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Abstract: The heating, ventilation, and air conditioning (HVAC) system serving the test room
of the SENS i-Lab of the Department of Architecture and Industrial Design of the University of
Campania Luigi Vanvitelli (Aversa, south of Italy) has been experimentally investigated through a
series of tests performed during both summer and winter under both normal and faulty scenarios.
In particular, five distinct typical faults have been artificially implemented in the HVAC system
and analyzed during transient and steady-state operation. An optimal artificial neural network-
based system model has been created in the MATLAB platform and verified by contrasting the
experimental data with the predictions of twenty-two different neural network architectures. The
selected artificial neural network architecture has been coupled with a dynamic simulation model
developed by using the TRaNsient SYStems (TRNSYS) software platform with the main aims of
(i) making available an experimental dataset characterized by labeled normal and faulty data covering
a wide range of operating and climatic conditions; (ii) providing an accurate simulation tool able to
generate operation data for assisting further research in fault detection and diagnosis of HVAC units;
and (iii) evaluating the impact of selected faults on occupant indoor thermo-hygrometric comfort,
temporal trends of key operating system parameters, and electric energy consumptions.

Keywords: HVAC system; air-handling unit; experimental performance; artificial neural network;
simulation model; faults’ impact assessment

1. Introduction

The building sector contributes to approximately 40% of overall energy demand in
industrialized countries, with Heating, Ventilation, and Air Conditioning (HVAC) systems
accounting for a large part of this energy consumption [1,2]. Several scientific publications
have discussed the application of efficient/innovative technologies [3] and/or optimal
control strategies [4] with the aim of reducing the energy demand and related greenhouse
gas emissions of HVAC units. However, HVAC systems could be exposed to various
abnormal faults during operation as a consequence of a failure of components, lack of
correct maintenance, or wrong installation. Each component of HVAC systems can be
eventually altered by a fault, where a fault is an anomalous state of the system, i.e., an
undesired divergence of at least one of the properties of the HVAC unit with respect
to healthy/standard conditions [5]. The faults can involve sensors, devices, equipment,
and controllers [5]. A study conducted on more than 55,000 Air Handling Units (AHUs)
showed that up to 90% runs with one or multiple faults [6]. Lin et al. [7] underlined that an
effective detection of faults in HVAC units could save from 15% to 30% of overall energy
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required by buildings. In addition, Au-Yong et al. [8] highlighted a relevant impact of poor
maintenance of HVAC systems on indoor thermo-hygrometric comfort, identifying several
maintenance factors significantly correlated with occupants’ satisfaction. This means that
adopting a proper maintenance strategy is fundamental. Companies generally adopt a
reactive maintenance or a preventive maintenance. Repairs are carried out only in the case
of failures when a reactive maintenance is adopted; this approach could be expensive and
may cause safety issues. In the case of a preventive maintenance, systems are examined
and maintained at given periods (whatever their state is); however, this approach requires
identifying a proper maintenance schedule in order to not waste component life that is still
profitable as well as avoid safety problems.

1.1. Automated Fault Detection and Diagnosis Methods for HVAC Systems

Critical points of reactive and preventive maintenance approaches underline how
“predicting” the faults of HVAC units could be essential. This task could be performed
by means of the so-called Automated Fault Detection and Diagnosis (AFDD), which is
an automated process of detecting faults and diagnosing the type of problem and/or its
location [5,7,9]. It could be adopted to take advantage of potentialities associated to building
energy management systems in quasi-real-time by comparing expected behavior with
actual performance over a predefined period. AFDD technologies can provide numerous
benefits, such as improved operational efficiency, energy savings, reductions of utility costs,
as well as reduced equipment downtime [5,7,9]. Although currently underutilized, AFDD
products represent one of the most active research areas as well as a very fast-growing
market section in the sector of building analytics technologies [10]. The methodologies
adopted for carrying out AFDD analyses can be categorized as (i) data-driven-based,
(ii) quantitative model-based, and (iii) qualitative model-based [5]. The first category needs
pre-labeled operational data acquired from the system under investigation in order to
the develop AFDD models; data-driven AFDD approaches achieved promising results
thanks to their applicability even in the case of simulation models are challenging to be
developed [5,10]. The quantitative model-based approach relates to the methods involving
simulation models physically describing the system at different levels of detail. Finally, the
qualitative models are based on the knowledge of the system deriving from area expertise.

Nowadays, buildings are equipped with numerous sensors used for their energy
management. In addition, innovative devices are allowed to connect occupancy sensors,
power meters, and appliances that collect data in order to derive information with the
aim of taking data-driven actions. In this context, the integration of artificial intelligence
technologies (that highlighted fast advancements in last years), including both unsuper-
vised and supervised algorithms [5,11], is particularly encouraging due to the fact that
they could allow to improve self-diagnosis capabilities and optimize energy management
systems. In particular, an Artificial Neural Network (ANN) represents a kind of artificial
intelligence that simulates the operation of the human brain; it can learn from training data
and replicate the trends of data time series, approximating nonlinear relationships between
inputs and outputs of advanced energy systems without involving explicit mathematical
representations [11]. The data-driven approach integrating artificial intelligence [5,12,13],
with respect to the other methods, allows (i) achieving higher accuracy of fault detection
and diagnosis; (ii) learning patterns from field data without involving physical models as
well as needing an a priori knowledge of connections among faults and associated symp-
toms; and (iii) performing AFDD analyses considering a restricted number of variables
and, therefore, limiting the number of sensors. In more detail, supervised approaches
use the domain knowledge with the aim of developing a prediction tool, while the un-
supervised methods get out concealed knowledge without a predefined goal [5,12,13].
Supervised models are mainly based on the implementation of residual analyses to per-
form an AFDD process [5,14,15], where a residual is the difference between the predicted
and the experimental values of a specific parameter.
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Several studies focusing on supervised techniques for AFDD of HVAC systems are re-
ported in the scientific literature. Piscitelli et al. [5] suggested an innovative AFDD method
based on both unsupervised and supervised data-driven approaches by considering the
operational data of an AHU recorded during steady-state and transient periods. Dehestani
et al. [16] suggested a methodology based on a multi-class support vector machine with
the aim of identifying faults related to air dampers and fans of AHUs. A Bayesian network
was considered in [17,18] for diagnosing faults associated to air dampers, return fan failure,
and cooling coil valve; the network exploited as inputs the residuals derived from a set of
statistical models and checking rules. Mulumba et al. [19] suggested a method to predict
the occurrence of faults related to return air fan, air dampers, and cooling coil valve by
means of a support vector machine combined with an autoregressive model. Yan et al. [20]
presented a mixing of two supervised methods to detect blockage of coil valves and air
dampers, return air fan failure, and duct leakage; a classification tree has been developed
using as inputs both field data and residuals derived from a regression model, while the
labels of different faults have been assumed as outputs; the method described in [20] can
be helpful in performing AFDD analyses without considering transient operation of HVAC
systems. McHugh et al. [21] compared several classification models for AFDD and the
classification tree model was identified as the best option for chilled water or steam leakage.

1.2. Novelty and Structure of the Paper

The literature review performed in the previous subsection demonstrates how the
scientific community is engaged in the research area of artificial intelligence techniques-
based AFDD for HVAC units. According to the authors of [1,7,22], even if AFDD is an
effective approach to guarantee an efficient operation of HVAC systems and associated
technology is growing, it is still in the initial stage of utilization. This means that additional
investigations are still mandatory in order to address several research gaps.

First, the architecture of sensors in HVAC units is usually not designed with AFDD in
mind, and therefore some important variables are generally not measured causing a lack of
labeled data. Moreover, measurements under faulty conditions are even more challenging
to be obtained due to the uncommon faults’ occurrence as well as the inconvenience of
implementing faults into complex and expensive devices with the purpose of collecting
data [23]. In addition, relatively few studies give detailed information on how faults are
empirically introduced into an existing HVAC system [5,24]; almost all the works only
take into account one HVAC operating mode under different weather scenarios [5,24]. Lin
et al. [7] highlighted that there is a need of standard datasets for assessing the accuracy
of AFDD methods and future AFDD studies should focus on the expansion of databases
as well as their provision for public use. Granderson et al. [25] also underlined that it
is unusual to find datasets characterized by labeled data clearly indicating whether they
represent faulty, healthy, or simply unusual operating states. Finally, Casillas et al. [26]
indicated that one of the most important challenges of researches focusing on AFDD meth-
ods is represented by the insufficiency of shared databases to benchmark the performance
of algorithms with the aim of assessing improvements and prioritizing future investments
in these methods. With reference to this point, it should be highlighted that most of AFDD
studies are based on the ASHRAE RP-1312 data set [24] (dated 2011) consisting of measure-
ments recorded every minute from an experimental set-up comprising two AHUs; recently,
Piscitelli et al. [5], Yun et al. [27], as well as Fan et al. [28] proposed novel methodologies
for performing AFDD analyses of AHUs based on the ASHRAE RP-1312 data set [24].
Therefore, as also suggested by Hu et al. [23], additional researches are required in order to
obtain more experimental data under both normal and faulty operation considering the
occurrence of a number of different faults upon varying the boundary conditions.

One more research gap associated with the application of AFDD analyses is related
to the fact that not many studies quantitatively examine how various faults and fault
severities impact energy consumption, user comfort, maintenance cost, and equipment
life cycle [6]. This point represents a demanding task taking into account that (i) several
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faults could have comparable symptoms and (ii) faults of AHUs could interact each other
and, therefore, it could be challenging to isolate multiple faults of AHUs [1,24]. According
to the authors of [7], additional works better characterizing faults’ impact based on field
measurements could prove valuable in addressing future developments and implementa-
tion attempts of AFDD techniques. Piscitelli et al. [5] also indicated that the majority of
AFDD applications are used for detecting and/or diagnosing faults of HVAC units during
steady-state operation, and therefore they could not be effectively used with reference to
transient periods because they are not fully able to automatically determine the system
operation mode and prevent false alarms. In this context, accurate simulation models
of HVAC units can provide significant benefits for performing AFDD analyses taking
into account that they could help in quantifying faults’ impact on both energy demand
and occupant comfort and, therefore, supporting corrective actions which can facilitate
more reliable commissioning decisions, more efficient system operation, improved indoor
conditions, and prolonged equipment service life [29]. However, according to the authors
of [30,31], most existing simulation models of HVAC systems assume normal/healthy con-
ditions without any operational faults and do not capture the significant impact of faults
on energy consumption and indoor comfort conditions. In addition, Zhang and Hong [31]
highlighted that modeling activities of HVAC systems operating under faulty conditions
are still insufficient mostly due to the fact that several fault-related researches focus on
single subcomponent operation rather than whole system performance and, consequently,
they cannot predict the comprehensive faults’ impact.

One additional knowledge gap to be underlined relates to the fact that models of
HVAC units developed for AFDD purposes should be fully validated via extensive com-
parisons with experimental data under both faulty and normal conditions as well as
different boundary scenarios. However, comparative analyses against field measurements
are usually not performed for validation purposes mainly because, as mentioned above, ac-
curate experimental datasets, covering a wide range of operating conditions and including
faulty data, are not generally available. For example, Zhang and Hong [31] introduced a
methodology for modeling operational faults of HVAC units by using a comprehensive
whole-building performance simulation program; impacts of faults with reference to a
small-size office building have been investigated in [31], but a validation process against
experimental data has not been carried out; similarly, Basarkar et al. [30] assessed the
effects of four typical faults on the HVAC unit serving a commercial reference building by
means of a simulation program; the results of comparisons between predictions and field
measures have not been reported in the paper in order to check the models’ accuracy.

In this paper, the operation of the HVAC system assisting the integrated test room of
the SENS i-Lab of the Department of Architecture and Industrial Design of the University
of Campania Luigi Vanvitelli (located in Aversa, south of Italy) has been experimentally
characterized on the basis of a series of tests performed during both summer and winter
under both normal and faulty operating conditions (transient and non-transient). In
particular, five different typical faults (affecting the supply/return air fans, the valve
supplying the heating coil, the valve supplying the cooling coil, and the valve supplying
the steam humidifier) have been artificially implemented in the HVAC system and analyzed
during transient and steady-state operation. An optimal artificial neural network-based
system model has been identified and verified by contrasting the experimental data with the
predictions of twenty-two different neural network architectures developed in the MATLAB
environment [32]; the selected artificial neural network has been coupled with a dynamic
simulation model developed using the TRaNsient SYStems (TRNSYS) software platform
(version 17) [33]. The effect of selected faults on occupant indoor comfort, temporal trends
of key operating system parameters, as well as electric energy consumptions has been
assessed.

This paper addresses several research gaps highlighted by the literature review fo-
cusing on AFDD applications to HVAC systems. In fact, the dataset described in this
article includes fault free and faulty operational data of a typical HVAC unit, coupled with
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ground-truth information and the indication of absence or presence of faults. In addition,
this dataset covers a wide range of operating scenarios (both transient and steady-state) and
weather conditions while encompassing five typical fault types. Moreover, a whole-system
simulation model using both MATLAB and TRSNSYS environments has been created and
extensively validated by contrasting predicted data with measurements; then, it has been
used to discover a number of patterns related to the faulty system operation and assess the
impacts of selected typical faults. Both the labeled measured data as well as the developed
simulation models will be made available on a public data repository allowing access,
consultation, and utilization to readers and organizations for institutional and research
purposes.

The paper consists of six main sections. In Section 2, the experimental setup is detailed.
Section 3 describes the investigated faults as well as the experimental results of both fault
free and faulty tests. A detailed outline of the simulation model is reported in Section 4.
An assessment of faults’ impact is performed and discussed in Section 5. Finally, the
conclusions and future research steps are indicated in Section 6.

2. Description of the Experimental Setup

The SENS i-Lab is a multi-sensorial laboratory of the Department of Architecture
and Industrial Design of the University of Campania Luigi Vanvitelli (Aversa, south-
ern Italy, longitude: 14◦12′26′′ E, latitude: 40◦58′21′′ N). The SENS i-Lab consists of a
human-centered, multi-physical, and multi-purpose test room served by an HVAC system,
including a single duct dual-fan constant air volume (CAV) air handling unit, controlling
indoor air temperature, indoor air relative humidity, indoor air velocity, and indoor air
quality. The test room has a floor area of 16.0 m2 (its height is 3.6 m) and four vertical walls
(without windows and one door); both the ceiling and floor are horizontal. It is installed
inside the Department, so that its indoor conditions are not directly affected by external
climatic conditions. Table A1 in Appendix A describes the material, thickness, thermal
conductivity, conductive thermal resistance of each layer composing the walls, the ceiling,
and the floor of the integrated test room.

A CAV AHU is commonly used in buildings; it is more common in existing old
buildings or small new buildings, while in new medium/large buildings variable air
volume (VAV) AHUs are the common choice of installation. In the case of CAV AHUs,
volumetric flow rate of supply air is constant, while its supply temperature and relative
humidity are varying. With respect to VAV AHUs, CAV AHUs are easier, cheaper, and
quicker to install, but they are less efficient and with higher lifetime running costs. The
AHU of the SENS i-Lab consists of these main functional subcomponents: return air fan
(RAF); supply air fan (SAF); pre-heating coil (PreHC); post-heating coil (PostHC); cooling
coil (CC); steam humidifier (HUM); static cross-flow heat recovery system (HRS); vapor
compression air-to-water single-stage electric refrigerating system (RS) connected with
the cooling coil; vapor-compression air-to-water single-stage electric heat pump (HP)
connected with the pre-heating coil and the post-heating coil; valves (VPreHC, VPostHC,
VCC, VHUM) controlling the flow rate of heat carrier fluid entering, respectively, the pre-
heating coil, the post-heating coil, the cooling coil and the steam humidifier; return air
damper (DRA); outside air damper (DOA); exhaust air damper (DEA); damper of the
HRS (DHRS); return air filter (RAFil); outside air filter (OAFil); supply air filter (SAFil).
Two 0.08 × 0.18 cm2 air grilles are mounted on the south-oriented wall at floor level and
two 0.08 × 0.18 cm2 air grilles are mounted on the north-oriented wall at floor level with
the aim of extracting air from indoor space to be moved into the AHU; a 0.60 × 0.60 cm2

swirl diffuser acting as supply air grille is mounted on the ceiling of the test room. Figure 1
reports the scheme of the AHU together with its main components.



Energies 2021, 14, 5362 6 of 41

Energies 2021, 14, 5362 6 of 42 
 

 

grille is mounted on the ceiling of the test room. Figure 1 reports the scheme of the AHU 
together with its main components. 

 
Figure 1. Air handling unit scheme. 

Figure A1 of Appendix A shows the floor plan of the test room including the AHU, 
together with the refrigerating system (RS), the heat pump (HP), as well as the return and 
supply air ducts. Table 1 indicates the characteristics of the functional components of the 
HVAC serving the SENS i-Lab. The system fulfills the requirements prescribed by the 
Ecodesign Directive 1253/2014 [34] introduced by the European Union in order to support 
the diffusion of energy efficient AHUs. The HVAC unit is equipped with a number of 
sensors to observe and register the key operating system parameters. The measuring 
range as well as the accuracy of the sensors are showed in Table 2. 

Table 1. Main AHU components’ characteristics. 

Supply air fan (SAF)  
Maximum number of revolutions per minute (rpm) 3640 

Nominal velocity of supply air fan (%) 50 

Return air fan (RAF)  Maximum number of revolutions per minute (rpm) 3080 
Nominal velocity of return air fan (%) 50 

Cross flow heat recovery system (HRS) 
Nominal recovery capacity (kW) 3.1 

Nominal efficiency (%) 74.7 
Nominal pressure drops on external/exhaust air side (kPa) 0.047/0.048 

Return air filter (RAFil) and outside air 
filter (OAFil)  

Type/Efficiency class Fluted/G4 

Supply air filter (SAFil) Type/Efficiency class Rigid pocket/G4 

Return air duct (RAD) and supply air 
duct (SAD) 

Diameter (m) 0.25 
Supply/Return length (m) 9.8/16.8 

Thermal resistance of insulating material (m2K/W) 0.25 

Pre-heating coil (PreHC) 
Nominal heating capacity (kW) 4.1 

Nominal air/fluid volumetric flow rate (m3/h) 600/0.710 
Nominal air/fluid pressure drops (kPa) 0.00321/12.43 

Colling coil (CC) Nominal cooling capacity (kW) 5.0 

Figure 1. Air handling unit scheme.

Figure A1 of Appendix A shows the floor plan of the test room including the AHU,
together with the refrigerating system (RS), the heat pump (HP), as well as the return and
supply air ducts. Table 1 indicates the characteristics of the functional components of the
HVAC serving the SENS i-Lab. The system fulfills the requirements prescribed by the
Ecodesign Directive 1253/2014 [34] introduced by the European Union in order to support
the diffusion of energy efficient AHUs. The HVAC unit is equipped with a number of
sensors to observe and register the key operating system parameters. The measuring range
as well as the accuracy of the sensors are showed in Table 2.

The AHU is operated according to a specific control logic. In particular, the following
parameters are manually set (and eventually modified during the test) by the end users:
(i) the desired targets of both indoor relative humidity (RHSP,Room) and indoor air temper-
ature (TSP,Room) to be reached and maintained into the test room; (ii) the deadband DBT
for TSP,Room and the deadband DBRH for RHSP,Room; (iii) air flow rate of both the supply
air fan (OLSAF) and the return air fan (OLRAF); (iv) opening percentages of the outside air
damper (OPDOA), the return air damper (OPDRA), and the exhaust air damper (OPDEA);
and (v) activation of the heat recovery system damper (OPDHRS). Flow rate of air moved by
the supply air fan can range between 0 (OLSAF = 0%) and 1080 m3/h (OLSAF = 100%), while
flow rate of air moved by the return air fan is between 0 (OLRAF = 0%) and 1460 m3/h
(OLRAF = 100%); the maximum electric consumption of the SAF and RAF are, respectively,
1.22 kW and 0.48 kW. The parameter OPDHRS can be fixed at 100% (no heat recovery) or
0% (heat recovery takes place). The variation range of the parameters OPDRA, OPDOA, and
OPDEA is 0 ÷ 100% (100% corresponds to the dampers fully open). Once the previous pa-
rameters are manually set by the end-users, opening percentages of the valves (OPV_PreHC,
OPV_PostHC, OPV_CC and OPV_HUM) are automatically managed in the range 0 ÷ 100% by
proportional-integral-derivative (PID) controllers in order to achieve the indoor desired
targets. Opening percentages of the valves are continuously regulated between 0% and
100% as a function of differences between the targets of air temperature and relative hu-
midity into the test room and their current values. In more detail, volumetric flow rate of
fluid streaming inside the coils can be modulated between 0 and 0.860 m3/h, while flow
rate of steam mass of the steam humidifier can be varied from 0 up to 5 kg/h.
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Table 1. Main AHU components’ characteristics.

Supply air fan (SAF) Maximum number of revolutions per minute (rpm) 3640
Nominal velocity of supply air fan (%) 50

Return air fan (RAF)
Maximum number of revolutions per minute (rpm) 3080

Nominal velocity of return air fan (%) 50

Cross flow heat recovery system
(HRS)

Nominal recovery capacity (kW) 3.1
Nominal efficiency (%) 74.7

Nominal pressure drops on external/exhaust air side (kPa) 0.047/0.048

Return air filter (RAFil) and outside
air filter (OAFil) Type/Efficiency class Fluted/G4

Supply air filter (SAFil) Type/Efficiency class Rigid pocket/G4

Return air duct (RAD) and supply air
duct (SAD)

Diameter (m) 0.25
Supply/Return length (m) 9.8/16.8

Thermal resistance of insulating material (m2K/W) 0.25

Pre-heating coil (PreHC)
Nominal heating capacity (kW) 4.1

Nominal air/fluid volumetric flow rate (m3/h) 600/0.710
Nominal air/fluid pressure drops (kPa) 0.00321/12.43

Colling coil (CC)
Nominal cooling capacity (kW) 5.0

Nominal air/fluid volumetric flow rate (m3/h) 600/0.860
Nominal air/fluid pressure drops (kPa) 0.0178/13.56

Steam humidifier (HUM) [35]
Nominal steam capacity (kg/h) 5.0

Nominal power (kW) 3.7

Post-heating coil (PostHC)
Nominal heating capacity (kW) 5.0

Nominal air/fluid volumetric flow rate (m3/h) 600/0.860
Nominal air/fluid pressure drops (kPa) 0.0497/20.35

Heat Pump (HP) [36]
Nominal capacity (kW) 14.0

Nominal input power (kW) 4.75
Nominal heat carrier fluid volumetric flow rate (m3/h) 2.41

Refrigerating System (RS) [36]
Nominal capacity (kW) 13.4

Nominal input power (kW) 4.48
Nominal heat carrier fluid volumetric flow rate (m3/h) 2.31

Table 2. Measuring range and the accuracy of the AHU sensors.

Sensor Model Monitored Parameter Measuring Range Accuracy

Siemens QFM2160 [37]
Return air temperature (TRA) 0 ÷ 50 ◦C ±0.8 ◦C

Return air relative humidity (RHRA) 0 ÷ 100% ±3%

Siemens QFM2160 [37]
Supply air temperature (TSA) 0 ÷ 50 ◦C ±0.8 ◦C

Supply air relative humidity (RHSA) 0 ÷ 100% ±3%

Siemens QAM2161.040 [38] Outside air temperature (TOA) −50 ÷ 50 ◦C ±0.75 ◦C

Siemens QAM2161.040 [38] Cooling coil outlet air temperature (TA,out,CC) −50 ÷ 50 ◦C ±0.75 ◦C

TSI 7575, 982 IAQ [39]
Temperature of air around the test room (TBEA) −10 ÷ 60 ◦C ±0.50 ◦C

Relative humidity of air around the test room (RHBEA) 5 ÷ 95% ±3%

Table 3 reports the main criteria for activating and deactivating the main functional
subsystems of the AHU serving the test room. The pre-heating coil is not included in the
table because this subsystem has been kept deactivated during the entire duration of all
experimental tests. The post-heating coil is activated when return air temperature becomes
not larger than the temperature difference (TSP,Room − DBT), while it is deactivated in the
case of TRA assumes a value not lower than the temperature (TSP,Room + DBT). The cooling
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coil is activated when return air temperature becomes not lower than the temperature
(TSP,Room + DBT), while it is deactivated in the case of TRA assumes a value not larger
than the temperature difference (TSP,Room − DBT). The steam humidifier is activated when
return air relative humidity becomes not larger than the air relative humidity difference
(RHSP,Room − DBRH), while it is deactivated in the case of RHRA assumes a value not lower
than the air relative humidity (RHSP,Room + DBRH). The heat pump is activated when
temperature into the hot tank THT is lower than 44 ◦C, while it is deactivated in the case
of THT assumes a value not lower than 46 ◦C. The refrigerating device is activated when
the temperature into the cold tank TCT is larger than 8 ◦C, while it is deactivated in the
case that TCT assumes a value not larger than 6 ◦C. The signals managing the opening
percentages of the valves (OPV_PreHC, OPV_PostHC, OPV_CC, and OPV_HUM) are generated
by PID controllers. As an alternative to the automatic operation based on PID controllers,
the opening percentages of the valves (OPV_PreHC, OPV_PostHC, OPV_CC, and OPV_HUM)
can be also forced by the end-users; therefore, the end user is allowed to force component
operation/parameters based on specific research purposes.

Table 3. Activation criteria of the AHU’s components.

Component of AHU ON OFF

Steam humidifier (HUM) RHRA ≤ (RHSP,Room − DBRH) RHRA ≥
(RHSP,Room + DBRH)

Cooling coil (CC)
TRA ≥ (TSP,Room + DBT)

OR
RHRA ≥ (RHSP,Room + DBRH)

TRA ≤ (TSP,Room − DBT)
AND

RHRA ≤ (RHSP,Room − DBRH)

Post-heating coil (PostHC) TRA ≤ (TSP,Room − DBT) TRA ≥ (TSP,Room + DBT)

Heat Pump (HP) [36] THT < 44 ◦C THT ≥ 46 ◦C

Refrigerating System (RS) [36] TCT > 8 ◦C TCT ≤ 6 ◦C

However, alternatively, the end users can also manually force (at the beginning or
during the test) the opening percentages of the valves for research purposes (instead of
operating according to the automatic control logic).

3. Experimental Tests

A set of 18 fault-free and faulty daily experimental tests has been performed in
order to examine the HVAC system operation during transient and steady-state operation
under both winter and summer conditions. Tables 4 and 5 describe the operating of the
experimental tests under summer and winter conditions, respectively.

Table 4. Operating conditions of the experimental tests under fault free (tests 1–4) and faulty operation (tests 5–9) during
summer.

Test n. TSP,Room
(◦C)

RHSP,Room
(%) TOA (◦C) OLRAF

(%) OLSAF (%) OPV_PostHC
(%)

OPV_CC
(%)

OPV_HUM
(%)

Date
(dd/mm/yyyy)

1 26 50 20.6 ÷
26.7 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 29/06/2020

2 26 50 29.1 ÷
35.2 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 28/07/2020

3 26 50 25.3 ÷
32.0 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 23/07/2020

4 26 50 28.6 ÷
35.3 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 21/07/2020

5 (fault1) 26 50 30.4 ÷
34.9 50 20 0 ÷ 100 0 ÷ 100 0 ÷ 100 31/07/2020

6 (fault2) 26 50 32.1 ÷
38.8 20 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 03/08/2020

7 (fault3) 26 50 33.8 ÷
38.4 50 50 0 0 ÷ 100 0 ÷ 100 16/09/2020

8 (fault4) 26 50 29.4 ÷
35.8 50 50 0 ÷ 100 0 0 ÷ 100 16/09/2020

9 (fault5) 26 50 28.7 ÷
38.2 50 50 0 ÷ 100 0 ÷ 100 0 18/09/2020
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Table 5. Operating conditions of the experimental tests under fault free (tests 10–13) and faulty operation (test 14–18) during
winter.

Test n. TSP,Room
(◦C)

RHSP,Room
(%) TOA (◦C) OLRAF

(%)
OLSAF

(%)
OPV_PostHC

(%)
OPV_CC

(%)
OPV_HUM

(%)
Date

(dd/mm/yyyy)

10 20 50 10.3 ÷ 15.0 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 23/12/2020
11 20 50 13.2 ÷ 15.4 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 28/12/2020
12 20 50 12.7 ÷ 18.6 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 29/12/2020
13 20 50 8.0 ÷ 13.5 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 05/01/2021

14 (fault1) 20 50 12.3 ÷ 20.0 50 20 0 ÷ 100 0 ÷ 100 0 ÷ 100 12/01/2021
15 (fault2) 20 50 5.6 ÷ 12.2 20 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 14/01/2021
16 (fault3) 20 50 10.5 ÷ 15.9 50 50 0 0 ÷ 100 0 ÷ 100 28/01/2021
17 (fault4) 20 50 7.8 ÷ 16.8 50 50 0 ÷ 100 0 0 ÷ 100 15/02/2021
18 (fault5) 20 50 9.2 ÷ 13.3 50 50 0 ÷ 100 0 ÷ 100 0 12/02/2021

During all the tests, a number of system parameters have been kept constant: DBT = 1 ◦C,
DBRH = 5%, OPDRA = 100%, OPDOA = 20%, OPDEA = 20%, and OPDHRS = 100. In more
detail, 8 tests have been performed under fault free conditions (tests n. 1, 2, 3, 4 in Table 4
carried out during summer and tests n. 10, 11, 12, 13 in Table 5 carried out during winter).
The remaining 10 tests have been carried out while artificially introducing specific faults
(tests n. 5, 6, 7, 8, 9 in Table 4 carried out during summer and tests n. 14, 15, 16, 17, 18 in
Table 5 carried out during winter). The experiments have been performed by measuring
every minute all the parameters indicated in Table 2. In this study, the recording time step
of measured data has been defined according to the experimental approaches adopted
in similar works available in the scientific literature. For example, the ASHRAE RP-1312
data set [24] developed for AFDD purposes consists of experimental data recorded every
minute from a facility comprising two AHUs; recently, Piscitelli et al. [5], Yun et al. [27],
as well as Fan et al. [28] proposed novel methodologies for performing AFDD analyses of
AHUs based on this ASHRAE RP-1312 database [24]; Cheng et al. [40] developed a new
AFDD method for AHUs using experimental data measured every minute. Therefore, a
measurement time step of one minute could be reasonably assumed as acceptable in order
to take into account the response time of HVAC components.

Only during the faulty tests, the operation of specific AHU components has been
forced to assure user-specified positions in order to artificially simulate the following
5 specific typical faults (named fault 1, 2, 3, 4, 5):

• Fault 1 has been implemented during both the tests n. 5 and n. 14, i.e., the velocity of
the supply air fan has been kept at 20% (instead of the nominal value of 50%);

• Fault 2 has been implemented during both the tests n. 6 and n. 15, i.e., the velocity of
the return air fan has been kept at 20% (instead of the nominal value of 50%);

• Fault 3 has been implemented during both the tests n. 7 and 16, i.e., the valve managing
the flow rate entering the post-heating coil has always been kept closed (instead of
allowing its normal operation with an opening percentage in the range 0 ÷ 100%
according to the AHU automatic control logic);

• Fault 4 has been implemented during both the tests n. 8 and n. 17, i.e., the valve
managing the flow rate entering the cooling coil has always been kept closed (instead
of allowing its normal operation with an opening percentage in the range 0 ÷ 100%
according to the AHU automatic control logic);

• Fault 5 has been implemented during both the tests n. 9 and n. 18, i.e., opening
percentage of the valve managing the flow rate entering the steam humidifier has
always been kept closed (instead of allowing its normal operation with an opening
percentage in the range 0 ÷ 100% according to the AHU automatic control logic).

In this study, the above-mentioned faults have been introduced at the beginning of the
faulty tests and maintained during the entire duration of the experiments (what happens
in the case of the faults are shorter has not been investigated).

During the tests n. 1–4 and n. 10–13 (fault free tests), the AHU’s components have
been operated without any artificial faults.
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In both Tables 4 and 5, the parameters characterizing the corresponding faults have
been highlighted in red.

Figures 2a–d and 3a–e highlight the experimental trends of return air temperature
TRA, supply air temperature TSA, outside air temperature TOA, air temperature around the
test room TBEA, return air relative humidity RHRA, supply air relative humidity RHSA, and
air relative humidity around the test room RHBEA recorded during the fault free and faulty
tests, respectively, performed under summer conditions (detailed in Table 4).
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Figure 2. Experimental data measured during the fault free tests under summer conditions: test n. 1 (a), test n. 2 (b),
test n. 3 (c), and test n. 4 (d).

Energies 2021, 14, 5362 10 of 42 
 

 

In this study, the above-mentioned faults have been introduced at the beginning of 
the faulty tests and maintained during the entire duration of the experiments (what hap-
pens in the case of the faults are shorter has not been investigated).  

During the tests n. 1–4 and n. 10–13 (fault free tests), the AHU’s components have 
been operated without any artificial faults.  

In both Tables 4 and 5, the parameters characterizing the corresponding faults have 
been highlighted in red. 

Figures 2a–d and 3a–e highlight the experimental trends of return air temperature 
TRA, supply air temperature TSA, outside air temperature TOA, air temperature around the 
test room TBEA, return air relative humidity RHRA, supply air relative humidity RHSA, and 
air relative humidity around the test room RHBEA recorded during the fault free and faulty 
tests, respectively, performed under summer conditions (detailed in Table 4). 

  

  

Figure 2. Experimental data measured during the fault free tests under summer conditions: test n. 1 (a), test n. 2 (b), test 
n. 3 (c), and test n. 4 (d). 

  

0

10

20

30

40

50

60

70

80

90

100

12

15

18

21

24

27

30

33

36

39

42

29 May-13:26 29 May-13:55 29 May-14:24 29 May-14:52 29 May-15:21 29 May-15:50 29 May-16:19

R
el

at
iv

e 
hu

m
id

ity
 (%

)

Te
m

pe
ra

tu
re

 (°
C

)

TRA TSA TOA T_BEA RHRA RHSA RH_BEATRA TSA TOA TBEA RHRA RHSA

a)

RHBEA
0

10

20

30

40

50

60

70

80

90

100

12

15

18

21

24

27

30

33

36

39

42

28 Jul-9:57 28 Jul-10:12 28 Jul-10:26 28 Jul-10:40 28 Jul-10:55 28 Jul-11:09 28 Jul-11:24

R
el

at
iv

e 
hu

m
id

ity
 (%

)

Te
m

pe
ra

tu
re

 (°
C

)
TRA TSA TOA T_BEA RHRA RHSA RH_BEATRA TSA TOA TBEA RHRA RHSA

b)

RHBEA

0

10

20

30

40

50

60

70

80

90

100

12

15

18

21

24

27

30

33

36

39

42

23 Jul-15:14 23 Jul-15:45 23 Jul-16:16 23 Jul-16:47 23 Jul-17:19 23 Jul-17:50 23 Jul-18:21

R
el

at
iv

e 
hu

m
id

ity
 (%

)

Te
m

pe
ra

tu
re

 (°
C

)

TRA TSA TOA T_BEA RHRA RHSA RH_BEATRA TSA TOA TBEA RHRA RHSA

c)

RHBEA 0

10

20

30

40

50

60

70

80

90

100

12

15

18

21

24

27

30

33

36

39

42

21 Jul-9:28 21 Jul-9:55 21 Jul-10:23 21 Jul-10:50 21 Jul-11:17 21 Jul-11:44 21 Jul-12:11

R
el

at
iv

e 
hu

m
id

ity
 (%

)

Te
m

pe
ra

tu
re

 (°
C

)

TRA TSA TOA T_BEA RHRA RHSA RH_BEATRA TSA TOA TBEA RHRA RHSA

d)

RHBEA

0

10

20

30

40

50

60

70

80

90

100

12

15

18

21

24

27

30

33

36

39

42

31 Jul-9:53 31 Jul-10:44 31 Jul-11:36 31 Jul-12:28 31 Jul-13:19 31 Jul-14:11 31 Jul-15:02

R
el

at
iv

e 
hu

m
id

ity
 (%

)

Te
m

pe
ra

tu
re

 (°
C

)

TRA TSA TOA T_BEA RHRA RHSA RH_BEATRA TSA TOA TBEA RHRA RHSA

a)

RHBEATRA TSA TOA TBEA 0

10

20

30

40

50

60

70

80

90

100

12

15

18

21

24

27

30

33

36

39

42

03 Aug-10:48 03 Aug-11:29 03 Aug-12:11 03 Aug-12:52 03 Aug-13:34 03 Aug-14:15 03 Aug-14:57

R
el

at
iv

e 
hu

m
id

ity
 (%

)

Te
m

pe
ra

tu
re

 (°
C

)

TRA TSA TOA T_BEA RHRA RHSA RH_BEATRA TSA TOA TBEA RHRA RHSA

b)

RHBEA

Figure 3. Cont.
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Figure 3. Experimental data measured during the faulty tests under summer conditions: test n. 5 (a), test n. 6 (b), test n. 7
(c), test n. 8 (d), and test n. 9 (e).

Figure 2a reports the experimental trends of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the fault free test n.1; Figure 2b shows the measured parameters TRA, TSA, TOA,
TBEA, RHRA, RHSA, RHBEA during the fault free test n.2; Figure 2c indicates the measured
data associated to TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA during the fault free test n.3;
Figure 2d highlights the temporal variation of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the fault free test n.4.

Figure 3a reports the experimental trends of TRA, TSA, TOA, TBEA, RHRA, RHSA,
RHBEA during the faulty test n.5; Figure 3b shows the measured parameters TRA, TSA, TOA,
TBEA, RHRA, RHSA, RHBEA during the faulty test n.6; Figure 3c indicates the measured
data associated to TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA during the faulty test n.7;
Figure 3d highlight the temporal variation of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the faulty test n.8; the values of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA recorded
during the faulty test n.9 are depicted in Figure 3e.

Figures 4a–d and 5a–e report the experimental trends of TRA, TSA, TOA, TBEA, RHRA,
RHSA, RHBEA recorded during the fault free and faulty tests, respectively, performed under
winter conditions (detailed in Table 5).
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Figure 4. Experimental data measured during the fault free tests under winter conditions: test n. 10 (a), test n. 11 (b),
test n. 12 (c), and test n. 13 (d).
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Figure 5. Experimental data measured during the faulty tests under winter conditions: test n. 14 (a), test n. 15 (b),
test n. 16 (c), test n. 17 (d), and test n. 18 (e).

Figure 4a reports the experimental trends of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the fault free test n.10; Figure 4b shows the measured parameters TRA, TSA, TOA,
TBEA, RHRA, RHSA, RHBEA during the fault free test n.11; Figure 4c indicates the measured
data associated to TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA during the fault free test n.12;
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Figure 4d highlights the temporal variation of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the fault free test n.13.

Figure 5a reports the experimental trends of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the faulty test n.14; Figure 5b shows the measured parameters TRA, TSA, TOA,
TBEA, RHRA, RHSA, RHBEA during the faulty test n.15; Figure 5c indicates the measured
data associated to TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA during the faulty test n.16;
Figure 5d highlight the temporal variation of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the faulty test n.17; the values of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA recorded
during the faulty test n.18 are depicted in Figure 5e.

Analysis of Experimental Trends

The data acquired during normal and faulty operation tests (and reported in previous
section) highlight that the percentages of time with values of indoor air temperature
within the given deadband (1 ◦C) around the user-defined target (setpoint 26/20 ◦C
for summer/winter season) are equal to 69.8%, 57.0%, 71.3%, 69.1%, 0%, 36.1%, 13.4%,
0%,86.6%, 68.3%, 69.6%, 72.5%, 71.4%, 75.4%, 68.7%, 0.0%, 15.7%, and 64.9% for the
tests 1–18, respectively. Furthermore, the percentages of time with values of air relative
humidity inside the test room within the deadband (5%) around the target (50%) are equal
to 98.4%, 84.9%, 83.5%, 88.3%, 16.2%, 80.6%, 88.1%, 90.6%, 65.4%, 84.7%, 80.7%, 87.3%,
81.2%, 49.4%, 82.3%, 99.6%, 80.5%, and 76.0%, during the tests 1–18, respectively. The
results of calculation highlight a good capability of the HVAC unit under healthy operation
(tests n. 1–4 and 10–13) to accurately control indoor conditions. The previously mentioned
percentages are lower than 100% because (a) the initial values of return air temperature
and return air relative humidity are in some cases far from target values and (b) during
the start-up phases the AHU operates under transient conditions trying to approach the
steady-state conditions to achieve the desired targets.

In more detail, Figure 3a–e (associated to the faulty tests performed during summer)
highlights the different trends/patterns associated to key operating parameters with respect
to the scenarios without faults:

• In Figure 3a (corresponding to the fault 1, i.e., velocity of the supply air fan reduced at
20%), supply air temperature and supply air relative humidity are in a much narrower
range as it would expected in the case of reduced supply air flow; in this case, TSA
drops to about 18.4 ◦C and then it remains below 20.5 ◦C (out of the desired thermal
comfort range) during the remaining part of the test, while RHSA is in the range of
51% to 61% with a larger number of oscillations; in addition, it can be noticed that
both return air temperature TRA and return air relative humidity RHRA vary much
more slowly as a function of time;

• Figure 3b (corresponding to the fault 2, i.e., velocity of the return air fan reduced at
20%) indicates that, as supposed, supply air temperature varies in a smaller range (in
this case between 15.5 ◦C and 21.0 ◦C) when return air flow rate is reduced;

• In Figure 3c (corresponding to the fault 3, i.e., post-heating coil valve kept fully closed),
supply air temperature TSA assumes lower average values, ranging in a narrower
interval (in this case between 14.5 ◦C and 23.0 ◦C) due to the fact that post-heating
coil is not active; as a consequence, return air temperature, after the initial drop from
~28.5 ◦C down to ~24.0 ◦C, remains almost constant during the remaining part of
the test (with a value smaller than its lower deadband and, therefore, out of desired
thermal comfort range); in addition, it should be underlined that average values of
supply air relative humidity are greater;

• In Figure 3d (corresponding to the fault 4, i.e., cooling coil valve kept fully closed),
supply air temperature is characterized by much larger average values (as it would
be expected due to the missing contribution of the cooling coil), with a narrower
variation range (in this case between 30.0 ◦C and 34.0 ◦C); return air temperature is
substantially constant, assuming a value larger than its upper deadband (in this case
equal to ~28.5 ◦C) and, therefore, out of the desired thermal comfort range;
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• In Figure 3e (corresponding to the fault 5, i.e., steam humidifier valve kept fully
closed), return air relative humidity varies in a narrower range (in this case between
43.0% and 55.5%), highlighting a significantly reduced number of oscillations (as it
would be presumed in the case of the humidifier is not active).

Figure 5a–e (associated to the faulty tests performed during winter) allows to underline
the different trends/patterns of key operating parameters with respect to the cases without
faults:

• In Figure 5a (corresponding to the fault 1, i.e., velocity of the supply air fan reduced
at 20%), the supply air temperature and supply air relative humidity are in a wider
range, with a much lower number of oscillations; similar trends can be recognized for
both return air temperature and return air relative humidity;

• Figure 5b (corresponding to the fault 2, i.e., velocity of the return air fan reduced at
20%) indicates that the impact of a reduced return ai flow rate is almost negligible in
terms of supply and return air temperature as well as supply and return air relative
humidity;

• In Figure 5c (corresponding to the fault 3, i.e., post-heating coil valve kept fully
closed), supply air temperature assumes lower average values (as post-heating coil is
not active); in particular, TSA is almost constant (and equal to ~12.0 ◦C in this case).
As a consequence, return air temperature remains almost constant during the test,
assuming a value much smaller than its lower deadband and, therefore, out of the
desired thermal comfort range. In addition, it should be underlined that average
values of supply air relative humidity are greater and included in a narrower range
(without significant oscillations); return air relative humidity is almost constant (and
equal to about 47% in this case);

• In Figure 5d (corresponding to the fault 4, i.e., cooling coil valve kept fully closed),
supply air temperature is characterized by lower average values (as it would be pre-
sumed due to the missing contribution of the cooling coil), with a narrower variation
range (approximately 19.0–24.0 ◦C in this case); return air temperature is substantially
constant, assuming a value out of desired thermal comfort range (slightly larger than
its upper deadband and equal to about 22.0 ◦C in this case);

• In Figure 5e (corresponding to the fault 5, i.e., steam humidifier valve kept fully
closed), return air relative humidity varies in a slightly narrower range (as it would be
expected in the case of the humidifier is not active).

4. Simulation Model

In this paper, an artificial neural network (ANN)-based model has been developed
in the MATLAB environment. The aim was to predict (i) the supply air temperature,
(ii) the supply air relative humidity, (iii) the opening percentage of the valve supplying the
post-heating coil, (iv) the opening percentage of cooling coil valve, and (v) the opening
percentage of the steam humidifier valve. This ANN has been first validated with mea-
sured data and then coupled with a dynamic simulation model developed in TRNSYS
environment in order to simulate (i) the return air temperature; (ii) the return air relative
humidity; as well as (iii) the electric energy consumptions (not measured) of the heat pump,
the refrigerating system, the steam humidifier, the supply air fan, and the return air fan
with the aim of rating the effects of the selected faults on both energy consumption as well
occupant indoor thermo-hygrometric comfort. The artificial neural network-based model
is described in Sections 4.1 and 4.1.1–4.1.3, while the description of the TRNSYS model is
reported in Section 4.2.

4.1. Artificial Neural Network-Based Model

In this section, the ANN-based models developed with the aim of simulating the
performance of the test room-integrated HVAC system under both normal and faulty
scenarios are described.
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4.1.1. Artificial Neural Networks’ Architecture

ANNs usually consist of three parts: one input layer; one or more hidden layers, and
one output layer. All layers include neurons, and each neuron in a given layer is linked
to the neurons of previous as well as successive layers. Each link between two neurons is
characterized by an adaptable synaptic weight and bias. Three main different functional
operations occur in ANNs:

• all the inputs are multiplied by their weights;
• the weighted values are added to the bias in order to form the net inputs;
• the net inputs are passed by means of the transfer function, which generates the

outputs.

ANNs are trained by means of a suitable learning method in order to obtain a specific
target output from a particular input by regulating the weights and biases. The training
process is stopped only when the error between the desired target and the corresponding
network output is lower than a given tolerance value or when the maximum number of
epochs (given number of iterations) is achieved. A transfer function is a mathematical
representation of the relation between inputs and outputs. Transfer functions generally
have a sigmoid shape, but they may also assume the form of piecewise linear functions,
nonlinear functions, or step functions. One of the most commonly adopted transfer
functions for multilayer networks is the hyperbolic tangent sigmoid transfer function
(tansig) [32] generating outputs between −1 and 1.

Performance of artificial neural networks is sensitive to both the number of hidden
layers as well as the number of neurons in their hidden layers [32]. In particular, networks
with more hidden layers require a larger computation time, but their use gives the network
more flexibility and could result in resolving challenging tasks more efficiently [32]. Larger
numbers of neurons allow the network to figure out more difficult issues; however, they
require more computation and they can play a part to “overfitting” (in that case the fitting
curve fluctuates wildly among training points, even if these points are well fitted); on the
other hand, few neurons can reduce the computation time, but they could also lead to
“underfitting”.

The MATLAB (The MathWorks Inc., Natick, Massachusetts, USA) Neural Network
Toolbox [32] has been used in this work in order to develop and analyze 22 artificial neural
network-based simulation models (ANN1-ANN22) of the HVAC system. All the artificial
neural networks have been configured with 10 inputs and 5 outputs, varying the number
of hidden layers and neurons in each hidden layer. One of the most common issues to be
addressed in configuring the architecture of ANNs is connected to the ANNs topology
allowing to achieve the requested accuracy and/or minimize the computation time. Several
studies [41–46] have determined the number of hidden layers and the number of neurons
in the hidden layers by trial and error, employing a grid search technique to find them.
A sensitivity analysis has been performed in this study in order to find out the optimal
number of hidden layers and neurons in each hidden layer according to the information
and approaches reported in the current literature. In particular, several scientific papers
investigated the application of ANNs for HVAC systems’ modeling [41–43], adopting a
number of hidden layers varying from a minimum of 1 [41] up to a maximum of 5 [41–43].
In addition, several formulas are available in the scientific literature [44–46] in order to
provide a starting point for determining the optimal number of neurons in each hidden
layer of ANNs as a function of (i) number of inputs [44–46], (ii) number of outputs [44], (iii)
number of hidden layers [45], and (iv) number of training examples [45,46]; these formulas
suggest a number of neurons per hidden layer in the range of 7 to 83 when applied to the
ANNs investigated in this paper.

4.1.2. Sensitivity Analysis of Artificial Neural Networks

Table 6 describes the architectures of the 22 ANN-based models investigated in this
paper, highlighting both number of hidden layers as well as number of neurons in each
hidden layer.



Energies 2021, 14, 5362 16 of 41

Table 6. Architectures of the investigated ANNs.

ANN ID Number of Hidden Layers Number of Neurons in Each Hidden Layer

ANN1 1 10
ANN2 1 20
ANN3 1 30
ANN4 1 40
ANN5 1 50
ANN6 1 60
ANN7 1 70
ANN8 2 10
ANN9 2 20
ANN10 2 30
ANN11 2 40
ANN12 2 50
ANN13 3 10
ANN14 3 20
ANN15 3 30
ANN16 3 40
ANN17 4 10
ANN18 4 20
ANN19 4 30
ANN20 5 10
ANN21 5 20
ANN22 5 30

The following 10 variables have been set as inputs of all ANNs:

1. difference between current return air temperature and related target (∆T)
2. difference between current return air relative humidity and related target (∆RH)
3. supply air temperature at previous minute (TSA-1)
4. supply air relative humidity at previous minute (RHSA-1)
5. outside air temperature (TOA)
6. opening percentage of the valve managing the flow entering the post-heating coil at

previous minute (OPV_PostHC-1)
7. opening percentage of the valve managing the flow entering the cooling coil at

previous minute (OPV_CC-1)
8. opening percentage of the valve managing the flow entering the steam humidifier at

previous minute (OPV_HUM-1)
9. supply air fan velocity (OLSAF)
10. return air fan velocity (OLRAF).

The following five parameters have been set as outputs of all ANNs:

1. supply air temperature (TSA)
2. supply air relative humidity (RHSA)
3. opening percentage of the post-heating coil valve (OPV_PostHC)
4. opening percentage of the cooling coil valve (OPV_CC)
5. opening percentage of the steam humidifier valve (OPV_HUM).

Table 7 summarizes the inputs and the outputs used in the artificial neural networks.
Each ANN has 1 input layer with 10 neurons and 1 output layer with 5 neurons.
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Table 7. Inputs and outputs of the ANNs.

Number of Inputs Input ID Number of Outputs Outputs ID

1 ∆T
1 TSA2 ∆RH

3 TSA-1 2 RHSA4 RHSA-1
5 TOA 3 OPV_PostHC6 OPV_PostHC-1
7 OPV_CC-1 4 OPV_CC8 OPV_HUM-1
9 OLSAF 5 OPV_HUM10 OLRAF

The hyperbolic tangent sigmoid transfer function (tansig) has been adopted in the
hidden and output layers of each ANN. Levenberg–Marquart back-propagation training
algorithms (trainlm) have been selected as training function with the aim of updating the
weights and biases.

4.1.3. Training, Testing and Validation of ANNs

The experimental data measured during the tests described in Section 3 have been
used for training, testing, and validating the ANNs. Two different datasets have been
randomly extracted from the entire database (5352 data points in total): the first dataset
(3746 points) has been utilized for training purposes, while the second one (1606 points) has
been considered for testing and validating the networks. The predictions of the ANN-based
models have been compared with the whole experimental dataset (containing all training,
testing, and validation points) to evaluate the reliability of the ANNs by means of the
metrics reported below (the average error ε, the average absolute error |ε|, the mean square
error MSE, the root mean square error RMSE, and the coefficient of determination R2):

εi= gpred,i− gexp,i (1)

ε =
N

∑
i=1
εi/N (2)

|ε| =
N

∑
i=1
|εi|/N (3)

MSE =
1
N

N

∑
i=1

(εi − ε)
2

(4)

RMSE =

√√√√ N

∑
i=1

(εi − ε)2

N
(5)

R2= 1 −

 N

∑
i=1

(
gexp,i − gpred,i

)2

(
gexp,i − gpred,i

)2

 (6)

where N is the total number of experimental points, while gpred,i, gexp,I, and gpred are,
respectively, the predictions at time step i, the measurements at time step i, and the
arithmetic mean of the predicted values. Table 8 reports the calculated values of ε, |ε|, MSE,
RMSE, and R2 associated with the performance of all the ANNs developed in this study,
highlighting in green and red, respectively, the best and worst results.
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Table 8. Errors between predictions of ANN-based models and measurements.

Er
ro

rs

A
N

N
O

ut
pu

ts

A
N

N
1

A
N

N
2

A
N

N
3

A
N

N
4

A
N

N
5

A
N

N
6

A
N

N
7

A
N

N
8

A
N

N
9

A
N

N
10

A
N

N
11

A
N

N
12

A
N

N
13

A
N

N
14

A
N

N
15

A
N

N
16

A
N

N
17

A
N

N
18

A
N

N
19

A
N

N
20

A
N

N
21

A
N

N
22

ε

TSA (◦C) −0.11 −0.03 0.00 −0.01 −0.01 −0.01 −0.01 0.00 −0.01 0.00 0.05 −0.01 −0.09 0.00 0.01 0.00 0.00 0.04 −0.02 0.02 10.71 −0.01

RHSA (%) 0.22 −0.02 0.10 0.08 0.04 −0.06 0.04 −0.03 0.06 −0.02 −0.24 0.06 0.18 0.05 0.00 −0.01 −0.04 0.02 −0.05 −0.02 0.01 0.01

OPV_PostHC (%) 0.00 0.01 0.00 0.01 0.00 0.01 −0.01 −0.01 0.00 0.01 0.00 0.00 0.00 −0.01 −0.01 0.02 0.00 0.01 −0.01 0.00 3.66 −0.01

OPV_CC (%) 0.00 −0.02 0.00 0.06 0.01 0.04 0.01 −0.02 0.01 0.02 −0.02 −0.01 −0.03 0.00 0.02 0.01 −0.03 0.01 −2.48 0.00 0.02 0.01

OPV_HUM (%) 0.01 0.00 −0.03 0.04 −0.01 −0.02 −0.02 0.01 −0.01 −0.02 −0.02 −0.02 0.03 −0.03 0.01 0.01 0.07 0.00 0.03 0.03 −0.02 0.01

|ε
|

TSA (◦C) 0.72 0.36 0.36 0.36 0.31 0.26 0.25 0.62 0.41 0.42 0.44 0.34 0.70 0.47 0.43 0.27 0.72 0.46 0.45 0.69 10.71 0.36

RHSA (%) 2.80 2.00 2.00 1.95 1.80 1.67 1.75 2.32 2.02 1.98 1.99 1.77 2.46 2.13 1.94 1.62 2.26 2.00 1.88 2.57 2.00 1.83

OPV_PostHC (%) 0.08 0.06 0.08 0.19 0.12 0.10 0.12 0.06 0.06 0.20 0.13 0.11 0.07 0.10 0.13 0.06 0.05 0.11 0.07 0.10 3.66 0.05

OPV_CC (%) 0.07 0.07 0.06 0.15 0.08 0.09 0.08 0.07 0.07 0.14 0.09 0.10 0.07 0.08 0.11 0.07 0.09 0.08 2.48 0.09 0.12 0.05

OPV_HUM (%) 0.19 0.13 0.15 0.20 0.15 0.13 0.17 0.13 0.12 0.23 0.15 0.18 0.16 0.17 0.18 0.11 0.16 0.15 0.13 0.16 0.16 0.11

M
SE

TSA (◦C) 0.81 0.26 0.26 0.28 0.21 0.16 0.14 0.77 0.35 0.38 0.36 0.24 0.94 0.50 0.40 0.16 1.15 0.50 0.44 1.04 6.01 0.27

RHSA (%) 16.59 10.00 9.86 10.14 9.18 8.05 8.60 13.07 10.13 10.48 9.74 8.73 13.77 11.16 10.17 7.69 13.30 10.17 8.93 15.38 9.48 8.31

OPV_PostHC (%) 0.49 0.35 0.43 0.82 0.50 0.38 0.51 0.37 0.32 0.81 0.51 0.51 0.42 0.43 0.49 0.36 0.32 0.52 0.38 0.47 36.62 0.28

OPV_CC (%) 0.41 0.48 0.28 0.75 0.40 0.65 0.39 0.57 0.28 0.57 0.49 0.46 0.59 0.39 0.37 0.41 0.61 0.41 24.83 0.47 0.80 0.33

OPV_HUM (%) 1.10 0.79 0.82 1.12 0.71 0.72 1.17 0.94 0.68 1.03 0.74 0.75 1.12 0.88 0.94 0.77 1.21 0.75 0.72 1.11 0.78 0.68

R
M

SE

TSA (◦C) 0.89 0.51 0.51 0.53 0.46 0.40 0.38 0.88 0.59 0.61 0.60 0.49 0.97 0.71 0.63 0.40 1.07 0.71 0.66 1.02 7.17 0.52

RHSA 4.07 3.16 3.14 3.18 3.03 2.84 2.93 3.62 3.18 3.24 3.11 2.95 3.71 3.34 3.19 2.77 3.65 3.19 2.99 3.92 3.08 2.88

OPV_PostHC (%) 0.70 0.59 0.66 0.90 0.71 0.62 0.71 0.60 0.57 0.90 0.71 0.72 0.65 0.66 0.70 0.60 0.56 0.72 0.62 0.69 4.82 0.53

OPV_CC (%) 0.64 0.69 0.53 0.86 0.63 0.80 0.63 0.75 0.53 0.75 0.70 0.68 0.76 0.62 0.61 0.64 0.78 0.64 4.32 0.68 0.89 0.57

OPV_HUM (%) 1.05 0.89 0.90 1.06 0.84 0.85 1.08 0.97 0.83 1.01 0.86 0.86 1.06 0.94 0.97 0.88 1.10 0.87 0.85 1.06 0.88 0.83

R
2

TSA (◦C) 0.985 0.995 0.994 0.994 0.996 0.996 0.997 0.980 0.991 0.990 0.991 0.996 0.976 0.987 0.990 0.996 0.967 0.988 0.989 0.978 0.118 0.994

RHSA (%) 0.955 0.975 0.976 0.975 0.978 0.981 0.979 0.957 0.972 0.974 0.977 0.977 0.963 0.967 0.974 0.982 0.964 0.973 0.976 0.956 0.976 0.980

OPV_PostHC (%) 0.979 0.989 0.982 0.981 0.982 0.988 0.990 0.987 0.987 0.985 0.980 0.978 0.982 0.981 0.987 0.982 0.987 0.984 0.978 0.984 0.140 0.993

OPV_CC (%) 0.981 0.986 0.985 0.976 0.975 0.980 0.983 0.979 0.983 0.969 0.984 0.968 0.974 0.977 0.986 0.973 0.962 0.981 0.131 0.971 0.974 0.983

OPV_HUM (%) 0.965 0.975 0.978 0.972 0.982 0.973 0.977 0.970 0.977 0.957 0.977 0.981 0.961 0.965 0.969 0.970 0.975 0.975 0.966 0.969 0.990 0.981

For each line of Table 8 the green shade has been assigned to the cell corresponding
to the best performance (the readers can find more green cells for each line in the cases
of more ANNs achieve the same best performance), while the worst results have been
highlighted by red shades.

The results reported in this table highlight that:

• the overall minimum value of ε (−2.48%) is obtained in the case of the ANN19 for the
parameter OPV_CC; the overall maximum value of ε (10.71 ◦C) is obtained in the case
of the ANN21 for the parameter TSA;

• the overall minimum value of |ε| (0.05%) is achieved by the ANN22 for the param-
eters OPV_PostHC and OPV_CC as well as in the case of the ANN17 for the parameter
OPV_PostHC; the overall worst value of |ε| (10.71 ◦C) is obtained in the case of the
ANN21 for the parameter TSA;

• the overall minimum value of MSE (0.14 ◦C) is obtained in the case of the ANN7 for
the parameter TSA; the overall maximum value of MSE (36.62%) is obtained in the
case of the ANN21 for the parameter OPV_PostHC;

• the overall minimum value of RMSE (0.38 ◦C) is achieved by the ANN7 for the
parameter TSA; the overall worst value of RMSE (7.17 ◦C) is obtained by the ANN21
for the parameter TSA;

• with reference to all the ANNs, average values of coefficient of determination R2 in
predicting supply air temperature, supply air relative humidity, opening percentage of
the post-heating coil valve, opening percentage of the cooling coil valve, and opening
percentage of the humidifier valve are very close to 1 and, respectively, equal to 0.95 ◦C,
0.97%, 0.95%, 0.94%, and 0.97%; the overall worst value of R2 (0.118) is obtained in
the case of the ANN21 for the parameter TSA; the overall best value of R2 (0.997) is
achieved by the ANN7 for the parameter TSA;

• the ANN22 is characterized by 8 green cells in Table 8, i.e., it works better than the
other ANNs with reference to 8 lines of this table; the ANNs 3, 9, and 16 denote
5 green cells, while a lower number of green cells can be recognized for the other
ANNs; the ANN4 has no green cells, while the ANN with the largest number of red
cells (denoting the worst performance) is the ANN21;

• whatever the metric is, the ANN16 is characterized by greater performance in compar-
ison to the ANN22 with reference to the predictions of both supply air temperature
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and supply air relative humidity. The percentage difference between the ANN16 and
the ANN22 in predicting TSA is 27% in terms of |ε|, 40% in terms of MSE, 22% in terms
of RMSE, and 0.21% in terms of R2. The percentage difference between the ANN16
and the ANN22 in predicting RHSA is 11% in terms of |ε|, 7% in terms of MSE, 4% in
terms of RMSE, and 0.21% in terms of R2;

• ANN22 provides better results than ANN16 in predicting the opening percentages of
the post-heating coil valve, the cooling coil valve as well as the humidifier valve. The
maximum percentage difference in terms of |ε| between the ANN22 and the ANN16 in
predicting OPV_PostHC, OPV_CC and OPV_HUM is 26%; the maximum percentage differ-
ence in terms of MSE between the ANN22 and the ANN16 in predicting OPV_PostHC,
OPV_CC, and OPV_HUM is 21%; the maximum percentage difference in terms of RMSE
between the ANN22 and the ANN16 in predicting OPV_PostHC, OPV_CC and OPV_HUM
is 11%; the maximum difference in terms of R2 between the ANN22 and the ANN16
in predicting OPV_PostHC, OPV_CC, and OPV_HUM is 1.13%.

Even if the ANN22 performs better than the ANN16 in predicting the opening percent-
ages of the valves, in this paper the ANN16 has been selected in order to obtain improved
predictions in terms of supply air temperature as well as supply air relative humidity (that
represent the fundamental outputs of AHU operation), while maintaining an adequate
accuracy in forecasting the valves operation. The errors reported in Table 8 demonstrate
how the ANN16 can be effectively used to generate operation data for assisting further
research in fault detection and diagnosis of HVAC units.

Figures 6–9 report the instantaneous errors between the values predicted by the
ANN16 and the measured data in terms of (i) supply air temperature (TSA), (ii) sup-
ply air relative humidity (RHSA), (iii) opening percentage of the post-heating coil valve
(OPV_PostHC), (iv) opening percentage of the cooling coil valve (OPV_CC), and (v) opening
percentage of the humidifier valve (OPV_HUM) as a function of time.
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Figure 6. Comparison between ANN16 predicted values and experimental data under fault free tests during summer:
test n. 1 (a), test n. 2 (b), test n. 3 (c), and test n. 4 (d).
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Figure 7. Comparison between ANN16 predicted values and experimental data under faulty tests during summer:
test n. 5 (a), test n. 6 (b), test n. 7 (c), test n. 8 (d), and test n. 9 (e).
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Figure 8. Comparison between ANN16 predicted values and experimental data under fault free tests during winter:
test n. 10 (a), test n. 11 (b), test n. 12 (c), and test n. 13 (d).
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In more detail, the following parameters are showed in Figures 6–9:

∆TSA= TSA,pred − TSA,exp (7)

∆RHSA= RHSA,pred − RHSA,exp (8)

∆OPV_PostHC= OPV_PostHC,pred − OPV_PostHC,exp (9)

∆OPV_CC= OPV_CC,pred − OPV_CC,exp (10)

∆OPV_HUM= OPV_HUM,pred − OPV_HUM,exp (11)

where TSA, pred, RHSA, pred, OPV_PostHC, pred, OPV_CC, pred, and OPV_HUM, pred are, respec-
tively, the values predicted by the ANN16, while TSA, exp, RHSA, exp, OPV_PostHC, exp,
OPV_CC, exp, and OPV_HUM, exp represent the experimental values.

Figures 6–9 highlight that:

• the minimum value of ∆TSA is −3.41 ◦C (test n. 1), while its maximum value is 3.80
◦C (test n. 1);

• the values of ∆RHSA range from −19.20% (test n. 17) up to 17.03% (test n. 17);
• the parameter ∆OPV_PostHC is in the range −10.05% ÷ 10.12%, where the minimum is

achieved during the test n. 4, while the maximum refers to the test n. 2;
• the values of ∆OPV_CC vary from −10.03% (test n. 18) up to 10.09% (test n. 9);
• the values of ∆OPV_HUM range between −9.97% (test n. 4) and 10.11% (test n.17).

In order to better point out the results of comparisons between predicted and ex-
perimental values reported in Figures 6–9, the values of the metrics defined by the
Equations (1)–(6), calculated for the parameters specified by the Equations (7)–(11), have
been summarized in Table 9. For each line of this table, the green shade has been assigned
to the cells corresponding to the best performance, while the worst results have been
highlighted by red shades.

Table 9. Errors between the ANN16-based model predictions and experimental points.

Fault Free Tests
during Summer

Faulty Tests
during Summer

Fault Free Tests
during Winter

Faulty Tests
during Winter

Errors Parameters Test
n. 1

Test
n. 2

Test
n. 3

Test
n. 4

Test
n. 5

Test
n. 6

Test
n. 7

Test
n. 8

Test
n. 9

Test
n. 10

Test
n. 11

Test
n. 12

Test
n. 13

Test
n. 14

Test
n. 15

Test
n. 16

Test
n. 17

Test
n. 18

ε

∆TSA (◦C) −0.10 0.09 0.22 0.17 0.06 0.09 −0.04 0.21 0.01 0.11 −0.01 −0.02 0.07 −0.02 −0.11 0.01 0.22 0.16

∆RHSA (%) −0.18 0.04 0.28 −0.88 −0.87 0.11 0.01 0.33 −0.05 −0.24 −0.43 −0.03 −0.36 −0.08 −0.61 −0.22 −0.02 −0.39

∆OPV_PostHC (%) 0.06 0.11 0.02 −0.06 0.00 −0.01 −0.07 0.00 −0.11 0.01 0.06 0.00 0.02 −0.03 0.05 −0.10 0.00 0.05

∆OPV_CC (%) −0.12 0.03 −0.05 −0.01 0.00 0.01 0.03 −0.10 0.06 −0.06 0.02 0.01 0.01 0.02 0.06 0.02 −0.01 −0.31

∆OPV_HUM (%) 0.12 0.00 −0.04 −0.10 0.00 0.03 0.04 0.12 −0.03 −0.07 −0.03 −0.16 0.11 −0.01 −0.04 0.00 −0.01 −0.16

|ε|

∆TSA (◦C) 0.55 0.46 0.60 0.56 0.19 0.38 0.53 0.44 0.43 0.47 0.38 0.48 0.43 0.41 0.47 0.30 0.45 0.46

∆RHSA (%) 1.97 2.19 2.57 2.40 1.21 11.09 2.12 1.47 1.99 2.24 2.04 2.49 2.32 1.18 2.26 0.70 2.84 1.69

∆OPV_PostHC (%) 0.06 0.11 0.04 0.06 0.00 0.00 0.07 0.00 0.11 0.24 0.23 0.26 0.30 0.09 0.12 0.10 0.00 0.25

∆OPV_CC (%) 0.12 0.03 0.11 0.07 0.00 0.00 0.13 0.10 0.07 0.18 0.02 0.01 0.01 0.13 0.12 0.02 0.01 0.36

∆OPV_HUM (%) 0.12 0.00 0.05 0.13 0.00 0.37 0.07 0.21 0.03 0.19 0.20 0.26 0.22 0.02 0.15 0.00 0.45 0.16

MSE

∆TSA (◦C) 0.71 0.51 0.58 0.51 0.07 0.38 0.52 0.36 0.47 0.36 0.27 0.42 0.32 0.28 0.38 0.14 0.34 0.32

∆RHSA (%) 8.59 7.44 11.13 10.23 2.48 11.09 10.08 4.85 6.15 10.50 9.12 11.06 12.27 2.73 13.25 1.08 22.41 5.19

∆OPV_PostHC (%) 0.58 1.15 0.09 0.62 0.00 0.00 0.22 0.00 1.18 0.74 0.73 0.99 0.95 0.40 0.43 0.31 0.00 0.87

∆OPV_CC (%) 1.16 0.03 0.60 0.13 0.00 0.00 0.47 0.07 0.60 1.33 0.00 0.00 0.00 0.38 0.40 0.00 0.00 3.00

∆OPV_HUM (%) 1.16 0.00 0.10 0.95 0.00 0.37 0.42 1.12 0.03 0.85 0.79 1.10 1.38 0.05 0.78 0.00 2.63 0.29

RMSE

∆TSA (◦C) 0.84 0.71 0.73 0.70 0.25 0.61 0.72 0.57 0.67 0.59 0.52 0.65 0.56 0.53 0.61 0.37 0.54 0.54

∆RHSA (%) 2.93 2.74 3.34 3.09 1.32 3.34 3.19 2.18 2.42 3.24 2.99 3.33 3.49 1.65 3.59 1.02 4.74 2.25

∆OPV_PostHC (%) 0.76 1.07 0.30 0.79 0.00 0.01 0.46 0.01 1.05 0.86 0.85 1.00 0.98 0.63 0.65 0.55 0.01 0.93

∆OPV_CC (%) 1.08 0.17 0.78 0.35 0.00 0.01 0.68 0.25 0.75 1.15 0.03 0.02 0.02 0.61 0.63 0.04 0.07 1.71

∆OPV_HUM (%) 1.07 0.00 0.32 0.97 0.03 0.61 0.65 1.05 0.17 0.92 0.89 1.04 1.17 0.21 0.89 0.01 1.62 0.51

R2

∆TSA (◦C) 0.98 0.99 0.99 0.99 0.98 0.85 0.96 0.92 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.60 0.85 0.99

∆RHSA (%) 0.97 0.76 0.97 0.96 0.89 0.92 0.93 0.94 0.96 0.97 0.98 0.97 0.97 1.00 0.97 0.77 0.87 0.98

∆OPV_PostHC (%) 0.95 0.49 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.96 0.96 0.98 0.89 1.00 1.00 0.96

∆OPV_CC (%) 0.91 1.00 0.95 0.99 1.00 1.00 0.97 1.00 1.00 0.91 1.00 1.00 1.00 0.98 0.90 1.00 1.00 0.88

∆OPV_HUM (%) 0.94 1.00 0.99 0.94 1.00 0.98 0.98 0.92 1.00 0.93 0.95 0.92 0.86 1.00 0.94 1.00 0.87 1.00

This table underlines that the ANN16 is able to carefully predict the experimental
data measured during summer and winter under both normal and faulty conditions and
it provides a rigorous representation of the HVAC system’s steady-state and transient
operation taking into account that:
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• with reference to all the tests, the average values of R2 in predicting TSA, RHSA,
OPV_PostHC, OPV_CC and OPV_HUM are, respectively, 0.95 ◦C, 0.93%, 0.95%, 0.97%, and
0.96%;

• with reference to the tests n. 1–4 (performed without faults during summer), the
values of R2 are always larger than 0.9 for all the parameters, except the cases of
∆RHSA and ∆OPV_PostHC for the test n. 2;

• with reference to the tests n. 5–9 (performed with faults during summer), the coef-
ficient of determination is always greater than 0.9 for all the parameters, except the
cases of ∆RHSA for the test n. 5 (with fault 1) and ∆TSA for the test n. 6 (with fault 2);

• with reference to the tests n. 10–13 (performed without faults during winter), the
values of R2 are always larger than 0.9 for all the parameters, except the case of
∆OPV_HUM for the test n. 13;

• with reference to the tests n. 14–18 (performed with faults during winter), the coeffi-
cient of determination is always greater than 0.9 for all the parameters, except (i) the
cases of both ∆TSA and ∆RHSA for both the tests n. 16 (fault 3) and n. 17 (fault 4),
(ii) the cases of both ∆OPV_PostHC and ∆OPV_CC for the test n. 15 (fault 2), (iii) the case
of ∆OPV_CC for the test n. 18 (fault 5) as well as (iv) the case of ∆OPHUM for the test n.
17 (fault 4);

• whatever the test is, the values of |ε| for the parameter ∆TSA are always lower than
0.8 ◦C (that is the accuracy of the sensor used for measuring TSA), with a minimum of
0.19 ◦C (test n. 5) up to a maximum of 0.60 ◦C (test. n. 3);

• the values of |ε| for the parameter ∆RHSA range between a minimum of 0.7% up
to a maximum of 11.1% and, therefore, they are always smaller than 3% (that is the
accuracy of the sensor used for measuring RHSA), except the only case of the test n. 6
(performed with fault 2 during summer);

• the maximum values of MSE and RMSE with reference to the parameter ∆TSA are,
respectively, not larger than 0.71 ◦C and 0.84 ◦C (obtained for the test n. 1 performed
without faults during summer);

• the maximum values of MSE and RMSE with reference to the parameter ∆RHSA are,
respectively, not larger than 22.4% and 4.74% (achieved for the test n. 17 performed
with fault 4 during winter);

• the maximum value of MSE with reference to the parameters ∆OPV_PostHC, ∆OPV_CC
and ∆OPV_HUM is 3.0%, obtained in the case of the test n. 18 performed with fault 5
during winter;

• the maximum value of RMSE with reference to the parameters ∆OPV_PostHC, ∆OPV_CC
and ∆OPV_HUM is 1.7%, achieved in the case of the test n. 18 performed with fault 5
during winter.

4.2. TRNSYS Model

In the dynamic simulation software TRNSYS (version 17) [33], the whole system is first
broken up into specific models (named “Types”) of each single system component, where
each “Type” is represented by a FORTRAN code. The users can assemble the TRNSYS
Types by connecting component outputs with component inputs and then specifying the
corresponding components’ performance parameters. Finally, the software solves the
corresponding equations in order to characterize the component/system operation every
time step.

In this study, a detailed model in TRNSYS environment has been developed to simu-
late, using a time step of 1 min (according to the time step of experimental data utilized
in this work for training, testing, and validating the ANN-based model), (i) the return
air temperature (TRA); (ii) the return air relative humidity (RHRA); as well as the electric
energy consumptions (not measured) of (iii) the heat pump (HP), (iv) the refrigerating
system (RS), (v) the humidifier (HUM), (vi) the supply air fan (SAF), and (vii) the return
air fan (RAF). With reference to the several performance parameters to be specified in the
TRNSYS Types used into the simulation model, it can be noticed that, in this study, some
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of the parameters have been directly identified or calculated based on catalog data; the
remaining parameters have been defined based on field measurements.

Table 10 lists the main modeled components and the corresponding TRNSYS Types
used in the simulation model.

Table 10. Main simulated components and corresponding types of TRNSYS software.

Simulated Component TRNSYS Type/Model

Test room 56
Heat pump/Refrigerating system 941

Hot and cold tanks 534
Humidifier 641

HP/RS pump 654
Diverting/mixing valves 647/649

On/Off differential controllers 2
Moist air properties 33e
Integrated test room 56

Figure 10 depicts a screenshot of the TRNSYS model, highlighting the main circuits
with different colors. In particular, the circuit of cold fluid supplied by the refrigerating
system to the cooling coil is depicted in blue; the circuit of hot fluid supplied by the heat
pump to the post-heating coil is indicated in red; finally, the inputs and outputs of the
ANN-based model are highlighted in light blue. The other connections of TRNSYS Types
are pointed out by dashed black lines.

Energies 2021, 14, 5362 25 of 42 
 

 

Table 10. Main simulated components and corresponding types of TRNSYS software. 

Simulated Component TRNSYS Type/Model 
Test room 56 

Heat pump/Refrigerating system 941 
Hot and cold tanks 534 

Humidifier 641 
HP/RS pump 654 

Diverting/mixing valves 647/649 
On/Off differential controllers 2 

Moist air properties 33e 
Integrated test room 56 

 
Figure 10. Screenshot of the TRNSYS model. 

The TRNSYS model has been coupled with the artificial neural network ANN16 (de-
scribed in the previous section) via the TRNSYS Type 155.  

The ANN16 uses as inputs the 10 variables indicated in the previous section and pro-
vides as outputs the 5 parameters specified in the same section.  

The Type 155 links ANN16 with both the Type 56 as well as the Type 661. In partic-
ular, the Type 155 provides two of the outputs of the ANN16, i.e., the supply air temper-
ature and relative humidity, as inputs to the Type 56. In addition, the Type 155 provides 
as inputs to the Type 661 all the outputs of the ANN16, i.e., the supply air temperature, 
the supply air relative humidity, as well as the opening percentages of the valves supply-
ing the humidifier, the pre-heating coil, and the cooling coil. The Type 661 models a 

Figure 10. Screenshot of the TRNSYS model.



Energies 2021, 14, 5362 25 of 41

The TRNSYS model has been coupled with the artificial neural network ANN16
(described in the previous section) via the TRNSYS Type 155.

The ANN16 uses as inputs the 10 variables indicated in the previous section and
provides as outputs the 5 parameters specified in the same section.

The Type 155 links ANN16 with both the Type 56 as well as the Type 661. In particular,
the Type 155 provides two of the outputs of the ANN16, i.e., the supply air temperature
and relative humidity, as inputs to the Type 56. In addition, the Type 155 provides as
inputs to the Type 661 all the outputs of the ANN16, i.e., the supply air temperature, the
supply air relative humidity, as well as the opening percentages of the valves supplying
the humidifier, the pre-heating coil, and the cooling coil. The Type 661 models a “sticky”
controller with its outputs assumed equal to the inputs at the earlier time step; the outputs
of the Type 661 are then provided as inputs to the Type 155.

A dynamic model of the “building” corresponding to the integrated test room has
been developed by means of the Type 56. This model allows calculation of the return air
temperature and relative humidity (then assigned as inputs to the Type 661) according to
the geometry, thermo-physical properties of walls’ layers, air infiltration rate, as well as
internal loads/gains. In particular, the geometry and walls’ layers have been characterized
according to the content of the previous section, while air infiltration rate as well as internal
loads/gains are kept equal to zero according to the experimental conditions.

The Type 941 has been considered for simulating the operation of both the refrigerating
unit (RS) and the heat pump (HP) of the experimental setup. This Type allows to obtain as
outputs (a) the absorbed power and (b) the exiting fluid temperature in the case of (i) the
outside air temperature, (ii) the entering fluid temperature, (iii) the fluid flow rate, as well
as (iv) the performance maps of the devices are provided as inputs. In this study, the
outside temperature has been assumed to be equal to the measured values (the Type 9a
has been used for reading data from an external file and making them available to the
TRNSYS Types 941), the fluid mass flow rate is set to 2310 kg/h for the refrigerating system
and 2410 kg/h for the heat pump according to the manufacturer datasheet [36], and the
performance maps suggested by the manufacturer [36] and reported in Figure A2a,b of
Appendix A have been provided. In particular, Figure A2a,b, respectively, indicates the
coefficient of performance COP of the heap pump (useful thermal power output divided
by required electric power input) and the energy efficiency ratio EER of the refrigerating
system (useful cooling power output divided by required electric power input) depending
on supply fluid temperature and outside air temperature.

Both the heat pump and the refrigerating system are coupled with a 75 L tank that is
devoted to storing the hot and cold fluids, respectively. The operations of both hot and cold
tanks have been simulated with the Type 534. This Type models a cylindrical vertical tank;
it divides the tanks into 10 isothermal temperature layers in order to carefully consider
thermal stratification (where the layer n. 1 is positioned on the uppermost portion of the
tank and the layer n. 10 is positioned on the lowest part of the tank).

With reference to the modeling of the fans, a specifically devoted data set was gathered
from a calibration activity performed by adjusting and maintaining the supply and return
fans at various speeds from 10% to 100%. Figure A3 in Appendix A shows the air volumetric
flow rate QV measured at SENS i-Lab and the power consumption Pel suggested by the
manufacturer as a function of the fan’ velocity OL. In particular, Figure A3a refers to the
supply air fan, while Figure A3b is related to the return air fan.

The following equations, interpolating the values reported in Figure A3a,b, have been
derived to calculate both the air volumetric flow rate QV as well as the power consumption
Pel of both supply and return air fans as a function of fans’ velocity:

QV
SAF = −0.00001·OLSAF

3 + 0.0634·OLSAF
2 + 5.1789·OLSAF + 8.7704 (12)

Pel
SAF = 0.0003·OLSAF

3 + 0.1068·OLSAF
2 + 0.7383·OLSAF + 4.9372 (13)

QV
RAF = 14.491· OLRAF + 12.352 (14)
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Pel
RAF = 0.001·OLRAF

3 - 0.078·OLRAF
2 + 3.120·OLRAF − 2.102 (15)

Equations (12)–(15) have been included in the TRNSYS project via the Type 9a (external
file data reader) for calculating the fans’ power consumption according to the fans’ velocity.

The operation of the adiabatic steam humidifier has been modeled via the Type 641;
this model permits the humidifier not to respond instantaneously to the control signal,
but to get the steady-state values of both power consumption and gain rate exponentially.
In the TRNSYS project, the control signal associated to the opening percentage of the
humidifier valve is provided as input to the Type 641 by the ANN16 through the Type 155.
Based on catalog data, the humidifier power consumption has been considered equal to
the nominal value of 3.7 kW, while the humidifier is activated taking into account that it
has been experimentally verified that water flow rate supplied by the humidifier increases
from the minimum to the maximum value (5 kg/h) almost instantaneously.

The Type 654 has been used for modeling the single-speed pumps maintaining a
constant fluid flow exiting/entering the heat pump and the refrigerating system.

The Type 647 has been used to model the diverting valves that split a liquid inlet
flow into two fractional outlet flows, while the Type 649 is adopted to simulate the mixing
valves that combine two individual liquid streams into a single outlet.

The moist air properties have been evaluated by means of the Type 33e; this Type
takes as inputs the air relative humidity and the air dry bulb temperature and generate the
other corresponding air properties as outputs.

In this paper, the Type 2 has been adopted for simulating on/off differential controllers.
These devises generate a value in the range between 0 and 1 that is used to deactivate
or activate the refrigerating system or the heat pump. In particular, this Type activates
the component generating a signal equal to 1 when the observed parameter becomes
lower than the user-defined setpoint by a certain value (upper deadband), while it is
switched off in the case of the observed parameter approaches the user-defined setpoint
within a given limit (lower deadband). The successive value generated by the differential
controller is also affected by the value assumed by the control signal used as input at
the earlier time step. In this work, the differential controller is operated by connecting
the input and output signals in order to give a hysteresis effect. In greater detail, the
temperature at node 2 of the tank storing the cold fluid has been assumed as the observed
temperature for activating/deactivating the refrigeration unit; with reference to the hot
tank, the temperature at node 8 has been adopted as the watched temperature for operating
the heat pump. A target temperature of 45 ◦C was assumed for activating the heap
pump, with a turn-on temperature difference of 1 ◦C and a turn-off temperature difference
of−1 ◦C. A target temperature of 7 ◦C was defined for activating the refrigeration unit, with
a turn-on temperature difference of 1 ◦C and a turn-off temperature difference of −1 ◦C.
The hot/cold heat carrier fluid is moved by the pumps into the post-heating/cooling coil
according to the opening percentage of the corresponding valves defined by the related
outputs of the ANN16 via the Type 155. The temperature of the hot heat carrier fluid is
assumed to be reduced by 5 ◦C when flowing into the post-heating coil (before entering
the hot tank), while the temperature of the cold heat carrier fluid is assumed as increased
by 5 ◦C when flowing into the cooling coil (before entering the cold tank).

5. Assessment of Faults’ Impact

In this section, the experimental performances of the HVAC system operating under
faulty conditions (summer tests n. 5–9 of Table 4 and winter tests n. 14–18 of Table 5) have
been compared with those predicted by the artificial neural network ANN16 (described in
Section 4a), coupled with the TRNSYS model (described in Section 4b), in the cases of the
HVAC system is operating under the same boundary conditions without faults. In more
detail, the following inputs have been provided to the ANN16 in order to simulate the
HVAC performance without faults: (i) return air temperature calculated by the TRNSYS
Type 56 as well as target of indoor air temperature equal to 26 ◦C; (ii) return air relative
humidity calculated by the TRNSYS Type 56 as well as target of indoor air relative humidity
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equal to 50%; (iii) supply air temperature calculated by the ANN16 itself at previous time
step; (iv) supply air relative humidity calculated by the ANN16 itself at previous time
step; (v) experimental value of outside air temperature; (vi) opening percentage of the
valve supplying the post-heating coil calculated by the ANN16 itself at previous time step;
(vii) opening percentage of the valve supplying the cooling coil calculated by the ANN16
itself at previous time step; (viii) opening percentage of the valve supplying the humidifier
calculated by the ANN16 itself at previous time step; (ix) velocity of supply air fan equal to
the nominal value of 50%; and (x) velocity of return air fan equal to the nominal value of
50%.This means that:

• The experimental tests n. 5 and n. 14 (with the fault 1, i.e., with the velocity of the
supply air fan kept at 20%) have been compared with the simulation cases where the
velocity of supply air fan has been kept at the nominal value of 50%;

• The experimental tests n. 6 and n. 15 (with the fault 2, i.e., the velocity of the return
air fan kept at 20%) have been compared with the simulation cases where the velocity
of return air fan has been kept at the nominal value of 50%;

• The experimental tests n. 7 and n. 16 (with the fault 3, i.e., the post-heating coil valve
kept always closed) have been compared with the simulation cases where the values
of OPV_PostHC can vary according to the automatic control logic in the range of 0 to
100;

• The experimental tests n. 8 and n. 17 (with the fault 4, i.e., the cooling coil valve kept
always closed) have been compared with the simulation cases where the values of
OPV_CC can vary according to the automatic control logic in the range of 0 to 100;

• The experimental tests n. 9 and n. 18 (with the fault 5, i.e., the opening percentage
of the steam humidifier valve kept always closed) have been compared with the
simulation cases where the values of OPV_HUM can vary according to the automatic
control logic in the range of 0 to 100.

Figures 11 and 12 highlight the values of return air temperature (TRA) and return
air relative humidity (RHRA) over time, for the cases without faults (predicted values
represented by solid lines) and the cases when only one of the 5 above-mentioned faults
is occurred (experimental values indicated by dashed lines) with the aim of helping the
contrast between normal and faulty scenarios. In particular, Figure 11 refers to the summer
tests, while Figure 12 corresponds to the winter tests.
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Figure 11. Comparison between experimental faulty operation (dashed lines) and predicted normal operation tests (solid
lines) during summer in terms of TRA and RHRA: test n. 5 (a), test n. 6 (b), test n. 7 (c), test n. 8 (d), and test n. 9 (e).
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Figure 12. Comparison between experimental faulty operation (dashed lines) and predicted fault free operation tests during
winter in terms of TRA and RHRA: test n. 14 (a), test n. 15 (b), test n. 16 (c), test n. 17 (d), and test n. 18 (e).

These comparisons have been performed in order to assess the impact of each fault
on (i) the capability to achieve the desired indoor conditions, (ii) the arithmetic mean and
standard deviation of return air temperature and relative humidity, as well as (iii) the
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electric energy consumptions. In particular, the effects of faults on occupant thermo-
hygrometric comfort are reported in Section 5.1.; the faults’ impact associated with the
trends of return air temperature and relative humidity is described in Section 5.2.; the
influence of each fault on electric energy consumptions is indicated in Section 5.3. The
discussion about all the results is performed in last Section 5.4.

5.1. Results: Faults’ Impact on Thermo-Hygrometric Comfort

Table 11 compares the thermal/hygrometric comfort times (i.e., the percentage of
time during with values of indoor air temperature/relative humidity within the given
deadbands) of the simulation tests without faults with respect to those associated to the
corresponding experimental tests when only one of the five faults (described in the previous
Section 3) is occurring.

Table 11. Thermal-hygrometric time with/without faults.

ID Test Thermal Comfort Time
(%)

Hygrometric Comfort
Time (%)

Summer tests

Test 5

With fault 1 (experimental) 0.00 16.17

Without fault (predicted) 65.79 86.84

Difference between faulty and healthy operation −65.79 −70.67

Test 6

With fault 2 (experimental) 50.61 81.38

Without fault (predicted) 58.70 88.26

Difference between faulty and healthy operation −8.09 −6.88

Test 7

With fault 3 (experimental) 13.43 88.06

Without fault (predicted) 81.95 88.72

Difference between faulty and healthy operation −68.52 −0.66

Test 8

With fault 4 (experimental) 0.00 90.59

Without fault (predicted) 63.31 94.67

Difference between faulty and healthy operation −63.31 −4.08

Test 9

With fault 5 (experimental) 86.59 65.36

Without fault (predicted) 84.00 81.14

Difference between faulty and healthy operation 2.59 −15.78

Winter tests

Test 14

With fault 1 (experimental) 75.41 49.41

Without fault (predicted) 76.11 87.35

Difference between faulty and healthy operation −0.70 −37.94

Test 15

With fault 2 (experimental) 68.71 82.34

Without fault (predicted) 69.23 86.23

Difference between faulty and healthy operation −0.52 −3.89

Test 16

With fault 3 (experimental) 0.00 99.75

Without fault (predicted) 69.75 86.25

Difference between faulty and healthy operation −69.75 13.50

Test 17

With fault 4 (experimental) 15.73 80.45

Without fault (predicted) 67.79 95.72

Difference between faulty and healthy operation −52.06 −15.27

Test 18

With fault 5 (experimental) 64.85 22.67

Without fault (predicted) 70.48 51.03

Difference between faulty and healthy operation −5.63 −28.36
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5.2. Results: Faults’ Impact on Key Operating Parameters

Experimental data under faulty operation and predicted data under fault-free opera-
tion were compared by calculating the arithmetic mean µ and the standard deviation σ of
(1) return air temperature (TRA) and (2) return air relative humidity (RHRA). The arithmetic
mean µ and standard deviation σ have been calculated by means of the following formulas:

µ =
N

∑
i=1

di

N
(16)

σ =

√√√√√ N
∑

i=1
(di−µ)2

N
(17)

where N is the whole number of points, while di is the value at time step i of the above-
mentioned parameters. Table 12 compares the arithmetic mean µ and standard deviation σ
during tests 5–9 (summer tests) and 14–18 (winter tests).

Table 12. Differences between predicted fault free data and experimental faulty data in terms of TRA and RHRA.

ID Test
TRA (◦C) RHRA (%)

µ σ µ σ

Summer tests

Test 5

With fault 1 (experimental) 28.55 0.22 56.17 1.54

Without fault (predicted) 26.20 1.28 48.58 3.36

%D 8.98% −82.73% 15.64% −54.25%

Test 6

With fault 2 (experimental) 27.72 1.78 49.32 3.59

Without fault (predicted) 27.16 1.79 49.97 3.30

%D 2.07% −0.17% −1.30% 8.75%

Test 7

With fault 3 (experimental) 24.72 1.20 48.88 3.56

Without fault (predicted) 26.12 0.84 48.42 3.22

%D −5.34% 42.68% 0.96% 10.46%

Test 8

With fault 4 (experimental) 28.50 0.14 47.77 3.06

Without fault (predicted) 26.57 1.28 50.13 2.92

%D 7.24% −89.05% −4.69% 4.93%

Test 9

With fault 5 (experimental) 25.88 0.74 47.50 3.31

Without fault (predicted) 25.95 0.77 51.15 3.71

%D −0.27% −3.48% −7.14% −10.79%

Winter tests

Test 14

With fault 1 (experimental) 19.77 0.80 45.18 1.48

Without fault (predicted) 20.14 0.84 49.61 3.38

%D −1.85% −4.26% −8.93% −56.06%

Test 15

With fault 2 (experimental) 20.18 0.86 50.12 4.01

Without fault (predicted) 20.21 0.88 49.70 3.42

%D −0.13% −1.35% 0.85% 17.23%

Test 16

With fault 3 (experimental) 15.71 0.69 47.22 0.91

Without fault (predicted) 20.21 0.87 49.67 3.41

%D −22.25% −20.88% −4.94% −73.38%

Test 17

With fault 4 (experimental) 21.55 0.59 49.99 3.95

Without fault (predicted) 20.38 1.06 50.48 2.76

%D 5.77% −44.25% −0.98% 43.17%

Test 18

With fault 5 (experimental) 20.30 0.97 47.05 2.41

Without fault (predicted) 20.25 0.89 49.56 3.46

%D 0.25% 9.53% −5.07% −30.29%
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Table 12 also shows the percentage difference (%D) between the values of arithmetic
mean and the standard deviation under faulty (predicted values) and fault free opera-
tion (experimental values) for each of the above-mentioned parameters. The percentage
difference %D has been calculated by means of the following formula:

%D =
(Xfault,i−Xw/o_fault,i)

Xw/o_fault,i
× 100 (18)

where X is the arithmetic mean µ or the standard deviation σ of TRA or RHRA.
Table 13 summarizes the comments described above; for each of five typical faults

considered and for each of four parameters, a performance index has been assigned with
the following signs: “+” indicates that the fault causes substantial positive changes (greater
than 20%) of %D; “-” indicates that the fault causes substantial negative changes (greater
than −20%) of %D; “0” indicates that the fault causes not substantial changes (between
−20% and 20%) of %D.

Table 13. Summary of symptoms associated to the 5 typical faults on TRA and RHRA.

ID Fault
TRA RHRA

µ σ µ σ

Summer tests

Fault 1
(related to velocity of the supply air fan) 0 - 0 -

Fault 2
(related to velocity of the return air fan) 0 0 0 0

Fault 3
(related to the post-heating coil valve) 0 + 0 0

Fault 4
(related to the cooling coil valve) 0 - 0 0

Fault 5
(related to the humidifier valve) 0 0 0 0

Winter tests

Fault 1
(related to velocity of the supply air fan) 0 0 0 -

Fault 2
(related to velocity of the return air fan) 0 0 0 0

Fault 3
(related to the post-heating coil valve) - - 0 -

Fault 4
(related to the cooling coil valve) 0 - 0 +

Fault 5
(related to the humidifier valve) 0 0 0 -

5.3. Results: Faults’ Impact on Electric Energy Consumption

Table 14 shows the electric energy consumptions of: the heat pump (EEHP), the
refrigerating system (EERS), the humidifier (EEHUM), the supply air fan (EESAF), the return
air fan (EERAF), and the total electric energy consumption (EETOT), with and without faults;
in particular, the values associated to the faulty tests have been derived as outputs of the
TRNSYS model by using the measured data as inputs, while the values associated to the
fault free tests have been predicted by the coupling of the ANN16 and the TRNSYS model.
Moreover, Table 14 reports the energy percentage difference (EPD) that has been valuated
as follows:

EPD =
EEw/o_fault,i−EEfault,i

EEw/o_fault,i
× 100 (19)
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where EEw/o_fault,i and EEfault,i are, respectively, the electric energy consumption of AHU
component for the case without faults and with one of the above-mentioned faults.

Table 14. Electric energy consumption with and without faults.

ID Test
Electric Energy Consumption

EEHP
(kWh)

EERS
(kWh)

EEHUM
(kWh)

EESAF
(kWh)

EERAF
(kWh)

EETOT
(kWh)

Summer
tests

Test 5

With fault 1 (experimental) 0.28 19.37 0.00 0.17 0.43 20.25

Without fault (predicted) 9.43 18.99 4.75 1.29 0.43 34.89

EPD +97% −2% +100% +87% 0% +42%

Test 6

With fault 2 (experimental) 0.29 16.68 9.00 1.04 0.12 27.13

Without fault (predicted) 5.45 13.88 7.09 1.04 0.35 27.81

EPD +95% −20% −27% 0% +66% +2%

Test 7

With fault 3 (experimental) 0.22 7.19 2.65 0.56 0.19 10.81

Without fault (predicted) 4.35 6.91 2.34 0.56 0.19 14.35

EPD +95% −4% −13% 0% 0% +25%

Test 8

With fault 4 (experimental) 0.22 0.99 1.48 0.72 0.24 3.65

Without fault (predicted) 4.94 10.13 2.96 0.72 0.24 18.99

EPD +96% +90% +50% 0% 0% +81%

Test 9

With fault 5 (experimental) 2.65 8.76 0.00 0.74 0.25 12.40

Without fault (predicted) 3.90 10.94 3.88 0.74 0.25 19.71

EPD +32% +20% +100% 0% 0% +37%

Winter tests

Test 14

With fault 1 (experimental) 13.13 8.49 11.04 0.17 0.61 33.44

Without fault (predicted) 16.30 13.56 16.16 1.81 0.61 48.44

EPD +19% +37% +32% +91% 0% +31%

Test 15

With fault 2 (experimental) 28.95 20.23 17.70 2.21 0.25 69.34

Without fault (predicted) 20.90 21.01 19.36 2.21 0.74 64.22

EPD −39% +4% +9% 0% +66% −8%

Test 16

With fault 3 (experimental) 0.61 16.27 0.00 1.70 0.57 19.15

Without fault (predicted) 16.37 12.26 14.00 1.70 0.57 44.90

EPD +96% −33% +100% 0% 0% +57%

Test 17

With fault 4 (experimental) 0.61 0.37 7.65 1.89 0.63 11.15

Without fault (predicted) 14.85 18.06 9.31 1.89 0.63 44.74

EPD +96% +98% +18% 0% 0% +75%

Test 18

With fault 5 (experimental) 9.05 11.24 0.00 1.78 0.60 22.67

Without fault (predicted) 16.20 17.10 15.35 1.78 0.60 51.03

EPD +44% +34% +100% 0% 0% +56%

5.4. Discussion

With respect to the case without faults, Tables 11 and 14 indicate the effects of the
occurrence of fault 1 (velocity of supply air fan kept reduced at 20% instead of the nominal
value of 50%):

• During summer (test n. 5) it strongly reduces both the thermal comfort time (66%) and
the hygrometric comfort time (71%), while significantly lowering the overall electric
energy consumption (42%) thanks to reduced consumption of the heat pump (97%),
the steam humidifier (100%), and the supply air fan (87%);

• During winter (test n. 14) it decreases the hygrometric comfort time (38%), without
significant variation of the hygrometric comfort time (1%), while considerably lower-
ing the total electric energy consumption (31%) thanks to reduced consumption of the
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refrigerating system (37%), the heat pump (19%), the steam humidifier (32%), and the
supply air fan (91%).

With respect to the case without fault, Tables 11 and 14 demonstrate the effects of the
occurrence of fault 2 (velocity of return air fan kept reduced at 20% instead of the nominal
value of 50%):

• During summer (test n. 6) slightly decreases both the thermal comfort time (8%) and
the hygrometric comfort time (7%), while slightly reducing the overall electric energy
consumption (2%) because of the lower consumption of both the heat pump (95%)
and return air fan (66%);

• During winter (test n. 15) slightly decreases the hygrometric comfort time (4%),
without relevant variation of the hygrometric comfort time (1%), while increasing the
overall electric energy consumption (8%) due to greater consumption of heat pump
(39%).

With respect to the case without fault, Tables 11 and 14 show how the occurrence of
the fault 3 (the opening percentage of the valve regulating the flow to the post-hating coil
kept closed instead of allowing its normal operation in the range of 0 to 100 according to
the automatic control logic):

• During summer (test n. 7) strongly reduces the thermal comfort time (69%), without
significant variation of the hygrometric comfort time (1%), while lowering the overall
electric energy consumption (25%) because of the reduced consumption of the heat
pump (95%);

• During winter (test n. 16) strongly reduces the thermal comfort time (70%) and slightly
decreases the hygrometric comfort time (14%), while significantly lowering the overall
electric energy consumption (57%) because of the reduced consumption of both the
heat pump (96%), and the steam humidifier (100%).

With respect to the case without fault, Tables 11 and 14 highlight how the occurrence
of the fault 4 (the opening percentage of the valve regulating the flow to the cooling coil
kept closed instead of allowing its normal operation in the range of 0 to 100 according to
the automatic control logic):

• During summer (test 8) significantly decreases the thermal comfort time (63%) and
slightly reduces the hygrometric comfort time (4%), while greatly lowering the overall
electric energy demand (81%) because of the reduced consumption of the heat pump
(96%), the refrigerating system (90%), and the steam humidifier (50%);

• During winter (test n. 17) significantly decreases the thermal comfort time (52%) and
slightly reduces the hygrometric comfort time (15%), while considerably lowering the
overall electric energy demand (75%) because of the reduced consumption of the heat
pump (96%), the refrigerating system (98%), and the steam humidifier (18%).

With respect to the case without fault, Tables 11 and 14 indicate how the occurrence of
the fault 5 (the opening percentage of the valve regulating the flow to the steam humidifier
kept closed instead of allowing its normal operation in the range of 0 to 100 according to
the automatic control logic):

• During summer (test n. 9) reduces the thermal comfort time by a slight amount
(3%) and decreases the hygrometric comfort time (16%), while decreasing the overall
electric energy demand (37%) because of the lower consumption of the heat pump
(32%), the refrigerating system (20%), and the humidifier (100%);

• During winter (test n. 18) reduces the thermal comfort time by a slight amount (6%)
and significantly decreases the hygrometric comfort time (28%), while decreasing the
overall electric energy demand (56%) because of the lower consumption of the heat
pump (44%), the refrigerating system (34%), and the humidifier (100%).

Table 13 underlines that:

• The fault 1 significantly affects the values of σ for both TRA and RHRA under summer
conditions as well as the values of σ for RHRA only under winter conditions;
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• The effects of the fault 2 are negligible with reference to the values of both σ and µ for
both TRA and RHRA under both summer and winter conditions;

• The fault 3 greatly affects the values of σ for TRA under summer conditions, the values
of both σ and µ for TRA under winter conditions, as well as the values of σ for RHRA
under winter conditions;

• The impact of the fault 4 is significant with reference to the values of σ for TRA under
summer conditions as well as the values of σ for both TRA and RHRA under winter
conditions;

• The fault 5 significantly affects only the values of σ associated to RHRA under winter
conditions.

6. Conclusions

In this study, a database consisting of experimental measurements of key operating
parameters during transient and steady-state operation of a typical HVAC system under
both normal and faulty conditions has been obtained with reference to a wide range of
summer and winter scenarios. In particular, five different typical faults (affecting the
supply air fan, the return air fan, the post-heating coil valve, the cooling coil valve, and the
humidifier valve) have been artificially implemented in the HVAC system and analyzed.

An artificial neural network-based model of the HVAC system has also been developed
in the MATLAB environment [32] and contrasted with measured data, highlighting that
it is able to provide a rigorous characterization of the HVAC system’s steady-state and
transient performance under both normal and faulty scenarios. In more detail, the model
is characterized by average values of coefficient of determination R2 in predicting supply
air temperature, supply air relative humidity, opening percentage of the post-heating
coil valve, opening percentage of the cooling coil valve, and opening percentage of the
humidifier valve very close to the maximum values and, respectively, equal to 0.95 ◦C,
0.93%, 0.95%, 0.97%, and 0.96%.

The ANN-based model has also been coupled with a dynamic simulation model
developed in TRNSYS environment [33] and then the experimental operation of the HVAC
unit without faults has been compared with the predicted performance of the same system
while operating with one of the five above-mentioned faults under the same boundary
conditions. The results of this analysis highlighted that:

• Fault 3 is associated with the valve supplying the post-heating coil (always kept
closed) is the one significantly affecting indoor thermal comfort, with a reduction of
about 68% (during summer) and 70% (during winter) with respect to the fault free
conditions;

• Fault 1 is associated with the supply air fan (kept at a reduced velocity of 20% instead
of the nominal value of 50%) is the one considerably influencing indoor hygrometric
comfort, with a reduction of about 71% (during summer) and 38% (during winter) in
comparison to the fault free tests;

• Fault 4 is associated with the valve supplying the cooling coil (always kept closed) is
the one causing important variation in terms of overall electric energy consumption
(81% during summer and 75% during winter) with reference to the fault free scenarios.

In addition, the following results in terms of standard deviation σ and arithmetic
mean µ of return air temperature (TRA) and relative humidity (RHRA) have been obtained:

• The fault 1 significantly affects the values of σ for both TRA and RHRA under summer
conditions as well as the values of σ for RHRA only under winter conditions;

• The fault 3 greatly affects the values of σ for TRA under summer conditions, the values
of both σ and µ for TRA under winter conditions, as well as the values of σ for RHRA
under winter conditions;

• The impact of the fault 4 is significant with reference to the values of σ for TRA under
summer conditions as well as the values of σ for both TRA and RHRA under winter
conditions;
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• The fault 5 significantly affects only the values of σ associated to RHRA under winter
conditions.

Both the labeled measured data as well as the developed simulation models (to-
gether with their learning/validation datasets) will be uploaded in a public data repository
and utilization will be permitted to readers for institutional and research purposes. This
will allow AFDD developers, AFDD users, and research organizations to (i) explore the
symptoms associated to the selected faults on the performance of a typical HVAC system,
(ii) exploit the experimentally validated simulation model in order to generate opera-
tional data for assisting further research for AFDD of HVAC units, (iii) compare accuracy
among AFDD methods, and (iv) identify research gaps to be addressed and future AFDD
developments.

The presented experimental database will be extended over time with the aim of
investigating a broader range of boundary conditions as well as different fault types. In
particular, in the future the authors would like to perform additional tests with the aim
of analyzing the effects associated to new faults regarding sensors (e.g., positive and
negative offsets in measuring return air relative humidity and temperature), devices (e.g.,
blockage of air dampers and coil/humidifier valves at different levels), equipment (e.g.,
complete failure of fans), or controllers (e.g., frozen control signal for coils, dampers, or
fans). A measurement time step equal to 1 s will be used during future experiments in
order to more carefully take into account the response time of some HVAC components.
In addition, the authors will extend the present analysis (where the faults have been
introduced at the beginning of the faulty tests and maintained during the entire duration
of the experiments) by also considering (i) faults arising suddenly during HVAC operation
and remaining at a constant level after occurrence as well as (ii) shorter faulty scenarios
where a component is ‘sticky’ and takes more time to be moved/operated with respect to
normal operation. Finally, the authors in the future would like to (i) compare experimental
fault free operation against experimental faulty performance of the HVAC system working
under same boundary conditions, (ii) refine and improve the simulation model, and
(iii) develop and test an innovative method for performing AFDD analyses based on
supervised data-driven methods customized on experimental results.

Author Contributions: Conceptualization, A.R., F.G., E.E. and L.M.; methodology, A.R., F.G., M.M.,
E.E. and L.M.; software, A.R., F.G., S.S., M.M. and E.E.; validation, A.R. and F.G.; formal analysis, A.R.,
F.G., S.S., M.M., E.E. and L.M.; investigation, A.R., F.G. and M.M.; resources, A.R., S.S., M.M. and
L.M.; data curation, A.R., F.G. and M.M.; writing—original draft preparation, A.R., F.G., S.S., M.M.,
E.E. and L.M.; writing—review and editing, A.R., F.G., S.S., M.M., E.E. and L.M.; visualization, A.R.,
F.G., S.S., M.M., E.E. and L.M.; supervision, A.R., S.S., M.M., E.E. and L.M.; project administration,
A.R. and L.M.; funding acquisition, A.R., M.M. and L.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was undertaken as part of the program “PON FSE-FESR Ricerca e
Innovazione 2014–2020” of the Italian Ministry of Education, University and Research, Action I.1
“Dottorati Innovativi con caratterizzazione industriale”.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Energies 2021, 14, 5362 36 of 41

Appendix A

Table A1. Properties of walls of the test room.

Material
(from Outside to

Inside)

Thickness
(m)

Thermal
Conductivity

(W/mK)

Thermal Resistance
(m2K/W)

Heat Transfer
Area (m2)

Ceiling

Plasterboard 0.0125 0.250 0.050

2.023 16.00Rock wool 0.0800 0.042 1.905

Polyurethane panel 0.0150 0.220 0.068

Floor

Subfloor 0.1000 1.350 0.074

3.107 16.00

Tiles 0.0500 2.100 0.024

Polystyrene panel 0.0800 0.035 2.286

Galvanized steel slab 0.0020 52.000 0.000

Tiles 0.0100 1.050 0.010

West and East
oriented

vertical walls

Plasterboard 0.0125 0.250 0.050

2.005 14.40Rock wool 0.0800 0.042 1.905

Radiant panel 0.0150 0.300 0.050

South and
North oriented
vertical walls

Plasterboard 0.0125 0.250 0.050

1.998 14.40Rock wool 0.0800 0.042 1.905

Fiber-cement panel 0.0150 0.350 0.043

Door Soft wood 0.0500 0.140 0.357 0.357 1.68
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Figure A2. (a) COP of the HP and (b) EER of the RS upon varying outside air temperature and supply fluid temperature.
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Figure A3. Experimental air volumetric flow rate and power consumption suggested by the manufacturer as a function of
fan velocity for the supply air fan (a) and the return air fan (b).

Nomenclature
AFDD Automatic fault detection and diagnosis
AHU Air handling unit
ANN Artificial neural network
CAV Constant air volume
CC Cooling coil
COP Coefficient of performance (-)
CT Cold tank
DBRH Deadband of RHSP,Room (%)
DBT Deadband of TSP,Room (◦C)
DEA Exhaust air damper
DHRS Damper of heat recovery system
di Value at time step i
DOA Outside air damper
DRA Return air damper
EEfault,i Electric energy consumption of AHU component with fault (kWh)
EEHP Electric energy consumption of the HP (kWh)
EEHUM Electric energy consumption of the HUM (kWh)
EER Energy efficiency ratio (kWh)
EERAF Electric energy consumption of the RAF (kWh)
EERS Electric energy consumption of the RS (kWh)
EESAF Electric energy consumption of the SAF (kWh)
EETOT Overall electric energy consumption (kWh)
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EEw/o_fault,i Electric energy consumption of AHU component without faults (kWh)
EPD Energy percentage difference (%)
gpred,i Predicted value at time step i
gexp,i Measured value at time step i
gpred Arithmetic mean of predicted values
HP Heat pump
HRS Static cross-flow heat recovery system
HT Hot tank
HUM Humidifier
HVAC Heating, ventilation and air-conditioning
MSE Mean square error
N Number of points
OAD Outside air duct
OAFil Outside air filter
OLRAF Velocity of RAF (%)
OLSAF Velocity of SAF (%)
OPDEA Opening percentage of DEA (%)
OPDHRS Opening percentage of DHRS (%)
OPDOA Opening percentage of DOA (%)
OPDRA Opening percentage of DRA (%)
OPV_CC Opening percentage of valve regulating the flow entering CC (%)
OPV_CC−1 Opening percentage of valve regulating the flow entering CC at previ-

ous minute (%)
OPV_CC,pred Predicted opening percentage of valve regulating the flow entering

CC (%)
OPV_CC,exp Experimental opening percentage of valve regulating the flow enter-

ing CC (%)
OPV_HUM Opening percentage of valve regulating the flow entering HUM (%)
OPV_HUM-1 Opening percentage of valve regulating the flow entering HUM at

previous minute (%)
OPV_HUM,pred Predicted opening percentage of valve regulating the flow entering

HUM (%)
OPV_HUM,exp Experimental opening percentage of valve regulating the flow enter-

ing HUM (%)
OPV_PostHC Opening percentage of valve regulating the flow entering PostHC (%)
OPV_PostHC-1 Opening percentage of valve regulating the flow entering the PostHC

at previous minute (%)
OPV_PostHC,pred Predicted opening percentage of valve regulating the flow entering

PostHC (%)
OPV_PostHC,exp Experimental opening percentage of valve regulating the flow enter-

ing PostHC (%)
OPV_PreHC Opening percentage of valve regulating the flow entering PreHC (%)
Pel

RAF Power consumption of RAF (W)
Pel

SAF Power consumption of SAF (W)
PID Proportional-integral-derivative
PostHC Post-heating coil
PreHC Pre-heating coil
QV

RAF Air volumetric flow rate of RAF (m3/h)
QV

SAF Air volumetric flow rate of SAF (m3/h)
R2 Coefficient of determination (-)
RAD Return air duct
RAF Return air fan
RAFil Return air filter
RHBEA Air relative humidity outside the room (%)
RHRA Return air relative humidity (%)



Energies 2021, 14, 5362 39 of 41

RHRA,exp,fault Measured return air relative humidity under faulty conditions (%)
RHRA,pred,w/o_fault Predicted return air relative humidity without faults (%)
RHSA Supply air relative humidity (%)
RHSA-1 Supply air relative humidity at previous minute (%)
RHSP,Room Target of indoor air relative humidity (%)
RMSE Root mean square error
RS Refrigerating unit
SAD Supply air duct
SAF Supply air fan
SAFil Supply air filter
TA,out,CC Air temperature at CC outlet (◦C)
TBEA Air temperature outside the room (◦C)
TOA External air temperature (◦C)
TRA Return air temperature (◦C)
TRA,exp,fault Measured return air temperature under faulty conditions (◦C)
TRA,pred,w/o_fault Predicted return air temperature without faults (◦C)
TSA Supply air temperature (◦C)
TSA-1 Supply air temperature at previous minute (◦C)
TSP,Room Target of indoor air temperature (◦C)
VAV Variable air volume
VCC 3-way valve of CC
VHUM Valve of HUM
VPostHC 3-way valve of PostHC
VPreHC 3-way valve of PreHC
Xfault,i Arithmetic mean or standard deviation with fault
Xw/o_fault,i Arithmetic mean or standard deviation without faults
%D Percentage difference (%)
∆RH Difference between current return air relative humidity and related

target (%)
∆T Difference between current return air temperature and related target

(◦C)
∆OPV_CC Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of OPV_CC (%)
∆OPV_HUM Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of OPV_HUM (%)
∆OPV_PostHC Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of OPV_PostHC (%)
∆RHSA Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of RHSA (%)
∆TSA Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of TSA (◦C)
εi Instantaneous error
|εi| Instantaneous absolute error
ε Average error
|ε| Average absolute error
µ Arithmetic mean
σ Standard deviation
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