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Abstract: Rhes is one of the most interesting genes regulated by thyroid hormones that, through the
inhibition of the striatal cAMP/PKA pathway, acts as a modulator of dopamine neurotransmission.
Rhes mRNA is expressed at high levels in the dorsal striatum, with a medial-to-lateral expression
gradient reflecting that of both dopamine D2 and adenosine A2A receptors. Rhes transcript is
also present in the hippocampus, cerebral cortex, olfactory tubercle and bulb, substantia nigra
pars compacta (SNc) and ventral tegmental area of the rodent brain. In line with Rhes-dependent
regulation of dopaminergic transmission, data showed that lack of Rhes enhanced cocaine- and
amphetamine-induced motor stimulation in mice. Previous studies showed that pharmacological
depletion of dopamine significantly reduces Rhes mRNA levels in rodents, non-human primates
and Parkinson’s disease (PD) patients, suggesting a link between dopaminergic innervation and
physiological Rhes mRNA expression. Rhes protein binds to and activates striatal mTORC1, and
modulates L-DOPA-induced dyskinesia in PD rodent models. Finally, Rhes is involved in the
survival of mouse midbrain dopaminergic neurons of SNc, thus pointing towards a Rhes-dependent
modulation of autophagy and mitophagy processes, and encouraging further investigations about
mechanisms underlying dysfunctions of the nigrostriatal system.

Keywords: substantia nigra; mTOR; SUMO E3 ligase; Huntington’s disease; 3,4-
methylenedioxymethamphetamine (MDMA); autophagy; L-Dopa-induced dyskinesia (LID); mitophagy

1. Discovery of Rhes
1.1. Protein Structure

The Ras homolog enriched in striatum (Rhes) is a 266 amino-acid (aa) protein, discov-
ered by a subtractive hybridization procedure, in the attempt to identify striatal-enriched
transcripts [1]. As the name implies, Rhes belongs to the superfamily of Ras proteins and, as
such, it is made up of five G box domains, all of them normally required for the interaction
with phosphate moieties of guanosine triphosphate/diphosphate (GTP/GDP) Ras-GTPase
activating protein effector, and guanine nucleotide moiety [2]. Together with Dexras1, Rhes
differs from other cognate members for having peculiar N- and C-terminal domains [3,4].
In this respect, while the N-terminal sequence, encompassing 1–18 amino acids, is likely to
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have the binding motif for the deubiquitinating enzyme, the C-terminal cationic domain
interacts with Gβ1, Gβ2 and Gβ3 subunits of heterotrimeric G proteins [5], and contains a
well-conserved CAAX motif that, following the enzymatic post-translational modification
(farnesylation), is able to translocate this small protein to the plasma membrane [6–8].

1.2. Anatomical Brain Localization

Rhes mRNA was detected in virtually all GABAergic medium spiny projection neu-
rons (MSNs) of rodent and human brains, as well as in mouse large aspiny cholinergic
interneurons (ChIs), but not in GABAergic parvalbumin- and neuropeptide Y-positive
interneurons of the mouse striatum [9–11]. The expression of Rhes was reported to be
higher in the dorsal striatum than the ventral striatum (nucleus accumbens), with a pe-
culiar medial-to-lateral gradient of increasing expression observed in both young (from
6-day-old) and adult rodents [10,12,13], thus mirroring the striatal expression pattern of
both dopamine D2 receptor (D2R) and adenosine A2A receptor (A2AR) as well [10,14]. In
addition to the initial studies about its striatal localization, Rhes mRNA was also detected
in several other areas of the central nervous system, such as the cornu Ammonis (CA) of
the hippocampus (i.e., CA1, CA2 and CA3 subfields), cerebral cortex (layers II and III),
piriform cortex, olfactory tubercle, subiculum, thalamus, inferior colliculus, substantia
nigra pars compacta (SNc) and ventral tegmental area (VTA) of the rodent brain [4,13,15].
Similarly, in the human brain, Rhes transcript was observed in the hippocampal dentate
gyrus and in the pyramidal cell layer of CA1, CA2 and CA3 fields [10], as well as in
frontal cortical areas (layers II–VI), with the highest expression observed in layer V of
the cerebral cortex [16]. More detailed studies, somehow supporting and extending such
findings, were recently performed by Ehrenberg and colleagues, who documented that,
using multiplex immunofluorescence and single nucleus RNA-sequencing approaches in
human brain, Rhes is widespread in cortical neurons, CA1 pyramidal neurons, superior
frontal gyrus and entorhinal cortex, where it presents an almost total diffuse cytoplasmic
distribution [6]. Nonetheless, additional studies are required to assess Rhes expression in
the human midbrain at the level of the SNc.

2. Ontogeny of Rhes and Its Striatal Regulation
2.1. Rhes Is Modulated by Thyroid Hormones

The first gene expression study aimed to evaluate the ontogeny of Rhes mRNA in
rats was carried out by Falk and colleagues in the 1999, who documented low levels of
between embryonic day 16 (E16) and postnatal day 10 (P10), while a seven-fold increase
occurred between P10 and P15 [7], and stabilized from that time on [13]. This peculiar
Rhes expression pattern mirrors that of thyroid hormones’ occurrence and prompted re-
searchers to investigate about the putative functional correlation between Rhes and thyroid
hormones. In this respect, Northern blot and in situ hybridization analyses, carried out in
the striatal samples of congenital hypothyroid rats, revealed levels of Rhes mRNA as barely
detectable, which were normalized following the physiological thyroxine (T4) supplemen-
tation, either by a single or repeated 3,3′,5-triiodo-L-thyronine (T3) injections [7,17–19].
Interestingly, no Rhes transcript changes were observed in adult onset of hypothyroidism
in rats [19], whereas adult hypothyroid mice showed a significant reduction in striatal Rhes
transcript [18]. Again, administration of the selective thyroid hormone receptor-beta (TRβ)
agonist GC-1 was able to normalize striatal Rhes mRNA in congenitally hypothyroid 17-
day-old rats, suggesting a significant contribution of TRβ in Rhes expression [17]. However,
a later study in mice highlighted a major role for thyroid hormone receptor-alpha (TRα), as
T3 supplementation was able to rescue striatal Rhes transcript exclusively in TRβ-deficient
animals, but not in TRα-deficient ones [18].

2.2. Rhes Expression Is Regulated by Dopamine Innervation

Besides thyroid hormones, other evidence outlined a role played by dopamine inner-
vation in regulating striatal Rhes mRNA in adult rodents. Accordingly, dopamine depletion,
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induced either by the dopaminergic/noradrenergic neurotoxin 6-hydroxydopamine (6-
OHDA) or reserpine, significantly reduced Rhes mRNA levels throughout the striatum and
olfactory tubercle of adult rats [12], while no main effect was observed in 6-OHDA-lesioned
neonatal animals [13]. Consistent with observations drawn from rodents, Napolitano and
coworkers also reported a significant reduction of Rhes mRNA levels in the striatum of both
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated non-human primates
(Macaca mulatta) and Parkinson’s disease (PD) patients [20]. Overall, these findings suggest
a link between intact dopaminergic innervation and physiological Rhes mRNA expression
and, in turn, unveil a potential involvement of this small GTPase in PD pathophysiology.

3. Rhes Intracellular Signaling
3.1. In Vitro Modulation of Rhes-Dependent cAMP/PKA Signaling

The first insight about biochemical properties of Rhes was provided by Vargiu and
collaborators (2004), who documented that in undifferentiated PC12 cells, Rhes seems to be
active even under resting conditions, although with a low intrinsic GTPase activity, since
more than 30% of this protein resulted bound to GTP [4]. Moreover, the same authors found
that co-transfection of Rhes, either with thyrotropin-stimulating hormone receptor (TSHR),
or with constitutively activated β2-adrenergic receptors, significantly inhibited the cyclic
adenosine monophosphate (cAMP)/phosphate kinase A (PKA) activity. Of interest, Rhes
did not directly interfere with the function of either Gαs/olf protein or PKA, suggesting
an upstream site of action, most likely between GPCR localization and heterotrimeric G
protein complex. In agreement with this view, it was later reported the ability of Rhes
to affect in vitro the drug-stimulated activation of the dopamine type 1 receptor (D1R),
with a significant reduction of cAMP accumulation and the downstream-related signal-
ing [21]. Alongside its ability to negatively modulate GPCR signaling, further experiments
in HEK293 and COS-7 cells showed that Rhes reduces Gαi-dependent signaling, by in-
hibiting tonic voltage-dependent CaV2.2 (N-type) calcium channels, in a pertussis toxin
(PTX)-dependent manner [21,22].

3.2. Rhes Affects Striatal cAMP/PKA Signaling in Mice

Consistent with observation performed in vitro, a negative modulatory role of Rhes
over striatal D1R-dependent cAMP/PKA signaling in mice was reported. In this respect,
administration of SKF 81297, a selective dopamine D1R agonist, caused a greater increased
phosphorylation state of the PKA-dependent activation site Ser-845 residue of the glutamate
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, in Rhes
knockout (KO) mice, when compared to wild-type (WT) controls [9,10]. Besides D1R, Rhes
can also counteract striatal D2R-mediated signaling, as demonstrated by the reduced ability
for dopamine to activate Gi/o protein, in striatal slices from Rhes KO mice [9]. In line with
the signaling properties of Rhes in regulating dopaminergic transmission, more recent
investigations showed that lack of Rhes significantly enhanced amphetamine-induced
motor stimulation in KO mice, most likely also through the inhibitory control of the striatal-
enriched guanine nucleotide exchange factor (GEF), RasGRP1, over Rhes activity [16,23].
In keeping with this, Napolitano and colleagues showed that Rhes profoundly impacted on
molecular and motor stimulant effects mediated by cocaine administration. Indeed, mice
lacking the Rhes gene showed an abnormally higher motor response to this psychostimulant
in Rhes KO mice than WT-treated animals. Moreover, remarkable changes in cocaine-
dependent protein expression were reported in KO animals within whole striatal proteome,
when compared to controls [24]. Altogether, these results suggest that Rhes might act
as a physiological molecular brake for the striatal dopamine responses, under phasic
conditions [20,25].

3.3. Rhes Affects the PI3K/Akt Signaling Pathway

Early experiments, carried out in HeLa cells, indicated that Rhes functionally binds
to the catalytic p110 subunit of PI3K, and when co-transfected in Cos-7 cells with Akt, it
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promotes Akt-mediated phosphorylation of histone H2B [4]. These findings were later
confirmed and extended in HEK293T and PC12 cells where, following the treatment with
different growth factors (IGF-1, EGF or PDGF), Rhes enhanced p85-PI3K interaction and,
interestingly, targeted Akt to the plasma membrane, thus arguing that Rhes may function as
a critical bridge between PI3K and the AKT pathway [26]. In line with in vitro data, lack of
Rhes results in profound alteration in the excitability of ChIs, where the stimulation of D2R
triggered an aberrant increase of action potential discharge, which was prevented by the
pre-incubation with either the selective CaV2.2 Ca2+ channel blocker,ω-conotoxin, or PI3K
inhibitor, LY294002, pointing towards a functional modulation of Rhes on the PI3K/Akt
signaling pathway in these neurons [11]. On the other hand, in vivo studies performed
in Rhes KO mice demonstrated that lack of Rhes increased phosphorylation of Akt and
glycogen synthase kinase 3 beta (GSK3-β), upon apomorphine treatment, assuming that
this small molecule may be necessary to promote Akt dephosphorylation [27]. Moreover,
the same authors documented that Rhes interacts with β-arrestin [27], a scaffolding protein,
which is established to modulate the D2R-dependent Akt/GSK3-β signaling [28].

4. Rhes Involvement in Huntington Disease and L-DOPA-Induced Dyskinesia
4.1. Rhes Acts as SUMO E3 Ligase for the Mutant Huntingtin

Small ubiquitin-like modifier proteins (SUMO) represent a category of molecules cova-
lently attached to specific lysine target residues, thus allowing changes in their localization,
stability and activity, by means of a dynamic process, known as SUMOylation [29]. Inter-
estingly, given its relevant impact on the modulation of synaptic plasticity, SUMOylation
has also been implicated in a variety of neurological disorders, including PD, Hunting-
ton’s disease (HD) and amyotrophic lateral sclerosis (for a review, refer to Anderson et al.,
2017 [30]). In this respect, compelling evidence pointed out that Rhes acts as SUMO E3
ligase in the striatum and, by doing so, it may participate in the HD pathogenesis, as well
as in tau pathology [8,31,32]. Specifically, it was demonstrated the ability of Rhes to less
avidly bind to WT huntingtin (wtHtt), and drastically increase the disperse (cytotoxic)
form of mutant huntingtin (mHtt), as compared to the aggregated (cytoprotective) one,
in different cellular settings [32,33]. Additionally, Rhes participates in the SUMOylation
process throughout the striatum, by promoting the “cross-SUMOylation” of E1 and Ubc9
(E2) proteins, thus influencing several signaling pathways [34].

4.2. Role of Rhes in Modulating HD-Dependent Phenotypes in Animal Models

In agreement with the above-mentioned in vitro findings, in vivo evidence strength-
ened the potential involvement of Rhes in HD, since lack of Rhes prevented the striatal
injury and motor dysfunctions in Rhes KO mice, induced by the mitochondrial complex II
inhibitor, 3-nitropropionic acid (3-NP) [35]. Moreover, Rhes gene deletion either delayed or
ameliorated behavioral and anatomical HD-related phenotypes in the transgenic mouse
models of HD, R6/1 and B6.129P2-Htttm2Detl/150J, which display about 115 CAG repeats
of the human mHtt allele and just the N-terminal fragment of mHtt, respectively [36,37].
Interestingly, investigations performed in R6/2 and 140 CAG knock-in HD mouse models
revealed that the Golgi protein acyl-CoA binding domain containing 3 (ACBD3) and the
huntingtin-associated protein 1 (Hap1) oppositely modulated Rhes E3 ligase activity, either
increasing or reducing Rhes-mediated SUMOylation of mHtt [38,39]. Rhes has been re-
cently regarded as an inducer of tunneling nanotubes (TNT)-like protrusions, which allow
the communication of neighboring cells, as well as transport of the selective membrane
vesicles and organelles, including mHtt rather than wtHtt [40]. Accordingly, studies of
differential interference contrast microscopy, carried out in the striatal STHdhQ7/Q7 cells,
demonstrated that, out of 70% of GFP-Rhes-positive cells showing filopodia-like protru-
sions, 30% of them exhibited TNT-like structures, thus highlighting a novel ability for Rhes
to modulate striatal HD vulnerability [40]. It is worth underlying that the SUMO E3 ligase
activity domain of Rhes (171–266 aa) promotes the biogenesis of TNT-like tunnels, even if
only the full-length Rhes WT protein can be transported from cell to cell [40].
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4.3. Rhes Affects L-DOPA-Induced Dyskinesia (LID) in PD Mouse Model

Furthermore, both in vitro and in vivo experiments showed that Rhes physiologi-
cally binds to and activates the mTOR complex 1 and 2 (mTORC1 and mTORC2, re-
spectively), in a GTP-dependent manner [23,31]. Among a variety of cellular and molec-
ular processes, mTORC1 has been regarded as one of the master regulators of L-3,4-
dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in PD rodent models [41,42].
The most efficacious symptomatic treatment in PD is the dopamine replacement with the
dopamine precursor, L-DOPA. However, long-term L-DOPA therapy is associated with
the development of motor complications, such as LID, which severely compromise the
beneficial effects of the drug, thus becoming treatment-limiting [43–47]. Among different
molecular changes underlying LID onset and severity [44,48], mTORC1 activation within
D1-expressing striatal neurons following chronic L-DOPA treatment has been regarded as
a key player in the modulation of such motor disturbances [42]. Accordingly, mTORC1
inhibition, either by rapamycin or rapamycin ester CCI-779, significantly reduced LID
in 6-OHDA-lesioned PD rodent models, without affecting the anti-akinetic effect of L-
DOPA [41,42]. In this view, studies in striatal cell lines, striatal tissue and HEK293 cells as
well, documented that Rhes has the ability to selectively bind to and activate mTOR [49].
Remarkably, lack of Rhes significantly reduced LID occurrence and severity in 6-OHDA-
lesioned KO mice, and prevented the rise of nigral GABA and glutamate release in the
substantia nigra pars reticulata (SNr), which represents the output nucleus of the basal
ganglia [49,50]. More recently, a direct influence of Rhes on RasGRP1-dependent signaling
in promoting LID expression has been reported in animal models [51]. Overall, considering,
on one hand, the potential toxicity of rapamycin and related drugs as inhibitors of protein
synthesis and, on the other, the negligible levels of Rhes in peripheral tissues, these findings
pave the way toward a potential use of Rhes inhibitors in PD therapy to counteract LID,
with no detrimental impact on L-DOPA efficacy (Figure 1). However, in order to potentially
translate this therapeutic strategy to PD patients, further new studies in Rhes conditional
knockout mice, aimed at selectively deleting the Rhes gene in the nigrostriatal pathway,
are mandatory, so as to better disclose the role of this small GTP-binding protein in such
severe motor disturbances.
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Figure 1. Rhes modulates L-DOPA-induced dyskinesia. Schematic representation showing that Rhes,
following the activation of striatal mTORC1, mediates the dyskinetic effects triggered by L-DOPA
administration in a 6-OHDA-lesioned mouse model, once converted to dopamine and released by
serotonergic neurons in a non-physiological manner.

5. Involvement of Rhes in Parkinson’s Disease: Focus on Rhes Regulation of
Nigrostriatal Neurons’ Survival
5.1. Rhes Counteracts Nigrostriatal Degeneration during Ageing in a Gender-Dependent Manner

The pathophysiology of PD relies on the degeneration of dopaminergic neurons lo-
cated in the SNc (which project to the motor part of the striatum, caudate-putamen nucleus
in humans), as well as cytoplasmic accumulation of α-synuclein-containing Lewy bod-
ies [43,52]. Based on the occurrence of Rhes transcript in the midbrain tyrosine hydroxylase
(TH)-positive neurons of SNc and VTA (Figure 2) [15] and, considering its role in regulating
survival-related AKT and mTOR signaling pathways, further studies sought to investigate
whether Rhes could also have an impact on midbrain dopaminergic neurons’ survival,
under both physiological and pathological conditions. Interestingly, lack of Rhes led to
a mild, although significant, reduction of midbrain TH-positive neurons in both 6- and
12-month-old KO male mice [15]. As a behavioral correlate to what was observed at the mor-
phological level, mutant male animals showed significant alterations at the beam-walking
test, in an age-dependent manner, taking longer to traverse the beam, thus suggesting that
Rhes might drive the nigrostriatal pathway toward a susceptibility to cell death, triggered
either by aging processes or by environmental toxins [15]. The mechanisms responsible for
the PD-related neuronal degeneration are still elusive, and often controversial. However,
several factors, such as gender, neuroinflammation, oxidative stress, excitotoxicity, reduced
expression of trophic factors, and dysfunction of the protein degradation system, may influ-
ence the nigrostriatal pathway degeneration [53,54]. Although several causative genes of
either dominant or recessive inherited PD forms have been identified, most of them are not
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yet characterized, hence requiring further studies aimed at clarifying the interplay between
genetics and other possible pathogenic factors [55]. Yet, epidemiological investigations in-
dicated that among the factors that may influence the neuronal dopaminergic degeneration,
gender may have a prominent role, since males are at higher risk than females, who might
be more protected by estrogens, in particular 17β-estradiol [56,57]. Therefore, based on the
involvement of the α-synuclein-mediated microglia activation in PD pathogenesis [58–60],
and considering the influence of Rhes upon the survival of nigrostriatal dopaminergic
neurons [15], in a recent study by Costa and colleagues, the potential role of this protein on
the inflammatory response was initially investigated during the physiological brain aging,
in both male and female Rhes KO mice [61]. Immunohistochemistry evaluations confirm the
decrease in TH immunoreactivity already observed in the midbrain nigrostriatal neurons
of male Rhes KO mice [15], but a decrease in TH immunoreactivity was also observed in
female Rhes KO mice. Interestingly, a higher number of the complement type 3 receptor
(CD11b), as well as glial fibrillary acid protein (GFAP), were found in male rather than
female KO mice [61].

5.2. Rhes Reduces the MDMA-Induced Dopaminergic Degeneration and Neuroinflammation
Affecting the Nigrostriatal System

Among the amphetamine-related drugs, 3,4-methylenedioxymethamphetamine (MDMA,
also known as ‘ecstasy’) is one of the most heavily abused psychostimulants among adoles-
cents and young adults [62–64]. MDMA has addictive properties and may elicit neurotoxic
effects and glia activation in several animal species, although the impact on the neural
system may differ depending on the considered species [65–68]. In particular, administra-
tion of MDMA to mice triggers a peculiar profile of neurotoxicity and glia activation that
involves the nigrostriatal and mesolimbic dopamine systems [63,69–72]. These interest-
ing results allowed us to evaluate whether Rhes KO mice showed higher vulnerability to
MDMA-dependent neurotoxic and neuroinflammatory effects in the nigrostriatal system as
compared to WT animals, and whether gender and/or age might be associated with these
effects. In line with this, one of the studies recently performed by Usiello and co-workers
demonstrated that acute-repeated MDMA administration in adult (3-month-old) and
middle-aged (12-month-old) male and female Rhes KO mice caused a significant dopamin-
ergic neurodegeneration and glia activation, which was generally more pronounced in
males than females [73]. In adult males, MDMA administration induced in both WT and
KO animals a decrease of TH-positive fiber density in the dorsal striatum, as well as of the
total number of TH-positive neurons in SNc. Conversely, female Rhes WT and KO mice
were affected by MDMA administration only with aging. In middle-aged mice, MDMA
administration induced a significant decrease in the density of TH-positive fibers in the
dorsal striatum and SNc in both male and female WT and Rhes KO mice. Interestingly, the
decrease observed in the dorsal striatum of adult and middle-aged male Rhes KO mice was
higher than that observed in WT mice. Furthermore, Rhes KO adult males showed a more
pronounced astrogliosis in the dorsal striatum and microgliosis in the dorsal striatum and
SNc as compared with WT and female Rhes KO animals. Finally, while adult female Rhes
KO mice did not show glial activation as compared to WT, susceptibility for dopamine
neuron increased with ageing, suggesting for females a lower vulnerability to neurotoxicity
as compared to males. These data give support to the influence of Rhes in regulating the
survival of dopaminergic neurons, as shown by Pinna et al. [15]. Overall, Rhes is able to
influence the survival of the nigrostriatal pathway, making Rhes KO mice a suitable model
to unveil molecular mechanisms potentially involved in the vulnerability to the midbrain
dopaminergic neuronal loss, under both physiological and pathological processes.
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Figure 2. Rhes expression in midbrain dopaminergic neurons. (A) Schematic representation of a
coronal section at the level of the midbrain. (B,C) Confocal images of brain coronal sections showing
expression of Rhes in SNc and VTA TH-positive DA neurons. The figure has been adapted from
Pinna et al. [15].

6. Rhes Influences Autophagy and Mitophagy Processes

As a consequence of a variety of both physiological and pathological stressors, in-
cluding nutrient deprivation, aging, increase of reactive oxidative species (ROS), loss of
proteostasis and/or genome instability, cells normally implement a primary protective
mechanism based on a lysosomal degradation pathway, called autophagy, able to ensue
nutrient and energy homeostasis, as well as a cytoplasmic quality control process, called
autophagy [74,75]. Together with microautophagy and chaperone-mediated autophagy,
macroautophagy (commonly referred to as autophagy) represents the best characterized
mechanism of degrading and recycling potentially harmful cytosolic components that,
when affected, might be a causative factor for several pathologies, including neurode-
generative disorders [76–78]. Dysfunctional autophagy machinery has been thoroughly
investigated, either in patients suffering from PD or animal models of this human disease,
as revealed by a significant disruption of autophagic flux in midbrain SNc neurons [79–81].
Of interest, among the most specialized forms of autophagy, mitophagy plays a central
role for the selective removal of damaged mitochondria, thus constituting a biological
sensor for the maintenance of mitochondrial biogenesis and calcium homeostasis [82,83].
In this framework, novel and growing evidence posit that Rhes may act as a remarkable
modulator of both autophagy and mitophagy, making this small molecule of great inter-
est for neurological disorders. Accordingly, in vitro studies showed that Rhes binds to
Beclin-1 and activates autophagic flux, by competitively loosening Beclin-1/Bcl-2 interac-
tion, in a mTOR-independent manner, since the effect was still present in the presence of
rapamycin [35]. On the other hand, Sharma and colleagues elegantly showed for the first
time that Rhes co-localizes with lysosomes, and interacts with globular mitochondria, in
primary striatal neurons, as well as striatal cell lines [40]. Moreover, in the presence of 3-NP,
Rhes improved damaged mitochondria clearance, through the binding with the mitophagy
receptor, Nix [40], thus raising the notion that Rhes protein might be considered as a
striatal mitophagy ligand [84], with a relevant impact upon striatal neuronal vulnerability
(Figure 3).
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Figure 3. Rhes modulates striatal neuronal survival. (A,B) Working model, where Rhes is regarded as a key modulator of
neuronal survival. (A) Rhes is able to bind to and activate mTOR, which normally inhibits autophagy. Moreover, it can also
bind to Beclin-1 in particular cell conditions, hence displacing the inhibitory association between Bcl-2 and Beclin-1 that,
eventually, activates autophagy in a mTOR-independent manner. Moreover, Rhes interacts with the mitophagy receptor,
Nix, which drives autophagosomes to trigger basal mitochondrial degradation. (B) In the presence of mitochondrial toxin,
3-NP, such an interaction may bring about excessive mitophagy that, in turn, is able to promote neuronal cell death.

7. Conclusions

Since its early identification by Sutcliff’s group [1], the Ras-related family member,
Rhes, has been attracting many researchers who work on different topics, thanks to the
pleiotropic actions of this highly striatal-enriched protein, which make it a suitable molecu-
lar adaptor, under both physiological and pathological conditions. In this line, taking a cue
from what we have discussed in the present review, we can draw a sort of general picture
about Rhes functions. First, Rhes is a membrane-tethered GTP-binding protein which
negatively modulates the cAMP/PKA signaling pathway in a PTX-sensitive manner, most
likely strengthening Gαi activity and inhibiting N-type (CaV2.2) calcium channels [4,21,22].
Moreover, Rhes expression is developmentally modulated by thyroid hormone, show-
ing increasing mRNA levels between the perinatal phases in rodents, and reaching the
highest amount in adulthood [7,13], which entails its potential involvement in alterations
of relevance to thyroid hormone-dependent neurological disorders, including cretinism.
Second, based on the higher abundance of Rhes transcript in the striatal dopaminoceptive
MSNs and ChIs, several studies clearly documented a pivotal role of this small molecule in
the modulation of both dopamine D1R- and D2R-dependent transmission [9,10,16,23,24].
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Taken together, these findings indicate that Rhes, through the inhibition of the striatal
cAMP/PKA pathway, acts as a physiological brake for the dopamine neurotransmission,
hence allowing to consider it a putative pharmacological target to counteract addictive
disorders. Third, Rhes has the ability to bind to and activate mTORC1 that, among several
trophic processes, worsens L-DOPA-induced dyskinesia symptoms, as demonstrated in PD
animal models [41,42]. Interestingly, lack of Rhes, by reducing striatal mTORC1 activity,
is able to attenuate LID severity, and downregulate the striatonigral neurons’ activity
(Figure 1) [31,50]. Such results encourage further studies about Rhes function, that can
be considered a promising pharmacological target aimed at alleviating such motor dis-
turbances, causing negligible adverse effects, when compared to more selective mTORC1
inhibitors (rapamycin or other rapalogs) which, rather, strongly inhibit protein synthesis
and, therefore, are basically considered toxic compounds. Fourth, Rhes is localized in the
nigrostriatal pathway and modulates the survival of TH-positive neurons [15]. In keeping
with this, and together with the ability of Rhes to modulate autophagy and mitophagy
pathways (Figure 3) [23,40,85], we can pinpoint Rhes as a putative key survival mediator
of striatal vulnerability, and so, be allowed to address deeper investigations on this issue.
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