruction loss

23: Emod ← 1
2 ||Y− Ypred||2 . surrogate model loss

24: E ← EKL + α · Emod + β · Erec . total loss
25: ∇E(θenc)← ∂E

∂θenc
. total loss gradient wrt encoder(·) parameters

26: ∇E(θdec)← ∂E
∂θdec

. total loss gradient wrt decoder(·) parameters

27: ∇E(θmod)← ∂E
∂θmod

. total loss gradient wrt surrogateModel(·) parameters
. note: gradients are calculated by means of automatic differentiation

28: θenc ← θenc − lr · ∇E(θenc) . update encoder(·) paramenters
29: θdec ← θdec − lr · ∇E(θdec) . update decoder(·) paramenters
30: θmod ← θmod − lr · ∇E(θmod) . update surrogateModel(·) paramenters

. note: here vanilla stochastic gradient descent approach is reported, more advanced update
algorithms may be used such as Adam

31: end for

Regarding the complexity of the algorithm, we can state that in our case the known
results regarding the computational complexity of the backpropagation algorithm apply
directly [28]. In fact, we use backpropagation to train the three models in order to minimize
the same loss function E, which is a combination of the three loss functions of the separate
models (11).

It is worth noting that the simultaneous training of the VAE and SM has a deep seman-
tic impact with respect to training the models separately. In particular, the encoder affects
all three losses EKL, Erec and Emod. As a consequence, the encoder will also be trained to
minimize the Emod loss that would otherwise only be a function of the surrogate model.
On the other hand, the SM was trained using a latent space that is in gradual definition dur-
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ing the simultaneous VAE training, forcing the encoder to adapt the latent representation
to the desired features of the SM, and allowing, at the same time, to regularize the training
of the SM and preventing the SM from overfitting. This procedure can result in a worse
value of the reconstruction Erec loss, but with the benefit of a better global performance.

2.4. Optimization Loop

Algorithm 2 is an optimization algorithm which has the scope of minimizing the
objective function introduced in Equation (9), and is further defined for its particular
application in Equation (13) of the following section. For this reason, the input of the
algorithm is represented by the full definition of the objective function, which is given by
Equations (9) and (13), and by the neural networks described in Equations (1), (2) and (7).
The output of the model is the design geometry for which we have the optimal value. The
optimization was completely carried out in the latent space, using only the neural models
(there is no finite element analysis in the loop), and the optimal geometry is obtained by
decoding the final solution. Algorithm 2 shows the pseudocode of the optimization loop,
while Figure 3 shows the corresponding flux-diagram. We use a starting geometry X0 as
an initial guess, which is encoded to Z0 (as an alternative, a random Z0 can be used as
well).Successively, a classic gradient descent optimization is performed, evaluating the
surrogate model and the corresponding objective function is reached until a maximum
number of iterations (or until another stop criterion is triggered).

Algorithm 2 Optimization Loop Pseudocode.

1: γ = 1e− 2 . step size of gradient descent optimization

2: Yobj =
[

Bobj
1,x , . . . , Bobj

9,x , Bobj
1,y , . . . , Bobj

9,y

]T
. desired induction field at control points

. Yobj is a matrix of size 18× 1
3: X0 ← initial geometry . matrix of size 36× 25× 1

4:

(
µz0
σz0

)
← encoder(X0) . Apply variational encoder,

5: ε ∼ N (0, 1) . pick a random scalar point from normal distribution
6: Z0 ← µz0 + ε · σz0 . sampling: reparameterization trick

. Z0 matrix of size nlat × 1
7: Z← Z0
8: for i← 1, nmaxIterations do . optimization loop
9: Ypred ← surrogateModel(Z) . predicted output: matrix of size 18× 1

10: f = ||Ypred − Yobj||2 . calculate TEAM 25 objective function (13)

11: ∇ f (Z) = ∂ f
∂Z . calculate gradient of f wrt Z

12: if ∇ f (Z) ≤ 10−3 then
13: break for . terminate if gradient below tolerance
14: end if
15: Z = Z− γ∇ f (Z) . gradient descent update rule
16: end for
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Figure 3. Flux diagram of the optimization loop.

The quantity to optimize f is algorithmically calculated as a function of Z, therefore,
automatic differentiation can be used to conveniently determine the gradient of f with
respect to Z. In our experiments, optimal values of f were obtained with a relatively small
number (below 100) of gradient descent update steps corresponding to the pseudocode in
Algorithm 2 line 15. In our test case, the objective function is analytically defined as a func-
tion of the induction fields calculated by the surrogate model, but it is worth noting that an
analytical definition of the objective function is not necessarily required. In fact, as men-
tioned previously, thanks to automatic differentiation, the proposed approach can also be
used in the case that the objective function is directly predicted by the surrogate model.

As a final comment, each value of Z obtained during the gradient descent search can
be decoded to the corresponding geometry, and the evolution of the geometry during
optimization can be visualized, observing how undesired features gradually disappear,
while desired ones appear.

Regarding the complexity (intended as the time cost as a function of the number
of variables) of the optimization algorithm, it generally depends on the complexity of
the function to be optimized. In our case, we can say that, for a fixed objective func-
tion, the complexity of the algorithm is linear with respect to the number of iterations
nmaxIterations.

3. Selected Test Case: TEAM 25 Problem

In order to test the approach, we applied it to the TEAM 25 problem [29]. Testing
electromagnetic analysis methods (TEAM ) is a series of benchmark problems used in the
area of computational electromagnetics, and represents an open international working
group aiming to compare electromagnetic analysis computer codes. In particular, TEAM
25 aims to compare the performance of different topology optimization algorithms on
a design problem for an electromagnetic die press. The geometry that describes the
problem [29] is shown in Figure 4. The objective is to design the two die molds in order to
achieve a radial induction field, with a constant magnitude in nine control points, p1 . . . p9,
uniformly placed along the e− f arc of circumference inside the cavity between the molds.
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In particular, the target induction field along the e − f line according to the TEAM 25
problem definition is:

Bobj
k,x = 1.5 cos(θk), Bobj

k,y = 1.5 sin(θk), (12)

where θk is the azimuthal coordinate of the k-th target point pk = (pk,x, pk,y) for k = 1 . . . 9.
The nine points were placed so that the radius is constant and equal to ||pk|| = 11.75 mm
and the azimuthal coordinates are distributed as θk = 5kπ/180. The objective was to
design the shape of the die molds so that the following error function is minimized:

f =
9

∑
k=1

(
Bpred

k,x − Bobj
k,x

)2
+
(

Bpred
k,y − Bobj

k,y

)2
, (13)

where (Bpred
k,x , Bpred

k,y ), k = 1 . . . 9 is the field obtained in the k-th target point for a given
design. In particular, introducing the following vector notation:

Y =
[

B1,x, . . . , B9,x, B1,y, . . . , B9,y

]T
, (14)

Equation (13) can be rewritten as

f = ||Ypred − Yobj||2 (15)

In this paper, we address the so-called large ampere turns case (17,500 AT), for which
the problem definition specifies that the curve i− j− k−m (the right mold) can be con-
sidered a “free curve”. This choice allows us to exploit the full potential of the topology
optimization proposed approach, where the bitmap representation describes the free ge-
ometry with flexibility. In contrast, most of the works in the literature addressed the small
AT case, which defines a simpler geometry parametrization that can be solved easier with
standard optimization approaches.

Figure 4. Geometry of the mold for the TEAM 25 problem—measures are in mm.

3.1. FEA Model

An accurate finite element model of the TEAM 25 problem was developed using the
commercial software Comsolr [30]. Considering the magnetostatic nature of the problem,
and the lack of sources in the region of study, the formulation implemented in the software
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exploits symmetry and is based on the magnetic scalar potential. This choice let us reduce
the spatial domain to the one enclosed by the pole pieces, without the need for considering
the electromagnet. The value of the magnetic scalar potential difference (between the two
poles) was straightforwardly obtained from the values of the ampere-turns excitation. In
addition, symmetry can be exploited, further reducing the domain to 1/4 of the space
between the poles. The problem description also specifies the ferromagnetic material
characteristic (B = B(H)), given as a set of sampling points that were implemented in
the software. The symmetry plane and the remaining border of the domain were defined
as magnetics insulation borders, the latter located at the proper distance. A fine mesh
was adopted, in order to take into account the discrete nature of the right mold surface,
averagely resulting in approximately 5000 domains and 300 boundary elements.

Figure 4 shows the main aspects of the geometry of the implemented model, with the
left mold (g− h curve) being an arc of circumference characterized by the radius parameter
R1, the right mold (i− j− k−m curve) being implemented as a free shape, and the nine
red control points along the curve e− f being used to define the objective function (13).

3.2. Full FEA-Based Optimization and Model Validation

As a term of comparison, we report the result of a previous work [7], where we
performed a full FEA-based optimization of the geometry. Within this frame of reference,
the right mold was implemented as a piecewise-constant profile with steps of 5 mm in
the y direction, in order to allow a geometry representation that is similar to the bitmap
representation that will be used in the following approaches based on deep learning.
The optimization was performed using the Comsol optimization module, particularly the
bound optimization by quadratic approximation method (BOQAM). The stopping criterion
was based on the so-called “optimality tolerance”, i.e., the search was stopped as soon
as no improvement over the current best estimate can be found larger than (or equal to)
the optimality tolerance parameter. The time required by one simulation with FEA was
3 s in an Intel I7 computer with 6 cores and 12 threads. Several optimization runs were
performed, and similar results were obtained, both in terms of optimal objective function
value and corresponding geometry. On average, a single optimization run terminates after
2000 function evaluations, thus requiring a total average time of 6000 s. Figure 5 shows the
final geometry resulting from one optimization run. In this case, the left mold radius R1
was also optimized. The objective function value of the this optimal solution was f = 0.012,
which is comparable to the known solutions from the literature [31].

Figure 5. Optimal design using a commercial software—R1 parameter is also optimized.
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Regarding the sensitivity analysis, the optimization showed that, in order to reach
very low values of the error function, the value of the R1 parameter (the radius of the g− h
curve which is the arc of circumference describing the left mold) tends to be close to the
maximum allowed value (13). The optimization of the left mold is then trivial. For this
reason, and to better analyze and compare the proposed deep learning approach with
respect to full FEA-based optimization, it was decided to consider the value of the R1 to
be constant and equal to an intermediate value of 5 mm, providing to the optimization
procedure the ability to exclusively operate on the free curve of the right mold. With this
stance, the resulting optimal values cannot reach such small values as in the case of the
optimized left mold radius R1, defining a difficult topology optimization problem that
has not yet been addressed in the literature, but which is a well-posed problem to be
approached with advanced optimization procedures. The results of the optimization with
fixed R1 using both the Comsol optimization module and the proposed deep learning
approach will be shown in Section 5.

3.3. Bitmap Representation of Geometry

In the subsequent part of the paper, the geometry of the problem will be represented
using a bitmap approach. In particular, using a profile discretization of 0.5 mm along both
the x and y directions, the topological space can be represented by a binary bitmap with a
resolution of 36× 25 (900 pixels), where only the right mold, i.e., the free curve i− j− k−m
in Figure 4, is of interest. Figure 6 shows the topology of the bitmap representation,
where the right mold occupation was maximized, filling all the possible pixels that do not
overlap with the cavity, which represents our main geometrical constraint. In particular
we represent with a black square (pixel = 1) a portion of space filled with ferromagnetic
material, while a white square (pixel = 0) represents an empty portion of space. Considering
Figure 6, all feasible solutions can be obtained by removing one or more black pixels, while
an empty space cannot be filled without violating the constraints.

Figure 6. Bitmap representation of the topological space. We represent with a black square (pixel = 1)
a portion of space filled with ferromagnetic material, while a white square (pixel = 0) represents an
empty portion of space. In this figure, the right mold occupation is maximized.
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3.4. Dataset Generation

To allow the training of the neural models, a number of 10,000 bitmaps of the right
mold were generated using the above-described representation, thus fulfilling the prob-
lem constraints.

In order to obtain physically reasonable geometries, the following additional con-
straints were imposed over the random generation:

• The ferromagnetic material is characterized by a connected shape with no holes,
• The probability of empty cells decreases along the positive y direction.

The second condition was imposed to increase the probability of generating geometries
that follow the shape of the cavity.

An FEA simulation was carried out using Comsol for each generated profile, obtaining
the corresponding BFEA

x and BFEA
y field distribution in the nine target points. The dataset

for deep learning then consists of the 10,000 input images of dimension 36× 25 and the
corresponding 10,000 induction field patterns of dimension 18× 1, which represents the
output. In the following, we use X to denote input images, while Y stands for the output
induction field patterns.

4. Selection of Model Architecture and Testing

Once trained, the combination of the VAE with the SM forms a deep-learning surrogate
model that we denote as the VAE + SM model, which predicts the field distribution with
a profile image as input. Using the generated dataset of 10,000 images of geometries
and the corresponding induction fields, a model selection procedure was carried out to
design the architecture of the neural networks constituting the encoder, the decoder and
the surrogate model.

It is important to note that in the community of deep learning, the use of cross-
validation to determine the hyper-parameters is not a common practice as in the community
of machine learning (ML), as it requires a very high computational effort in the presence
of very large datasets and complex networks. In our case, the size of the dataset and the
number of variables is somewhat on the edge between typical ML and DL applications.
This allows us to adopt cross-validation to determine some parameters, such as the dimen-
sionality of the VAE latent space. Regarding other parameters of the CNNs, we used the
common approach of the DL community, which is mainly empirical. In fact, “optimizing
hyperparameters in Convolutional Neural Network (CNN) is a tedious problem for many
researchers and practitioners. To get hyperparameters with better performance, experts are
required to configure a set of hyperparameter choices manually. The best results of this
manual configuration are thereafter modeled and implemented in CNN” [32].

4.1. Autoencoder Architecture

The architectures of the encoder and decoder utilized in this paper are shown in
Tables 2 and 3, respectively. In particular, the encoder has an input layer that accepts
images of size 36× 25, two convolutional layers, two rectified linear unit (relu) layers
and a fully connected output layer of size 2nlat. No max pooling layers are inserted,
as the image reduction is obtained by means of stride equal to 2 in the convolutional
layers. The decoder has an input layer that accept patterns of dimension nlat × 1, and four
transposed convolutional layers that upscale the latent space back to the 36× 25 dimension
of the input space. The encoder and decoder layers’ architectures were designed using
an empirical approach and previous knowledge of DL models, while the dimension of
the latent space was determined using 5-fold cross-validation on the reconstruction error,
resulting in an optimal value of nlat = 25. We were very careful to avoid test set leakage:
we performed a 5-fold cross-validation using 8000 training samples only, where each
fold contained 1600 points (2000 points of the test set were not used during the model
selection phase).
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Table 2. Encoder architecture.

Encoder Layers Layer Options

1 imageInput ImageSize = 36 × 25, Normalization = none
2 convolution2d FilterSizer = 3 × 3, NumFilters = 32, Padding = same, Stride = 2
3 relu
4 convolution2d FilterSizer = 3 × 3, NumFilters = 64, Padding = same, Stride = 2
5 relu
6 fullyConnected Size = 2×latentDim

Table 3. Decoder architecture.

Decoder Layers Layer Options

1 featureInput NumFeatures = latentDim,
Normalization = none

2 transposedConv2d FilterSizer = 7 × 7, NumFilters = 64,
Cropping = same, Stride = [9, 5]

3 relu

4 transposedConv2d FilterSizer = 3 × 3, NumFilters = 64,
Cropping = same, Stride = [2, 5]

5 relu

6 transposedConv2d FilterSizer = 3 × 3, NumFilters = 32,
Cropping = same, Stride = [2, 1]

7 relu

8 transposedConv2d FilterSizer = 3 × 3, NumFilters = 1,
Cropping = same, Stride = [1, 1]

In our previous work [7], we compared the nonlinear dimensionality reduction given
by standard AE with the linear PCA approach, and we found that both methods indicated
the same number of reduced features equal to 10. The VAE used in this work indicates a
greater value of the latent space dimension equal to 25. As a general behavior, the VAEs
tend to generate a latent space with increased dimensionality with respect to AEs and
other feature reduction techniques, due to the regularization approach [1]. Nonetheless,
the increased dimensionality of the latent space is not critical in our case, because the
surrogate model and the optimization can work perfectly with 25 features. In fact, the new
model outperforms the previous one, even if it works with more variables. This can be
explained by the fact that the latent space was optimized, taking into account the surrogate
model and the regularization term, producing a search space that is well conditioned for
optimization.

4.2. Surrogate Model Architecture

The architecture of the SM is reported in Table 4, and consists of a one hidden layer feed-
forward neural network. The size of the hidden layer was determined using cross validation.

Table 4. Surrogate model architecture.

Surrogate Model Layers Layer Options

1 featureInput NumFeatures = latentDim, Normalization = none
2 fullyConnected Size = 23
3 relu
4 fullyConnected Size = 18

4.3. Testing of the VAE + SM Model

In order to test the accuracy of the trained model, we used 8000 images to train the
model and the remaining 2000 images to test the generalization capability of the model.
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4.3.1. Test Errors

Given a particular input image, we calculated the normalized root mean square error
NRMSE of the corresponding output pattern as

NRMSE = 100 ∗ ||Y − Ypred||
Ȳ

(16)

The average NRMSE over all the points of the test set was 2.88%. This result shows
that the model can predict the induction field corresponding to a given image profile with
good accuracy of 97.12%, which improves the accuracy of 96.94% obtained in a previous
work using a standard autoencoder [7], and where the SM was trained separately.

4.3.2. Regularization Considerations

The trends of the ELBO error of the VAE and the surrogate model NRMSE on the test
dataset during training are shown in Figure 7. It is important to note that the trend of the test
error NRMSE of the surrogate model is monotonically non-increasing, thus not showing
evidence of overfitting. In fact, in the case of overfitting, the model learns to perfectly
predict the training data, but gradually loses accuracy on test data, penalizing the capability
of the generalization of the neural network. In our custom training procedure, we do not
use classic techniques to directly prevent the overfitting of the surrogate model neural
network (such as Bayesian regularization or using a validation set), as the regularization is
implicitly imposed by minimizing the combined loss funcion (11) on the training dataset.

Figure 7. Trend of the test errors during training. No overfitting can be observed, thanks to im-
plicit regularization.

4.3.3. Reconstruction Capability

The ability of the decoder to reconstruct the original input image is shown in Figure 8,
whereas Figure 9 depicts some randomly generated profiles using the VAE as a generative
model, where we randomly sampled values of Z from a normal distribution to feed the
decoder. It is worth noting that the trained VAE perfectly learned the constraints of the
geometry from the training data: in all our simulations, the output of the decoder always
generated feasible geometries, even in the case of being used as a generative model.
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Figure 8. Some input geometries (in black on the left side) and the corresponding VAE reconstruction
(in gray on the right side).

Figure 9. Some VAE randomly generated geometries.

4.4. Latent Space Visualization

Elucidating the good properties of the latent space of the VAE was principal motivation
of this work, and in this section, we aim to evidence how the data are distributed in the
latent space with respect to the corresponding values of the objective function f , which
is defined in Equation (13). For this reason, we performed the principal component
analysis (PCA) of the latent space data, particularly of the distribution of 10,000 vectors µz
corresponding to each input image. A scatter plot of the first three principal components
(PCs) can be visualized in Figure 10, where the color of the markers is proportional to the
f value of the corresponding geometry. It can be observed that a gradual and coherent
transition of f values from high to low is present in the µz distribution. Optimal points are
concentrated in a particular region (bright yellow colors), and a gradient descent approach
is expected to perform well in such a search space, where the optimal region is convex and
there are no other evident local minima.
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Figure 10. PCA analysis of the latent space of the VAE. Each point corresponds to a geometry
belonging to the generated dataset and the color of the markers is proportional to the corresponding
f value (13).

5. Results and Discussion

The optimal profile obtained by the optimization using the proposed approach is
shown in Figure 11, which also shows a comparison with the results of the commercial
software (full FEA approach) mentioned in Section 3.1 in the case of fixed R1 = 5 mm, and
with the optimal result that was obtained in a previous work [7]. The value of the objective
function is f = 0.458 for the solution obtained with the proposed VAE + SM method, which
improves both the value obtained with the full FEA optimization, f = 0.745, and the result
obtained in the previous work [7], f = 0.517. In particular, in [7], the AE and the surrogate
model were trained separately, and the optimization was carried out with a GA.

The evolution of the geometry during optimization was visualized, observing how
undesired features gradually disappear while desired ones appear, in Figure 12, where an
initial bad solution gradually transforms into a good solution. The final solution results to
be practically independent from the starting point, which is a consequence of the absence
of local minima.
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Figure 11. Optimal geometries and flux density norm. Cases (a–c) correspond, respectively, to the
full FEA-based optimization, the previous work [7] and the proposed solution in this work.

Figure 12. Evolution of decoded geometries during optimization, showing one frame every 10 opti-
mization steps.

The time cost of the VAE + SM optimization approach, excluding the generation of
the training set, is two orders of magnitude lower that of the full FEA-based optimiza-
tion, allowing much better domain exploration: dozens of (<100) function and gradient
evaluations need to be performed instead of a few hundred (1740) performed by the full
FEA-based optimization. In Table 5, a comparison of the methods is reported for the sole
optimization phase, considering the time cost for optimization and the number of function
evaluations obtained as average values over multiple runs. The VAE + SM training-related
costs are shown in Table 6. The total time cost of the VAE + SM approach results as very
similar to the time cost of the previous approach using a standard autoencoder and separate
training [7]—even if the VAE used in this work is a much complex model than the AE used
in [7]. All of the simulations of this work and previous works [7] were carried out on the
same machine: a PC with a 6-core Intel I7 5820 k processor and 32 GB of RAM.

Table 5. Average optimization performance over 50 runs and comparison with other metods.

Method f Value Time Evaluations

Commercial software EM
simulation: full FEA optimization:

BOQAM R1 optimized
0.012 6000 s 2000 FEA

Commercial software EM
simulation: full FEA optimization:

BOQAM R1 fixed
0.7446 5220 s 1740 FEA

previous work [7] EM simulation:
standard AE + SM optimization:
evolutionary algorithm R1 fixed

0.5167 600 s 50,000 DNN

This work EM simulation:
VAE+SM optimization: gradient

descent R1 fixed
0.458 60 s 76 SM

In the interest of completeness, regarding the training phase, we used similar—but not
identical—stop criteria with respect to the previous work. In [7], the training of the
autoencoder was stopped after 80 epochs “as gradient values were below the tolerance of
10−3”, whereas in this work, the training of the VAE + SM was stopped after 100 epochs,
because no further improvement over the test errors were observed (Figure 7). In the new
model proposed in this paper, it is not trivial to define a criterion based on the values of
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the gradient because the multi-model training simultaneously uses three gradients, as can
be observed in Algorithm 1. In any case, the time for training the VAE + SM for 100 epochs
using Algorithm 1 was very similar to the time for training the AE and the SM separately.

Table 6. Model training-related costs.

Task Time

Dataset generation: 10,000 FEA simulations,
3 s for each simulation

30,000 s

Previous work training [7], including cross-validation
for model selection 5340 s

VAE + SM simultaneous training, including
cross-validation for model selection 5600 s

We can summarize the advantages and disadvantages of the proposed approach
as follows.

Advantages of the proposed approach

• The latent space of the VAE is more regular than the latent space of a standard AE.
This regularity facilitates the search for the optimal solutions;

• The gradient descent algorithm requires a much lower computational cost with respect
to the evolutionary optimization algorithms—it can reach the optimum with dozens
of function evaluations instead of tens of thousands;

• If the training dataset represents a large distribution of behaviors, it can be used to
formulate and solve a number of different problems with very low computational time;

• Simultaneous (parallel) training of a complex VAE + SM model requires a computa-
tional time comparable to separate (series) training of a simpler AE + SM model [7];

• The proposed approach provides very useful insight and visualization of the opti-
mization process, which is not possible using evolutionary optimization algorithms
such as GAs.

Disadvantages with respect to other approaches

• The training dataset needs to be carefully designed and created, which it is a difficult
and time-consuming task, requiring expert knowledge in terms of the application;

• In the case of a very irregular search space, the gradient descent algorithm could be
trapped in local minima, thus requiring the use of global optimization methods such
as Adam.

6. Conclusions

Pursuing research for the most effective use of machine learning in the area of com-
putational electromagnetics, in this paper, we analyzed the impact of combined learning
for the autoencoder and surrogate model on the performance of a DL model to be used
in the topology optimization of electromagnetic devices. As a matter of fact, a bit-wise
representation of the geometrical characteristics for the domain whose topology is to be
optimized allows the discovery of new designs, hardly reachable when using parametrized
representation. On the other hand, unparametrized design requires considerable com-
putational resources in the electromagnetic analysis phase, and the advent of machine
learning to generate surrogate models guaranteeing satisfactory performance also allowed
testing such approaches on desktop-class computers. Finally, the adoption of regularized
procedures, proposed in this paper, allows avoiding unfeasible geometries, but also using
derivative-based optimization algorithms. It is important to point out that the training
dataset strongly affects the performance of the optimization, because it defines the manifold
where the optimal solution is searched. One benefit is that the constraints are automatically
fulfilled, whereas a drawback is that the search will be confined inside this manifold.
Therefore, the training set shall be generated in order to well represent the topological
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space, including promising regions where the optimal solution is expected to be found.
In this paper, a VAE using CNNs was tested for the creation of a DL model to be used
for the resolution of the TEAM 25 test problem. The approach proved to be capable of
improving the quality of optimized topology, within the time of one order of magnitude
lower than the classical topology optimization (once training of the DL model is achieved).

One of the open problems of topology optimization is related to the practical real-
izability of the obtained optimal designs: the optimal geometry obtained as a bitmap in
some cases needs to be smoothed and modified to fulfill the requirements and constraints
of the industrial process for production. In terms of future work, these constraints may be
included in the optimization or in the dataset generation in order to obtain final designs
that are close to the realizable shapes.

The process of creating the training dataset is one of the trickiest parts of the proposed
approach, as it requires human interaction and empirical knowledge of application. As fu-
ture work, the dataset generation could be partially automated, for example, exploiting the
data gathered during the optimization process of a full FEA approach. In fact, during the
search process, a full FEA optimization generates input–output patterns that could be
used to populate the training dataset, with the advantage of generally representing nearly
optimal solutions—which is accidentally a desired feature of the training dataset.
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SM Surrogate Model
FEA Finite Element Analysis
MSE Mean Square Error
ELBO Evidence Lower Bound
KL Kullback–Leibler
Adam Adaptive Momentum Estimation
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