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Abstract: This paper deals with an inverse scattering problem under a linearized scattering model
for a multi-static/multi-frequency configuration. The focus is on the determination of a sampling
strategy that allows the reduction of the number of measurement points and frequencies and at
the same time keeping the same achievable performance in the reconstructions as for full data
acquisition. For the sake of simplicity, a 2D scalar geometry is addressed, and the scattered far-field
data are collected. The relevant scattering operator exhibits a singular value spectrum that abruptly
decays (i.e., a step-like behavior) beyond a certain index, which identifies the so-called number
of degrees of freedom (NDF) of the problem. Accordingly, the sampling strategy is derived by
looking for a discrete finite set of data points for which the arising semi-discrete scattering operator
approximation can reproduce the most significant part of the singular spectrum, i.e., the singular
values preceding the abrupt decay. To this end, the observation variables are suitably transformed
so that Fourier-based arguments can be used. The arising sampling grid returns several data that is
close to the NDF. Unfortunately, the resulting data points (in the angle-frequency domain) leading
to a complicated measurement configuration which requires collecting the data at different spatial
positions for each different frequency. To simplify the measurement configuration, a suboptimal
sampling strategy is then proposed which, by an iterative procedure, enforces the sampling points to
belong to a rectangular grid in the angle-frequency domain. As a result of this procedure, the overall
data points (i.e., the couples angle-frequency) actually increase but the number of different angles
and frequencies reduce and lead to a measurement configuration that is more practical to implement.
A few numerical examples are included to check the proposed sampling scheme.

Keywords: field sampling; inverse scattering; radar imaging

1. Introduction

Inverse scattering problems infer some features of an unknown object from its scat-
tered field measurements once it has been illuminated by a known incident field [1]. This
problem is of interest in several sensing and remote sensing applications, which range from
nondestructive testing to geophysical prospecting, form microwave and ultrasonic medical
imaging to buried-object detection.

As is well known, inverse scattering problems are very difficult to address since the
non-linearity and the ill-posedness of the mathematical model must be dealt with. Usually,
reconstruction procedures are cast as an optimization where the unknown is looked for
as the one that minimizes a suitable misfit function. To this end, both deterministic and
stochastic [2–6] approaches have been presented in the literature. However, these methods
are in general computationally heavy and can suffer from reliability problems due to the
occurrence of false solutions [7]. Accordingly, they are not convenient when it is required
to diagnose an electrically large spatial region. In these cases, the scattering equations
are usually linearized so that [8–11] computational inversion procedure can be exploited.
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For example, the Born approximation [8] is commonly adopted to achieve such a task.
Although it is known that the Born approximation works for a very restricted class of targets
(the ones addressed as weak scatters), it has been extensively shown in the literature that
beyond its limits of validity, Born model reconstructions still allow to obtain qualitatively
target reconstructions. This means that the target location and roughly its shape can be
retrieved; fortunately, in many radar applications this is the main aim to pursue.

Besides linearization, in many applications, the far-field approximation can be ex-
ploited as well. The latter holds when the target and the measurement domain are very
far from each other and consists of approximating the wavefront of the scattered field as a
planar one. In this case, the scattering operator, linking the field and the target, enjoys a
nice Fourier transformation structure [12].

In this framework, a very important issue concerns the measurement data collec-
tion [13–15]. Basically, data should be collected to trade-off the needs to keep the number
of measurements as low as possible, which simplifies the measurement configuration
and positively affects the acquisition time, and to avoid performance degradation while
performing the target reconstruction. Accordingly, in this contribution we address such an
issue by focusing on the case the scatted field is collected in far-field under a multi-static
and multi-frequency configuration.

The problem of determining the set of data points can be more generally addressed
as a sensors’ selection problem [16]. This, however, presents a combinatorial complexity
which can be difficult to deal with in practice. For this reason, several different approxi-
mate methods have been proposed in the literature [17–21]. All these methods select the
measurement points by iterative procedures that attempt to optimize some metrics related
to the singular values of the scattering operator. Additionally, the number of measurement
points to deploy is a priory fixed.

In this paper, our aim is to design a strategy to collect scattered field data which
overcomes such difficulties by taking advantage from the mathematical properties of the
scattering operator.

To this end we exploit the fact that the scattering operator is compact [22,23]. In
particular, the far-field Green function, i.e., the kernel of the scattering operator, behaves
similarly to an entire function of exponential type. This results in an abrupt decay of the
singular values beyond a certain critical index, the so-called number of degrees of freedom
(NDF) [23–30] of the scattered field. This singular value behavior, on one hand, is the result
of the ill-posedness of the problem [31,32], which limits the achievable performance in the
reconstructions. On the other hand, it entails that the range of the scattering operator, i.e.,
the set of all possible scattered fields, to be approximated by a finite-dimensional space,
whose dimension depends on the NDF [22]. Accordingly, the measurement points can be
determined as the ones that allow approximation of the subspace spanned by the “first”
NDF left singular functions. It is known that such a subspace represents an NDF-th width
of the range of the scattering operator [33], i.e., it is the subspace of dimension NDF that
returns the lower approximation error. However, a sampling representation of the scattered
field is more convenient since it is directly linked to the field samples.

Eventually, our problem can be recast as the determination of a sampling repre-
sentation which is able to approximate the “first” NDF left singular functions. To this
end, the sampling approach developed in [34] can be exploited along with the classical
Whittaker–Kotelnikov–Shannon sampling theorem [35].

Such an approach has been already exploited in the framework of inverse source
problems in [36–38], where near-field data were collected but only the spatial variable was
considered. Instead, in this paper also the frequency diversity is taken into account. In
particular, an optimal sampling strategy which minimizes the number of data in the angle-
frequency domain is proposed for far-field data. This is done by suitably transforming the
observation variables so that sampling approach mentioned above can be still exploited.
However, although the proposed sampling scheme returns the number of data points close
to the NDF, and hence equal to its minimal value, such a strategy leads to a complicated
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measurement configuration, which requires collecting the data at different angles for each
different frequency. Hence, to simplify the measurement configuration, a suboptimal sam-
pling strategy is introduced, which through an iterative procedure, enforces the sampling
points to belong to a rectangular (not necessarily uniform) grid in the angle-frequency
domain. In this way, the total number of scattered field data is of course increased (because
they are not the optimum ones). However, the resulting measurement configuration is
easier to implement and what is more the number of angle points at which to collect the
data reduces.

2. Mathematical Formulation

Consider the two-dimensional scalar scattering problem sketched in Figure 1, where
invariance occurs along the y axis. The unknown scatterers are assumed to reside within
a rectangular investigation domain ID = [−a , a]× [−b , b] located in free-space media.
The scatterer region is illuminated by a plane wave with a fixed incidence angle θi and for
different frequencies that result in propagation constant k ranging within Ωk = [kmin, kmax].
The scattered field is collected with a multi-static, multi-frequency configuration under far-
field conditions over an observation angular sector Ωo = [−θmax , θmax], with θmax being
the maximum observation angle. Accordingly, the scattering operator relating the contrast
function χ describing the electromagnetic properties of the unknown targets and the only
y component of scattered field E is written as (apart from some unessential scalar factors).

Figure 1. Considered geometry.

A : χ(r) ∈ X = L2(ID)→

→ E(k, θo) =
∫

ID
χ(r)ejk(sin(θo)−sin(θi)xejk(cos(θo)−cos(θi))zdr ∈ Y = L2(Ωk ×Ωo), (1)

with L2(ID) and L2(Ωo × Ωk) being the sets of square integrable functions supported
over ID and Ωo ×Ωk, respectively, and r ∈ ID is the scatterer point. Please note that a
scattering operator similar to (1) can be obtained by exploiting the Kirchhoff model to the
scattering equation when strong scatterers are considered. Our aim is to design a strategy
to collect the data on the rectangular domain Ωo ×Ωk by following the same approach
proposed in [36–38]. This consists of discretizing the data space so that the resulting
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discrete version of the eigenvalue problem associated with the left singular functions of A
shares the first NDF eigenvalues of its continuous counterpart. In this way, according to the
previous discussion, we are sure that the data space discretization allows approximating
the “first” NDF left singular functions and, hence, the most important part of the range of
the scattering operator.

Let {un, σn, vn}∞
n=0 be the singular system of A, with σn being the singular values and

un and vn the right and left singular functions that span the scatterer and the field spaces,
respectively. It is well known that the vn’s solve the following eigenvalue problem

AA†vn = σ2
nvn (2)

where A† is the adjoint of the scattering operator. Accordingly, to apply the sampling
approach [34], we focus on AA† whose explicit expression, apart from an unessential
constant, is

AA†vn =
∫

Ωo

∫
Ωk

vn(θ
′
o, k′)×

×
∫

ID
ejx(k[sin(θo)−sin(θi)]−k′ [sin(θ′o)−sin(θi)]) ejz(k[cos(θo)−cos(θi)]−k′ [cos(θ′o)−cos(θi ]))drdk′dθ′o (3)

3. Optimal Sampling Strategy

To establish a sampling representation for vn and to devise the sampling scheme, the
main idea it to recast the kernel function of AA† as a band-limited function. To this end, it
is convenient to introduce the following couple of variables

ω(k, θo) = k[sin(θo)− sin(θi)] γ(k, θo) = k[cos(θo)− cos(θi)] (4)

that are expressed in terms of (k, θo). Since the vectorial transformation Γ : (k′, θ′o) →
(ω′, γ′) with ω′ = ω(k′, θ′o), γ′ = γ(k′, θ′o) is injective and the corresponding Jacobian
matrix is full rank, we can replace in (3) the integration in (k′, θ′o) with the integration in
(ω′, γ′), which yields

AA†vn =
∫

Ω
vn(ω

′, γ′)
1

k′(ω′, γ′)

∫ a

−a

∫ b

−b
ejx(ω−ω′) ejz(γ−γ′) dx dz dω′ dγ′ (5)

where Ω = {(ω′, γ′) : (θ′o, k′) ∈ Ωo ×Ωk} . Basically, the rectangular domain in (θ′o, k′)
(that is, Ωo × Ωk) maps in (ω′, γ′) as a sector of a disk. The kernel function in (5) is
represented by the following integral

ker(ω, γ, ω′, γ′) =
1

k′(ω′, γ′)

∫ a

−a

∫ b

−b
ejx(ω−ω′) ejz(γ−γ′) dx dz (6)

By solving the integral, it becomes

ker(ω, γ, ω′, γ′) =
1

k′(ω′, γ′)
H(ω, γ, ω′, γ′) (7)

with
H(ω, γ, ω′, γ′) = 4absinc[a(ω−ω′)]sinc[b(γ− γ′)] (8)

As can be seen, with respect to both (ω, γ) and (ω′, γ′), H(ω, γ, ω′, γ′) is the 2D
inverse Fourier Transform of a rectangular window. In particular, if we focus only on the
dependence in (ω, γ), the function H is a band-limited function with bandwidth equal
to a and b, respectively. We are now in condition to build up the discrete counterpart
of (5) by exploiting the procedure developed in [34]. More in detail, since H(ω, γ, ω′, γ′)
is a band-limited function, the standard sampling theorem can be exploited to obtain the
following representation
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H(ω, γ, ω′, γ′) = ∑
m,l

H(ωm, γl , ω′, γ′)sinc[a(ω−ωm)]sinc[b(γ− γl)] (9)

with {
ωm = mπ/a
γl = lπ/b

(10)

the sampling points of H with respect to ω and γ variables. Please note that as m ∈ Z and
l ∈ Z with Z the set of integer numbers, (10) returns a rectangular sampling grid in ω and
γ. By putting (9) in (5) we obtain

AA†vn = ∑
m,l

[∫
Ω

vn(ω
′, γ′)

1
k′(ω′, γ′)

H(ωm, γl , ω′, γ′)dω′ dγ′
]

sinc[a(ω−ωm)]sinc[b(γ− γl)] (11)

Equation (11) suggests that the eigenfunction vn can be expressed as

vn(ω, γ) = ∑
m,l

vn(ωm, γl)sinc[a(ω−ωm)]sinc[b(γ− γl)] (12)

Equation (12) leads to two main consequences. On one hand, since the eigenfunctions
vn span the closure of the Range of A, also the scattered field can be represented by the
sampling series in (12). This means that according to (12), the field must be collected with a
uniform step equal to π/a and π/b in the variables ω(k, θo) and γ(k, θo). Because of the
non-linear relationship between (ω, γ) and (θo, k) (see (4)), the uniform rectangular grid
in the ω− γ domain, described by (10), becomes non-uniform and of more general shape
in the θo − k domain. The second implication of (12) is that it suggests how to build the
discrete counterpart of the eigenvalue problem reported in (2). In fact, by substituting (12)
within (11) and by evaluating the result at ω = ωm and γ = γl , one obtains

σ2
nvn = Bvn, (13)

where vn = {vn(ωm, γl)}∞
α(m,l)=1 and α varies according to the way vn is vectorized and

B = {Bα,β} with Bα,β given by

Bα(m,l),β(s,t) =
∫

Ω

1
k′(ω′, γ′)

H(ωm, γl , ω′, γ′)sinc[a(ω′ −ωs)]sinc[b(γ′ − γt)]dk′ dθ′o (14)

Please note that the integer indexes m, l and s and t range over the two-dimensional
sampling lattice involved by (11) and the matrix entry indexes α and β vary according to
the way the vectorization of vn is achieved.

It is worth remarking that B describes an infinite discrete problem. However, it is
evident that , if k′ 6= 0 the more relevant contribution to the integral in (14) comes from
the couples (ωs, γt) and (ωm, γl) which belong to Ω, in fact only for such points the sinc
functions contribute with their main lobes.Accordingly, we can consider a truncated version
of B, i.e., BN of size N × N, which takes into account only the samples falling within such
a domain, possibly with a slight oversampling factor along ω and γ, say it ν, to control the
truncation error. In this way, we are sure to approximate the first more significant singular
values and moreover, the number N can be used as an estimation of the number of degrees
of freedom NDF [23,34], i.e., the number of singular values preceding the abrupt decay.
Please note that to truncate B to BN is equivalent to represent both the eigenfunctions vn
and the scattered field as

vn(ω, γ) = ∑
(ωm ,γl)∈Ω

vn(ωm, γl)sinc[aν(ω−ωm)]sinc[bν(γ− γl)] (15)

and
E(ω, γ) = ∑

(ωm ,γl)∈Ω
E(ωm, γl)sinc[aν(ω−ωm)]sinc[bν(γ− γl)] (16)
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Equation (16) suggests not only how to collect the data but also how many samples N
are required to approximate the more significant singular values of the continuous operator
A. Summarizing, data should be collected with a uniform step in ω− γ which depends
on investigation domain size. In this framework, among all possible sampling points in
ω − γ only the ones fallen in Ω are relevant to represent the field. As mentioned before,
since the non-linear relationship between the couples (ω, γ) and (θo, k) reported in (4),
the uniform rectangular grid in the ω − γ domain becomes non-uniform in the θo − k
domain. This has a profound impact on the actual measurement configuration. Indeed,
although the proposed sampling scheme returns several data which is close to NDF, and
hence to the minimal number that in principle is required, such a strategy generally leads
to a complicated measurement configuration that requires collecting the data at different
angular positions for each different frequency. This of course is not too much practical
and entails collecting the data over many different angles and frequencies, even if the
total number of measurements ( the couples of angle-frequency) is minimized. To simplify
the measurement configuration, a sub-optima sampling strategy, whose main steps are
reported in Figure 2, is implemented which enforces the sampling points to belong to a
rectangular grid in the θo − k domain. The latter scheme is suboptimal because it does
require more data points than the previous one. However, those points are deployed
over a rectangular grid and, what is more, the number of different angles and frequencies
is reduced.

Figure 2. Suboptimal sampling strategy.

4. Suboptimal Sampling Strategy

Let {kml , θoml}N
ml=1 be the optimal measurement grid obtained by the method ex-

plained in the previous section. Suppose that N1 is the numbers of the different frequencies
in the set of the optimal ones {kml}N

ml=1 and N2 the numbers of all different angles in
{θoml}N

ml=1. From the latter, we build the rectangular grid {ki}N1
i=1 × {θoj}N2

j=1, which con-
tains all the different frequencies and angles returned by the optimal sampling. However,
this grid is much more populated than the previous one. Hence, it must contain redundant
information that can be discarded. Accordingly, a rectangular sub-grid {k̄q}Q

q=1 × {θ̄op}P
p=1

(with P, Q ≤ N) can be looked for. To achieve such a task, we implement an iterative
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procedure. More in details, starting from the rectangular grid {ki}N1
i=1 × {θoj}N2

j=1 we sep-
arately optimize (reduce) the angular positions and the frequencies. At the first, fixed
{ki}N1

i=1 we build the suboptimal vector {θ̄op}P
p=1 from {θoj}N2

j=1 with the aim to minimize
the spatial measurements numbers without degrading the singular values estimation. Next,
once {θ̄op}P

p=1 has been estimated, the same procedure is applied to the frequencies to

estimate {k̄q}Q
q=1.

Figure 2 details the main steps of the suboptimal procedure. The first part concerns
the iterative cycle for optimizing the angular positions and it has as input the rectangular
grid {ki}N1

i=1 × {θoj}N2
j=1. The cycle starts by initializing the value of P at 2 and goes on by

updating P = P + 1 until it is equal to N2. In each iteration, the interval Ωo is divided in
P sub-intervals {Ω1, ...., ΩP} and for each p-th sub-interval θ̄op is evaluated as the mean
value of the measurements {θoj}N2

j=1 belonging to Ωp, explicitly

θ̄op =
∑j∈Jp θoj

|Jp|
(17)

with Jp = {j ∈ {1, ..., N2} : θoj ∈ Ωp} and |Jp| the number of elements in Jp. Please note
that in the first iteration {θ̄op}P

p=1 contains only 2 elements and as the cycle goes on, the size
of this vector increases. To ensure that the suboptimal angular grid {θ̄op}P

p=1 still allows for
approximating the singular values of A, we consider the link between the samples of the
eigenfunctions vn evaluated in (ω(ki, θ̄op), γ(ki, θ̄op)), denoted with v̄P

n , and the samples in
the optimal grid (ωm, γl), denoted as vn. Such a link can be found by evaluating (15) at
ω = ω(ki, θ̄op) and γ = γ(ki, θ̄op)). The latter in matrix form becomes

v̄P
n = INTPvn (18)

where explicitly v̄P
n = {vnβ(i,p) = vn(ω(ki, θ̄op), γ(ki, θ̄op)}, INTP = {INTP

β(i,p),α(m,l) =

sinc[aν(ω(ki, θ̄op)− ωm)]sinc[bν(γ(ki, θ̄op)− γl)]} and vn = {vnα(m,l) = v(ωm, γl)}. It is
evident that to approximate the optimal grid, we must be able to reconstruct with a good
accuracy the vector vn from v̄P

n . In fact, only under this circumstance, the discrete equivalent
eigenvalue problem (13) can be derived from the samples v̄P

n . This means that the matrix
INTPmust be well-conditioned. Please note that the size of the latter is PN1 × N and its
mathematical properties depend on {θ̄op}P

p=1. If PN1 ≥ N, it is expected that INTP has
N singular values whose value depends on the distribution of {θ̄op}P

p=1. Accordingly, the
best angular positions are the minimal number of angles which maximize the N singular
value level of INTP and, hence, return a matrix INTP with the best conditioning.

A measure of the conditioning of a matrix is given by the Shannon Number defined as

SN(INTP) =
N

∑
v=1

σv(INTP)

σ1(INTP)
(19)

where σv(INTP) are the singular values of INTP sorted in descending order. Accordingly,
we select the {θ̄op}P

p=1 which maximize such a number with the minimum P.
Next, once {θ̄op}P

p=1 has been estimated, the same procedure is applied to the fre-

quency sampling to estimate {k̄q}Q
q=1. Again, in order to select the best frequencies, we

consider the Shannon Number of the interpolator INTQ that now is defined as INTQ =

{INTQ
β(q,p),α(m,l) = sinc[aν(ω(k̄q, θ̄op)− ωm)]sinc[bν(γ(k̄q, θ̄op)− γl)]} and whose dimen-

sion is PQ× N. By doing so, the discrete counterpart of the eigenvalue problem reported
in (2) is given by

σ2
n v̄n = BPQv̄n, (20)
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with BPQ = (INTQ)(BN)(INTQ)
−1

with dimension PQ × PQ and v̄n = {v̄nβ(q,p) =

v(k̄q, θ̄op)}.

5. Numerical Example

In this section, we numerically check the previous theoretical findings. Assume that
in (1) ID = [−5λmax, 5λmax]× [−5λmax, 5λmax], Ωo = [−π

3 , π
3 ]rad and Ωk = [k0, 2k0] with

k0 = 2π
λmax

and λmax = 1m the wavelength at minimum frequency.
We first verify if the optimal and suboptimal sampling schemes approximate the

eigenvalues of AA†. In Figure 3, the optimal sampling grid {kml , θoml}N
ml=1, corresponding

only to the points of the rectangular grid in the ω - γ domain belonging to Ω (green points),
is shown.
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a) b)

Figure 3. Sampling points obtained by collecting the field with uniform step equal to π
νa and π

νb with
ν = 1.05 in the variables ω(k, θo) and γ(k, θo). In panel (a), the points are shown in ω− γ domain,
while in panel (b) in k− θo domain. In particular, in panel (a) the black points are supported on a
rectangular domain, while the ones that belong to Ω are shown in green color. In panel (b) only the
N = 619 points in k− θo domain that correspond to the green ones are shown. The parameters are
ID = [−5λmax, 5λmax]× [−5λmax, 5λmax], Ωo = [−π

3 , π
3 ]rad and Ωk = [k0, 2k0] with k0 = 2π

λmax
and

λmax = 1m the wavelength at minimum frequency.

The optimal grid returns several points close to the NDF, equal to 619 in this case. As
expected, the points are arranged in a non-uniform and non-rectangular way in the θo − k
domain. This means that although the proposed optimal sampling scheme minimizes the
total number of data, the number of different frequencies N1 = 599 and of different angles
N2 = 320, corresponding to the 619 measurements, is rally very high.

To exploit the suboptimal approach, as the first step, a rectangular grid {ki}N1
i=1 ×

{θoj}N2
j=1 is built from the optimal grid {kml , θoml}N

ml=1 (see panel (a) of Figure 4). As
expected, the corresponding grid is much denser than the optimal one, but it is rectangular.
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Figure 4. Panel (a) shows the rectangular grid {ki}N1
i=1 × {θoj}N2

j=1 built from the optimal grid

{kml , θoml}N
ml=1 (see panel a) of Figure 4) with N1 = 599 and N2 = 320. The panels (b,c) refer

to outputs of the two optimization steps of angular positions and of the frequencies in the proposed
iterative suboptimal strategy, respectively. The procedure allows the estimation of the suboptimal
grid {k̄q}Q

q=1 × {θ̄op}P
p=1 with Q = 25 and P = 45. The parameters are the same of 3.

Next, the two procedures to optimize the angles and the frequency are run. The output
of the first procedure, the one concerning the optimization of the angles, is shown in panel
(b) of Figure 4. In particular, this first stage returns a rectangular gird {ki}N1

i=1 × {θ̄op}P
p=1,

with P = 45. The second stage, concerning the optimization of the frequencies is shown
in panel (c) of the same figure, where the final grid {k̄q}Q

q=1 × {θ̄op}P
p=1, with Q = 25 is

reported. As can be seen, although (as expected) the total number of data is increased
to PQ = 1125, the number of different angles and frequencies to be used is dramatically
reduced to only 45 and 25, respectively. Figure 5 shows the behaviors of SN(INTP) and
SN(INTQ) in terms of P and Q, which reach the maximum the first time at P = 45 and
Q = 25, respectively.
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Figure 5. The Shannon Number of INTP (panel a) and INTQ (panel b) in terms of P and Q. The
parameters are the same of Figure 3.

In panel (a) of Figure 6 the eigenvalues of BPQ, BN and AA† are shown. Please note
that the eigenvalues of AA† represents the benchmark against to compare the discrete
approximations coming from the sampling schemes. More in details, those eigenvalues
have been obtained by sampling the frequencies and the angles very densely so to obtain a
good approximation of the continuous operator.
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Figure 6. Eigenvalues of BPQ (blue lines), BN (red lines) and AA† (black lines). In panel (a),
the parameters are the same of Figure 3. In panel (b), ID = [−3λmax, 3λmax] × [−6λmax, 6λmax],
Ωo = [−π

2 , π
2 ]rad and Ωk = [k0, 3

2 k0], respectively.
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As can be seen, the eigenvalues returned by the two sampling schemes (the optimal
and the suboptimal one) practically overlap and very well approximate the more significant
eigenvalues of the continuous operator.

Panels (b) of Figure 6 refers to a different example, with ID = [−3λmax, 3λmax] ×
[−6λmax, 6λmax], Ωo = [−π

2 , π
2 ]rad and Ωk = [k0, 3

2 k0]. In Figure 7 shows the corresponding
optimal (panel a)) and suboptimal (panel b)). Additionally, in these cases, the same
conclusions as above can be drawn.
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Figure 7. Optimal (panel a) and suboptimal (panel b) sampling grid. The parameters are the same as
panel (b) of Figure 6. In this case, N = 241, while P = 61 and Q = 13.

Finally, we end this section by showing some reconstruction results. The reconstruc-
tions are achieved by inverting the scattering operator through its adjoint operator. This
approach is very common in the literature it is known as migration scheme [39,40]. A
complex white Gaussian noise is added to the field data. In particular, a signal to noise
ratio (SNR), defined as

SNR =
||E||
||N || , (21)

with || · || the norm and N the noise, of 20 dB is considered. Again, our benchmark is the
continuous case. Accordingly, A† is obtained by very densely sampling the frequencies
and the angles. Instead, when the optimal and suboptimal grids are considered, the data
are first interpolated on the above-mentioned dense grid and then A† is applied.

As a scattering target, dielectric square object 1m× 2m in size and centered at (0, 0)m
is considered. Figure 8 shows the corresponding reconstruction results: panel (a) refers to
the continuous case, in panel (b) and (c), the reconstructions are obtained by collecting the
field according to the two proposed sampling schemes, the optimal and suboptimal one,
respectively. The corresponding cuts along x and z axes, passing through the maximum
of the reconstruction at (0, 1), are reported in Figure 9. As expected, due to the adopted
linear inversion, only a qualitative reconstruction of the target is obtained. In fact, only
the scatterer’s “discontinuities” along the z axes are clearly distinguishable due to the
“high-pass” filtering introduced by the reconstruction algorithm, which is typical of the
considered measurement configuration according to [9,10]. However, what matters here is
that both the proposed sampling strategies allow the obtaining of reconstructions that are
practically the same as the one returned by inverting the continuously collected data.
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Figure 8. Normalized reconstruction of a 1 m × 2 m rectangular scatterer centered in (0, 0) m. The
scattering scenario is ID = [−3λmax, 3λmax]× [−3λmax, 3λmax], Ωo = [−π

3 , π
3 ]rad and Ωk = [k0, 3

2 k0].
In panel (a), the reconstruction is obtained by taking continuously the measurements, in panels (b,c)
measurements are collected in optimal and suboptimal grids, respectively. The red lines border the
actual scatterer shape. SNR = 20 dB.
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Figure 9. Cut views along x and z axis passing by (0, 1), i.e., where the maximum of the normalized
reconstructions reported in Figure 8 are located. SNR = 20 dB.

6. Conclusions

In this paper, a measurement collection problem has been addressed in the frame-
work of inverse scattering. In particular, an optimal sampling strategy for the case of
the field collected with a multi-static and multi-frequency configuration in far zone has
been proposed. The latter allows minimizing the number of both frequency and spatial
measurements by returning several data close to NDF. Unfortunately, such a strategy could
lead to a complicated measurement configuration which requires collecting the data at
different spatial positions for each frequency. To simplify the measurement configuration,
a suboptimal iterative sampling strategy is implemented which enforces the sampling
points to belong to a rectangular grid in the spatial frequency domain. As a result of this
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procedure, the overall data points (i.e., the couples angle-frequency) actually increases
but the number of different angles and frequencies reduce and lead to a measurement
configuration that is more practical to be implemented.

However, note that the optimal sampling grid could be exploited as starting point
of all iterative procedures which implement a sensor selection problem [17–19]. Finally,
although the results are peculiar for the considered configuration, both the approach can be
extended to all scattering configurations for example by also introducing the view diversity
and/or by collecting the data in near zone. In the latter case, the problem is a little bit more
challenging because it needs to cope with the spatially varying bandwidth of the scattered
field [13–15].

Author Contributions: Conceptualization, M.A.M. and R.S.; methodology, M.A.M., and R.S.; soft-
ware, M.A.M. and M.M.; validation, M.A.M., M.M. and G.L.; formal analysis, M.A.M. and R.S.; data
curation, M.A.M., and M.M.; writing—original draft preparation, M.A.M. and M.M.; supervision,
G.L. and R.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the Universitá della Campania Luigi Vanvitelli by
funding, through Programma V:ALERE 2020, the project Efficient Probe pOsitioning for Near-fIeld
Measurement technIques (EPONIMI) CUP: B66J20000680005.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Devaney, A.J. Mathematical Foundations of Imaging, Tomography and Wavefield Inversion; Cambridge University Press: Cambridge,

UK, 2012.
2. Pastorino, M. Stochastic optimization methods applied to microwave imaging: A review, IEEE Trans. Antennas Propag. 2007, 55,

538–548.
3. Chen, X.; Huang, K.-M.; Xu, X.-B. Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm

combined with FDTD method. Prog. Electromagn. Res. 2005, 53, 283–298.
4. Hajebi, M.; Tavakoli, A.; Hoorfar, A. Frequency domain inverse profiling of buried dielectric elliptical-cylindrical objects using

evolutionary programming. IEEE Geosci. Remote Sens. Lett. 2018, 15, 503–507.
5. Sallucci, M.; Poli, L.; Anselmi, N.; Massa, A. Multifrequency particle swarm optimization for enhanced multiresolution GPR

microwave imaging. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1305–1317.
6. Kamilov, U.S.; Liu, D.; Mansour, H.; Boufounos, P.T. A recursive born approach to nonlinear inverse scattering. IEEE Signal

Process. Lett. 2016, 23, 1052–1056.
7. Isernia, T.; Pascazio, V.; Pierri, R. On the local minima in a tomographic imaging technique. IEEE Trans. Geosci. Remote Sens. 2001,

39, 1596–1607.
8. Marks, D.L. A family of approximations spanning the Born and Rytov scattering series. Opt. Exp. 2006, 14, 8837–8847.
9. Persico, R. On the Role of Measurement Configuration in Contactless GPR Data Processing by Means of Linear Inverse Scattering.

IEEE Trans. Antennas Propag. 2006, 54, 2062–2071.
10. Persico, R.; Bernini, R.; Soldovieri, F. The role of the measurement configuration in inverse scattering from buried objects under

the born approximation. IEEE Trans. Antennas Propag. 2005, 53, 1875–1887.
11. Cheney, M.; Borden, B. Problems in synthetic-aperture radar imaging. Inverse Probl. 2009, 25, 123005.
12. Solimene, R.; Maisto, M.A.; Pierri, R. Role of diversity on the singular values of linear scattering operators: The case of strip

objects. J. Opt. Soc. Am. A 2013, 30, 2266–2272.
13. Maisto, M.A.; Pierri, R.; Solimene, R. Spatial Sampling in Monostatic Radar Imaging. IEEE Geosci. Remote Sens. Lett. 2020,

doi:10.1109/LGRS.2020.3028938.
14. Bucci, O.M.; Gennarelli, C.; Savarese, C. Representation of Electromagnetic Fields over Arbitrary Surfaces by a Finite and

Nonredundant Number of Samples. IEEE Trans. Antennas Propagat. 1998, 46, 351–359.
15. Maisto, M.A.; Pierri, R.; Solimene, R. Sensor Arrangement in Monostatic Subsurface Radar Imaging. IEEE Open J. Antennas Propag.

2021, 2, 3–13.
16. Reeves, S.J.; Heck, L.P. Selection of observations in signal reconstruction. IEEE Trans. Signal Process. 1995, 43, 788–791.
17. Joshi, S.; Boyd, S. Sensor selection via convex optimization. IEEE Trans. Signal Process. 2009, 57, 451–462.



Sensors 2021, 21, 4724 14 of 14

18. Ranieri, J.; Chebira, A.; Vetterli, M. Near-optimal sensor placement for linear inverse problems. IEEE Trans. Signal Process. 2014,
62, 1135–1146.

19. Jiang, C.; Soh, Y.; Li, H. Sensor placement by maximal projection on minimum eigenspace for linear inverse problems. IEEE Trans.
Signal Process. 2015, 64, 5595–5610.

20. Wang, J.; Yarovoy, A. Sampling design of synthetic volume arrays for three-dimensional microwave imaging. IEEE Trans. Comput.
Imaging 2018, 4, 648–660.

21. Capozzoli, A.; Curcio, C.; Liseno, A. Singular value optimization in inverse electromagnetic scattering. IEEE Antennas Wirel.
Propag. Lett. 2017, 16, 1094–1097.

22. Newsam, G.; Barakat, R. Essential dimension as a well-defined number of degrees of freedom of finite convolution operators
appearing in optics. J. Opt. Soc. Am. A 1985, 2, 2040–2045.

23. Piestun, R.; Miller, D.A.B. Electromagnetic degrees of freedom of an optical system. J. Opt. Soc. Am. A 2000, 17, 892–902.
24. Hille, E.; Tamarkin, J.D. On the characteristic values of linear integral equations. Acta Math. 1931, 57, 1–76.
25. Solimene, R.; Maisto, M.A.; Pierri, R. Information Content in Inverse Source with Symmetry and Support Priors. Prog. Electromagn.

Res. C 2018, 80, 39–54.
26. Maisto, M.A.; Solimene, R.; Pierri, R. Metric entropy in linear inverse scattering. Adv. Electromagn. 2016, 5, 46–52.
27. Solimene, R.; Maisto, M.A.; Pierri, R. Inverse Source in Near Field: The Case of Strip Current. J. Opt. Soc. Am. A 2018, 35, 755–763.
28. Solimene, R.; Maisto, M.A.; Pierrii, R. Inverse scattering in the presence of a reflecting plane. J. Opt. 2015, 18, 025603.
29. Bucci, O.M.; Franceschetti, G. On the degrees of freedom of scattered fields. IEEE Trans. Antennas Propag. 1989, 37, 918–926.
30. Sekehravani, E.A.; Leone, G.; Pierri, R. NDF of Scattered Fields for Strip Geometries. Electronics 2021, 10, 202.
31. Bertero, M. Linear inverse and ill-posed problems. Adv. Electron. Electron Phys. 1989, 75, 539–545.
32. Maisto, M.A.; Solimene, R.; Pierri, R. Resolution limits in inverse source problem for strip currents not in Fresnel zone. J. Opt. Soc.

Am. A 2019, 36, 826–833.
33. Jagerman, D. ε-entropy and approximation of bandlimited functions. SIAM J. Appl. Math. 1969, 17, 362–377.
34. Khare, K.; George, N. Sampling-theory approach to eigenwavefronts of imaging systems. JOSA A 2005, 22, 434–438.
35. Jerri, A. The Shannon sampling theorem—Its various extensions and applications: A tutorial review. Proc. IEEE 1977, 65,

1565–1596.
36. Maisto, M.A.; Solimene, R.; Pierri, R. Sampling approach for singular system computation of a radiation operator J. Opt. Soc. Am.

A 2019, 36, 353–361.
37. Maisto, M.A.; Pierri, R.; Solimene, R. Near-Field Warping Sampling Scheme for Broad-Side Antenna Characterization. Electronics

2020, 9, 1047.
38. Maisto, M.A.; Leone, G.; Brancaccio, A.; Solimene, R. Efficient Planar Near-Field Measurements for Radiation Pattern Evaluation

by a Warping Strategy. IEEE Access 2021, 9, 62255–62265.
39. Gilmore, G.; Jeffry, I.; Vetri, J.L. Derivation and comparison of SAR and frequency-wavenumber migration within a common

inverse scalar wave problem formulation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1454–1461.
40. Zhuge, X.; Yarovoy, A.G.; Savelyev, T.; Ligthart, L. Modified Kirchhoff mi- gration for UWB MIMO array-based radar imaging.

IEEE Trans. Geosci. Remote Sens. 2010, 48, 26922703.


	Introduction
	Mathematical Formulation
	Optimal Sampling Strategy
	Suboptimal Sampling Strategy
	Numerical Example
	Conclusions
	References

