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Abstract: Several groundwater vulnerability methodologies have been implemented throughout the
years to face the increasing worldwide groundwater pollution, ranging from simple rating method-
ologies to complex numerical, statistical, and hybrid methods. Most of these methods have been
used to evaluate groundwater vulnerability to nitrate, which is considered the major groundwater
contaminant worldwide. Together with dilution, the degradation of nitrate via denitrification has
been acknowledged as a process that can reduce reactive nitrogen mass loading rates in both deep
and shallow aquifers. Thus, denitrification should be included in groundwater vulnerability studies
and integrated into the various methodologies. This work reviewed the way in which denitrification
has been considered within the vulnerability assessment methods and how it could increase the
reliability of the overall results. Rating and statistical methods often disregard or indirectly incorpo-
rate denitrification, while numerical models make use of kinetic reactions that are able to quantify
the spatial and temporal variations of denitrification rates. Nevertheless, the rating methods are
still the most utilized, due to their linear structures, especially in watershed studies. More efforts
should be paid in future studies to implement, calibrate, and validate user-friendly vulnerability
assessment methods that are able to deal with denitrification capacity and rates at large spatial and
temporal scales.

Keywords: denitrification rate; aquifer; groundwater quality; vulnerability assessment; nitrate
pollution; saturated and unsaturated zones

1. Introduction

Around the world, several water bodies do not meet the minimum quality standards
necessary to ensure their utilization for anthropic activities [1–3] and groundwater quality
is even declining over time [4]. This phenomenon is attributable to the presence of different
pollutants in both surface and groundwater resources [5], due either to anthropogenic
activities or natural processes [6]. Specifically, the subsurface pollution related to nitro-
gen surplus is considered a persistent and widespread issue, especially in agricultural
areas [7], where the excess of nitrate (NO3

−) represents a major concern [8–11]. NO3
−

is simultaneously: (i) an indispensable nutrient for agricultural production, necessary to
properly meet the increasing food demands for communities, and (ii) the most widespread
groundwater pollutant worldwide [12], which can be linked to numerous severe human
health threats [13]. Significant increases in groundwater NO3

− pollution can be attributed
to several processes such as: (i) overuse of fertilizers and/or animal waste, (ii) sewage
leaks, (iii) improper management of wastewater effluents, and (iv) wastewater treatment
without denitrification (DNT) [14]. Driven by this worrying scenario, the United States
Environmental Protection Agency [15] and with the European Union Council [16] have
established a maximum NO3

− concentration of 50 mg/L in drinking water. The natural
processes of water dilution and NO3

− decay represent the main processes that could
attenuate NO3

− concentration in water bodies. The degradation of NO3
− through DNT
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can reduce the reactive nitrogen (Nr) levels in both deep and shallow aquifers [17,18].
The process occurs both in the saturated and unsaturated zones under mildly reducing
conditions [19], with dissolved oxygen usually below 2 mg/L. It generally refers to the
heterotrophic DNT, operated by facultative anaerobic bacteria, using a carbon source as
electron donor and NO3

− as electron acceptor to produce atmospheric nitrous oxide (N2O)
and nitric oxide (NO), which can be further reduced to dinitrogen (N2). Unfortunately,
the DNT byproducts that are generated when DNT is incomplete are also considered
greenhouse gases and ozone-depleting substances [20]. While heterotrophic DNT is the
most widely known pathway to reduce NO3

− in the subsurface, other processes can help
to diminish NO3

− concentrations, like dissimilatory NO3
− reduction to ammonium [21].

This process is an anaerobic respiration of organic matter by chemoorganoheterotrophic
microbes using NO3

− as electron donor, but unlike DNT, it conserves bioavailable Nr in
the system as ammonium. Other relevant processes ubiquitously occurring in subsurface
environments are anammox [22] and autotrophic DNT via different inorganic electron
donors [23], includign dissolved reduced species such as ferrous iron and sulfide or solid
phases such as pyrrhotite and pyrite. Despite the many biogeochemical processes that
can attenuate NO3

−, fertilization often occurs at amounts exceeding both crop demand
and the natural attenuation capacity of soils. This generates a NO3

− surplus which can
be readily transported by percolating waters through the soil profile and can promote
NO3

− accumulation in groundwater bodies, if oxic conditions prevail [24,25]. Moreover,
a reliable identification of NO3

− sources may be difficult due to the occurrence of mul-
tiple releasing sources and the complementarity of several geogenic and anthropogenic
processes acting in the same area [26–29]. In addition, the occurrence of NO3

− may suffer
from consistent temporal variations [30], depending on: (i) the precipitation regime [31],
(ii) the hydrogeological conditions [32], and (iii) the land use [33].

Several tools and techniques have been proposed to estimate groundwater pollution,
ranging from analytical, graphical, and statistical methods. They have been greatly en-
hanced since the advent and the improvement of geographic information systems (GIS),
which made the interpretation and representation of groundwater quality easier than be-
fore [34]. Among all available methodologies, groundwater vulnerability assessment tools
have attracted researchers’ attention due to their relatively straightforward applicability
and the production of understandable results by non-specialists. The concept of aquifer vul-
nerability [35,36] aims to quantify the susceptibility of an aquifer to be adversely affected
by any pollutant load imposed on the land surface. Groundwater vulnerability cannot be
directly measured and quantified in the field since it represents a qualitative classification
as a function of the main hydrogeological conditions of the study area, which could vary
drastically from one place to another. The vulnerability can be classified in two types:
(i) intrinsic and (ii) specific vulnerability [37]. The intrinsic vulnerability only depends on
hydrogeological characteristics regardless the pollutant types. The specific vulnerability
instead refers to the vulnerability of a given pollutant, involving in the evaluation processes
both the pollutant’s physical–chemical characteristics and its mass loading rates. In recent
decades, different methodologies to assess groundwater vulnerability were proposed and
tested around to world. They can be distinguished in four main categories: (i) determinis-
tic or simulation models, (ii) overlay and index techniques, (iii) statistical tools, and (iv)
hybrid methodologies [38]. All methodologies offer different advantages and, at the same
time, they suffer from some drawbacks. For example, both statistical and deterministic
models ask for a high-quality dataset and a massive quantity of information, especially
for calibration and validation procedures, while overlay and indices methodologies could
be affected by subjectivities in rates classification and weights assignment. Weighting and
rating indices are easy-to-use methodologies, need relatively low amounts of data, are
usually applicable to large domains, and can be easily modified and updated. On the other
hand, they produce static snapshots of the aquifer vulnerability, which can be only used
as a screening tool for regional and national scale management or planning. Conversely,
process-based methods can produce a transient representation of groundwater quality, but
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they are mostly used on small domains (e.g., field or site scales) due to computational
burdens and the requirement of high-quality and -frequency data.

In general, the groundwater pollution status is controlled by a wide range of physical
and biogeochemical processes (e.g., dilution, sorption, and degradation), which contribute
to decreasing pollutants concentrations. As a result, N loads of rivers and aquifer systems
often reflect only a minor part of the N surplus within the corresponding river basin area
due to decay processes during the aquifer transit and within the surface water bodies them-
selves [39]. Many studies have highlighted that among these decay processes, DNT has a
large potential to reduce the relative vulnerability of water bodies [40,41]. Unfortunately,
these attenuation processes are not always properly incorporated within the vulnerability
assessment methodologies [42,43], but only considered indirectly in lumped parameters.

This paper deals with the last 20 years of literature on groundwater vulnerability
and, specifically, it focuses on the introduction of NO3

− attenuation processes within
the evaluation assessment. The main difficulties in including, directly or indirectly, the
DNT process in some methodologies, the improvements in results, and the effects on the
consequent water management strategies are also discussed. With this review, we sought
to highlight the main limitations and research gaps incurred in the past studies, delineating
the future research needs aimed to obtain a reliable evaluation of groundwater intrinsic
and specific vulnerability to NO3

−, explicitly including DNT rates for both the saturated
and unsaturated zones.

2. Denitrification in the Unsaturated and Saturated Zones

NO3
− attenuation is controlled by several physical and biogeochemical processes

occurring in the saturated and unsaturated zones. The understanding and quantification of
these processes are mandatory to protect groundwater from the risk associated with point
and non-point sources of NO3

− pollution [44]. Figure 1 reports a schematic representation
of the processes acting in the unsaturated and saturated zones.
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Among all biogeochemical processes, DNT is considered the predominant factor
responsible for NO3

− attenuation in agricultural soil [45], representing an important
pathway for Nr losses. Nevertheless, DNT also has a serious adverse environmental
effect, being the principal source of N2O and NO, accounting for 70% of the N2O emitted
annually from the biosphere into the atmosphere [46]. Several factors regulate DNT in
the unsaturated and in the saturated zones; in fact, the DNT rate is a direct function of:
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(i) soil water content, (ii) hypoxic and anoxic conditions, (iii) NO3
− concentrations, and

(iv) organic carbon substrates, such as soil organic matter and crop residues [47]. Soil
texture could also directly influence DNT, especially in the topsoil, via the formation of
micro-niches where anoxic condition would prevail [48]. Nr mass loading rate significantly
affects DNT, especially when the Nr supplied through fertilizer is higher than the crop Nr
requirement [49,50]. Within the unsaturated profile, DNT could prevent leached NO3

−

from reaching the water table, if labile carbon sources are also present [51,52]; in any case,
DNT rates could be significantly limited by the vertical unsaturated geochemical and
microbiological variability.

DNT in the saturated zone has been less extensively studied with respect to DNT
in the unsaturated zone. Despite this, DNT in groundwater systems is still relevant and
mainly controlled by the same conditions as for the unsaturated zone. For instance, the
presence of electron donors (organic carbon, reduced iron, and/or reduced sulfur) have
been identified as the most limiting factor among with anoxic conditions, more than NO3

−

and nutrient availability [44]. The above-mentioned DNT controlling factors (Figure 1),
both in the unsaturated and saturated zones, are usually considered in vulnerability
assessment methodologies to indirectly account for DNT where direct measurements are
not available. Furthermore, as will be further discussed in the following chapters, the main
factor considered in most used methodologies (namely the rating and weights methods)
is the soil texture, which is easier to measure and analyze compared to the other factors
controlling DNT in the unsaturated or saturated zone.

Based on these considerations, Table 1 shows the DNT rates for the unsaturated
zone, and more specifically in the topsoil, obtained from both laboratory and field studies,
depending on the soil texture and for different land covers. The average DNT value
for laboratory studies is 460 Kg-N/ha/year, with values that can reach up to 3600 Kg-
N/ha/year, while for field studies the average DNT rate is 60 Kg-N/ha/year, with a
maximum of 550 Kg-N/ha/year. It is evident that under controlled laboratory conditions,
the DNT rates tend to be much higher (approximately one order of magnitude) than in
field conditions, where local limiting factors may act to reduce the effectiveness of DNT
both spatially and seasonally. Concerning the DNT rates in the saturated zone, it must
be stressed that the studies available in the literature are not numerous, especially in the
field, given the greater difficulty of the monitoring techniques required and the duration
of the studies to be carried out. Nevertheless, recent studies [53,54] reported DNT rates
up to 320–390 Kg-N/ha/year, underlining the fact that the contribution of DNT processes
within the saturated zone cannot be neglected in the definition of the vulnerability of a
given territory.

Table 1. DNT rates for different experimental setup, land use, and texture.

Land Use and Location Rate
(Kg-N/ha/Year) Type of Matrix Reference

LABORATORY

Drainage Basin, California 0–3600 Sand [55]
Agricultural field,

Georgia 12–300 Organic soil [56]

Forest, Georgia 43–159 Clay [56]
Grassland, Europe 0–2190 Clay Loam [57]

Rice, China 6–119 Silty Clay Loam [58]
Tallgrass prairie, USA 6.2 Silty Clay [59]

Wetland, China 0.5–135 Various [60]
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Table 1. Cont.

Land Use and Location Rate
(Kg-N/ha/Year) Type of Matrix Reference

FIELD

Agricultural field,
Germany 10–150 Loam [40]

Grass–clover, New
Zealand 3.4 Fine Sandy Loam [61]

Herbal ley, New Zealand 4.4 Fine Sandy Loam [61]
Fertilized grass, New

Zealand 19.3 Fine Sandy Loam [61]

Agricultural field,
Maryland 0.8 Silty loam [62]

Agricultural field,
England 73–547 Sandy loam [63]

Corn, Canada 13.5 Sandy loam [64]
Farm, Netherlands 56–120 Peat [65]
Forest, Maryland 1.5 Silty loam [62]

Forest, Globe 0–239 Various [66]
Forest, Swiss 2–3 Clay [67]

Grassland, Europe 20–400 Various [68]
Grassland, Maryland 1.4 Silty loam [62]

Grassland, Spain 3–37 Clay Loam [69]
Grassland, The

Netherlands 100–120 Peat [65]

Horticultural field, USA 95–233 Sandy loam [70]
Pasture, New Zealand 5–25 Silty loam [71]

Ryegrass, Germany 0.2–3.1 Sandy loam [72]
Ryegrass, Netherlands 3–25 Various [73]

Ryegrass, USA 2–110 Loam [74]
Wheat, Canada 3.2–22.5 Clay Loam [75]

Wheat, USA 0.7–1.7 Silty loam [76]

3. Materials and Methods

For this review, several studies focusing on intrinsic and specific groundwater vul-
nerability assessments performed in the last 20 years (2000–2020) worldwide were consid-
ered. The Scopus database (Elsevier) was probed as the main worldwide peer-reviewed
manuscripts archive, using specific combinations of keywords, such as: groundwater vul-
nerability, DNT, nitrate vulnerable zone, nitrate attenuation factors, specific and intrinsic
vulnerability. Given the large number of studies and applications focusing on the ground-
water vulnerability topic, only the contributions published in peer-reviewed international
journals were considered. Furthermore, the use of the keyword DNT in combination with
at least others two keywords was necessary to exclude all the studies not related to the cho-
sen topic. Specifically, all the studies on standard rating methods, such as DRASTIC, GOD,
or SINTACS, without a clear reference to DNT were excluded, along with process-based
models not adequately adapted to vulnerability and DNT assessment purposes. Similarly,
this was done for the statistical and hybrid methodologies.

This review is not meant to serve as a general review on vulnerability assessment
methods, since recent complete studies are already present in the literature [36,38,43], but
aimed only to revise the role of DNT in groundwater vulnerability assessment studies;
accordingly, only those papers where DNT was explicitly considered were retained. All the
reviewed studies were divided into four main categories (Figure 2) discussed separately:
(i) rating methods, (ii) numerical models, (iii) statistical methods, and (iv) hybrid method-
ologies. This review offers an overall explanation of how already known vulnerability
methodologies incorporate the process of DNT without discussing every single application,
focusing the discussion on methodologies that showed an implicit or explicit involvement
of DNT in the vulnerability assessment.



Appl. Sci. 2021, 11, 10657 6 of 19Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 20 
 

 
Figure 2. Conceptual organization of this review. 

4. Results and Discussion 
In this section, the main categories highlighted in Figure 2 will be discussed to assess 

the role of DNT in enhancing the already available intrinsic and specific groundwater 
vulnerability assessment methods. 

4.1. Rating Methods for Nitrate Vulnerability Assessment 
Among all methodologies to assess aquifer vulnerability, the rating methods are 

surely the most widely utilized [38]. The main advantage lies in their straightforward ap-
plicability and in their highly understandable results. The pioneer methods of this class 
are DRASTIC [77] and GOD [78], followed by many other methodologies specifically cre-
ated to assess the intrinsic aquifer vulnerability, such as AVI [79], EPIK [80], SINTACS 
[81], SEEPAGE [82], and many more. A comprehensive review of these methodologies is 
available in Machiwal et al. [38]. These methods have been widely applied both on water-
shed, regional, and even global scales, producing reliable results [83–87]. They consist of 
the combination of thematic layers, representing the different physiographic attributes 
that control the groundwater vulnerability to pollution of a given area; the most utilized 
factors are: (i) depth to the water table, (ii) recharge, (iii) unsaturated and saturated media, 
(iv) soil texture, (v) topographic slope, (vi) hydraulic conductivity, (vii) hydraulic re-
sistance, and (viii) presence of phreatic or confined aquifers. Each parameter is classified 
using a range of rates (generally 1 to 10) and multiplied for a specific weight, indicating 
the individual parameter importance and magnitude. These lumped parameters incorpo-
rate most physical attenuation processes (such as dilution and travel time) but disregard 
biogeochemical processes (such as DNT) that may occur along the pathway between the 
pollution sources (usually at land surface) and the considered target, namely the saturated 
portion of the aquifer and/or the surface water bodies towards which groundwater dis-
charges (Figure 3). 

Figure 2. Conceptual organization of this review.

4. Results and Discussion

In this section, the main categories highlighted in Figure 2 will be discussed to assess
the role of DNT in enhancing the already available intrinsic and specific groundwater
vulnerability assessment methods.

4.1. Rating Methods for Nitrate Vulnerability Assessment

Among all methodologies to assess aquifer vulnerability, the rating methods are surely
the most widely utilized [38]. The main advantage lies in their straightforward applica-
bility and in their highly understandable results. The pioneer methods of this class are
DRASTIC [77] and GOD [78], followed by many other methodologies specifically created
to assess the intrinsic aquifer vulnerability, such as AVI [79], EPIK [80], SINTACS [81],
SEEPAGE [82], and many more. A comprehensive review of these methodologies is avail-
able in Machiwal et al. [38]. These methods have been widely applied both on watershed,
regional, and even global scales, producing reliable results [83–87]. They consist of the
combination of thematic layers, representing the different physiographic attributes that
control the groundwater vulnerability to pollution of a given area; the most utilized factors
are: (i) depth to the water table, (ii) recharge, (iii) unsaturated and saturated media, (iv) soil
texture, (v) topographic slope, (vi) hydraulic conductivity, (vii) hydraulic resistance, and
(viii) presence of phreatic or confined aquifers. Each parameter is classified using a range
of rates (generally 1 to 10) and multiplied for a specific weight, indicating the individual
parameter importance and magnitude. These lumped parameters incorporate most physi-
cal attenuation processes (such as dilution and travel time) but disregard biogeochemical
processes (such as DNT) that may occur along the pathway between the pollution sources
(usually at land surface) and the considered target, namely the saturated portion of the
aquifer and/or the surface water bodies towards which groundwater discharges (Figure 3).
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It should be mentioned that some biogeochemical processes are often a function of soil
properties (such as texture and water content), therefore, many end users of rating methods
claim that natural attenuation processes are accounted for, even though not explicitly.
Specifically, soil texture could influence the redox values suitable for DNT, which were
found to be more favorable in clayey textured soils than in sandy textured soils [88,89].
Nevertheless, other important factors influencing DNT, like organic carbon substrates and
Nr mass loading rates, are generally completely neglected. The same assumption is made
for the unsaturated and saturated zone where the pollutant attenuation can be regulated
by several processes that depend on their physical and hydraulic properties (e.g., thickness,
hydraulic conductivity, and presence of organic matter). Both saturated and unsaturated
zones are commonly classified considering only the lithological characteristic and the
thickness of the media. Moreover, all methods offer a large range of rates, especially for
saturated and unsaturated media classification, implying an inherent subjectivity (expert
judgment). In any case, the classification is usually made considering dispersion and
diffusion capacity, neglecting the main biogeochemical factors that can occur within the
saturated and unsaturated zones. The SEEPAGE methodology [82] tried to overcome this
problem, introducing a potential attenuation parameter referring to the soil and subsoil
characteristics. Specifically, the introduced attenuation parameters based its classification
on several factors that can be easily related to DNT, such as: (i) soil surface and subsoil
texture, (ii) topsoil pH, (iii) organic matter content of topsoil, (iv) soil drainage class, and
(v) soil permeability. Unfortunately, the methodology has not been so widely applied in
comparison to DRASTIC and SINTACS methods and only a few applications have been
documented so far [90,91].

On the other hand, much more attention has been paid to the determination of the
different NO3

− sources, so much so that there are numerous studies that have correlated
the rating methods to land use [92–94] and to probabilistic models [95,96].

Nitrate Vulnerable Zones

A step forward has been made with the introduction of several methodologies aimed
at evaluating nitrate vulnerable zones (NVZ). Conserving the same structure of a rating
method, specific parameters connected to NO3

− leaching and attenuation were introduced
in the evaluation procedure. An example is the agricultural NO3

− hazard index named
IPNOA, which was proposed by Padovani and Trevisan [97]. IPNOA facilitates the assess-
ment of hazard factors contributing to NO3

− load and control factors able to amplify or
decrease the NO3

− load. Specifically, the hazard factors are chosen among agricultural
sources of Nr input which could have a potential impact on groundwater resources, such
as: (i) applied organic fertilizers, (ii) synthetic fertilizers, and (iii) wastewaters, while the
control factors used to evaluate NO3

− behavior in site-specific conditions and farming
practices are: (i) Nr content in soil, (ii) climate characteristic, (iii) agronomic practices,
and (iv) irrigation techniques. For example, tillage operations could greatly influence
DNT [98,99], as well as the soil Nr content and the fertilizer application rate [47]. The
methodology was applied by several authors [33,100–102] and was also coupled with
classical rating methods, such as SINTACS, with the aim of improving NO3

− vulnerabil-
ity assessment [103,104]. Another approach for NVZ delineation is the calculation of N
budgets and surpluses on the farmland scale [105], watershed scale [106–110], or even
at the subcontinental scale [111–113]. It consists of differentiating between the soil Nr
inputs and outputs, where inputs usually are: (i) synthetic fertilizers, (ii) sewage sludge
and animal manure, (iii) biological N fixation, and iv) atmospheric deposition, while the
outputs are: (i) the amount of crop harvested and removed from the field, (ii) crop residues,
(iii) leached Nr, and (iv) degassed N. This methodology offers a mappable output of the
available Nr content for leaching. Rebolledo et al. [114] presented an overlay index method
for NVZ identification through the analysis of three groups of factors: the first was related
to intrinsic vulnerability (water table, saturated hydraulic conductivity, and aquifer type),
the second considered the attenuation factors acting in the soil and specifically related
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to DNT capacity (organic carbon, pH, and texture), and the third indicated the pollutant
infiltration capacity (slope, precipitation, and evapotranspiration). Rates and weights were
then assigned using Pearson’s r correlation and analytical hierarchical process (AHP) to
limit subjectivity. Arauzo et al. [115] combined the N-surplus approach with a rating
methodology specially developed for NVZ. Similarly, Cameira et al. [116] developed a
global risk index (GRI), integrating the N budget with water surplus (irrigation and rain),
soil permeability, unsaturated zone residence time, and surface morphology. In these
methodologies, DNT is related to different parameters such as soil texture, soil pH, Nr
input, and unsaturated zone residence time. Indeed, DNT is more likely to occur when the
travel time through the unsaturated zone is long [44]. Following the same concept, Busico
et al. [117] proposed a rating methodology for NVZ using all those parameters directly
connected to NO3

− concentration in groundwater, combining the classical parameters
of the unsaturated zone media, surface morphology, and recharge with the natural soil
Nr content and the amount of fertilizers recommended for different kind of crops. The
methodologies described so far have been applied in several case studies and compared
to canonical vulnerability assessment methods and were found to deliver more realistic
results [117–119].

4.2. Statistical Methods

The statistical methodologies aim to assess groundwater vulnerability to NO3
− map-

ping pollution probabilities at a specific site. The computation is based on the correlations
between some parameters describing the aquifer properties and the sources and occur-
rences of pollutants, such as: (i) aquifer type (lithology or confinement condition), (ii) Nr
mass loading rates, (iii) water physical–chemical variables (major ions, trace elements,
and isotopic composition), and (iv) soil characteristics (texture, organic carbon, and pH).
To fulfill this purpose, these methodologies require extensive datasets on both physio-
graphic and geochemical properties of the study area. They may incorporate a wide
range of inputs related to both the anthropogenic stresses and the natural conditions of
the groundwater system [120]. Among the various statistical tools, the most utilized for
aquifer vulnerability assessment to NO3

− are: (i) logistic regression [121], (ii) multiple
linear regression [122], and (iii) geostatistical techniques [123]. Logistic regression allows
for the evaluation of those natural and anthropogenic factors that could impact the proba-
bility that NO3

− concentrations will exceed a specified threshold. Commonly, statistical
methods involve numerous factors related to the attenuation processes and to DNT, like
soil characteristics and Nr loads [124–129]. Moreover, some authors identified the anoxic
condition as the main attenuation factor [126,130–132]. Boy-Roura et al. [133] built a mul-
tiple linear regression model using five main variables, one of which was identified as
indicator of DNT occurrence. The variable was assessed using N-stable isotopes in NO3

−

and dissolved oxygen.

4.3. Numerical Models

With respect to the qualitative methods (rating methods), the numerically and phys-
ically based methods for the assessment of aquifer vulnerability to NO3

− involve the
analysis of all the relevant processes occurring within the unsaturated and the saturated
systems. Numerical models subdivide the tridimensional domain into cells or elements
(depending on the method used) where the flow, dispersive transport, and reactions
among each cell are computed by differential equations of flux and mass conservation
solved iteratively, starting from user-defined initial and boundary conditions. Thus, with
numerical methods, an accurate temporal and spatial evolution of the fate and trans-
port of NO3

− in the subsurface can be achieved. In fact, these methodologies aim to
determine the specific vulnerability for diffuse pollution sources rather than the intrinsic
vulnerability of an aquifer, emphasizing the physical, chemical, and biological processes
controlling the fate and transport of contaminants in both the unsaturated and saturated
zones. Moreover, process-based models also provide the temporal variation of vulnerabil-
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ity, a concept often neglected by other methods. Among all the numerical models, the most
used are: GLEAMS [134], SUTRA [135], MODFLOW [136] coupled with MT3DMS [137],
FEFLOW [138], PHT3D [139], HYDRUS [140,141], and SWAT [142]. All of these models
explicitly involve Nr attenuation processes, such as DNT, in their modules. For example,
the N module of SWAT intrinsically considers various NO3

− reduction processes, such as
mineralization, volatilization, and DNT, which is simulated in the soil layer as a function
of the amount of NO3

−, organic carbon, and temperature. The sink and source package of
MT3DMS was designed to simulate chemical processes, such as NO3

− decay, following
a first-order degradation reaction or fully integrating the reaction stoichiometries of the
main terminal electron acceptors processes [143]. GLEAMS incorporates a N cycling algo-
rithm, which considers N plant uptake and fixation among with fertilizers and manure
applications. Due to their high versatility, despite these models are recognized as valuable
tools for groundwater vulnerability assessment, they find application in a large variety
of settings, such as: pollution transport in groundwater and surface waters, groundwater
balance and depletion, seawater intrusion, and more.

This picture shows that groundwater vulnerability assessment based on contaminant
transport modeling can provide more quantitative evaluation than previously discussed
rating methods. On the other hand, the model’s large number of input parameters and the
uncertainty associated with them may be considerable issues. In fact, to implement such
simulations, an accurate characterization of all flow and transport processes acting at a
given site is a prerequisite, and, in addition, there is also the need to deeply understand the
geochemical environment [144].

Despite this, the possible applications of numerical models are quite numerous. Some
examples of aquifer vulnerability to NO3

− measured using MODFLOW/MT3DMS models
are found in USA [145], Europe [146], and Africa [147]. Uhan et al. [148], assessed NO3

−

groundwater vulnerability for an alluvial aquifer combining the output of three different
numerical models: (i) groundwater recharge (GROWA), (ii) NO3

− leached from the soil
profile (SWAT), and (iii) groundwater flow velocities (FEFLOW). Cui et al. [149] assessed
the whole Florida shallow aquifer vulnerability through the Nr removal and transport
rate in the unsaturated zone. Hansen et al. [150] developed the site-specific concept for
aquifer nitrate vulnerability assessment (SCANVA) through the combination of a 3D
geological reconstruction, a groundwater simulation based on MODFLOW-2000, and
a complete hydro-geochemical assessment. Huan et al. [151–153] proposed a specific
vulnerability assessment using HYDRUS-1D model and FEFLOW, emphasizing the role of
DNT within the unsaturated zone using an enhanced convection–dispersion equation. The
Nr transfer time and NO3

− susceptibility in pumping wells were finally used to visualize
the specific vulnerability.

4.4. Hybrid Methodologies

Some authors tried to enhance the results of the assessment of vulnerability to NO3
−,

combining classical rating methods along with process-based and statistical elaborations.
Sometimes, these new hybridizations introduced new parameters related to DNT that are
usually not considered in the standard methodologies. Keuskamp et al. [68] hybridized
N budget with a basin-scale process-based model to simulate the fate of Nr in soils and
groundwater, along with N2O production at the European scale. The model offers the
output calculation of travel time, which integrates in its computation the DNT rate for
the main European countries. Aschonitis et al. [154,155] developed a simplistic N-budget
approach described by indices named LOS, which account for DNT, NH3 volatilization,
mineralization, and nitrification. The new indices involve detailed information on land-
scape management and climate and are calibrated using the results of a GLEAMS model
thought regression analysis. Kazakis and Voudouris [156], following the example of Huan
et al. [157], who subjectivized the DRASTIC framework, replaced some parameters in
the DRASTIC-PAN methodology. This new method, integrated within the LOS indices,
indicates the soil Nr losses based on climatic, soil, and topographic data. Similarly, Bu-



Appl. Sci. 2021, 11, 10657 10 of 19

sico et al. [11,158] hybridized the SINTACS method, called SINTACS-SVN and SVAP,
introducing the LOS indices inside the evaluation process to assess intrinsic and specific
groundwater vulnerability to NO3

− and SO4
2− pollution. In both methodologies, the

weights and scores were calibrated using observed NO3
− concentrations and pollution

factors following the routine of canonical process-based methodologies, making the eval-
uation less subjective than standard rating methods. These indices proved to produce
reliable results in different hydrogeological settings [159]. Jia et al. [160] developed the
DRANTHVP method, optimizing weights and rates of the DRASTIC method by using
the statistical analysis of projection pursuit dynamic clustering (PPDC). Moreover, during
the choice of parameters, the authors introduced the NO3

− attenuation factor to replace
the soil media factor. The proposed classification is based on the difference of soil mois-
ture content, porosity, and organic matter content, factors that are directly linked to DNT
rate [161,162]. Vouthckova et al. [163] integrated subsurface redox conditions inside the
DRASTIC classification. This parameter is considered indicative of DNT as the NO3

−

removal by microbial oxidation depends on the availability of reductants species, such as
pyrite and organic matter [164].

5. Concluding Remarks

The assessment of groundwater vulnerability to NO3
− is a valuable tool for the imple-

mentation of sustainable groundwater management plans. However, the standard intrinsic
vulnerability assessment methods can lead to unreliable results, since they do not consider
all NO3

− attenuation processes occurring in both the unsaturated and saturated zones, as
proved by validation procedures using observed NO3

− concentrations providing feedback
on the reliability of the applied methodology. Accordingly, in the last 20 years, the classical
rating methodologies have been deeply modified to account for the pollutant dilution and
attenuation processes, with the aim of enhancing their reliability. Still, the analysis of all the
studies considered in this review has shown that almost 50% of groundwater vulnerability
assessments are performed using rating methodologies, followed by statistical methods,
numerical models, and hybrid methods (Figure 4).
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The reason for this result is likely due to the low data requirement and simplicity
of elaboration needed for the rating methodologies with respect to the other methods.
Inside the group of rating methodologies (Figure 3), the NVZ applications introduced
some parameters directly connected to DNT, such as soil organic carbon, agricultural
practices, and Nr input, but still retained the structure of a classical rating method. Indeed,
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in the NVZ methods, most of the studies used a spatial representation of the validation
procedure, projecting the NO3

− concentrations over the vulnerability classification, but
without accounting for groundwater travel times.

On the other hand, in the statistical and numerical models, the concept of validation
is intrinsically linked to the model structures. Numerical models require validation on
multiple steps and are always preceded by calibration procedures aimed at quantifying
the model’s ability to simulate the real system. The statistical methods follow the same
concept of calibration and validation procedures, where the spatial distribution of the
so-called explanatory variable (aquifer type, soil characteristics, agricultural Nr load, and
land cover) is discretized according to water quality. Moreover, statistical methods always
consider observed data (pollutant concentration, dissolved oxygen, soil pH, and more)
in the evaluation process. Unfortunately, due to their complex structure and necessity of
specific data, they are mainly confined to site-specific assessments, even if some examples
of regional and continental applications exist. Similarly, the hybrid methods suffer from a
complex structure, often based on regression analysis and statistical correlation, demanding
more data and sometimes requiring specific outputs produced by complex numerical
models. Despite the increased complexity, the hybrid methodologies showed a higher
reliability, confirmed by the validation procedure performed in all the studies.

5.1. The Role of Denitrification in Groundwater Vulnerability Assessment

In summary, it is possible to state that the involvement of NO3
− decay processes in

the evaluation of groundwater vulnerability assessment, and specifically of DNT, directly
increased the final reliability of the vulnerability evaluation. This is particularly evident
in rating applications, where the methodologies that lumped the parameters directly
connected with DNT showed better results than standard DRASTIC, SINTACS, AVI, or
GOD methods [11,117,156,158,160]. However, this improvement pays the price for an
increase in model complexity and data requirement, a common drawback also for numerical
and statistical models.

Thanks to the recent increase in the availability of online and free datasets, required by
open science and open data protocols, such drawbacks could be overcome in future studies.
For example, Keuskamp et al. [68] provided an average yearly DNT rate on the river basin
scale, which can be easily incorporated in statistical and numerical models. Also, Kumar
et al. [7] proposed a NO3

− leaching assessment on the European scale. The results of these
computations, along with many others, could be eventually used to enhance site assessment
vulnerability to NO3

−, even in those areas where a direct measurement of DNT rates is not
available. Furthermore, where data are scant, new approaches to evaluate groundwater
vulnerability have been recently proposed [165] that leave behind the concept of rating
methods to consider NO3

− contamination, suggesting specific sub-indicators of exposure,
sensitivity, and adaptive capacity according to the indications of the Intergovernmental
Panel on Climate Change [166,167].

Summarizing, standard vulnerability methods, not considering all the biogeochemical
processes occurring both in the saturated and unsaturated zones, still represent precious
screening tools for a qualitative assessment of aquifer vulnerability especially at large scales,
but when there is a need to gain quantitative, reliable, and time-dependent vulnerability
assessments, the employment of more complex data- and time-requiring methodologies
must be preferred.

5.2. Future Trends in the Application of Groundwater Vulnerability Assessment

The economic and social significance of a good land and water management is an over-
arching goal in the UN 2030 Agenda for sustainable development. Fundamental changes
in the way societies produce and use natural resources are indispensable for achieving
the sustainable development goals (SDGs) within the carrying capacity of ecosystems that
provide essential services, which are critical for human well-being.
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For this to happen, good governance and safeguarding of land and water resources
should be implemented in an integrated manner, involving all stakeholders and building
monitoring and assessment tools based on sound, scientifically formulated knowledge.
For instance, boosting yields and protecting crops to assure food production has often
been achieved via the extensive use of agrochemicals (fertilizers, pesticides, etc.), with
the consequence that many aquifers in heavily anthropized lowlands record high values
of these contaminants and, thus, have recently been classified as NVZ. To adequately
address these issues, decision makers must look at the latest scientific knowledge, which
can support productive food systems (e.g., SDGs 2 and 12) through sustainable soil, land,
water, nutrient, and pest management. Refining the groundwater vulnerability assessment
methods, including DNT in the evaluation process, goes precisely in this direction.

In this context, future studies should be carried out focusing on the ‘source–pathway–
target’ approach [168], where source indicates potential contamination due to land-use
activities, pathway refers to the fate and transport of contaminants from the source to the
target, and the target is the environment receiving the contamination load. In the specific
case of groundwater vulnerability, the pathway should be identified in the movement of
the infiltrating water across the unsaturated zone and within the saturated zone, while
the target could be identified in the aquifer itself and in the groundwater-dependent
ecosystems (GDEs), which could be endangered by the high concentration of pollutants
discharging from the aquifer to the surface water bodies. It is known that the concentration
of pollutants depends on the characteristics of the source (loading rate and duration) but
also on the characteristics of the pathway where dilution, dispersion, and/or attenuation
may occur. For this specific reason, it is fundamental to include an explicit evaluation of
DNT rates for the saturated and unsaturated zones to account for the attenuation capacity
of the pathway [11,42]. Although the monitoring and characterization of the unsaturated
zone is complex and time consuming, future studies need to fulfill this task to gain more
realistic estimates in groundwater vulnerability assessments [38]. Moreover, since the
processes occurring along the pathway are also highly variable in time and space [30], there
is a need for improved understanding of DNT rate variability over the hydrologic year, both
as a function of the natural seasonality of the attenuation processes and as a function of the
different agricultural practices that are carried out at specific times of the year (fertilization,
plowing, harvesting, etc.), which, in turn, may affect the factors controlling DNT in the
unsaturated/saturated zones. Based on this information, it will be necessary to implement
the groundwater vulnerability assessment tools with approaches and techniques that are
able to account for this seasonality (like numerical models).

This improvement will lead to great benefits, especially in the management of land
and water resources in GDEs [169]. In fact, GDEs are often located in flat coastal areas (e.g.,
wetlands, swamps, riverine plains, etc.) that are also ideal environments for agricultural
activities [170]. This combination makes most of these habitats prone to adverse effects of
water pollution induced by human activities. One of the most common examples is the
establishment of eutrophication conditions due to excessive N load that may lead to the
death of aquatic species. For this reason, the systematic mapping of groundwater vulnera-
bility, accounting also for the fate of N species (thus including DNT), must be promoted
to develop land uses and human activities according to the groundwater vulnerability,
responding to important SDGs of the 2030 Agenda (e.g., SDGs 14 and 15).

Finally, the recent tendency to improve the reliability of the methods considered in
this review and the definition of new approaches for groundwater vulnerability assessment
demonstrates that a sound tool to properly manage water resources is considered necessary
and urgent, not only by the wider research community, but even by decision makers and
land and water managers. In particular, the most coveted result is to provide a user-
friendly tool based on the latest scientific knowledge, which would allow the definition
of management plans capable of considering the most effective allocation of mitigation
strategies and achieving the highest reduction of adverse impacts within a relatively short
time and available budgets.
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148. Uhan, J.; Vižintin, G.; Pezdič, J. Groundwater nitrate vulnerability assessment in alluvial aquifer using process-based models and
weights-of-evidence method: Lower Savinja Valley case study (Slovenia). Environ. Earth Sci. 2011, 64, 97–105. [CrossRef]

149. Cui, C.; Zhou, W.; Geza, M. GIS-based nitrogen removal model for assessing Florida’s surficial aquifer vulnerability. Environ.
Earth Sci. 2016, 75, 526. [CrossRef]

150. Hansen, B.; Sonnenborg, T.O.; Møller, I.; Bernth, J.D.; Høyer, A.-S.; Rasmussen, P.; Sandersen, P.B.E.; Jørgensen, F. Nitrate
vulnerability assessment of aquifers. Environ. Earth Sci. 2016, 75, 999. [CrossRef]

151. Huan, H.; Wang, J.; Lai, D.; Teng, Y.; Zhai, Y. Assessment of well vulnerability for groundwater source protection based on a
solute transport model: A case study from Jilin City, northeast China. Hydrogeol. J. 2015, 23, 581–596. [CrossRef]

152. Huan, H.; Wang, J.; Zhai, Y.; Xi, B.; Li, J.; Li, M. Quantitative evaluation of specific vulnerability to nitrate for groundwater
resource protection based on process-based simulation model. Sci. Total Environ. 2016, 550, 768–784. [CrossRef] [PubMed]

153. Huan, H.; Hu, L.; Yang, Y.; Jia, Y.; Lian, X.; Ma, X.; Jiang, Y.; Xi, B. Groundwater nitrate pollution risk assessment of the
groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer. Environ.
Int. 2020, 137, 105532. [CrossRef] [PubMed]

154. Aschonitis, V.G.; Salemi, E.; Colombani, N.; Castaldelli, G.; Mastrocicco, M. Formulation of Indices to Describe Intrinsic Nitrogen
Transformation Rates for the Implementation of Best Management Practices in Agricultural Lands. Water Air Soil Pollut. 2013,
224, 1489. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2015.01.077
http://doi.org/10.1016/j.ejrh.2016.01.002
http://doi.org/10.1016/j.scitotenv.2017.12.115
http://www.ncbi.nlm.nih.gov/pubmed/29929264
http://doi.org/10.1016/j.jconhyd.2013.07.004
http://www.ncbi.nlm.nih.gov/pubmed/23948235
http://doi.org/10.1016/j.jhydrol.2013.09.048
http://doi.org/10.13031/2013.30578
http://doi.org/10.3133/wri844369
http://doi.org/10.1007/978-3-642-38739-5
http://doi.org/10.1111/j.1745-6584.2010.00732.x
http://doi.org/10.13031/2013.42256
http://doi.org/10.1111/j.1745-6584.2003.tb02588.x
http://doi.org/10.1007/s12303-009-0007-3
http://doi.org/10.1016/j.jhydrol.2007.06.016
http://doi.org/10.2134/jeq2003.2026
http://doi.org/10.1007/s12665-021-09491-z
http://doi.org/10.1007/s12665-010-0821-y
http://doi.org/10.1007/s12665-015-5213-x
http://doi.org/10.1007/s12665-016-5767-2
http://doi.org/10.1007/s10040-014-1211-4
http://doi.org/10.1016/j.scitotenv.2016.01.144
http://www.ncbi.nlm.nih.gov/pubmed/26849341
http://doi.org/10.1016/j.envint.2020.105532
http://www.ncbi.nlm.nih.gov/pubmed/32062435
http://doi.org/10.1007/s11270-013-1489-1


Appl. Sci. 2021, 11, 10657 19 of 19

155. Aschonitis, V.G.; Mastrocicco, M.; Colombani, N.; Salemi, E.; Kazakis, N.; Voudouris, K.; Castaldelli, G. Assessment of the Intrinsic
Vulnerability of Agricultural Land to Water and Nitrogen Losses via Deterministic Approach and Regression Analysis. Water Air
Soil Pollut. 2012, 223, 1605–1614. [CrossRef]

156. Kazakis, N.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying
the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [CrossRef]

157. Huan, H.; Wang, J.; Teng, Y. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC
model: A case study in Jilin City of northeast China. Sci. Total Environ. 2012, 440, 14–23. [CrossRef]

158. Busico, G.; Kazakis, N.; Colombani, N.; Mastrocicco, M.; Voudouris, K.; Tedesco, D. A modified SINTACS method for groundwater
vulnerability and pollution risk assessment in highly anthropized regions based on NO3

− and SO4
2− concentrations. Sci. Total

Environ. 2017, 609, 1512–1523. [CrossRef]
159. Busico, G.; Kazakis, N.; Cuoco, E.; Colombani, N.; Tedesco, D.; Voudouris, K.; Mastrocicco, M. A novel hybrid method of specific

vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Water Res. 2020, 171, 115386.
[CrossRef] [PubMed]

160. Jia, Z.; Bian, J.; Wang, Y.; Wan, H.; Sun, X.; Li, Q. Assessment and validation of groundwater vulnerability to nitrate in porous
aquifers based on a DRASTIC method modified by projection pursuit dynamic clustering model. J. Contam. Hydrol. 2019,
226, 103522. [CrossRef] [PubMed]

161. Zhang, Y.; Zhang, S.; Liu, C.L.; Hou, H.B.; Dong, H.; Zhang, M. Prospect of capability of aeration zone in soil in prevention
nitrogen from pollution of groundwater. J. Agro-Environ. Sci. 2006, 25, 339–346.

162. Leifeld, J.; Kögel-Knabner, I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?
Geoderma 2005, 124, 143–155. [CrossRef]

163. Voutchkova, D.D.; Schullehner, J.; Rasmussen, P.; Hansen, B. A high-resolution nitrate vulnerability assessment of sandy aquifers
(DRASTIC-N). J. Environ. Manag. 2021, 277, 111330. [CrossRef]

164. Juncher Jørgensen, C.; Jacobsen, O.S.; Elberling, B.; Aamand, J. Microbial Oxidation of Pyrite Coupled to Nitrate Reduction in
Anoxic Groundwater Sediment. Environ. Sci. Technol. 2009, 43, 4851–4857. [CrossRef]

165. Bigi, V.; Pezzoli, A.; Comino, E.; Rosso, M. A Vulnerability Assessment in Scant Data Context: The Case of North Horr Sub-County.
Sustainability 2020, 12, 6024. [CrossRef]

166. Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Yuka, K.L.E.; Estrada, O.; Genova,
R.C.; et al. Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects Working Group II Contribution
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA,
2014; ISBN 978-1-107-05807-1.

167. Cardona, O.-D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Lisa Schipper, E.F.; Tan Sinh,
B.; Décamps, H.; et al. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012.

168. U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual; U.S.
EPA: Washington, DC, USA, 1989.

169. Hancock, P.J.; Boulton, A.J.; Humphreys, W.F. Aquifers and hyporheic zones: Towards an ecological understanding of groundwa-
ter. Hydrogeol. J. 2005, 13, 98–111. [CrossRef]

170. Erostate, M.; Huneau, F.; Garel, E.; Ghiotti, S.; Vystavna, Y.; Garrido, M.; Pasqualini, V. Groundwater dependent ecosystems in
coastal Mediterranean regions: Characterization, challenges and management for their protection. Water Res. 2020, 172, 115461.
[CrossRef] [PubMed]

http://doi.org/10.1007/s11270-011-0968-5
http://doi.org/10.1016/j.jhydrol.2015.03.035
http://doi.org/10.1016/j.scitotenv.2012.08.037
http://doi.org/10.1016/j.scitotenv.2017.07.257
http://doi.org/10.1016/j.watres.2019.115386
http://www.ncbi.nlm.nih.gov/pubmed/31865127
http://doi.org/10.1016/j.jconhyd.2019.103522
http://www.ncbi.nlm.nih.gov/pubmed/31301548
http://doi.org/10.1016/j.geoderma.2004.04.009
http://doi.org/10.1016/j.jenvman.2020.111330
http://doi.org/10.1021/es803417s
http://doi.org/10.3390/su12156024
http://doi.org/10.1007/s10040-004-0421-6
http://doi.org/10.1016/j.watres.2019.115461
http://www.ncbi.nlm.nih.gov/pubmed/31951946

	Introduction 
	Denitrification in the Unsaturated and Saturated Zones 
	Materials and Methods 
	Results and Discussion 
	Rating Methods for Nitrate Vulnerability Assessment 
	Statistical Methods 
	Numerical Models 
	Hybrid Methodologies 

	Concluding Remarks 
	The Role of Denitrification in Groundwater Vulnerability Assessment 
	Future Trends in the Application of Groundwater Vulnerability Assessment 

	References

