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Validating DLO Models from Shape Observation
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Abstract—In this paper, the problem of fitting the model of
deformable linear objects from the observation of the shape
under the effect of known external forces like gravity is taken
into account. The model of the deformable linear object is based
on dynamic splines, allowing to obtain a reliable prediction
of the object behavior while preserving a suitable efficiency
and simplicity of the model. The object shape is measured by
means of a calibrated vision system, and a fitting between the
observed shape and the theoretical model is defined for validation.
Experiments are executed in different conditions, showing the
reliability of the proposed spline-based model.

Index Terms—Model Identification, Parameter Estimation,
Deformable Linear Objects, Robotic Manipulation

I. INTRODUCTION

The manipulation of deformable objects plays a relevant role
in the implementation on novel manufacturing applications in
several sectors, ranging from food production [1] to textile
manufacturing [2], surgery [3], automotive [4], aerospace [5]
and electromechanical industries [6] in general. In industrial
scenarios, many assembly operations involving deformable
objects are still executed manually due to the variability of ini-
tial configurations and unpredictable behaviors of the objects.
A thoughtful survey on robotic manipulation of deformable
objects in domestic and industrial applications can be found
in [7].

A particularly relevant subfield of broad industrial interest is
represented by the manipulation of Deformable Linear Objects
(DLOs), such as ropes, electric wires and cables, hoses and
so on. Several literature works addressed the modeling and
the manipulation of this kind of objects for several purposes
and several different models and strategies were developed.
A geometrically consistent model of DLOs is developed in
[8] and adopted to perform numerical simulations on the
object motion under gravity and during the interaction with
the environment. In [9] a manipulation controller for an
industrial robot inserting a cable on a tight hole without a
priori knowledge of the cable parameters is proposed. The
integration of robotic vision and tactile sensing for switchgear
cabling tasks is presented in [10], while in [11] a vision-
based rope manipulation combining self-supervised learning
and imitation is proposed.

To enable that kind of DLOs modelling and manipulation,
the estimation of the object parameters plays a relevant role,

“Department of Engineering of the University of Campania “Luigi Van-
vitelli”, Via Roma 29 - 81031, Aversa (CE), Italy.

bDepartment of Electrical, Electronic and Information Engineering
”Guglielmo Marconi” (DEI) of the University of Bologna, Italy.

The research leading to these results has received funding from the EC Hori-
zon 2020 research and innovation program under grant agreement n. 870133,
correspondent to the project entitted REMODEL, Robotic Technologies for
the Manipulation of Complex Deformable Linear objects

Corresponding author: gianluca.palli@unibo.it

978-1-6654-4139-1/21/$31.00 ©2021 IEEE

since the quality of the simulation and behavior prediction
mostly depends on them. Therefore, this work is relevant to
deformable objects manipulation since suitable models and
parameters estimation strategies are needed for simulation,
perception and control of the manipulation task.

II. DYNAMIC MODEL OF DLOS

A. DLO Configuration and Lagrange Equation

The DLO model can be represented by a 3-rd order spline
basis as a function of a free coordinate u representing the
position along the cable starting from an end point, where
u = 0, to the opposite end where © = L, being L the length
of the cable
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q(u) = Zbi(u)(ﬁ (1)

where g(u) = ((u), y(u), 2(u), 8(u)) = (r(u),6(u)) is the
4-th dimensional configuration functional space of the cable,
including three linear coordinates x, y, z of the DLO position
at point v and the axial DLO twisting 6, b;(u) is the i-th
elements of the spline polynomial basis used to represent
the DLO shape and ¢; are n, properly selected coefficients,
usually called control points, used to interpolate the DLO
shape through the b;(u) function basis. This mathematical
model of DLO is very effective for a number of reasons.
First, the computation of the shape spatial derivatives is
straightforward, i.e.
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and, most notably, can be represented through the same coef-
ficients and simple-to-compute derivatives of the polynomial
spline basis functions b;(u). Second, the proprieties of spline
basis ensures minimization of the DLO model curvature.
Third, this model allows to represent a generic nonlinear
function with sufficient smoothness properties as a linear
combination of the nonlinear function basis b;(u), that depend
only on the free variable u, by the linear coefficients g;.

The dynamic model of the DLO can be defined as a function
of the control points g; by referring to the Lagrange equations
of the system
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where F; is the resultant external force acting on the i-th
control point, T" is the overall kinetic energy of the system
and U is the overall potential energy due to gravity, stretching,
bending and torsional effects acting on the DLO.
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B. DLO Kinetic Energy and Inertial Force

The kinetic energy of the DLO is due to translation of the
control points and rotation of the cross sections. The overall
kinetic energy can be represented as a function of the control
points g; as
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where ds = ||r’(u)||du is the element displacement, .J is the
generalized density matrix of the DLO, p is the linear density
and [ is the polar moment of inertia. Following the procedure
described in [12], it is possible to write
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By considering that d;t%j is the acceleration of the j-th control

. L .
point, the term .J [;* b;(s)b;(s)ds = M;; can be considered
the corresponding inertia term. Therefore, it is possible to write
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and, extending this definition to the whole system, this allows
to write the overall DLO inertial forces as Mg, where M is
the DLO inertia matrix and ¢ is the vector of the control point
accelerations.

C. DLO Potential Energy and Elastic Forces

The potential energy U is composed by the gravity effect
and the strain energy. While the derivation of the gravitational
energy is quite straightforward, the strain energy can be
defined by introducing the strain vector € = [es, €, €],
where e = 1 — |||, & = 0 — 7, & = % are the
stretching, the torsional and the bending term respectively and

T, .11 .
C=r" xr", C”C]z . Tt follows that the strain energy can
be written as
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is the element stiffness matrix, £ and G are the Young
modulus and the shear modulus of the material respectively, D
is the DLO cross section diameter and ¢ is the plastic strain,
or strain memory, of the DLO, that allows to take into account
the plasticity of the material, and €, = € — ¢( is the residual
strain. The right side term of eq. (3) can be written as
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representing the elastic forces due to the DLO deformation.
Additional details on the DLO modeling can be found in [13].
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D. DLO Dynamic Model

By extending eqs. (3), (6) and (8) to all the control points,
it is possible to write the overall DLO dynamic model as

Mi+Ng=F+P ©)

where the term V¢ is introduced in order to take into account
for DLO internal energy dissipation, [’ is the vector of all the
external forces, gravity included, and P is the vector of all the
elastic forces.

III. NUMERICAL-EXPERIMENTAL VERIFICATION

The choice of model parameters is fundamental, and since
no a priori knowledge of these parameters exists, it is neces-
sary to estimate them through an experimental procedure. In
this paper, a first procedure based on a trial and error tech-
nique, exploiting a vision based approach through a calibrated
camera, is proposed to compare a simulated and an actual
one, starting from different initial configurations, and under
different constraints. An additional objective is also to find
DLO configurations that better highlight the dependence of
the shape on the physical parameters.

A. Estimation process

Given a real DLO, the objective is to estimate its mechanical
parameters which allow to well describe the DLO through the
proposed model. While parameters as diameter and length can
be clearly fixed, other parameters are completely unknown.
The objective is to correlate the model and the real DLO by
experimentally estimating the best values of Young’s modulus
E and linear density p, which are the parameters that most
modify the behavior of the simulated DLO. During the exper-
iments all other parameters are considered known and fixed.
The parameter estimation process is based on the comparison
between the shape obtained by subjecting the real DLO to
a certain manipulation operation, and the shape obtained
by considering the same operations on a simulated DLO.
Different configurations are considered for the comparison,
in order to obtain the set of parameters (FE,pu), that best
represents the real DLO. A first set of configurations is used
to estimate and to refine the parameters and a second set (with
different configurations) is used to validate estimated (F, u1).

To perform the matching between the two shapes, a cali-
brated camera is used. First of all, since the real DLO has
to be simulated, the control points have to be chosen. An
easy way is to choose these points directly on the image, by
selecting a set of points on the DLO. By using the calibration
information, the pixel positions can be converted into camera
or world frame points. Once the initial control points are
chosen, the model can be used to simulate the DLO dynamics,
by imposing the same constraints, and the same setup of the
real DLO. Finally, by projecting on the image plane the final
B-spline obtained, the two shapes can be compared. Although
a first feedback can be obtained qualitatively, by evaluating
the match between the two shapes directly on the image, for
a quantitative evaluation a function that represents the error
between the real and the simulated shape has to be defined.



In order to define the error function, comparable quantities
are needed, so using the same vision based approach used
to choose the initial control points, an optimal B-Spline can
be obtained by choosing the control points that best fit the
real shape on the image. Let denote this B-Spline as qges(u),
by indicating this as the desired final shape, and denote as
¢(u) the B-Spline obtained from the simulation. Note that the
generic B-Spline, provided by the model, is a four coordinates
B-Spline, while from the image only two coordinates can be
obtained. However the reported experiments involve only two
components, so that the two splines are comparable. Hence,
the following synthetic indicator, representing the overall error
along the spline, can be defined

BRR =1 [ llast) - a@lldu (10
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with w € [0, L], where L is the DLO length. Once an error
indicator is defined, the best model parameters (E,u) are
selected by minimizing the indicator. In this work, the param-
eters selection is made by carrying out a set of simulation with
a trial and error approach, by varying the Young modulus and
the volume density, and by comparing the results with the real
shape on the basis of obtained error. The DLO configuration
used to obtain the parameters have to be chosen accurately:
for simple configurations, a large range of parameters well
reproduce the dynamics with low errors, but by considering
complex configuration, this is not true anymore, so that a
specific set can be identified.

B. Experimental setup

The experimental setup consists of a pre-drilled extruded
polystyrene sheet, an RGB camera, some nylon ropes of
different diameters and available in several lengths. Since
the holes are at a predetermined distance, the polystyrene
sheet is used to precisely fix the constraints imposed on the
DLO, sticking a pointed object between the rope and the
hole. An example of the ropes used in the experiments are
shown in Fig. 1a, with the diameter equal to 4 mm and 8 mm
respectively. For all experiments described in the following
sections, the sheet is vertically mounted so that the used
ropes are subjected only to the gravity. The friction among
polystyrene sheet and ropes is considered negligible with
respect to the gravity effects. The used camera is a standard
RGB camera with 1920 x 1080 resolution. Accurate knowledge
of the camera intrinsic and extrinsic parameters is essential to
use the camera for quantitative geometric measurements, and
in particular as reference measurement system for DLO shape.
The actual parameters depends on several technical elements
and they are not usually provided by manufacturers. The
camera calibration allows to estimate all needed parameters
and there exist several calibration techniques. In this paper, the
Camera Calibrator App, from the Computer Vision Toolbox
of MATLAB, implementing the algorithm provided in [14], is
used. It exploits multiple views, from unknown position and
orientation in space, of the same pattern (reported in Fig. 1b)
of known structure and dimensions.

(b)

Fig. 1. The polystyrene sheet and two ropes with diameter equal to 4 mm and
8 mm, respectively (a) and the pattern, collocated on the sheet, to calibrate
the camera (b).

C. First Experiment: a simple configuration

The DLO used for this first experiment is a nylon rope
with a diameter D = 4mm and a length L = 0.4m.
The considered starting configuration of the rope is the one
reported in Fig. 2a. The same figure show the initial control
points, directly chosen from the image by using the vision
based approach. These control points, used for the simulation,
correspond to the initial B-spline reported on the same figure.
The rope is initially stationary, which corresponds to null
velocities and accelerations as initial conditions. By comparing
initial and final configurations in Fig. 2 is is evident that the
first two control points are fixed and hence, they have to be
considered as constraints. Moreover, Fig. 2b shows the final
DLO shape, obtained by imposing a linear trajectory on the
last control point. By using the pre-drilled holes, the final
shape can be accurately acquired by using the vision system,
and, compared with the initial shape, it also allows to acquire
the linear trajectory applied on the last control point. All
data acquired from the images (e.g., control points positions,
trajectories) can be converted into 3D data points by using the
camera calibration parameters, previously estimated. The 3D
data together with the model parameters reported in Table I
are used to simulate the rope with the same initial conditions
and constrains fixed for the real rope. Note that the Young’s
modulus E and the shear modulus G, used in the model, are
interrelated by the formula G = E/[2(1 + v)], incorporating
the Poisson’s ratio, which is considered constant to the value
v = 0.33 in all following simulations. The model parameters
selected for this first experiment are chosen on the basis of
the known information about the rope material. Several frames
taken from the simulation can be compared with the real final
configuration in order to evaluate if indeed and in how much
time the model converges towards the real final shape, with
the selected model parameters. Figure 3 shows some frames
from the simulation, superimposed on the camera view of the
final DLO shape. The simulation lasts 3s, and the trajectory
is applied to the final control point during the first 1.55s, so
that in the second part of the simulation (from ¢ = 1.5s
to ¢ = 3s) the last control point position is fixed, and the
gravity force is the only external force acting on the rope. By
comparing the final simulation frame with the real shape, see
Fig. 3d, it is evident that the selected parameters allows an
accurate modelling for the considered DLO. This good result
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Fig. 2. First experiment: initial configuration with control points (a) and final
configuration (b).

(b)

Fig. 4. Second experiment: initial configuration with control points (a) and
final configuration (b).

Fig. 3. First experiment: comparison of simulation frames at the time instants
t = 0s(a),t =05s(b),t=1s(c), t = 3s (d) with the real final
configuration.

also depends on the simple considered configuration, for which
variations in the mechanical parameters of the DLO do not
have much effect. As a consequence, additional considerations
are needed with more complex configurations. In order to
quantify the correlation between the model and the real rope,
the synthetic indicator in Eq. (10) is computed by comparing
the real final shape, acquired from the vision system, and the
shape obtained from the model at the simulation end, i.e., at
t = 3s., by obtaining the value ERR = 0.069 (corresponding
to the case reported in Fig. 3d).

D. Second experiment: evaluation on a different shape

The same rope is used starting from the same initial
conditions and the same constraints on first two control points
described in the first experiment (see Fig. 4a). In this case
only the linear trajectory, applied to the last control point,
is changed to reach the different final configuration reported
in Fig. 4b. In this case, the DLO parameters of the first
experiment do not allow to reach good performance in terms
of shape reproduction. Hence, a refinement was necessary in
order to properly reproduce the actual shape. In particular, the

TABLE 1
DLO SIMULATION PARAMETERS FOR THE FIRST EXPERIMENT.

Parameter | E o L D
Value le6 | 2000 | 0.4 | 0.004
Unit Pa | kg/m | m m

Fig. 5. Second experiment: comparison of simulation frames at the time
instants t = 0s (a), t = 0.5s (b), t = 1s (c), t = 3s (d) with the real final
configuration.

Young’s modulus is increased with respect to the previous one
in order to reach a good value for the synthetic indicator ERR
(comparable to first experiment). The set, selected to reach
a good value for the synthetic indicator ERR (comparable to
first experiment), is reported in the Table II.

Figure 5 reports some frames from the simulation, superim-
posing on the final shape image, in order to demonstrate how
with the selected parameters a correct reconstruction of DLO
shape is possible. The synthetic indicator for this experiment is
ERR = 0.080 (corresponding to the case reported in Fig. 5d),
by showing a matching comparable with respect to the first
experiment, but with a different value of Young’s modulus.

E. Third experiment: ”C” shape

The following is an experiment analogous to the previous
ones (starting from the same conditions in Fig. 4a), but the
final configuration is more significant for the identification
of rope physical characteristics, due to its particularly ”C”
shape (see Fig. 6b). It is intuitive to understand how this
configuration cannot be obtained with a very high range of
parameters like the previous ones, since in this case the
stiffness plays a key role in the shape assumed in the final
instant by the DLO. As a consequence, several simulations
are computed by varying the (E, 1) values in order to obtain
a final shape as close as possible to the real one and with
a corresponding synthetic indicator similar to previous ones.

TABLE 1I
DLO SIMULATION PARAMETERS FOR THE SECOND EXPERIMENT.

Parameter | F o L D
Value 3e6 | 2000 | 0.4 | 0.004
Unit Pa | kg/m | m m
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(b)

Fig. 6. Third experiment: initial configuration with control points (a) and
final configuration (b).

()

Fig. 7. Third experiment: comparison of simulation frames at the time instants
t = 3 s for different values of Young’s modulus: & = 1e6 Pa (a), E = 3e6 Pa
(b), E = 5e7Pa (c).

Figure 7 shows a set of the final instant for three different
simulations, where for each picture the Young’s modulus
was changed, by increasing from E = 1le6Pa in Fig. 7a to
E = 5e7Pa in Fig. 7c, while the density is increased to the
value p = 2500 kg/m.

It is evident that the best reconstruction corresponds to
Fig. 7c, where the E value is very different from the previous
experiments. Figure 7c corresponds to a simulation with the
parameters in Table III and the computed synthetic indicator is
ERR = 0.092. For the other two cases in Fig. 7a and Fig. 7b
the synthetic indicator is ERR = 0.153 and ERR = 0.107,
respectively.

FE. Cross validation among the three experiments

The objective remains to obtain a unique set of parameters
usable for the selected DLO in all cases. The set of parameters
used for the more complex configuration (the last one) should
be the best choice, by considering that the particular shape
well depends on the physical parameters (E, u) that have to
be identify. To verify this, the values last set of identified
parameters in third experiment and reported in Table III is
used to reproduce the rope dynamics in first two experiments.
Hence, all the simulations are repeated by using the last
parameters. From the obtained shape point of view there are
not evident differences with respect to the results already
presented in Fig. 3d and Fig. 5d. The quality of the last
parameters can be quantitatively evaluated by comparing the
synthetic indicator computed by using the set in Table III

TABLE III
DLO SIMULATION PARAMETERS FOR THE THIRD EXPERIMENT.
Parameter | E o L D
Value 5e7 | 2500 | 0.4 | 0.004
Unit Pa | kg/m | m m

(a) (b)

Fig. 8. First validation experiment: initial configuration (a) and final config-
uration (b).

with the sets in Table I and Table II, respectively. Table IV
summarizes the synthetic indicator for all experiments and
parameters values, by highlighting how the last set in Table III
guarantees the best reconstruction for all cases, and hence can
be selected as physical parameters for the considered DLO.

IV. VALIDATION EXPERIMENTS

The physical parameters estimated in the previous section
are used with a different rope of the same material, in order
to validate in separate experiments the estimation quality. In
particular, a rope of the same material but with a length
L = 0.8m and a diameter D = 8mm is used. Hence, the
parameters used for the simulations are the ones reported in
Table V.

Figure 8a shows the initial DLO configuration, where the
DLO is fixed at the two ends, on the polystyrene sheet under
the gravity effects. The experiment consist of imposing a
trajectory on the first and the last control points (DLO ends),
making them approaching to the center by maintaining con-
stant the z-coordinate. When the trajectory is accomplished,
the two points have to remain constrained at the final position,
while the rope is affected only by the gravity. The whole
simulation lasts 2s, and the trajectory is applied to the DLO
ends during the first 1s, so that in the second part of the
simulation (from ¢ = 1s to ¢ = 2s) the DLO ends position
are fixed, and the gravity force is the only external force acting
on the rope. The reached final configuration is the one reported
in Fig. 8b. Figure 9 shows some frames from the simulation,
superimposed on the camera view of the final DLO shape.
The dynamics obtained is quite realistic, and from a vision
comparison, the final shape is reproduced very well by this
simulation (see Fig. 9d). Also the computed synthetic indicator
ERR = 0.068 confirms the quality of the reconstructed shape.

TABLE IV
COMPARISON OF THE THREE EXPERIMENTS BY USING E RR INDICATOR.
First exp. Second exp. Third exp.
E le6 Se7 3e6 5e7 le6 3eb Se7
o 2000 | 2500 | 2000 | 2500 | 2000 | 2000 | 2500
ERR | 0.069 | 0.067 | 0.080 | 0.077 | 0.153 | 0.107 | 0.092
TABLE V
DLO SIMULATION PARAMETERS FOR THE VALIDATION EXPERIMENTS.
Parameter | F o L D
Value 5e7 | 2500 | 0.8 | 0.008
Unit Pa | kg/m | m m
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Fig. 9. First validation experiment: comparison of simulation frames at the
time instants £ = 0s (a), t = 0.5s (b), t = 1s (c), t = 25 (d) with the real
final configuration.

A second validation experiment is implemented, starting
from the same initial condition of the previous one, but with
a final shape more complex, reported in Fig. 10b. In this case
the final shape present four imposed constraints: the first two
control points on the left, and last two on the right, (Control
point 1, Control point 2, Control point 9, Control point 10),
have to approach the center by maintaining constant their z-
coordinates. The elastic DLO properties have a fundamental
role in the final shape. This can be a further demonstration
that the chosen parameters are very good. The simulation
is performed in the same time and only the final frame is
reported in Fig. 11. The reconstruction quality is still similar
to previous ones with a synthetic indicator FRR = 0.090. A
video attached to the paper shows the superimposition of the
simulation and the final shape for all considered experiments.

V. CONCLUSIONS

In this paper a first numerical-experimental correlation of
the proposed model for DLOs is presented. The main objective
was the estimation of physical parameters for the considered
DLOs, which allow to return the simulated rope shapes that
best approximate the real ones. A second objective was to
detect the best configuration that allow the parameters iden-
tification. With a trial and error approach and a continuous
refinement the values £ = 5e7Pa and p = 2500 kg/m
are identify on a first set of experiment made on a rope
with length L = 0.4m and diameter D = 4mm. Valida-
tion experiments made on a rope with length L = 0.8m
and diameter D = 8mm are used to verify the identified
parameters. In future developments an automatic optimization
procedure will be implemented, by minimizing the synthetic
indicator here defined and used to quantify the quality of shape
reconstructions.
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