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Abstract: A large amount of the Iranian energy demand is related to the building sector, mainly due
to its obsolescence. In this paper, a second-skin system has been implemented as a retrofit action
for an office building, evaluating the effect of a tensile material as second-skin in terms of primary
energy saving, carbon dioxide equivalent emissions, and simple payback period. The analysis was
carried out through numerical simulations across a whole year and for four Iranian cities (Tabriz,
Teheran, Yazd, and Bandar Abbas) in four different climates (cold, temperate, hot-dry, and hot-wet),
and with the building aligned at either north-south or east-west. Moreover, an economic analysis was
carried out suggesting different incentive policies to promote building energy refurbishment. The
simulation results highlighted a favorable orientation for buildings in Iran, suggesting a guideline for
new constructions. Indeed, the best results were achieved for an east-west orientation of the building
(up to a primary energy saving of 13.6% and reduction of carbon dioxide equivalent emissions of
45.5 MgCO2,eq, in Yazd), with a decrease of the annual specific total (cooling and thermal) energy
demand of 37.9 kWh/m2/year. The simple payback period values were also lower in the east-west
orientation than the north-south one.

Keywords: building energy efficiency; simple payback period; tensile facade; second-skin facade;
carbon dioxide equivalent emissions; office building refurbishment; TRNSYS

1. Introduction

Iran hosts the third largest oil reserves and the second-largest natural gas reserves in
the world [1] and from 1900 to 2019 it consumed an extraordinary amount of non-renewable
energy resources compared to international standards [2]. In addition to the low share of
renewable energy and the dependence of the country’s economic growth on fossil fuels,
one of the main reasons for this high consumption could be the abundance of oil and gas
resources in the country [3] and the low prices enforced by the government [4].

In more detail, Iranian primary energy consumption has increased by about 33% in
the last decade [5] and, following worldwide statistical trends, one of the largest sources of
energy demand (almost 40%) is in buildings [6], which also account for 28% of total CO2
emissions [7]. In particular, the high emissions in the big industrial cities lead to several
health problems in citizens, due to low air quality. In Tehran, the capital of Iran and among
the most air-polluted cities in the world, for about 350 days in one year, the daily PM2.5
level was greater than the WHO standard, AQG 2021 (15 µg/m3) [8].

In general, most of this energy demand related to the building sector is associated
with heating and cooling [9]. In the Iranian building panorama, most of the existing
building stock is obsolete and, therefore, the associated energy consumption is high [10,11],
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while the adoption of the Building Energy Codes (BECs) stays low [12]. In particular,
in comparison with successful BECs worldwide, the Iranian BECs encountered several
obstacles, including: (i) less attention to designing energy-efficient buildings, (ii) a lack of
supervision by the authorities, (iii) constant use of conventional construction techniques,
(iv) a common opinion that following the BEC would raise building costs, (v) a low rate of
building refurbishment and (vi) no BEC attention to renewable energy sources [13].

Therefore, in order to acknowledge the problems of energy efficiency, indoor comfort,
and sustainability, several systems and methodologies have been proposed [14], highlight-
ing an ever-growing interest of the scientific community in the facade domain [15], with a
particular focus on the use and optimization of passive systems [14,16,17].

This research evaluated the impacts of a retrofit action involving the facade of an
office building and integrating a second-skin system, from the energy, environmental and
economic points of view.

1.1. Literature Review

In the last two decades, many energy-efficient solutions have been analyzed to im-
prove the energy performance of the building envelope by adding additional external
insulation layers, responsive facade elements, or a second-skin layer [17–24]. There
are two main approaches to improving the energy efficiency of buildings: (i) active or
(ii) passive refurbishments [25]. The active approach consists of applying more efficient
Heating, Ventilation and Air Conditioning (HVAC) systems and/or replacing obsolete and
highly energy-intensive appliances (old models of natural gas-fired boiler, electric heat
pump, lighting system, etc.) installed in the building, thus reducing its overall energy
consumption [25]. The other way to improve a building’s energy efficiency is passive
refurbishment, which consists of a retrofit action that reduces the energy lost through the
building envelope, improving its thermal resistance and reducing the energy demand [25].
In addition, passive retrofit actions are usually less invasive, allowing for renovations
without changing the structure of historical buildings [26]. One of the most useful passive
strategies to decrease energy usage in buildings is installing a second-skin (SS) facade
system [17,20,23,27–34]. The SS facade systems consist of a standard facade, an air cavity,
and an additional external skin. According to [17,20,23,27–34], the proper design of the SS
facade systems can lead to several environmental and economic advantages; these benefits
can be summarized as:

• reduction of space heating and cooling loads;
• reduction of energy consumption;
• enhancement of the thermal comfort;
• improvement of daylighting and glare control;
• upgrade of the acoustic insulation;
• enhancement of the aesthetic of the building;
• reduction of operating costs.

Several types of research have been performed in the last year to evaluate the ef-
fectiveness of SS facade systems in the Iranian climate [27–30,35,36]. In particular, in
Hashemi et al. [27], a building with a SS facade system was monitored for two weeks
during summer and two weeks during winter in the hot arid climate of Iran to observe the
behaviors of the facade both in hot and cold conditions. In addition, a case study building
has been simulated, with and without a double skin facade, to determine the effectiveness
of the SS facade system. This study showed that, in summer, the cavity is essential to cool
down the inner facade in countries, such as Iran, with high solar incidence [27]. In [28],
the effectiveness of a SS facade system was investigated by comparing the proposed sys-
tem to conventional ones. In more detail, five building models, located in Tehran (Iran),
were modeled in Design Builder software [37] and examined in terms of both heating
and cooling demands to achieve comfort conditions. The simulation results highlighted a
reduction of the cooling and heating energy demand of about 45% compared to a building
with a conventional facade system [28]. Radmard et al. [29] analyzed the cooling effect of
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natural convection influenced by a box-window retrofit SS facade on an office room in Karaj
(Iran). The research showed the great potential in terms of both energy and environmental
benefits during the hot season. In [30], the authors designed the optimal SS facade for an
office building in Tehran upon varying: (i) the facade spatial configuration, (ii) shadings
typologies, and (iii) cavity ventilation strategies, by dynamic simulations. The best case was
selected based on minimum energy demand and maximum thermal comfort hours. The nu-
merical analysis results highlighted a reduction of the energy consumption of between 7.9%
and 14.8%, while the operational CO2 emission was cut down by a maximum of 17% [30].
In [35], the authors provided information for developing and selecting an appropriate SS
facade system simulation using CFD, verifying the effect of using two types of boundary
conditions: (i) the surfaces’ temperatures and (ii) the outdoor conditions correlated to the
solar radiation. The authors highlight how the modeling of the outdoor conditions allows
studying complex geometries, particularly when focusing on passive approaches. Finally,
Sadafi et al. [36] investigated the impact of different facade designs on the heating and
cooling energy demand through numerical models for an Iranian temperate and humid
climate. The results showed the importance of calibrating the Windows-to-Wall Ratio
(WWR) to combine the benefit of daylight with management of cooling energy demand,
highlighting the importance of a well-designed shading system.

The literature review [17,20,23,27–36] highlighted a number of benefits achievable
using the SS facade system. In addition, the part of the literature review related to the
Iranian climate [27–30,35,36] highlighted that: (i) all the analyzed researches are focused
on temperate climates, (ii) glass is usually used as SS material, and (iii) only one research
evaluated the reduction of carbon dioxide emissions. Therefore, the literature review re-
lated to the usage of the SS facade systems in Iran [27–30,35,36] shows gaps regarding:
(i) the performance investigation under cold climate and hot climate, (ii) the use of
lightweight materials (such as the PVC-coated polyester fabric [38] investigated in this
research), (iii) the environmental effects of these systems and (iv) their economic impacts.

1.2. Research Aims

In this research, the assessment of the benefits derived from the refurbishment of an
existing office building, in terms of reduction of primary energy consumption, carbon diox-
ide equivalent emissions, operating costs, and simple payback period has been evaluated
across a whole year, by means of the dynamic simulation software TRNSYS [39]. The pro-
posed refurbishment involves the implementation of a PVC-coated polyester fabric [38] as
an external layer of the SS facade system on the main facades of the building. The analysis
has been performed varying the orientation of the building and using an optimized control
strategy, in four different cities of Iran: (i) Tabriz, (ii) Tehran, (iii) Yazd, and (iv) Bandar
Abbass, with cold, temperate, and hot climates.

Therefore, this research aims to bridge the gaps highlighted in the previous section
concerning the SS facade system applications in Iran.

The present research is based on [40] and has been extended thanks to the following
points: (a) new research findings have been integrated, described, and discussed; (b) the
list of the case studies has been extended to consider an additional Iranian location and
climate condition; (c) the energy analysis considers the space heating and cooling loads;
(d) simulation has also been performed including the operating costs according to the
Iranian market scenario; (e) simulation has been carried out also including the calculation
of simple payback period; (f) three different incentive policies have been hypothesized and
suggested to promote the endorsement of energy efficiency measures on existing buildings.

The objectives of this research can be summarized as:

• to assess the impact of passive retrofit actions in the Iranian climate, in particular when
using a light and flexible material;

• to define a best-practice example for existing building renovation in the Iranian sce-
nario, upon varying the climate conditions and the building orientation;

• to highlight the need for incentive policies for building energy efficiency.
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1.3. Research Structure

The research is structured as follows: Section 2 reports in detail on the modeled
office building, the retrofit action, the set of considered case studies, as well as the energy,
environmental and economic methodologies used to carry out the research. Section 3 shows
the results of the research from the energy, environmental and economic points of view.
Section 4 offers a broader discussion, considering the limitations of this and current works
and comments for future activities. Finally, Section 5 summarizes the main results and
considerations.

2. Materials and Methods

This section describes the protocols and methods used to carry out the research. First,
the numerical model of the investigated office building is described, from the geometrical
model up to the definition of the main simulation parameters used through the study.
Then, the methodology used to assess the energy, environmental and economic impact
of the retrofit action is also described, highlighting the values assigned to the energy,
environmental and economic variables considered in the equations.

2.1. Building Modeling

Usually, simulation software is used to predict the energy consumption associated
with the building during a building design phase. This numerical modeling is a complex
task because many variables (weather conditions, building orientation, building occupancy,
etc.) affect building envelope performance. In addition, when new building envelope
components have been developed and tested only in the laboratory [17,32,41], before
realizing a real case study, the simulation can help to verify the energy and economic
feasibility. Nowadays, the software often used in the literature [31,42–47] to simulate
building performance includes EnergyPlus [48], TRNSYS [49], IDA ICE [50], and IES
VE [51]. Depending on the final purpose and the user perspective, each of these types
of software could be the most appropriate; however, according to [42,43], the dynamic
simulation software TRNSYS is the most complete and appears to be the better performing
software when studying the heat flux through a building component. One limitation can be
highlighted, related to the fact that TRNSYS is not able to link with AutoCAD Software [52]
for importing and exporting 2D and 3D drawings of buildings; however, this limitation can
be overcome by installing the TRNSYS3D [53], a plugin for SketchUp [54].

His study focuses on retrofitting a “typical” office building [55–57]. It proposes a best
practice for retrofit actions in the Iranian territorial context. The assessment of the potential
benefits of the passive refurbishment action involving a SS facade system implemented
with a PVC-coated polyester fabric [38] has been carried out by means of the software
TRNSYS 18 [39], calculating the primary energy saving and the reduction of carbon dioxide
equivalent emissions, while also looking for payback periods.

The geometrical model of the reference building investigated in this research is based
on a “typical” seven-story office building from the International Energy Agency (IEA)
Annex 27 activity [55]: each floor has a 661 m2 floor area and 4.13 m height. As suggested
in [58–60], two main building characteristics have been considered, which mainly affect the
building’s passive behavior and performance: the building orientation and the Windows-
to-Wall Ratios (WWR). Two different building orientations have been considered for the
modeling and the simulations: north-south (Figure 1a) and east-west (Figure 1b) [32,58].

The building model is provided with fenestrations on the two main facades, with
different WWR upon varying their orientation [58,61–63]. In particular, in order to minimize
WWR influences on the building energy performance, the WWR has been set as suggested
by [58] for warmer climates and considering, for each facade orientation, the setting which
would provide the best results in terms of overall energy consumption and the best balance
between the two building orientations [58]. Indeed, the choice of the WWR is a critical
criterion, especially in warm climates where a value far from the optimal range could lead
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to a significant increase in cooling energy consumption [58]. Table 1 reports the values of
optimal WWR upon varying the orientation of the office building’s two main facades.
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Table 1. Optimal WWR, varying the orientation of the building’s two main facades [58,61–63].

North-South Orientation East-West Orientation

North Facade South Facade East Facade West Facade

0.37 0.27 0.33 0.34

Iran’s territory is divided into four diverse climates [64]: (i) mild and wet, in the north
of Iran (near the Caspian Sea), (ii) hot and dry, mainly in the central regions, (iii) cold and
dry, in the high mountains, (especially in the north-west), and (iv) hot and wet, in the
southern regions (near the Persian Gulf and the Gulf of Oman), as reported in Figure 2.
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Four cities in four different Iranian climatic zones [64,65] were considered in this study,
as indicated below.

• Tabriz (38◦04′ N–46◦18′ E), located at 1385 m above sea level, shows a cold climate
(2223 heating degree days and 435 cold degree days [66]), with an annual rainfall
of about 318 mm and average high and low temperatures of about 18.2 ◦C and
7.0 ◦C, respectively;
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• Teheran (35◦41′ N–51◦25′ E), located at 1120~1670 m above the sea level, has a mild
climate (1474 heating degree days and 1012 cold degree days [66]), with an annual
rainfall of about 429 mm and average high and low temperatures of about 20.4 ◦C and
10.5 ◦C, respectively;

• Yazd, (31◦54′ N–54◦22′ E), located at 1216 m above the sea level, has a hot and dry
climate (1063 heating degree days and 1207 cold degree days [66]), with an annual
rainfall of about 49 mm and average high and low temperatures of about 26.5 ◦C and
11.4 ◦C, respectively;

• Bandar Abbas, (27◦11′ N–56◦16′ E), located at 9 m above the sea level, has a hot and
wet climate (51 heating degree days and 2299 cold degree days [66]), with an annual
rainfall of about 170 mm and average high and low temperatures of about 32.1 ◦C and
21.7 ◦C, respectively.

Figure 3 reports a comparison of the monthly trends of outdoor air temperatures and
the average global horizontal solar radiation for all locations. In Figure 3, the minimum
temperatures (Tmin, marked by a hyphen sign), average temperatures (Tavg, marked by a
rhombus), and maximum temperatures (Tmax, marked by a plus sign) are shown, along
with the average global horizontal solar radiation (Gavg, represented by the curves): the
values for Tabriz are in black, those for Teheran are in red, those for Yazd are in blue, and
those for Bandar Abbass are in orange. This figure highlights that: (i) the lowest Tmin is
reached in Tabriz (−13.9 ◦C), while the highest Tmax is reached in Yazd and Bandar Abbass
(42.2 ◦C), (ii) Yazd returns the highest value of Gavg (467.5 W/m2) while Tabriz returns the
lowest one (385.3 W/m2).
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Chapter 19 [65] from the National Building Regulations of Iran includes the main ref-
erence codes for buildings’ energy efficiency in Iran. These regulations were first approved
by the government in 1991 and have been revised annually since then. In Chapter 19 sets
out the buildings’ typologies and energy requirements (to be defined to design a retrofit
intervention), the threshold characteristics for the retrofit of the building envelope and
HVAC systems, and a classification of the internal gains. According to these classifications,
the reference office building for the present study falls in the “Type B” occupancy type [65],
and different retrofit approaches are highlighted upon varying the location:
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• in Tabriz, which is a city with a “high heating energy requirement”, the retrofit falls in
the “medium-priority actions” category [65];

• in Teheran and Yazd, which are cities with a “medium heating energy requirement”,
the retrofit falls in the “low-priority actions” category [65];

• in Bandar Abbas, which is a city with a “high cooling energy requirement”, the retrofit
falls in the “medium-priority actions” category [65].

As a starting point, the reference cases, in both north-south and east-west orientations
and each city, have been characterized according to Kari et al. [56], who provides an insight
into the more common envelope characteristics of the buildings built before the publication
of Chapter 19 of the National Building Regulations of Iran [65], and therefore the kind
of buildings more in need of retrofit actions. The thermal characteristics of the envelope
components used to typify the reference case studies are reported in Table 2, and are the
same for all the locations [56].

Table 2. Reference office building: U-values for the four locations [56].

Surface Thermal Transmittance
(W/m2K)

Vertical Walls 1.80
Roof 1.20
Floor 1.80

Windows 6.0

The geometrical model of the office building has been realized in 3D-modeling soft-
ware SketchUp [54] and then imported into TRNSYS [49] in order to characterize the
envelope, the internal gains, the infiltration rate, and the temperature setpoint for the
cooling and heating systems. In TRNSYS, the building model is managed by Type 56, a
component whose characteristics are defined in TRNBuild, an interface for creating and
editing all of the non-geometric information required by the TRNSYS building model.

Table 3 reports the nominal values [65,67,68] of the main simulation parameters used
in this research.

Table 3. Nominal values of the main simulation parameters [65,67,68].

Parameter Detail Value

Lighting system Lighting power density 11.5 W/m2

Equipment Thermal gain associated with the equipment 14.0 W/m2

People Thermal gain associated with occupants 11.5 W/m2

Table 4 reports the occupancy profile, the schedules of the heating-cooling system
setpoints and infiltration rates, as well as the profile of utilization of the lighting system
and office equipment [65]. In particular, the schedules and the profiles reported in Table 4
have been set according to the Chapter 19 of the National Building Regulations of Iran [65]
and have been set as “schedules” in TRNBuild, modifying the nominal values expressed in
Table 3 upon varying the hour of the day and the day of the week. As an example, the value
of the specific space thermal gain associated with the presence of people in the building
(nominal value 11.5 W/m2, Table 3) ranges between 0 W/m2 (nighttime, no people in the
office building) and 10.93 W/m2 (central hours of the workday, almost full attendance of
office personnel).
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Table 4. Occupancy profile, heating-cooling system setpoints and infiltration rate schedules, the
lighting system and office equipment profiles of utilization, during workdays (WD) and weekends
(WE) [65].

Hour of
the Day

Occupancy
(%)

Heating Setpoint
(◦C)

Cooling Setpoint
(◦C)

Lighting
(%)

Infiltration Rate
(Air Changes/Hour)

Equipment
(%)

WD WD WE WD WE WD WE WD WE WD WE

1 0 15 15 32 32 0.05 0.05 0 0 0.05 0.05
2 0 15 15 32 32 0.05 0.05 0 0 0.05 0.05
3 0 15 15 32 32 0.05 0.05 0 0 0.05 0.05
4 0 15 15 32 32 0.05 0.05 0 0 0.05 0.05
5 0 15 15 30 32 0.05 0.05 0 0 0.05 0.05
6 0 17 15 30 32 0.05 0.05 0 0 0.05 0.05
7 0.1 17 15 30 32 0.1 0.05 0.5 0 0.1 0.05
8 0.5 20 15 28 32 0.1 0.05 0.5 0 0.3 0.05
9 0.95 20 15 28 32 0.9 0.05 1 0 1 0.05

10 0.95 20 15 28 32 0.9 0.05 1 0 1 0.05
11 0.95 20 15 28 32 0.9 0.05 1 0 1 0.05
12 0.95 20 15 28 32 0.9 0.05 1 0 1 0.05
13 0.5 17 15 30 32 0.9 0.05 1 0 1 0.05
14 0.5 17 15 30 32 0.9 0.05 1 0 1 0.05
15 0.95 20 15 28 32 0.9 0.05 1 0 1 0.05
16 0.95 17 15 28 32 0.9 0.05 1 0 1 0.05
17 0.5 17 15 30 32 0.9 0.05 1 0 0.3 0.05
18 0.3 17 15 30 32 0.1 0.05 0.5 0 0.1 0.05
19 0.1 15 15 32 32 0.1 0.05 0.5 0 0.1 0.05
20 0.1 15 15 32 32 0.1 0.05 0.5 0 0.05 0.05
21 0.1 15 15 32 32 0.1 0.05 0.5 0 0.05 0.05
22 0 15 15 32 32 0.05 0.05 0 0 0.05 0.05
23 0 15 15 32 32 0.05 0.05 0 0 0.05 0.05
24 0 15 15 32 32 0.05 0.05 0 0 0.05 0.05

In addition, the weather conditions of each city are reproduced by their specific
EnergyPlus weather data file [69].

A preliminary analysis has been carried out by running a simulation in order to assess
the space heating and cooling loads of the reference building for each location and in both
orientations. In this preliminary analysis, the building envelope (modeled as “massless
wall” in TRNBuild by using the thermal transmittance values reported in Table 2), the
internal gains (lighting, equipment, and people, Tables 3 and 4), and the infiltration rate
(Table 4) have been fully characterized, while only the temperature setpoints have been set
for the heating and cooling systems (Table 4), leaving “unlimited” available heating and
cooling powers, in order to assess the maximum systems load. In this way, the calculated
peak values of heating and cooling load are used to calibrate the size of a commercial
electric heat pump model for the simulations of the case studies.

Figures 4a,b and 5a,b show the space heating and cooling load-duration diagram
associated with the two different orientations for each location. These figures highlight that
for the space heating load, both building orientations show similar trends; in contrast, the
space cooling load peaks are higher and collected in a narrower range when considering
the building in an east-west orientation. In particular, Figure 4a highlights that the space
heating load differs for each location, and it is equal to about 4908 h for Tabriz, 3958 h for
Teheran, 3437 h for Yazd, and 1908 h for Bandar Abbass. Figure 4b shows that the space
cooling load is about 1690 h for Tabriz, 2357 h for Teheran, 2887 h for Yazd, and 4561 h for
Bandar Abbass. In addition, it can be noticed that, for the north-south orientation cases, the
maximum thermal load is achieved in Tabriz (404.8 kW), while the maximum cooling load
is calculated in Bandar Abbass (426.4 kW). Moreover, Figure 5a highlights that the space
heating load differs for each location: in particular, it is equal to about 4815 h for Tabriz,
3961 h for Teheran, 3427 h for Yazd, and 1854 h for Bandar Abbass. Figure 5b shows that
the space cooling load is equal to about 2024 h for Tabriz, 2545 h for Teheran, 3046 h for
Yazd, and 4647 h for Bandar Abbass. In addition, it can be noticed that, for the east-west
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orientation cases, the maximum thermal load is achieved in Tabriz (404.8 kW), while the
maximum cooling load is calculated in Yazd (481.6 kW).
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Figure 4. Space (a) heating and (b) cooling load-duration diagram associated with the whole building
for the north-south orientation cases.
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Figure 5. Space (a) heating and (b) cooling load-duration diagram associated with the whole building
for the east-west orientation cases.

These results allowed selection of an appropriately sized commercial model of electric
heat pump capable of covering the energy needs and guaranteeing the achievement of the
temperature setpoints for all the locations. Thus, in each of the seven building floors, three
commercial electric heat pump (EHP) units (Clint CRA/K 101 [70]) are installed, connected
in parallel, and coupled with a multi-split type air conditioning system. Each EHP unit is
characterized by a cooling capacity of 28.6 kW with an energy efficiency ratio (EER) equal
to 2.33, and a heating capacity of 36.7 kW with a coefficient of performance (COP) equal
to 2.82.

The refurbishment cases have been modeled considering the installation of a SS facade
system consisting of the PVC fabric [38] as SS outer layer, a 10 cm deep air cavity, and
insulation panels on the external wall of the building. The SS facade system has been
implemented only on the two main reference building’s facades, leaving the other surfaces
as in the reference case. In TRNSYS, Type 1230 [71] has been used to model the SS facade
system (SS external layer and the air cavity behind it, Figure 6) following the methodology
presented and experimentally validated by the authors in [17]. In [17], the numerical model
showed good reliability, with a root mean square error of 0.5 ◦C and 0.4 ◦C for the indoor
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air temperature and the temperature of the air cavity, respectively [17], when comparing
the experimental results with the numerical ones.
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Figure 6. Schematic view of Type 56 (building) and Type 1230 (SS facade system): (a) axonometry
and (b) section.

By means of Type 1230 is possible to account for the effects of the solar and longwave
radiation and air convection on the SS external layer, the thermal energy transmission and
storage in the SS external layer, the radiative exchanges in the air cavity and the thermal
energy transmission through the building external wall. Indeed, Type 1230 (SS facade
system) and Type 56 (building) are connected in TRNSYS by coupling the building wall
surface temperature and its thermal resistance to the related inputs in Type 1230 settings
(Figure 6). Type 1230 parameters related to the SS facade system instead have been set by
using the data provided by the PVC fabric manufacturer [38], in particular the thickness
(0.0009 m), the density (579 kg/m3), and the thermal conductivity (1.64 W/mK).

Different thicknesses of the insulation layer (Expanded PolyStyrene—EPS, λ = 0.041 W/mK)
have been set in order to reach the basic U-value thresholds reported in Chapter 19 of
the National Building Regulations of Iran [65] for the four locations. Table 5 reports the
insulation layer thicknesses (sEPS) and the U-values of the refurbished walls, for all the
locations: (i) Tabriz (Ta), (ii) Teheran (Te), (iii) Yazd (Ya) and (iv) Bandar Abbas (Ba). In
particular, for each location, four different case studies have been investigated: cases
NS and EW correspond to the reference cases, in north-south and east-west orientation,
respectively; then, cases rNS and rEW correspond to the retrofit cases with the SS facade
system, in north-south and east-west orientation, respectively.

Finally, considering the openness factor of the PVC fabric (equal to 30% [38]), the
SS facade system has been deployed on the whole facade: in particular, by operating
the portions installed in correspondence of the windows (Figure 6a), it is possible to
conveniently manage the solar gains during different seasons, reducing their contribution
during the summer while maximizing it during the winter. Also, the ventilation through
the air cavity of the SS facade system is managed by a set of shutters at the inlet and the
outlet, allowing for free natural ventilation during the cooling season while keeping the air
cavity closed during the heating one.
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Table 5. Parameters of the case studies for the four Iranian cities.

Location Classification Case Study sEPS
(m)

Walls U-Value [65]
(W/m2K)

Tabriz
Cold zone,

medium priority action
Case NS-Ta & Case EW-Ta - 1.80

Case rNS-Ta & Case rEW-Ta 0.018 0.88

Teheran
Mild zone,

low priority action
Case NS-Te & Case EW-Te - 1.80

Case rNS-Te & Case rEW-Te 0.011 1.02

Yazd
Hot and Dry zone,
low priority action

Case NS-Ya & Case EW-Ya - 1.80
Case rNS-Ya & Case rEW-Ya 0.011 1.02

Bandar Abbas
Hot and Wet zone,

medium priority action
Case NS-Ba & Case EW-Ba - 1.80

Case rNS-Ba & Case rEW-Ba 0.011 1.02

2.2. Energy, Environmental and Economic Methodologies

This section presents the energy, environmental and economic methodologies used
to compare the proposed cases with the SS facade system (PC) to their corresponding
reference cases (RC).

The energy comparison considers the primary energy consumption through the evalu-
ation of the index PES (primary energy saving) [17] calculated as reported below:

PES =
[(

ERC
p − EPC

p

)
/ERC

p

]
· 100 (1)

where ERC
p is the primary energy consumption associated with the reference cases (cases NS

and EW, see Table 5), while EPC
p is the primary energy consumption associated with each of

the eight proposed cases (cases rNS and rEW, see Table 5). When the index PES is positive,
the proposed passive retrofit actions allow for a primary energy reduction compared to the
reference case.

The values of ERC
p and EPC

p are calculated as reported in the following equations:

ERC
p =

(
ERC

th
COP

+
ERC

cool
EER

+ Eel,equipment + Eel,lighting

)/
ηPP (2)

EPC
p =

(
EPC

th
COP

+
EPC

cool
EER

+ Eel,equipment + Eel,lighting

)/
ηPP (3)

where ηPP is the average efficiency of the power plants and it has been considered equal to
0.38 [72].

The environmental comparison has been evaluated considering the reduction of carbon
dioxide equivalent emissions (∆CO2) [17]:

∆CO2 = mRC
CO2,eq

− mPC
CO2,eq

(4)

where mRC
CO2,eq

is the carbon dioxide equivalent emission mass for the reference cases (cases

NS and EW, see Table 5), while mPC
CO2,eq

is the carbon dioxide equivalent emission mass
for each of the eight proposed cases (cases rNS and rEW, see Table 5). Thus, the ∆CO2
represents the ability of the implemented passive retrofit actions to reduce the carbon
dioxide equivalent emission of the refurbished case with respect to the reference one.

The values of the mRC
CO2,eq

and mPC
CO2,eq

are calculated as reported in the following equations:

mRC
CO2,eq

= α ·
(

ERC
th

COP
+

ERC
cool

EER
+ Eel,equipment + Eel,lighting

)
(5)
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mPC
CO2,eq

= α ·
(

EPC
th

COP
+

EPC
cool

EER
+ Eel,equipment + Eel,lighting

)
(6)

where α is the CO2 equivalent emission factor associated with electricity production in
Iran, and it is assumed equal to 0.62 [73]. At the same time, the COP and EER values are
considered according to the data reported by the manufacturer [70], and equal to 2.82 (COP)
and 2.33 (EER), respectively.

With respect to the economic point of view, the analysis concerned the simple payback
(SPB) periods. In particular, the SPB period has been calculated considering four different
hypotheses of incentives:

• hypothesis a: no incentive for retrofit projects (I0%) of capital costs (CC) spent to
perform the refurbishment;

• hypothesis b: an incentive for retrofit projects equal to 5% (I5%) of CC spent to perform
the refurbishment;

• hypothesis c: an incentive for retrofit projects equal to 10% (I10%) of CC spent to
perform the refurbishment;

• hypothesis d: an incentive for retrofit projects equal to 20% (I20%) of CC spent to
perform the refurbishment.

The SPB period without the incentives has been calculated by using the following
equation [74]:

SPBIX% = CCPC/
[
OCRC − OCPC +

(
IX% · CCPC

)]
(7)

where CCPC is the capital cost associated with the eight proposed cases (cases rNS and
rEW, see Table 5), OCRC are the operating costs associated with the reference cases (cases
NS and EW, see Table 5), and OCPC are the operating costs associated with each of the eight
proposed cases (cases rNS and rEW, see Table 5). The value IX% is the incentive for retrofit
action calculated as a percentage of the CCPC according to the four different hypotheses
described above.

The CCPC has been calculated on the basis of the Iranian market reference for the
proposed interventions [7,75,76]. In addition, because of the lack of a standardized and
detailed price list for construction materials, the authors evaluated and actualized the
prices by comparing the references [7,75,76] with the current Iranian market in IRR, then
converted to USD considering an IRR/USD exchange rate of ~1/0.000024 [77]. Therefore,
in this work, the cost of the whole SS facade system, including the renovation materials (for
the insulation panels, metal structure for the ventilated facade, and tensile material), and
the cost for the scaffolding and the cost of labor, has been assumed equal to 21.78 $/m2.

The values of the OCRC and OCPC are calculated as reported in the following equations:

OCRC = UCel ·
(

ERC
th

COP
+

ERC
cool

EER
+ Eel,equipment + Eel,lighting

)
(8)

OCPC = UCel ·
(

EPC
th

COP
+

EPC
cool

EER
+ Eel,equipment + Eel,lighting

)
(9)

where UCel is the unit cost of the electric energy assumed equal to 0.013 $/kWh, according
to the Iranian scenario [78] and considering the same IRR/USD exchange rate.

3. Results

In this section, the results of the numerical analysis are reported. In particular, the
results related to the primary energy saving, the reduction of carbon dioxide equivalent
emissions, the whole building heating and cooling energy demands as well as the simple
pay back periods are discussed in detail.

Figure 7a,b reports the PES (Equation (1)) and ∆CO2 (Equation (4)) for the proposed
cases in the four Iranian cities.
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Figure 7. Values of (a) PES and (b) ∆CO2 according to location.

Figure 8a–d reports the values associated with the whole office building for thermal
and cooling energy flows upon varying the simulation case (Table 5) and the month of the
year. In particular, in Figure 8a–d, the values associated with the north-south oriented case
studies (case NS-Ta, case rNS-Ta, case NS-Te, case rNS-Te, case NS-Ya, case rNS-Ya, case
NS-Ba, and case rNS-Ba) are reported by using solid-filled bars. In contrast, the values
associated with the east-west oriented case studies are reported by using striped-filled bars
(case EW-Ta, case rEW-Ta, case EW-Te, case rEW-Te, case EW-Ya, case rEW-Ya, case EW-Ba,
and case rEW-Ba).

Table 6 reports the space cooling and thermal energy demand for every case study
and location. In particular, the first two rows of Table 6 refer to the reference cases, cases
NS and EW, in north-south and east-west orientation, respectively; then, the second two
rows of Table 6 refer to the retrofit cases with the SS facade system, cases rNS and rEW, in
north-south and east-west orientation, respectively. Moreover, Table 6 is divided into two
main vertical sections, reporting the thermal energy for space cooling (left) and heating
(right) demands associated with the whole office building upon varying the location.

Table 6. Yearly cooling and thermal energy demand per square meter associated with the whole
building for each case study.

Space Cooling Energy Demand
Associated to the Whole Office Building

(kWh/m2/year)

Space Heating Energy Demand
Associated to the Whole Office Building

(kWh/m2/year)

Case study Tabriz Teheran Yazd Bandar
Abbas Tabriz Teheran Yazd Bandar Abbas

Case NS 36.7 60.0 83.6 134.1 110.7 66.3 50.8 6.8
Case EW 50.6 76.8 99.4 146.7 109.4 65.0 48.9 6.5
Case rNS 23.3 42.8 62.2 113.2 99.1 61.3 45.4 6.7
Case rEW 26.6 47.5 67.2 116.5 97.1 59.6 43.2 6.4
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The simulation results shown in Figures 7 and 8, as well as Table 6, indicate that:

• all the proposed cases (cases rNS and rEW, Table 5) allow for saving primary energy
consumption and reducing carbon dioxide equivalent emissions with respect to the
reference cases for each considered location (cases NS and EW, Table 5);

• in all the locations, the best results are returned, in terms of reduction of both primary
energy consumption and CO2 equivalent emissions, when the main facades of the
building are oriented east-west (cases rEW, Table 5) in comparison to the reference
cases (cases EW, Table 5);

• the PES varies between a minimum of 7.7% in Bandar Abbas (case rNS-Ba) and a
maximum of 13.6% in Yazd (case rEW-Ya);

• the values of ∆CO2 vary from a minimum of 25.8 MgCO2,eq (case rNS-Ba) and a
maximum of 45.5 MgCO2,eq (case rEW-Ya);

• considering the north-south orientation, the best values of PES (10.0%) and ∆CO2
(31.8 MgCO2,eq) are returned by the retrofit case in Yazd (case rNS-Ya), thanks to an
important reduction of both the thermal and cooling energy demand with respect to
the reference case, of about 10.7%, and 25.6% respectively. Indeed, the case rNS-Ya
returned the best results in terms of reduction of the annual specific total (cooling and
thermal) energy demand of about 26.8 kWh/m2/year (see Table 6);

• considering the east-west orientation, the best values of PES (13.6%) and ∆CO2
(45.5 MgCO2,eq) are returned by the retrofit case in Yazd (case rEW-Ya), thanks to
an important reduction of both the thermal and cooling energy demand with respect
to the reference case, of about 11.7% and 32.4%, respectively. Indeed, the case rEW-Ya
return the best results in terms of reduction of the annual specific total (cooling and
thermal) energy demand of about 37.9 kWh/m2/year (see Table 6);

• concerning the reduction of cooling energy demand, the best results for both east-west
and north-south orientation cases are achieved in Yazd, equal to 32.2 kWh/m2/year
and 21.4 kWh/m2/year, respectively; the worst results for both north-south and
east-west orientation cases are returned in Tabriz, equal to 13.4 kWh/m2/year and
24.0 kWh/m2/year, respectively;

• concerning the reduction of thermal energy demand, the best results for east-west and
north-south orientation cases are achieved in Tabriz, equal to 12.3 kWh/m2/year and
11.6 kWh/m2/year, respectively. In comparison, the worst results for both north-south
(0.08 kWh/m2/year) and east-west (0.12 kWh/m2/year) orientation cases are returned
in Bandar Abbas.

Finally, Figure 9 reports the SPB period (Equation (7)) upon varying the case study
(Table 5) and the incentives hypotheses.

Figure 9 highlights that:

• with respect to the building orientation, the east-west oriented cases return, on average,
values of SPB period almost 30 years lower than those calculated for the north-south
oriented cases;

• in general, the worst results are returned in Bandar Abbass (106.7 years), when the
building is north-south oriented, and no incentives are taken into account (I0%), while
the best results are calculated in case rEW-Ya (48.8 years, in Yazd) considering the
most significant amount of hypothesized incentive (I20%);

• in all the considered locations, the installation of the SS facade systems on the buildings
that are north-south oriented (cases rNS, Table 5) returned unacceptable values of
SPB period ranging between 69.6 years (case rNS-Ya with I20%) and 106.8 years (case
rNS-Ba with I0%);

• in all the considered locations, the installation of the SS facade systems on the building
east-west oriented (cases rEW, Table 5) returned, while still high, more acceptable val-
ues of SPB period ranging between 48.8 years (case rEW-Ya with I20%) and 73.9 years
(case rEW-Ba with I0%).
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4. Discussion: Limitations and Comments for Future Research

This section tries to give a broader perspective to the achieved numerical results,
along with a comment on the economic analysis, which may deserve a more articulated
consideration.

As reported in the literature review, there are a limited number of research activities
about SS facade systems, or ventilated facades in general, in the Iranian context. Other
than the achieved benefits, it is important to assess the general considerations that stand
out when considering this type of system across the varied Iranian climate.

In terms of reducing energy consumption and emissions, the results achieved by the
SS facade system presented in this research seem to be in line with those achieved by
Zomorodian et al. [30] and Mahdavinejad & Mohammadi [28] in Teheran. However, as
stated by the same authors, the impact of these particular passive systems seems to be quite
low compared to retrofit design which involves active systems or more intrusive renova-
tions. Arguably, when considering the advantages of the SS facade systems, the analysis
should also focus on the architectural value of the building. In previous works [17,31,32],
the authors have investigated the use of SS facade systems, in particular where historical
or old buildings represent the building stock, where SS structures may be the only feasible
retrofit solution, both for short and long term renovations, thanks to their non-invasiveness
and lightness. In these cases, SS facade systems can provide energy and environmental
benefits while also providing for an increase in the building’s value.

Another consideration, particularly in the perspective of future research, is the design
of the SS facade system and first of all the orientation of the retrofit facades and the control
logic of the SS components (inlet and outlet shutters, movable sections, etc.). In this regard,
very few works consider the behavior of the SS facade system across a whole year, mainly
focusing on the cooling season and the response to high solar radiation levels. However, this
work highlighted how it is possible to achieve good results also in the heating season when
the control logics are designed to exploit the advantages of the materials or components in
the SS external layer. Indeed, these topics, related to the implementation of new materials
and components as external layer, as well as to the development of proper and more
effective control logics (i.e., based on the external vertical solar radiation or illuminance
levels), are at the same time a current limitation and a reference for future research. With
the rapid development of new materials (especially in plastic and low-impact materials)
or the use of local materials (usually more affordable and easily available), there is a need
to develop new methodologies (design, modeling, and control) able to assess their impact
when integrated into these construction systems. Future research may also investigate
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installing this kind of passive system in locations or orientations, such as Nordic regions,
where traditionally low or no benefits were achieved.

Finally, the economic analysis highlighted similar concerns about the feasibility of
installing a SS facade system in the Iranian panorama. As also stated in [30], the payback pe-
riod is quite long, and the economic impact should be evaluated on the whole architectural
design, also considering the added aesthetic value and attractiveness. However, the results
achieved in this research reveal the need for a more robust approach to energy policies and
government incentives in Iran. Indeed, there is now an evident gap between developed
and emergent nations in terms of promoting and adopting energy policies [12]. Usually, the
policies are introduced applying national or international directives about new approaches
(such as thermal building envelope regulation, renewable energy sources, internal market
regulation for penetration of efficient technologies and higher environmental standards).
In Iran, the first energy-related policy was introduced in the early 1990s and updated in
2005, as a voluntary policy for all buildings, but it has been poorly adopted, mainly due
to socio-economic obstacles [13]. In this regard, the strategies to overcome these obstacles
could involve:

• regularly enforcing the adoption of the policy for all new buildings and renovations;
• financially assisting the construction of buildings able to reach a certain performance

threshold, instead of focusing on prescriptive limitations;
• financially assisting the renovation of the existing building stock, prioritizing passive

approaches and system enhancements;
• setting up an energy performance label system, in order to give the tools to buyers

and renters to assess the quality of a building;
• publicly encouraging the consumers in adoption of new technologies.

Notably, these strategies could merge into national policies that aim at developing
the required economic tools, while also providing the necessary educational bases for
an easier common understanding of the benefits. Indeed, the first and main obstacle for
the government is the economic planning for these incentive policies. Examples from
around the world show good success in providing the necessary funding to owners and
construction agencies, mainly by:

• guaranteeing a direct capital grant for owners or buyers, where the amount is propor-
tional to the achieved building energy performance;

• guaranteeing an indirect grant, by lowering the owners’ taxes proportionally to the
cost of renovations;

• guaranteeing an indirect grant, by lowering utility charges proportionally to the
achieved performances of renovations.

Future research may investigate more complex economic scenarios and incentives,
while also accounting for a more comprehensive assessment of the economic impact of all
the SS facade system components across their whole life cycle.

5. Conclusions

In the last decade, Iranian primary energy consumption has increased, and the most
significant energy demand is related to use in buildings. In order to acknowledge the
problems of energy efficiency, indoor comfort, and sustainability, several systems and
methodologies have been proposed, highlighting the use and optimization of passive
systems for the buildings’ facades. In this research, the evaluation of the energy, environ-
mental and economic effects of the refurbishment of an existing office building by means
of a passive retrofit action, in terms of reduction of primary energy consumption, carbon
dioxide equivalent emissions, operating costs, and simple payback period has been carried
out upon varying both weather conditions (Tabriz, Teheran, Yazd, and Bandar Abbas) and
orientation of the building (north-south and east-west orientation of the two main facades
under consideration). The analyses were carried out through the simulation software
TRNSYS 18 using a numerical model validated by the authors of a second-skin system
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integrating a tensile material. In particular, an office building was considered, consisting
of geometries defined by the literature and thermophysical characteristics of the envelope
typical of the Iranian building stock. The passive retrofit actions involved seasonal control
of the second-skin system, fully exploiting the characteristics of the tensile material. The
thermal transmittance threshold values suggested by the Iranian building code were also
considered. In order to further develop the economic analysis, three different incentive
policies were hypothesized and suggested to promote the endorsement of energy efficiency
measures on existing buildings.

The results returned by the numerical simulation highlight that the building in the
east-west orientation achieves the best results in terms of PES and ∆CO2. In particular, the
simulation returned the maximum values of PES and ∆CO2 in Yazd (equal to 13.6% and
45.5 MgCO2,eq, respectively). Indeed, the east-west oriented building in Yazd returned the
best results in terms of reduction of the annual specific total (cooling and thermal) energy
demand of about 37.9 kWh/m2/year. In addition, the use of the proposed second-skin
system as a retrofit solution allowed for a reduction of both specific space cooling (up to
32.2 kWh/m2/year) and heating (up to 12.3 kWh/m2/year) energy demand.

Concerning the economic analysis, the east-west oriented cases return, on average,
values of simple payback period almost 30 years lower than those calculated for the north-
south oriented cases; this result seems to highlight a favorable orientation for building
in Iran, which may also suggest a guideline for new building construction. However,
the analysis also underlines two main issues: (i) on the one hand, there is a need for
investigating more innovative materials, also considering their local availability and efficacy,
and (ii) on the other, there is a need for government policies to incentive the refurbishment
of the existing building stock on a large scale and with a better economic return. Successful
policies have been applied around the world: (i) direct capital grant for improving the
building energy efficiency, (ii) tax deductions in the function of the cost of renovations
as well as (iii) incentives for the operating costs, thereby promoting the penetration of
innovative and more efficient systems.
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Nomenclature

Latin letters
BEC Building Energy Code
CC Capital Costs
COP Coefficient of Performance (-)
E Energy (kWh)
EER Energy Efficiency Ratio (-)
EHP Electric Heat Pump
EPS Expanded PolyStyrene
EW-Ta/EW-Te/EW-Ya/EW-Ba reference case in East-West orientation in

Tabriz/Teheran/Yazd/Bandar Abbass
h hours
HVAC Heating, Ventilation and Air Conditioning
I Incentive for retrofit action
IEA International Energy Agency
IRR Iranian Rial
LPD Lighting Power Density (-)
m mass (kg)
NS -Ta/NS -Te/NS -Ya/NS -Ba reference case in North-South orientation in

Tabriz/Teheran/Yazd/Bandar Abbass
OC Operating Costs
PC Proposed Case
PES Primary Energy Saving
PVC PolyVinyl Chloride
RC Reference Case
rEW-Ta/rEW-Te/rEW-Ya/rEW-Ba retrofit case in East-West orientation in

Tabriz/Teheran/Yazd/Bandar Abbass
rNS -Ta/rNS -Te/rNS -Ya/rNS -Ba retrofit case in North-South orientation in

Tabriz/Teheran/Yazd/Bandar Abbass
s thickness
SS Second-Skin
T Temperature
U transmittance value (m2K/W)
USD US Dollar ($)
WD Work Days
WE Week-Ends
WWR Windows-to-Wall Ratio

Greek letters
∆ difference
η efficiency (%)
λ thermal conductivity (W/mK)

Subscripts/Superscripts
avg average
cool cooling
el electricity
I Incentive for retrofit action
indoor indoor air
min minimum
max maximum
p primary energy
PC Proposed Case
PP Power Plant
RC Reference Case
th thermal
w window
X% percentage of the retrofit capital costs
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