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a b s t r a c t 

This paper presents the governing equations and analytical solutions of the classical and shear deformation the- 

ories of functionally graded axisymmetric circular plates. The classical, first-order, and third-order shear defor- 

mation theories are presented, accounting for through-thickness variation of two-constituent functionally graded 

material, modified couple stress effect, and the von Kármán nonlinearity. Analytical solutions for bending of the 

linear theories, some of which are not readily available in the literature, are included to show the influence of 

the material variation, boundary conditions, and loads. 
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. Background 

Recently, the authors have published a comprehensive paper on the-

ries and analytical solutions of the bending of functionally graded ma-

erial (FGM) beams [1] . The present paper considers functionally graded

xisymmetric circular plates. Like beam theories, plate theories are de-

ived from the three-dimensional elasticity theory by making certain

implifying assumptions concerning the kinematics of deformation and

tress states. The present study has the dual purpose of presenting the

lassical, first-order, and third-order theories of circular plates and ana-

ytical solutions of the associated linear theories for the case of bending.

he theories to be described account for the through-thickness variation

f two-constituent material, modified couple stress effect, and geometric

onlinearity in the form of the von Kármán nonlinear strains. 

For the convenience of analysis, we use the cylindrical coordinate

ystem ( 𝑟, 𝜃, 𝑧 ) to describe the deformation and stress state in circular

lates. The word “axisymmetry ” refers to the case in which the solution

i.e., displacements as well as stresses) is independent of the angular

oordinate 𝜃 (see Fig. 1 ). This is possible if and only if the geometry,

aterial properties, loads, and boundary conditions are also indepen-

ent of 𝜃. We assume such is the case in this paper. 

The variation of properties through the thickness is considered to

e of the power law type. A typical material property 𝑃 is varied as a

unction of the thickness coordinate 𝑧 as 

 ( 𝑧 ) = 

(
𝑃 1 − 𝑃 2 

)
𝑓 ( 𝑧 ) + 𝑃 2 , 𝑓 ( 𝑧 ) = 

(1 
2 
+ 

𝑧 

ℎ 

)𝑛 
(1)
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here 𝑃 1 and 𝑃 2 are the material properties of material 1 (at the top) and

 (at the bottom), respectively, and 𝑛 is the volume fraction exponent

power-law index). Note that when 𝑛 = 0 , we obtain the single-material

eam (with property 𝑃 1 ). 

A large number of papers on modified couple stress theories for

eams and plates, including circular plates, can be found in the liter-

ture (see, e.g., [2] ). The modified couple stress theory brings a single

ength scale through a phenomenological constitutive model relating the

ouple stress to the curvature relation (see, e.g., [3–9] ). The contribu-

ion due to the couple stress is included into a plate theory by modifying

he strain energy expression of the plate. To this end, suppose that u de-

otes the displacement vector of an arbitrary point in the plate. Then

he rotation vector 𝝎 , which represents the macro-rotation, is defined

s 

 = 

1 
2 
𝛁 × 𝐮 (2)

he curvature tensor 𝝌 represents the rate of change of rotations, which

re assumed to be small: 

= 

1 
2 
[
𝛁 𝝎 + ( 𝛁 𝝎 ) T 

]
(3) 

he modified couple stress theory is based on the hypothesis that the

ate of change of macro-rotations cause additional stresses, called couple

tresses , in the continuum. The modified couple stress tensor m is related

o the curvature tensor 𝝌 through the constitutive relations [10] : 

 = 2 𝐺𝓁 2 𝝌 (4)

here 𝓁 is the length scale parameter and 𝐺 is the shear modulus. 
. 
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Fig. 1. Geometry and coordinate system used for circular plates. 
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The strain energy potential of a circular plate is modified to account

or the energy due to modified couple stress as 

 = 

1 
2 ∫

𝑏 

𝑎 

[ 
∫

ℎ 

2 

− ℎ 2 

( 𝝈 ∶ 𝜺 + 𝐦 ∶ 𝝌) 𝑑𝑧 

] 
𝑑𝑥 (5)

here ℎ is the thickness of the plate, 𝑏 is the inner radius of an annu-

ar plate, 𝑎 is the outer radius, 𝝈 is the Cauchy stress tensor, 𝜺 is the

implified Green–Lagrange strain tensor, 𝐦 is the deviatoric part of the

ymmetric couple stress tensor, and 𝝌 is the symmetric curvature ten-

or. In the coming sections, these relations will be specialized to various

late theories. 

. Mechanics preliminaries 

.1. Modified Green–Lagrange strains 

Let u denote the displacement vector with components ( 𝑢 𝑟 , 𝑢 𝜃 , 𝑢 𝑧 ) in

he ( 𝑟, 𝜃, 𝑧 ) coordinate directions, respectively. Due to the assumed ax-

symmetry (i.e., the material properties, loads, and boundary conditions

re independent of the coordinate 𝜃), we have 𝑢 𝜃 = 0 and 𝑢 𝑟 and 𝑢 𝑧 are

ndependent of 𝜃. In addition, if we assume the inextensibility of the

ransverse normal lines, then 𝑢 𝑧 is only a function of the radial coordi-

ate 𝑟 . 

The modified Green–Lagrange strain tensor that accounts for mod-

rate rotations of normal lines perpendicular to the plane of the plate is

iven by (see Reddy [11] ) 

 ≈ 1 
2 

[ 
𝛁 𝐮 + ( 𝛁 𝐮 ) T + 

𝜕𝑢 𝑧 

𝜕𝑟 

𝜕𝑢 𝑧 

𝜕𝑟 
�̂� 𝑟 ̂𝐞 𝑟 
] 
≡ 𝜺 (6)

here ( ̂𝐞 𝑟 , ̂𝐞 𝜃, ̂𝐞 𝑧 ) are the basis vectors in the cylindrical coordinate sys-

em. Thus, the nonzero strain components in the cylindrical coordinate

ystem for the axisymmetric case are: 

 𝑟𝑟 = 

𝜕𝑢 𝑟 

𝜕𝑟 
+ 

1 
2 

( 
𝜕𝑢 𝑧 

𝜕𝑟 

) 2 
, 𝜀 𝑟𝑧 = 

1 
2 

( 
𝜕𝑢 𝑟 

𝜕𝑧 
+ 

𝜕𝑢 𝑧 

𝜕𝑟 

) 
, 𝜀 𝜃𝜃 = 

𝑢 𝑟 

𝑟 
. (7)

.2. Curvature tensor 

The only nonzero component of the rotation vector 𝝎 for axisymmet-

ic deformation is 

 𝜃 = 

1 
2 

( 
𝜕𝑢 𝑟 

𝜕𝑧 
− 

𝜕𝑢 𝑧 

𝜕𝑟 

) 
(8) 

hen the nonzero components of 𝝌 for the axisymmetric case are 

𝑟𝜃 = 

1 
2 

( 
𝜕𝜔 𝜃

𝜕𝑟 
− 

𝜔 𝜃

𝑟 

) 
= 

1 
4 

( 
𝜕 2 𝑢 𝑟 
𝜕 𝑧𝜕 𝑟 

− 

𝜕 2 𝑢 𝑧 

𝜕𝑟 2 

) 
− 

1 
𝑟 

( 
𝜕𝑢 𝑟 

𝜕𝑧 
− 

𝜕𝑢 𝑧 

𝜕𝑟 

) 
, (9a) 

𝑧𝜃 = 

1 𝜕𝜔 𝜃 = 

1 
( 
𝜕 2 𝑢 𝑟 − 

𝜕 2 𝑢 𝑧 
) 
. (9b) 
2 𝜕𝑧 4 𝜕𝑧 2 𝜕 𝑧𝜕 𝑟 

2 
.3. Stress–strain relations 

For a two-constituent functionally graded linear elastic material, the

lane stress–strain equations relating the nonzero stresses ( 𝜎𝑟𝑟 , 𝜎𝜃𝜃, 𝜎𝑟𝑧 )

o the nonzero strains ( 𝜀 𝑟𝑟 , 𝜀 𝜃𝜃 , 𝜀 𝑟𝑧 ) of the axisymmetric case are 

 

 

 

 

 

𝜎𝑟𝑟 
𝜎𝜃𝜃
𝜎𝑟𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ = 

𝐸( 𝑧 ) 
1 − 𝜈2 

⎡ ⎢ ⎢ ⎣ 
1 𝜈 0 
𝜈 1 0 
0 0 1− 𝜈

2 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑟𝑟 
𝜀 𝜃𝜃
2 𝜀 𝑟𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ (10) 

here Young’s modulus 𝐸 varies with 𝑧 according to 

( 𝑧 ) = 

(
𝐸 1 − 𝐸 2 

)
𝑣 1 ( 𝑧 ) + 𝐸 2 , 𝑣 1 ( 𝑧 ) = 

(1 
2 
+ 

𝑧 

ℎ 

)𝑛 
(11)

nd Poisson’s ratio 𝜈 is assumed to be a constant. The modified couple

tress constitutive relation becomes 

 𝑟𝜃 = 2 𝐺𝓁 2 𝜒𝑟𝜃, 𝐺 = 

𝐸 

2(1 + 𝜈) 
, (12)

here 𝑚 𝑟𝜃 is the nonzero component of the symmetric couple stress ten-

or m . 

.4. Strain energy functional 

According to the modified couple stress theory, the strain energy

otential for linear elastic case can be expressed as (the common factor

 𝜋 is omitted throughout the development) 

 = 

1 
2 ∫

𝑎 

0 

[ 
∫

ℎ 

2 

− ℎ 2 

( 𝝈 ∶ 𝜺 + 𝐦 ∶ 𝝌) 𝑑𝑧 

] 
𝑟𝑑𝑟 (13a) 

= 

1 
2 ∫

𝑎 

0 

[ 
∫

ℎ 

2 

− ℎ 2 

(
𝜎𝑟𝑟 𝜀 𝑟𝑟 + 𝜎𝜃𝜃 𝜀 𝜃𝜃 + 2 𝜎𝑟𝑧 𝜀 𝑟𝑧 + 2 𝑚 𝑟𝜃 𝜒𝑟𝜃

)
𝑑𝑧 

] 
𝑟𝑑𝑟, (13b) 

here 𝑎 is radius of the plate, 𝝈 is the Cauchy stress tensor, 𝜺 is the sim-

lified Green–Lagrange strain tensor defined in Eq. (6) , m is the devia-

oric part of the symmetric couple stress tensor, and 𝝌 is the symmetric

urvature tensor defined in Eq. (3) . 

. Governing equations of the CPT 

.1. Displacements and strains 

The total displacements ( 𝑢 𝑟 , 𝑢 𝑧 ) along the coordinate directions ( 𝑟, 𝑧 ),

s implied by the Love–Kirchhoff hypothesis for axisymmetric bending

f circular plates, are assumed in the form 

𝐮 = 𝑢 𝑟 ̂𝐞 𝑟 + 𝑢 𝑧 ̂𝐞 𝑧 
 𝑟 ( 𝑟, 𝑧 ) = 𝑢 ( 𝑟 ) − 𝑧 

dw 

dr 
, 𝑢 𝜃 = 0 , 𝑢 𝑧 ( 𝑟, 𝑧 ) = 𝑤 ( 𝑟 ) , 

(14) 

here 𝑢 is the radial displacement and 𝑤 is the transverse deflection

f a point on the midplane of the plate. The Love–Kirchhoff hypothe-

is amounts to neglecting both transverse shear and transverse normal

ffects. 

The von Kármán strains in (7) for the classical plate theory take the

orm 

 𝑟𝑟 = 𝜀 (0) 
𝑟𝑟 

+ 𝑧𝜀 (1) 
𝑟𝑟 
, 𝜀 𝜃𝜃 = 𝜀 

(0) 
𝜃𝜃

+ 𝑧𝜀 
(1) 
𝜃𝜃

(15)

here 

 

(0) 
𝑟𝑟 

= 

𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
, 𝜀 (1) 

𝑟𝑟 
= − 

𝑑 2 𝑤 

𝑑𝑟 2 
(16) 

 

(0) 
𝜃𝜃

= 

𝑢 

𝑟 
, 𝜀 

(1) 
𝜃𝜃

= − 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

he rotation and curvature components are 

𝜔 𝜃 = 

1 
2 

( 
𝑑𝑢 𝑟 

𝑑𝑧 
− 

𝑑𝑢 𝑧 

𝑑𝑟 

) 
= − 

𝑑𝑤 

𝑑𝑟 
, 𝜒𝑧𝜃 = 0 , 

(17) 

𝑟𝜃 = 

1 
( 
𝑑𝜔 𝜃 − 

𝜔 𝜃

) 
= 

1 
( 
− 

𝑑 2 𝑤 + 

1 𝑑𝑤 

) 

2 𝑑𝑟 𝑟 2 𝑑𝑟 2 𝑟 𝑑𝑟 
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Fig. 2. An element of a circular plate with stress resultants at a “point ”. 
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.2. Equations of equilibrium 

The principle minimum total potential energy (or the principle of

irtual displacements) can be used to derive the equations of equilib-

ium: 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑟 

)
− 𝑁 𝜃𝜃

]
= 0 (18) 

1 
𝑟 

𝑑 

dr 

(
𝑟𝑁 rz 

)
+ 

1 
𝑟 

𝑑 

dr 

[
𝑑 

dr 

(
𝑟𝑃 𝑟𝜃
)
− 𝑃 𝑟𝜃

]
+ 

1 
𝑟 

𝑑 

dr 

(
𝑟𝑁 rr 

dw 

dr 

)
+ 𝑞 = 0 (19) 

 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃

]
+ 𝑁 𝑟𝑧 = 0 , (20) 

here 𝑞 = 𝑞( 𝑟, 𝑡 ) is the distributed transverse load, and 𝑁 𝑟𝑟 , 𝑁 𝜃𝜃 , 𝑀 𝑟𝑟 ,

 𝜃𝜃 , and 𝑃 𝑟𝜃 are the stress resultants (see Fig. 2 for the notation), 

𝑁 𝑟𝑟 ( 𝑟 ) = ∫
ℎ 

2 

− ℎ 2 

𝜎𝑟𝑟 𝑑𝑧, 𝑁 𝜃𝜃( 𝑟 ) = ∫
ℎ 

2 

− ℎ 2 

𝜎𝜃𝜃 𝑑𝑧 

 𝑟𝑟 ( 𝑟 ) = ∫
ℎ 

2 

− ℎ 2 

𝜎𝑟𝑟 𝑧 𝑑𝑧, 𝑀 𝜃𝜃( 𝑟 ) = ∫
ℎ 

2 

− ℎ 2 

𝜎𝜃𝜃𝑧 𝑑𝑧 (21) 

𝑃 𝑟𝜃( 𝑟 ) = ∫
ℎ 

2 

− ℎ 2 

𝑚 𝑟𝜃 𝑑𝑧, 

The boundary conditions involve specifying one element of each of

he following duality pairs: 

𝑢 or 𝑟𝑁 𝑟𝑟 , 

𝑤 or 𝑟 

[ 
𝑉 𝑟 + 

𝑑 

𝑑𝑟 

(
𝑟𝑃 𝑟𝜃
)
+ 𝑃 𝑟𝜃

] 
≡ 𝑟 ̂𝑉 𝑟 , (22) 

 

𝜕𝑤 

𝜕𝑟 
or 𝑟𝑀 𝑟𝑟 + 𝑟𝑃 𝑟𝜃 ≡ 𝑟 �̂� 𝑟𝑟 . 

here 𝑉 𝑟 is the effective transverse shear force acting in the 𝑟𝑧 -plane 

 𝑟 = 𝑁 𝑟𝑧 + 𝑁 𝑟𝑟 

𝑑𝑤 

𝑑𝑟 
= 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃 + 𝑟𝑁 𝑟𝑟 

𝑑𝑤 

𝑑𝑟 

]
(23)

he equations of equilibrium and the duality pairs for the case in which

he couple stress effect is not considered are obtained by setting 𝑃 𝑟𝜃 = 0 .

.3. Plate constitutive relations 

The stress resultants 𝑁 𝑟𝑟 , 𝑁 𝜃𝜃 , 𝑀 𝑟𝑟 , 𝑀 𝜃𝜃 , 𝑃 𝑟𝜃 of the classical plate

heory are related to the displacements ( 𝑢, 𝑤 ) according to the following

quations: 

 𝑟𝑟 = 𝐴 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
− 𝐵 𝑟𝑟 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (24a) 
3 
 𝜃𝜃 = 𝐴 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
− 𝐵 𝑟𝑟 

( 
𝜈
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (24b) 

 𝑟𝑟 = 𝐵 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
− 𝐷 𝑟𝑟 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (24c) 

 𝜃𝜃 = 𝐵 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
− 𝐷 𝑟𝑟 

( 
𝜈
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (24d) 

 𝑟𝜃 = 𝑆 𝑟𝜃

( 
− 

𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (24e) 

 𝑟𝑧 = 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃

]
, (24f) 

here 𝐴 𝑟𝑟 , 𝐵 𝑟𝑟 , 𝐷 𝑟𝑟 , and 𝑆 𝑟𝜃 are the extensional, extensional-bending,

ending, and shear stiffnesses, respectively: 

𝐴 𝑟𝑟 = 

1 
(1 − 𝜈2 ) ∫

ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑑 𝑧, 𝐵 𝑟𝑟 = 

1 
(1 − 𝜈2 ) ∫

ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑧 𝑑 𝑧 

(25) 

 𝑟𝑟 = 

1 
(1 − 𝜈2 ) ∫

ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑧 2 𝑑 𝑧, 𝑆 𝑟𝜃 = 

𝓁 2 

2(1 + 𝜈) ∫
ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑑 𝑧 

or the material distribution through the thickness according to Eq. (11) ,

he following integrals are useful in computing 𝐴 𝑟𝑟 , 𝐵 𝑟𝑟 , and so on: 

∫
ℎ 

2 

− ℎ 2 

𝑣 1 ( 𝑧 ) 𝑑𝑧 = 

ℎ 

𝑛 + 1 
, 

∫
ℎ 

2 

− ℎ 2 

𝑣 1 ( 𝑧 ) 𝑧 𝑑𝑧 = 

𝑛ℎ 2 

2( 𝑛 + 1)( 𝑛 + 2) 
, (26) 

ℎ 

2 

− ℎ 2 

𝑣 1 ( 𝑧 ) 𝑧 2 𝑑𝑧 = 

(2 + 𝑛 + 𝑛 2 ) ℎ 3 ( 𝑟 ) 
4( 𝑛 + 1)( 𝑛 + 2)( 𝑛 + 3) 

. 

.4. Displacement formulation of the CPT 

We now can write the governing equations of the CPT solely in terms

f 𝑢 and 𝑤 with the help of the plate constitutive equations. The resulting

ifferential equations would be second order in 𝑢 and fourth order in 𝑤 ,

he total order being six. Here we present such equations for the case in

hich the couple stress effect is omitted. 

The equilibrium equations of the CPT without the couple stress effect

re obtained by setting 𝑃 𝑟𝜃 to zero: 

 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑟 

)
− 𝑁 𝜃𝜃

]
= 0 , (27) 

 

1 
𝑟 

𝑑 

𝑑𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃

]
− 

1 
𝑟 

𝑑 

𝑑𝑟 

[
𝑟 

(
𝑁 𝑟𝑟 

𝑑𝑤 

𝑑𝑟 

)]
− 𝑞 = 0 . (28) 

ubstituting for 𝑁 𝑟𝑟 , 𝑁 𝜃𝜃 , 𝑀 𝑟𝑟 , and 𝑀 𝜃𝜃 from Eqs. (24a) –(24f) into the

quations of equilibrium, Eqs. (27) and (28) , we obtain 

 

1 
𝑟 

𝑑 

𝑑𝑟 

{ 

𝑟𝐴 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

( 
𝑑𝑤 

𝑑𝑟 

) 
2 + 𝜈

𝑢 

𝑟 

] 
− 𝑟𝐵 𝑟𝑟 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 

) } 

+ 𝐴 𝑟𝑟 

1 
𝑟 

[
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)
2 
]
− 𝐵 𝑟𝑟 

1 
𝑟 

( 
𝜈
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
= 0 , (29) 

 

1 
𝑟 

𝑑 

𝑑𝑟 

[ 
𝑑 

𝑑𝑟 

{ 

𝑟𝐵 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

( 
𝑑𝑤 

𝑑𝑟 

) 
2 + 𝜈

𝑢 

𝑟 

] 
− 𝑟𝐷 𝑟𝑟 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 

) } 

− 𝐵 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

( 
𝑑𝑤 

𝑑𝑟 

) 
2 
] 
+ 𝐷 𝑟𝑟 

( 
𝜈
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) ] 
− 

1 
𝑟 

𝑑 

𝑑𝑟 

{ 

𝐴 𝑟𝑟 𝑟 
𝑑𝑤 

𝑑𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

( 
𝑑𝑤 

𝑑𝑟 

) 2 
+ 𝜈

𝑢 

𝑟 

] 
− 𝐵 𝑟𝑟 𝑟 

𝑑𝑤 

𝑑𝑟 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 

) } 

− 𝑞 = 0 . 
(30) 
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.5. Analytical solutions for bending 

.5.1. Governing equations 

In this section, we develop the exact solutions of the linearized equi-

ibrium equations governing functionally graded material (FGM) circu-

ar plates. Of course, the isotropic plate solutions can be deduced from

he results to be derived here for the FGM plates. 

First, we summarize the relevant equations for the purpose of this

ection. The equations of equilibrium in terms of the stress resultants

re (without the couple stress effect and nonlinear terms): 

 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑟 

)
− 𝑁 𝜃𝜃

]
= 0 , (31) 

 

1 
𝑟 

𝑑 

𝑑𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃

]
− 𝑞 = 0 . (32) 

he bending Eq. (32) can be cast as a pair of equations: 

 

1 
𝑟 

𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑧 

)
− 𝑞 = 0 , (33) 

 

𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
+ 𝑀 𝜃𝜃 + 𝑟𝑁 𝑟𝑧 = 0 . (34) 

quation (34) defines the bending moment–shear force relationship: 

𝑁 𝑟𝑧 = 

𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃 . 

In the linearized theory, the stress resultants 𝑁 𝑟𝑟 , 𝑁 𝜃𝜃 , 𝑀 𝑟𝑟 , and 𝑀 𝜃𝜃

re related to the displacements by 

 𝑟𝑟 = 𝐴 𝑟𝑟 

(
𝑑𝑢 

𝑑𝑟 
+ 𝜈

𝑢 

𝑟 

)
− 𝐵 𝑟𝑟 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (35) 

 𝜃𝜃 = 𝐴 𝑟𝑟 

(
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 

)
− 𝐵 𝑟𝑟 

( 
𝜈
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (36) 

 𝑟𝑟 = 𝐵 𝑟𝑟 

(
𝑑𝑢 

𝑑𝑟 
+ 𝜈

𝑢 

𝑟 

)
− 𝐷 𝑟𝑟 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (37) 

 𝜃𝜃 = 𝐵 𝑟𝑟 

(
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 

)
− 𝐷 𝑟𝑟 

( 
𝜈
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (38) 

𝑟𝑟 = 

𝐸 

(1 − 𝜈2 ) 

[ (
𝑑𝑢 

𝑑𝑟 
+ 𝜈

𝑢 

𝑟 

)
− 𝑧 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 

) ] 
, (39) 

𝜃𝜃 = 

𝐸 

(1 − 𝜈2 ) 

[ (
𝜈
𝑑𝑢 

𝑑𝑟 
+ 

𝑢 

𝑟 

)
− 𝑧 

( 
𝜈
𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) ] 
, (40) 

here the expressions for 𝜎𝑟𝑟 and 𝜎𝜃𝜃 are obtained using Eqs. (10) and

29) (omitting the nonlinear contributions). 

.5.2. Exact solutions 

From Eq. (33) , we obtain 

𝑁 𝑟𝑧 = − ∫
𝑟 

𝑟𝑞( 𝜉) 𝑑𝜉 + 𝑐 1 . (41)

ubstituting Eqs. (37) , (38) , and (41) in Eq. (34) , and integrating twice

ith respect to 𝑟 , we obtain (after some algebraic manipulations) 

 𝑟𝑟 𝑟𝑢 − 𝐷 𝑟𝑟 𝑟 
𝑑𝑤 

𝑑𝑟 
= − ∫

𝑟 { 

𝜉 ∫
𝜉 [ 1 

𝜂 ∫
𝜂

𝜇𝑞( 𝜇) 𝑑𝜇
] 
𝑑𝜂

} 

𝑑𝜉

+ 𝑐 1 
𝑟 2 

4 
( 2 log 𝑟 − 1 ) + 𝑐 2 

𝑟 2 

2 
+ 𝑐 3 . (42) 

ollowing the same procedure with Eq. (31) as we did with Eq. (34) , we

btain 

 𝑟𝑟 𝑟𝑢 − 𝐵 𝑟𝑟 𝑟 
𝑑𝑤 = 𝑐 4 

𝑟 2 + 𝑐 5 . (43) 

𝑑𝑟 2 

4 
rom Eqs. (42) and (43) , we can solve for 𝑟𝑢 and 𝑟 ( 𝑑 𝑤 ∕ 𝑑 𝑟 ) as 

𝑢 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

( 
𝑐 4 
𝑟 2 

2 
+ 𝑐 5 

) 
− �̄� 

∗ 
𝑟𝑟 

( 
𝐹 ( 𝑟 ) + 𝑐 2 

𝑟 2 

2 
+ 𝑐 3 

) 
, (44) 

 

𝑑𝑤 

𝑑𝑟 
= �̄� 

∗ 
𝑟𝑟 

( 
𝑐 4 
𝑟 2 

2 
+ 𝑐 5 

) 
− �̄� 

∗ 
𝑟𝑟 

( 
𝐹 ( 𝑟 ) + 𝑐 2 

𝑟 2 

2 
+ 𝑐 3 

) 
, (45) 

here 

̄
 

∗ 
𝑟𝑟 
= 

𝐴 𝑟𝑟 

𝐷 

∗ 
𝑟𝑟 

, �̄� 

∗ 
𝑟𝑟 
= 

𝐵 𝑟𝑟 

𝐷 

∗ 
𝑟𝑟 

, �̄� 

∗ 
𝑟𝑟 
= 

𝐷 𝑟𝑟 

𝐷 

∗ 
𝑟𝑟 

, 𝐷 

∗ 
𝑥𝑥 

= 𝐴 𝑟𝑟 𝐷 𝑟𝑟 − 𝐵 𝑟𝑟 𝐵 𝑟𝑟 , (46) 

 ( 𝑟 ) = − ∫
𝑟 { 

𝜉 ∫
𝜉 [ 1 

𝜂 ∫
𝜂

𝜇𝑞( 𝜇) 𝑑𝜇
] 
𝑑𝜂

} 

𝑑𝜉 + 𝑐 1 
𝑟 2 

4 
( 2 log 𝑟 − 1 ) . (47) 

ntegrating Eq. (45) once, we arrive at the expression for 𝑤 ( 𝑟 ) 

 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

( 
𝑐 4 
𝑟 2 

4 
+ 𝑐 5 log 𝑟 

) 
− �̄� 𝑟𝑟 

( 
∫

𝑟 1 
𝜉
𝐹 ( 𝜉) 𝑑𝜉 + 𝑐 2 

𝑟 2 

4 
+ 𝑐 3 log 𝑟 + 𝑐 6 

) 
, 

(48) 

The six constants of integration can be determined using six bound-

ry conditions, three at 𝑟 = 𝑏 ( 𝑏 is the inner radius; 𝑏 = 0 for solid plate)

nd three at 𝑟 = 𝑎 (the outer radius) from the duality pairs: 

 𝑢, 𝑁 𝑟𝑟 ) , ( 𝑤, 𝑁 𝑟𝑧 ) , 
(
𝑑𝑤 

𝑑𝑟 
, 𝑀 𝑟𝑟 

)
(49)

o facilitate the determination of the constants of integration using the

oundary conditions, we write 𝑁 𝑟𝑟 and 𝑀 𝑟𝑟 in terms of the displace-

ents 𝑢 and 𝑤 . First, we compute 𝑑 𝑢 ∕ 𝑑 𝑟 and 𝑑 2 𝑤 ∕ 𝑑𝑟 2 : 

𝑑𝑢 

𝑑𝑟 
= �̄� 

∗ 
𝑟𝑟 

( 1 
2 
𝑐 4 − 

𝑐 5 

𝑟 2 

)
− �̄� 

∗ 
𝑟𝑟 

[
𝑑 

𝑑𝑟 

(
𝐹 

𝑟 

)
+ 

1 
2 
𝑐 2 − 

𝑐 3 

𝑟 2 

]
, (50) 

𝑑 2 𝑤 

𝑑𝑟 2 
= �̄� 

∗ 
𝑟𝑟 

(1 
2 
𝑐 4 − 

𝑐 5 

𝑟 2 

)
− �̄� 

∗ 
𝑟𝑟 

[
𝑑 

𝑑𝑟 

(
𝐹 

𝑟 

)
+ 

1 
2 
𝑐 2 − 

𝑐 3 

𝑟 2 

]
, (51) 

ext, we write 𝑁 𝑟𝑟 and 𝑀 𝑟𝑟 in terms of the constants of integration (after

ome simplifications) as: 

 𝑟𝑟 = 

1 + 𝜈

2 
𝑐 4 − 

1 − 𝜈

𝑟 2 
𝑐 5 , (52) 

 𝑟𝑟 = (1 + 𝜈) 
( 𝑐 2 
2 

− 

𝑐 3 

𝑟 2 

)
+ 

𝑑 

𝑑𝑟 

(
𝐹 

𝑟 

)
+ 𝜈

𝐹 

𝑟 2 
. (53) 

he function 𝐹 ( 𝑟 ) depends on 𝑞( 𝑟 ) and the constant of integration 𝑐 1 .

wo cases that are of interest are when 𝑞( 𝑟 ) = 0 and 𝑞( 𝑟 ) = 𝑞 0 , a constant.

hen we have (for 𝑞 0 = 0 or 𝑞 0 is a constant) 

 ( 𝑟 ) = − 

𝑞 0 𝑟 
4 

16 
+ 𝑐 1 

𝑟 2 

4 
( 2 log 𝑟 − 1 ) . (54)

The exact solutions for deflection, moments, and stresses in an FGM

ircular plate with clamped edge, 𝑟 = 𝑎 and subjected to uniformly dis-

ributed load of intensity 𝑞 0 [the coefficients �̄� 

∗ 
𝑟𝑟 

and �̄� 

∗ 
𝑟𝑟 

are defined in

q. (46) ] are 

 ( 𝑟 ) = − ̄𝐵 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
3 

16 
𝑟 

𝑎 

( 
1 − 

𝑟 2 

𝑎 2 

) 
, (55) 

 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
4 

64 

[ 
1 − 

(
𝑟 

𝑎 

)2 ] 2 
. (56) 

xpressions for the stress resultants from Eqs. (35) –(38) become ( 𝑁 𝑟𝑟 =
 𝜃𝜃 = 0 ) 

 𝑟𝑟 ( 𝑟 ) = 

𝑞 0 𝑎 
2 

16 

[ 
(1 + 𝜈) − (3 + 𝜈) 

(
𝑟 

𝑎 

)2 ] 
, (57) 

 𝜃𝜃( 𝑟 ) = 

𝑞 0 𝑎 
2 

16 

[ 
(1 + 𝜈) − (1 + 3 𝜈) 

(
𝑟 

𝑎 

)2 ] 
, (58) 
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Fig. 3. Variation of the transverse 𝑤 ( 𝑟 ) with 𝑟 ∕ 𝑎 for various values of the volume 

fraction index 𝑛 . 

Fig. 4. Variation of the bending moment 𝑀 𝑟𝑟 ( 𝑟 ) with 𝑟 ∕ 𝑎 for various values of 

the 𝑛 . 
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Fig. 5. Plots of the center deflection of pinned circular plates as functions of 

the normalized radial coordinate, 𝑟 ∕ 𝑎 , for various value of 𝑛 . 

Fig. 6. Plots of the bending moment 𝑀 𝑟𝑟 of pinned circular plates as a function 

of the normalized radial coordinate, 𝑟 ∕ 𝑎 . The results are independent of the 𝑛 . 

𝑤

𝑀

 

n

 

f

𝑎  

A  

d  

n  

i  

𝑀  

i

𝑟𝑟 ( 𝑟, 𝑧 ) = 

𝑞 0 𝑎 
2 

16 
𝐸( 𝑧 ) 
1 − 𝜈2 

( ̄𝐵 

∗ 
𝑟𝑟 
+ 𝑧 ̄𝐴 

∗ 
𝑟𝑟 
) 
[ 
(1 + 𝜈) − (3 + 𝜈) 

(
𝑟 

𝑎 

)2 ] 
, (59) 

𝜃𝜃( 𝑟, 𝑧 ) = 

𝑞 0 𝑎 
2 

16 
𝐸( 𝑧 ) 
1 − 𝜈2 

( ̄𝐵 

∗ 
𝑟𝑟 
+ 𝑧 ̄𝐴 

∗ 
𝑟𝑟 
) 
[ 
(1 + 𝜈) − (1 + 3 𝜈) 

(
𝑟 

𝑎 

)2 ] 
. (60) 

he results presented can be simplified to an isotropic plate by setting

 𝑥𝑥 = �̄� 

∗ 
𝑥𝑥 

= 0 , �̄� 

∗ 
𝑥𝑥 

= 1∕ 𝐷 𝑟𝑟 , and �̄� 

∗ 
𝑟𝑟 
= 1∕ 𝐴 𝑟𝑟 . 

To generate numerical results, we consider circular plates of radius

 = 10 in., thickness ℎ = 0 . 1 in., and modulus ratio 𝐸 1 ∕ 𝐸 2 = 10 with

 2 = 30 × 10 6 psi and 𝜈 = 0 . 3 . Figure 3 shows plots of the transverse

eflection 𝑤 ( 𝑟 ) as a function of the normalized radial distance 𝑟 ∕ 𝑎 for

arious values of the volume fraction index 𝑛 ( 𝑛 = 0 corresponds to the

sotropic plate). The deflections are normalized with respect to the load

 0 . Figure 4 shows plots of the bending moment 𝑀 𝑟𝑟 ( 𝑟 ) as a function of

 ∕ 𝑎 for various values of 𝑛 . 

The expressions for the transverse deflection, bending moments, and

tresses in a FGM circular plate with pinned edge at 𝑟 = 𝑎 and subjected

o uniformly distributed load of intensity 𝑞 0 and an applied bending

oment 𝑀 𝑎 at 𝑟 = 𝑎 are 

 ( 𝑟 ) = − ̄𝐵 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
3 

16 
𝑟 

𝑎 

( 
1 − 

𝑟 2 

𝑎 2 

) 
, (61) 
5 
 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
4 

64 

[ (5 + 𝜈

1 + 𝜈

)
− 2 
(3 + 𝜈

1 + 𝜈

)
𝑟 2 

𝑎 2 
+ 

𝑟 4 

𝑎 4 

] 
− 

�̄� 

∗ 
𝑟𝑟 
�̄� 

∗ 
𝑟𝑟 

(1 + 𝜈) ̄𝐷 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
4 

16 

( 
1 − 

𝑟 2 

𝑎 2 

) 
+ 

𝑀 𝑎 𝑎 
2 

2(1 + 𝜈) 𝐷 𝑟𝑟 

( 
1 − 

𝑟 2 

𝑎 2 

) 
, (62) 

 𝑟𝑟 ( 𝑟 ) = (3 + 𝜈) 
𝑞 0 𝑎 

2 

16 

( 
1 − 

𝑟 2 

𝑎 2 

) 
+ 𝑀 𝑎 , (63) 

where the coefficients �̄� 

∗ 
𝑟𝑟 

, �̄� 

∗ 
𝑟𝑟 

, and �̄� 

∗ 
𝑟𝑟 

are defined in Eq. (46) . We

te that 𝑀 𝑎 does not contribute to 𝑢 ( 𝑟 ) . 
Numerical results are presented for the case in which 𝑀 𝑎 = 0 and the

ollowing data: 

 = 10 in. , ℎ = 0 . 1 in. , 
𝐸 1 
𝐸 2 

= 10 , 𝐸 2 = 30 × 10 6 psi , 𝜈 = 0 . 3 . (64)

ll results are normalized by the load 𝑞 0 . Figure 5 contains plots of the

eflections 𝑤 (0) predicted for the pinned FGM plates as a function of the

ormalized radial coordinate, 𝑟 ∕ 𝑎 , for various values of the power-law

ndex 𝑛 ; Fig. 6 contains plots of the variation of the bending moment

 𝑟𝑟 as function of the normalized radial coordinate, 𝑟 ∕ 𝑎 ; the results are

ndependent of 𝑛 . 
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Fig. 7. Plots of the center deflection 𝑤 (0) of pinned and clamped circular plates 

as a function of the power-law index, 𝑛 . 
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Figure 7 shows the center deflection 𝑤 (0) as a function of the power-

aw index 𝑛 for the pinned and clamped circular plates. We note that

he rate of increase of the deflection has two different regions; the first

egion has a rapid increase of the deflection while the second region

s marked with a relatively slow increase. This is primarily because of

he fact that the coupling coefficient 𝐵 𝑥𝑥 varies with 𝑛 rapidly for the

maller values of 𝑛 followed by a slow decay after 𝑛 > 3 . The rate of

ncrease in the deflection or slope in the second part is less for clamped

lates than for the pinned plates. The reason is the fact that the clamped

late is relatively stiffer than the pinned plate. 

. The first-order shear deformation theory 

.1. Displacements and strains 

The displacement field of the first-order shear deformation plate the-

ry (FST) is 

 = 𝑢 𝑟 ̂𝐞 𝑟 + 𝑢 𝑧 ̂𝐞 𝑧 , 𝑢 𝑟 ( 𝑟, 𝑧, 𝑡 ) = 𝑢 ( 𝑟, 𝑡 ) + 𝑧𝜙𝑟 ( 𝑟, 𝑡 ) , 𝑢 𝑧 ( 𝑟, 𝑧, 𝑡 ) = 𝑤 ( 𝑟, 𝑡 ) , (65)

here 𝜙𝑟 denotes the rotation of a transverse normal in the plane

= constant. The FST includes a constant state of transverse shear strain

ith respect to the thickness coordinate, and hence, requires the use of

 shear correction factor. 

The nonzero von Kármán strains of the theory are 

 𝑟𝑟 = 𝜀 (0) 
𝑟𝑟 

+ 𝑧𝜀 (1) 
𝑟𝑟 
, 𝜀 𝜃𝜃 = 𝜀 

(0) 
𝜃𝜃

+ 𝑧𝜀 
(1) 
𝜃𝜃
, 𝜀 𝑟𝑧 = 𝜀 (0) 

𝑟𝑧 
, (66)

here 

 

( 0 ) 
rr = 

du 

dr 
+ 

1 
2 

(
dw 

dr 

)2 
, 𝜀 

( 1 ) 
rr = 

𝑑𝜙𝑟 
dr 
, 

 

( 0 ) 
𝜃𝜃

= 

𝑢 

𝑟 
, 𝜀 

( 1 ) 
𝜃𝜃

= 

𝜙𝑟 
𝑟 
, 2 𝜀 ( 0 ) rz = 𝜙𝑟 + 

dw 

dr 
. 

(67) 

he rotation and curvature components are 

 𝜃 = 

1 
2 

(
𝜙𝑟 − 

𝑑𝑤 

𝑑𝑟 

)
, 𝜒𝑟𝜃 = 

1 
4 

[ 
𝑑𝜙𝑟 

𝑑𝑟 
− 

1 
𝑟 
𝜙𝑟 − 

( 
𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) ] 
. (68)

.2. Equations of equilibrium 

The governing equations of equilibrium of the FST are: 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑟 

)
− 𝑁 𝜃𝜃

]
= 0 , (69) 

1 𝑑 (
𝑟𝑉 𝑟 
)
+ 

1 𝑑 [ 𝑑 (
𝑟𝑃 𝑟𝜃
)
+ 𝑃 𝑟𝜃

]
+ 𝑞 = 0 , (70) 
𝑟 𝑑𝑟 2 𝑟 𝑑𝑟 𝑑𝑟 

6 
1 
𝑟 

[ 
𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃 + 

1 
2 
𝑑 

𝑑𝑟 

(
𝑟𝑃 𝑟𝜃
)
+ 

1 
2 
𝑃 𝑟𝜃

] 
− 𝑁 𝑟𝑧 = 0 , (71) 

here 

 𝑁 𝑟𝑟 , 𝑀 𝑟𝑟 ) = ∫ ℎ 

2 
− ℎ 2 

(1 , 𝑧 ) 𝜎𝑟𝑟 𝑑 𝑧, 𝑁 𝑟𝑧 = 𝐾 𝑠 ∫
ℎ 

2 
− ℎ 2 

𝜎𝑟𝑧 𝑑 𝑧 

 𝑁 𝜃𝜃 , 𝑀 𝜃𝜃) = ∫ ℎ 

2 
− ℎ 2 

(1 , 𝑧 ) 𝜎𝜃𝜃 𝑑 𝑧, 𝑃 𝑟𝜃 = ∫ ℎ 

2 
− ℎ 2 

𝑚 𝑟𝜃 𝑑 𝑧 

 𝑟 = 𝑁 𝑟𝑧 + 𝑁 𝑟𝑟 
𝑑𝑤 

𝑑𝑟 

(72) 

nd 𝐾 𝑠 denotes the shear correction coefficient. 

The boundary conditions involve specifying one element of each of

he following pairs: 

 or 𝑟𝑁 𝑟𝑟 ; 𝑤 or 𝑟𝑉 𝑟 + 

1 
2 

[
𝑑 

𝑑𝑟 

(
𝑟𝑃 𝑟𝜃
)
+ 𝑃 𝑟𝜃

] ≡ 𝑟 ̄𝑉 𝑟 

(73) 

− 

𝑑𝑤 

𝑑𝑟 
or − 

1 
2 𝑟𝑃 𝑟𝜃 ; 𝜙𝑟 or 𝑟𝑀 𝑟𝑟 + 

1 
2 𝑟𝑃 𝑟𝜃 ≡ 𝑟 �̄� 𝑟𝑟 

.3. Plate constitutive relations 

The stress resultants appearing in Eqs. (69) –(71) can be expressed in

erms of the generalized displacements ( 𝑢, 𝑤, 𝜙𝑟 ) as (thermal effects are

ot included) 

𝑁 𝑟𝑟 = 𝐴 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
+ 𝐵 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) 
, 

𝑁 𝜃𝜃 = 𝐴 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
+ 𝐵 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) 
, 

𝑀 𝑟𝑟 = 𝐵 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
+ 𝐷 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) 
, (74) 

 𝜃𝜃 = 𝐵 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
+ 𝐷 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) 
, 

𝑁 𝑟𝑧 = 𝑆 𝑟𝑧 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
, 𝑃 𝑟𝜃 = 

1 
2 
𝑆 𝑟𝜃

[ 
𝑑𝜙𝑟 

𝑑𝑟 
− 

𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

(
𝜙𝑟 − 

𝑑𝑤 

𝑑𝑟 

)] 
, 

here 𝐴 𝑟𝑟 , 𝐵 𝑟𝑟 , 𝐷 𝑟𝑟 , 𝑆 𝑟𝑧 = 𝐾 𝑠 𝐴 𝑟𝑧 , and 𝑆 𝑟𝜃 are the extensional,

xtensional-bending, bending, shear, and couple stress stiffness coeffi-

ients, respectively: 

𝐴 𝑟𝑟 = 

1 
(1 − 𝜈2 ) ∫

ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑑 𝑧, 𝐵 𝑟𝑟 = 

1 
(1 − 𝜈2 ) ∫

ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑧 𝑑 𝑧, 

 𝑟𝑟 = 

1 
(1 − 𝜈2 ) ∫

ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑧 2 𝑑 𝑧, 𝐴 𝑟𝑧 = 

1 
2(1 + 𝜈) ∫

ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑑 𝑧, (75) 

𝑆 𝑟𝜃 = 

𝓁 2 

2(1 + 𝜈) ∫
ℎ 

2 

− ℎ 2 

𝐸 ( 𝑧 ) 𝑑 𝑧, 𝑚 𝑖 = ∫
ℎ 

2 

− ℎ 2 

𝜌( 𝑧 )( 𝑧 ) 𝑖 𝑑 𝑧. 

.4. Equations of equilibrium in terms of the displacements 

The equations of equilibrium in Eqs. (69) –(71) can be expressed in

erms of the generalized displacements ( 𝑢, 𝑤, 𝜙𝑟 ) by invoking Eq. (74) : 

 

1 
𝑟 

𝑑 

𝑑𝑟 

{ 

𝑟𝐴 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
+ 𝑟𝐵 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) } 

+ 

1 
𝑟 

{ 

𝐴 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
+ 𝐵 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) } 

= 0 , (76) 

 

1 
𝑟 

𝑑 

𝑑𝑟 

{ 

𝑟𝑆 𝑟𝑧 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
+ 𝑟𝐴 𝑟𝑟 

𝑑𝑤 

𝑑𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 

+ 𝑟𝐵 𝑟𝑟 

𝜕𝑤 

𝜕𝑟 

( 
𝜕𝜙𝑟 

𝜕𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) } 

− 

1 
𝑟 

𝑑 2 

𝑑𝑟 2 

{ 

𝑟𝑆 𝑟𝜃

[ 
𝑑𝜙𝑟 

𝑑𝑟 
− 

𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

(
𝜙𝑟 − 

𝑑𝑤 

𝑑𝑟 

)] } 

− 

1 
𝑟 

𝑑 

𝑑𝑟 

{ 

𝑆 𝑟𝜃

[ 
𝑑𝜙𝑟 

𝑑𝑟 
− 

𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

(
𝜙𝑟 − 

𝑑𝑤 

𝑑𝑟 

)] } 

− 𝑞 = 0 , (77) 
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b  

t  

i  

𝑞

𝐹

𝐹

∫
W

∫  

 

c

a

𝑢

𝜙

𝑤
𝑟𝑧 
 

1 
𝑟 

𝑑 

𝑑𝑟 

{ 

𝑟𝐵 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
+ 𝑟𝐷 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) } 

+ 

1 
𝑟 

{ 

𝐵 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
+ 𝐷 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) } 

− 

1 
𝑟 

𝑑 

𝑑𝑟 

{ 

𝑟𝑆 𝑟𝜃

[ 
𝑑𝜙𝑟 

𝑑𝑟 
− 

𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

(
𝜙𝑟 − 

𝑑𝑤 

𝑑𝑟 

)] } 

− 

1 
𝑟 
𝑆 𝑟𝜃

[ 
𝑑𝜙𝑟 

𝑑𝑟 
− 

𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

(
𝜙𝑟 − 

𝑑𝑤 

𝑑𝑟 

)] 
+ 𝑆 𝑟𝑧 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
= 0 . (78) 

.5. Exact solutions 

.5.1. Governing equations 

In this section, we develop the exact solutions of functionally graded

aterial (FGM) plates using the FST. The couples stress effect is not in-

luded here, although it is possible to include but algebraically a bit

ore complicated. The developments to be presented are similar to

hose presented in Section 3.5 . 

The equations of equilibrium of the FST in terms of the stress re-

ultants are (without the couple stress effect and setting the nonlinear

erms to zero) are: 

 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑟 

)
− 𝑁 𝜃𝜃

]
= 0 , (79) 

 

1 
𝑟 

𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑧 

)
− 𝑞 = 0 , (80) 

 

𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
+ 𝑀 𝜃𝜃 + 𝑟𝑁 𝑟𝑧 = 0 . (81) 

he stress resultants ( 𝑁 𝑟𝑟 , 𝑁 𝜃𝜃 , 𝑀 𝑟𝑟 , 𝑀 𝜃𝜃 , 𝑁 𝑟𝑧 ) and stresses ( 𝜎𝑟𝑟 , 𝜎𝜃𝜃 , 𝜎𝑟𝑧 )

f the linearized FST are related to the displacements by 

 𝑟𝑟 = 𝐴 𝑟𝑟 

(
𝑑𝑢 

𝑑𝑟 
+ 𝜈

𝑢 

𝑟 

)
+ 𝐵 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) 
, (82) 

 𝜃𝜃 = 𝐴 𝑟𝑟 

(
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 

)
+ 𝐵 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) 
, (83) 

 𝑟𝑟 = 𝐵 𝑟𝑟 

(
𝑑𝑢 

𝑑𝑟 
+ 𝜈

𝑢 

𝑟 

)
+ 𝐷 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) 
, (84) 

 𝜃𝜃 = 𝐵 𝑟𝑟 

(
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 

)
+ 𝐷 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) 
, (85) 

𝑟𝑟 = 

𝐸 

(1 − 𝜈2 ) 

[ (
𝑑𝑢 

𝑑𝑟 
+ 𝜈

𝑢 

𝑟 

)
+ 𝑧 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) ] 
, (86) 

𝜃𝜃 = 

𝐸 

(1 − 𝜈2 ) 

[ (
𝜈
𝑑𝑢 

𝑑𝑟 
+ 

𝑢 

𝑟 

)
+ 𝑧 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) ] 
, (87) 

 𝑟𝑧 = 𝑆 𝑟𝑧 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
, 𝜎𝑟𝑧 = 

𝐸 

2(1 + 𝜈) 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
. (88) 

From Eq. (80) , we obtain 

𝑁 𝑟𝑧 = − ∫
𝑟 

𝑟𝑞( 𝜉) 𝑑𝜉 + 𝑐 1 . (89)

ubstituting Eqs. (84) , (85) , and (89) in Eq. (81) , and integrating twice

ith respect to 𝑟 (and with several algebraic simplifications), we obtain 

 𝑟𝑟 𝑟𝑢 + 𝐷 𝑟𝑟 𝑟𝜙𝑟 = − ∫
𝑟 { 

𝜉 ∫
𝜉 [ 1 

𝜂 ∫
𝜂

𝜇𝑞( 𝜇) 𝑑𝜇
] 
𝑑𝜂

} 

𝑑𝜉

+ 𝑐 1 
𝑟 2 

4 
( 2 log 𝑟 − 1 ) + 𝑐 2 

𝑟 2 

2 
+ 𝑐 3 . (90) 

ollowing the same procedure with Eq. (79) as we did with Eq. (81) , we

btain 

 𝑟𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟 
𝑑𝑢 

𝑑𝑟 

)
− 

𝑢 

𝑟 

]
+ 𝐵 𝑟𝑟 

[ 
𝑑 

𝑑𝑟 

( 
𝑟 
𝑑𝜙𝑟 

𝑑𝑟 

) 
− 

1 
𝑟 
𝜙𝑟 

] 
= 0 , (91)
7 
nd 

 𝑟𝑟 𝑟𝑢 + 𝐵 𝑟𝑟 𝑟𝜙𝑟 = 𝑐 4 
𝑟 2 

2 
+ 𝑐 5 . (92) 

Solving Eqs. (90) and (92) for 𝑢 ( 𝑟 ) and 𝜙𝑟 ( 𝑟 ) , we obtain 

 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

(
𝑐 4 
𝑟 

2 
+ 

𝑐 5 
𝑟 

)
− �̄� 

∗ 
𝑟𝑟 

( 1 
𝑟 
𝐹 ( 𝑟 ) + 𝑐 2 

𝑟 

2 
+ 

𝑐 3 
𝑟 

)
, (93) 

𝑟 ( 𝑟 ) = − ̄𝐵 

∗ 
𝑟𝑟 

(
𝑐 4 
𝑟 

2 
+ 

𝑐 5 
𝑟 

)
+ �̄� 

∗ 
𝑟𝑟 

( 1 
𝑟 
𝐹 ( 𝑟 ) + 𝑐 2 

𝑟 

2 
+ 

𝑐 3 
𝑟 

)
. (94) 

here 

̄
 

∗ 
𝑟𝑟 
= 

𝐴 𝑟𝑟 

𝐷 

∗ 
𝑟𝑟 

, �̄� 

∗ 
𝑟𝑟 
= 

𝐵 𝑟𝑟 

𝐷 

∗ 
𝑟𝑟 

, �̄� 

∗ 
𝑟𝑟 
= 

𝐷 𝑟𝑟 

𝐷 

∗ 
𝑟𝑟 

, 𝐷 

∗ 
𝑥𝑥 

= 𝐴 𝑟𝑟 𝐷 𝑟𝑟 − 𝐵 𝑟𝑟 𝐵 𝑟𝑟 , (95) 

 ( 𝑟 ) = − ∫
𝑟 { 

𝜉 ∫
𝜉 [ 1 

𝜂 ∫
𝜂

𝜇𝑞( 𝜇) 𝑑𝜇
] 
𝑑𝜂

} 

𝑑𝜉 + 𝑐 1 
𝑟 2 

4 
( 2 log 𝑟 − 1 ) . (96) 

Substituting for 𝑁 𝑟𝑧 from Eq. (88) into Eq. (89) and solving for

 𝑤 ∕ 𝑑 𝑟 , we obtain 

𝑑𝑤 

𝑑𝑟 
= 

1 
𝑟 

[ 
�̄� 

∗ 
𝑟𝑟 

( 
𝑐 4 
𝑟 2 

2 
+ 𝑐 5 

) 
− �̄� 

∗ 
𝑟𝑟 

( 
𝐹 ( 𝑟 ) + 𝑐 2 

𝑟 2 

2 
+ 𝑐 3 

) ] 
− 

1 
𝑟𝑆 𝑟𝑧 

( 
∫

𝑟 

𝑟𝑞( 𝜉) 𝑑𝜉 + 𝑐 1 

) 
, (97) 

nd integrating once with respect to 𝑟 

 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

( 
𝑐 4 
𝑟 2 

4 
+ 𝑐 5 log 𝑟 

) 
− �̄� 

∗ 
𝑟𝑟 

( 
∫

𝑟 1 
𝜉
𝐹 ( 𝜉) 𝑑𝜉 + 𝑐 2 

𝑟 2 

4 
+ 𝑐 3 log 𝑟 + 𝑐 6 

) 
− 

1 
𝑆 𝑟𝑧 

( 
∫

𝑟 1 
𝜉 ∫

𝜉

𝜂𝑞 ( 𝜂) 𝑑 𝜂 𝑑 𝜉 + 𝑐 1 log 𝑟 
) 
. (98) 

he constants of integration are determined using boundary conditions

rising from the specification of one element of each of the following

hree duality pairs: 

 𝑢, 𝑁 𝑟𝑟 ) , ( 𝑤, 𝑁 𝑟𝑧 ) , ( 𝜙𝑟 , 𝑀 𝑟𝑟 ) (99)

Here, we consider couple of examples to illustrate the use of the

oundary conditions to determine the exact solutions. Expressions for

he function 𝐹 ( 𝑟 ) [see Eq. (96) ] and the integrals involving it are needed

n the examples to be discussed. Two cases that are of interest are when

( 𝑟 ) = 0 and 𝑞 = 𝑞 0 , a constant. In these two case we have 

 ( 𝑟 ) = 𝑐 1 
𝑟 2 

4 
( 2 log 𝑟 − 1 ) , for 𝑞 = 0 , (100) 

 ( 𝑟 ) = 𝑐 1 
𝑟 2 

4 
( 2 log 𝑟 − 1 ) − 

𝑞 0 𝑟 
4 

16 
, for 𝑞 = 𝑞 0 . (101) 

1 
𝑟 
𝐹 ( 𝑟 ) 𝑑𝑟 = 𝑐 1 

𝑟 2 

4 
( 2 log 𝑟 − 1 ) − 

𝑞 0 𝑟 
4 

64 
, for 𝑞 = 𝑞 0 . (102) 

e also need the following integral when 𝑞( 𝑟 ) = 𝑞 0 : 

𝑟 1 
𝜉 ∫

𝜉

𝜂𝑞 ( 𝜂) 𝑑 𝜂 𝑑 𝜉 = 

𝑞 0 𝑟 
2 

4 
. (103)

The exact solutions for deflection, moments, and stresses in an FGM

ircular plate with clamped edge, 𝑟 = 𝑎 , are [the coefficients �̄� 

∗ 
𝑟𝑟 

and �̄� 

∗ 
𝑟𝑟 

re defined in Eq. (96) ] 

 ( 𝑟 ) = − ̄𝐵 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
3 

16 
𝑟 

𝑎 

( 
1 − 

𝑟 2 

𝑎 2 

) 
, (104) 

𝑟 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
3 

16 
𝑟 

𝑎 

( 
1 − 

𝑟 2 

𝑎 2 

) 
, (105) 

 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
4 

64 

[ 
1 − 

(
𝑟 

𝑎 

)2 ] 2 
+ 

1 
𝑆 

𝑞 0 𝑎 
2 

4 

( 
1 − 

𝑟 2 

𝑎 2 

) 
. (106) 
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Fig. 8. Variation of the transverse maximum deflection �̄� versus the power- 

law index 𝑛 for clamped and pinned circular plates for two different radius-to- 

thickness ratios, 𝑎 ∕ ℎ = 10 , 100 . 
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The displacements and bending moments of an FGM circular plate

ith pinned edge at 𝑟 = 𝑎 and subjected to uniformly distributed load

f intensity 𝑞 0 as well as an applied bending moment 𝑀 𝑎 at 𝑟 = 𝑎 are: 

 ( 𝑟 ) = − ̄𝐵 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
3 

16 
𝑟 

𝑎 

( 
1 − 

𝑟 2 

𝑎 2 

) 
, (107) 

𝑟 ( 𝑟 ) = 

𝑞 0 𝑎 
3 

16 
𝑟 

𝑎 

[ (3 + 𝜈

1 + 𝜈

)
�̄� 

∗ 
𝑟𝑟 
− 2 

�̄� 

∗ 
𝑟𝑟 
�̄� 

∗ 
𝑟𝑟 

(1 + 𝜈) ̄𝐷 

∗ 
𝑟𝑟 

− �̄� 

∗ 
𝑟𝑟 

𝑟 2 

𝑎 2 

] 
, (108) 

 ( 𝑟 ) = �̄� 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
4 

64 

[ (5 + 𝜈

1 + 𝜈

)
− 2 
( 3 + 𝜈

1 + 𝜈

)
𝑟 2 

𝑎 2 
+ 

𝑟 4 

𝑎 4 

] 
− 

�̄� 

∗ 
𝑟𝑟 
�̄� 

∗ 
𝑟𝑟 

(1 + 𝜈) ̄𝐷 

∗ 
𝑟𝑟 

𝑞 0 𝑎 
4 

16 

( 
1 − 

𝑟 2 

𝑎 2 

+ 

𝑀 𝑎 𝑎 
2 

2(1 + 𝜈) 𝐷 𝑟𝑟 

( 
1 − 

𝑟 2 

𝑎 2 

) 
+ 

𝑞 0 𝑎 
2 

4 𝑆 𝑟𝑧 

( 
1 − 

𝑟 2 

𝑎 2 

) 
, (109) 

 𝑟𝑟 ( 𝑟 ) = (3 + 𝜈) 
𝑞 0 𝑎 

2 

16 

( 
1 − 

𝑟 2 

𝑎 2 

) 
+ 𝑀 𝑎 , (110) 

here the coefficients �̄� 

∗ 
𝑟𝑟 

, �̄� 

∗ 
𝑟𝑟 

, and �̄� 

∗ 
𝑟𝑟 

are defined in Eq. (46) . We note

hat 𝑀 𝑎 does not contribute to 𝑢 ( 𝑟 ) . 
The numerical results generated with the data 

 = 10 in. , ℎ = 0 . 1 in. , 
𝐸 1 
𝐸 2 

= 10 , 𝐸 2 = 30 × 10 6 psi , 𝜈 = 0 . 3 

oincide with the plots presented in Figs. 3 and 4 , indicating that the

ffect of shear deformation is negligible for this thin plate ( 𝑎 ∕ ℎ = 100 ).
igure 8 shows �̄� = 𝑤 (0) ℎ 3 × 10 3 versus the power-law index 𝑛 for two

ifferent ratios 𝑎 ∕ ℎ = 10 (thick) and 𝑎 ∕ ℎ = 100 (thin), showing the effect

f shear deformation on the transverse displacement 𝑤 . Figure 8 also

ontains results for pinned circular plates. 

. Third-order shear deformation theory 

.1. Displacements and strains 

In this section we develop the Reddy third-order shear deformation

late theory (TST) of the axisymmetric circular plates. We use an higher-

rder expansion of the radial displacement 𝑢 𝑟 through the thickness of

he plate and thus further relax the Love–Kirchhoff hypothesis by remov-

ng the assumption of straightness of a transverse normal (in all theories

he inextensibility of a transverse normal can be removed by assuming

hat the transverse deflection also varies through the thickness). 
8 
The third-order plate theory of Reddy [12–15] is based on the dis-

lacement field 

 ( 𝑟, 𝑧, 𝑡 ) = 𝑢 𝑟 ( 𝑟, 𝑧, 𝑡 ) ̂𝐞 𝑟 + 𝑢 𝑧 ( 𝑟, 𝑧, 𝑡 ) ̂𝐞 𝑧 , (111a) 

𝑢 𝑟 ( 𝑟, 𝑧, 𝑡 ) = 𝑢 ( 𝑟, 𝑡 ) + 𝑧𝜙𝑟 ( 𝑟, 𝑡 ) − 𝛼 𝑧 3 
(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
, 

 𝑧 ( 𝑟, 𝑧, 𝑡 ) = 𝑤 ( 𝑟, 𝑡 ) , 𝛼 = 

4 
3 ℎ 2 

, (111b) 

where ( 𝑢 𝑟 , 𝑢 𝑧 ) are the total displacement components along the 𝑟 and 𝑧

oordinates, respectively, ( 𝑢, 𝑤, 𝜙𝑟 ) are the generalized displacements,

nd ℎ is the total thickness of the plate. The displacement field ac-

ommodates quadratic variation of transverse shear strains and shear

tresses and vanishing of transverse shear stress on the top 𝑧 = ℎ ∕2 and

ottom 𝑧 = − ℎ ∕2 planes of a plate, and there is no need to use shear

orrection coefficient in the third-order theory. 

The nonzero von Kármán nonlinear strains can be written as 

 𝑟𝑟 = 𝜀 (0) 
𝑟𝑟 

+ 𝑧𝜀 (1) 
𝑟𝑟 

+ 𝑧 3 𝜀 (3) 
𝑟𝑟 
, 𝜀 𝜃𝜃 = 𝜀 

(0) 
𝜃𝜃

+ 𝑧𝜀 
(1) 
𝜃𝜃

+ 𝑧 3 𝜀 (3) 
𝜃𝜃
, 𝜀 𝑟𝑧 = 𝜀 (0) 

𝑟𝑧 
+ 𝑧 2 𝜀 (2) 

𝑟𝑧 

(112) 

here 

 

(0) 
𝑟𝑟 

= 

𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

( 
𝑑𝑤 

𝑑𝑟 

) 2 
, 𝜀 (1) 

𝑟𝑟 
= 

𝑑𝜙𝑟 

𝑑𝑟 
, 𝜀 (3) 

𝑟𝑟 
= − 𝛼

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝑑 2 𝑤 

𝑑𝑟 2 

) 
𝜀 
(0) 
𝜃𝜃

= 

𝑢 

𝑟 
, 𝜀 

(1) 
𝜃𝜃

= 

𝜙𝑟 

𝑟 
, 𝜀 

(3) 
𝜃𝜃

= − 𝛼
1 
𝑟 

( 
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

) 
(113) 

2 𝜀 (0) 
𝑟𝑧 

= 𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 
, 2 𝜀 (2) 

𝑟𝑧 
= − 𝛽

( 
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

) 
, 𝛽 = 

4 
ℎ 2 

. 

he rotation and curvature components are 

𝜔 𝜃 = 

1 
2 

( 
𝑑𝑢 𝑟 

𝑑𝑧 
− 

𝑑𝑢 𝑧 

𝑑𝑟 

) 
= 

1 
2 

[
𝜙𝑟 − 

𝑑𝑤 

𝑑𝑟 
− 𝛽𝑧 2 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)]
, 

𝑟𝜃 = 

1 
2 

( 
𝑑𝜔 𝜃

𝑑𝑟 
− 

𝜔 𝜃

𝑟 

) 
= 

1 
4 

[ (
1 − 𝛽 𝑧 2 

)( 𝑑𝜙𝑟 
𝑑𝑟 

− 

1 
𝑟 
𝜙𝑟 

) 
− 

(
1 + 𝛽 𝑧 2 

)( 𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) ] 
. (114) 

.2. Equations of equilibrium 

Using the principle of virtual displacements for the third-order the-

ry we obtain the following equations of equilibrium: 

 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑟 

)
− 𝑁 𝜃𝜃

]
= 0 , (115) 

 

1 
𝑟 

𝑑 

dr 

(
𝑟 𝑉 𝑟 

)
− 𝛼

1 
𝑟 

𝑑 

dr 

[
𝑑 

dr 

(
𝑟𝑃 rr 
)
− 𝑃 𝜃𝜃

]
− 

1 
2 
1 
𝑟 

𝑑 

dr 

[
𝑃 𝑟𝜃 + 

𝑑 

dr 

(
𝑟 ̂𝑃 𝑟𝜃
)]

− 𝑞 = 0 , 

(116) 

 

1 
𝑟 

[
𝑑 

𝑑𝑟 

(
𝑟 �̄� 𝑟𝑟 

)
− �̄� 𝜃𝜃

]
+ �̄� 𝑟𝑧 − 

1 
2 
1 
𝑟 

[
𝑃 𝑟𝜃 + 

𝑑 

𝑑𝑟 

(
𝑟 ̄𝑃 𝑟𝜃
)]

= 0 . (117) 

here the stress resultants ( 𝑁 𝑟𝑟 , 𝑁 𝜃𝜃 , 𝑁 𝑟𝑧 , 𝑀 𝑟𝑟 , 𝑀 𝜃𝜃), higher-order stress

esultants ( 𝑃 𝑟𝑟 , 𝑃 𝜃𝜃 , 𝑃 𝑟𝑧 ), ( 𝑃 𝑟𝜃 , 𝑄 𝑟𝜃) are defined by 

 𝑁 𝑟𝑟 , 𝑁 𝜃𝜃) = ∫
ℎ 

2 

− ℎ 2 

( 𝜎𝑟𝑟 , 𝜎𝜃𝜃) 𝑑𝑧, ( 𝑀 𝑟𝑟 , 𝑀 𝜃𝜃) = ∫
ℎ 

2 

− ℎ 2 

( 𝜎𝑟𝑟 , 𝜎𝜃𝜃) 𝑧 𝑑𝑧 (118a) 

 𝑁 𝑟𝑧 , 𝑃 𝑟𝑧 ) = ∫
ℎ 

2 

− ℎ 2 

𝜎𝑟𝑧 (1 , 𝑧 2 ) 𝑑𝑧, ( 𝑃 𝑟𝑟 , 𝑃 𝜃𝜃) = ∫
ℎ 

2 

− ℎ 2 

( 𝜎𝑟𝑟 , 𝜎𝜃𝜃) 𝑧 3 𝑑𝑧, (118b) 

 𝑃 𝑟𝜃 , 𝑄 𝑟𝜃) = ∫
ℎ 

2 

− ℎ 2 

𝑚 𝑟𝜃 (1 , 𝑧 2 ) 𝑑𝑧, (118c) 

̂
 𝑟 = �̂� 𝑟𝑧 + 𝑁 𝑟𝑟 

𝑑𝑤 

𝑑𝑟 
. (118d) 

nd 

̄
 𝑟𝑟 = 𝑀 𝑟𝑟 − 𝛼 𝑃 𝑟𝑟 , �̄� 𝜃𝜃 = 𝑀 𝜃𝜃 − 𝛼 𝑃 𝜃𝜃 , �̄� 𝑟𝑧 = 𝑁 𝑟𝑧 − 𝛽 𝑃 𝑟𝑧 , (119a) 
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𝐴  

w

 

0

𝑟  

S[
 

̄
 𝑟𝜃 = 𝑃 𝑟𝜃 − 𝛽𝑄 𝑟𝜃 , 𝑃 𝑟𝜃 = 𝑃 𝑟𝜃 + 𝛽𝑄 𝑟𝜃 (119b) 

The boundary conditions involve specifying one element of each of

he following four duality pairs: 

 𝑢, 𝑟𝑁 𝑟𝑟 ); ( 𝑤, 𝑟 ̄𝑉 𝑟 ); ( 𝜙𝑟 , 𝑟 �̄� 𝑟𝑟 + 

1 
2 𝑟 ̄𝑃 𝑟𝜃); 

(
𝜃𝑟 , 𝛼𝑟 𝑃 𝑟𝑟 + 

1 
2 𝑟 ̂𝑃 𝑟𝜃

)
, (120)

here the slope 𝜃𝑟 and the effective shear force 𝑉 𝑟 are defined as 

𝑟 = − 

𝑑𝑤 

𝑑𝑟 
, 𝑉 𝑟 = �̄� 𝑟𝑧 + 𝑁 𝑟𝑟 

𝑑𝑤 

𝑑𝑟 
+ 𝛼

[ 
𝑑 

𝑑𝑟 
( 𝑟𝑃 𝑟𝑟 ) − 𝑃 𝜃𝜃

] 
+ 

1 
2 

[
𝑃 𝑟𝜃 + 

𝑑 

𝑑𝑟 

(
𝑟 ̂𝑃 𝑟𝜃
)]

(121) 

.3. Plate constitutive equations 

The Young’s modulus 𝐸 varies with 𝑧 according to 

( 𝑧 ) = 

(
𝐸 1 − 𝐸 2 

)
𝑣 1 ( 𝑧 ) + 𝐸 2 , 𝑣 1 ( 𝑧 ) = 

(1 
2 
+ 

𝑧 

ℎ 

)𝑛 
(122)

nd 𝜈 is a constant. The modified couple stress constitutive relation is 

 𝑟𝜃 = 2 𝐺𝓁 2 𝜒𝑟𝜃, 𝐺 = 

𝐸 

2(1 + 𝜈) 
, (123)

here 𝑚 𝑟𝜃 is the nonzero component of the symmetric couple stress ten-

or m , 𝓁 is the length scale parameter, and 𝐺 is the shear modulus. 

The stress resultants appearing in Eqs. (118a) –(118c) can be ex-

ressed in terms of the generalized displacements ( 𝑢, 𝑤, 𝜙𝑟 ) as 

 𝑟𝑟 = 𝐴 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
+ �̄� 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) 
− 𝛼𝐸 𝑟𝑟 

( 
𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 
+ 

𝑑 2 𝑤 

𝑑𝑟 2 

) 
, (124a) 

 𝜃𝜃 = 𝐴 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
+ �̄� 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) 
− 𝛼𝐸 𝑟𝑟 

( 
1 
𝑟 

𝑑𝑤 

𝑑𝑟 
+ 𝜈

𝑑 2 𝑤 

𝑑𝑟 2 

) 
, (124b) 

 𝑟𝑟 = 𝐵 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
+ �̄� 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) 
− 𝛼𝐹 𝑟𝑟 

( 
𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 
+ 

𝑑 2 𝑤 

𝑑𝑟 2 

) 
, (124c) 

 𝜃𝜃 = 𝐵 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
+ �̄� 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) 
− 𝛼𝐹 𝑟𝑟 

( 
1 
𝑟 

𝑑𝑤 

𝑑𝑟 
+ 𝜈

𝑑 2 𝑤 

𝑑𝑟 2 

) 
, (124d) 

 𝑟𝑟 = 𝐸 𝑟𝑟 

[ 
𝑑𝑢 

𝑑𝑟 
+ 

1 
2 

(
𝑑𝑤 

𝑑𝑟 

)2 
+ 𝜈

𝑢 

𝑟 

] 
+ 𝐹 𝑟𝑟 

( 
𝑑𝜙𝑟 

𝑑𝑟 
+ 

𝜈

𝑟 
𝜙𝑟 

) 
− 𝛼𝐻 𝑟𝑟 

( 
𝜈

𝑟 

𝑑𝑤 

𝑑𝑟 
+ 

𝑑 2 𝑤 

𝑑𝑟 2 

) 
, (124e) 

 𝜃𝜃 = 𝐸 𝑟𝑟 

[ 
𝑢 

𝑟 
+ 𝜈

𝑑𝑢 

𝑑𝑟 
+ 

𝜈

2 

(
𝑑𝑤 

𝑑𝑟 

)2 ] 
+ 𝐹 𝑟𝑟 

( 
𝜈
𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 

) 
− 𝛼𝐻 𝑟𝑟 

( 
1 
𝑟 

𝑑𝑤 

𝑑𝑟 
+ 𝜈

𝑑 2 𝑤 

𝑑𝑟 2 

) 
, (124f) 

 𝑟𝑧 = �̄� 𝑟𝑧 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
, 𝑅 𝑟𝑧 = �̄� 𝑟𝑧 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
, (124g) 

 𝑟𝜃 = 𝐴 𝑟𝜃

( 
𝑑𝜙𝑟 

𝑑𝑟 
− 

1 
𝑟 
𝜙𝑟 − 

𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
+ 𝛽𝐷 𝑟𝜃

( 
− 

𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 + 

𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (124h) 
9 
 𝑟𝜃 = 𝐷 𝑟𝜃

( 
𝑑𝜙𝑟 

𝑑𝑟 
− 

1 
𝑟 
𝜙𝑟 − 

𝑑 2 𝑤 

𝑑𝑟 2 
+ 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
+ 𝛽𝐹 𝑟𝜃

( 
− 

𝑑𝜙𝑟 

𝑑𝑟 
+ 

1 
𝑟 
𝜙𝑟 + 

𝑑 2 𝑤 

𝑑𝑟 2 
− 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

) 
, (124i) 

here 𝐴 𝑟𝑟 , 𝐵 𝑟𝑟 , 𝐷 𝑟𝑟 , 𝐸 𝑟𝑟 , 𝐹 𝑟𝑟 , 𝐻 𝑟𝑟 , 𝐴 𝑟𝜃 , 𝐷 𝑟𝜃 , 𝐹 𝑟𝜃 are the extensional,

xtensional-bending, bending, and higher-order stiffness coefficients: 

 𝐴 𝑟𝑟 , 𝐵 𝑟𝑟 , 𝐷 𝑟𝑟 , 𝐸 𝑟𝑟 , 𝐹 𝑟𝑟 , 𝐻 𝑟𝑟 ) = 

1 
(1 − 𝜈2 ) ∫

ℎ 

2 

− ℎ 2 

(1 , 𝑧, 𝑧 2 , 𝑧 3 , 𝑧 4 , 𝑧 6 ) 𝐸( 𝑧 ) 𝑑𝑧, 

( 𝐴 𝑟𝑧 , 𝐷 𝑟𝑧 , 𝐹 𝑟𝑧 ) = 

1 
2(1 + 𝜈) ∫

ℎ 

2 

− ℎ 2 

(1 , 𝑧 2 , 𝑧 4 ) 𝐸( 𝑧 ) 𝑑𝑧, (125) 

( 𝐴 𝑟𝜃 , 𝐷 𝑟𝜃 , 𝐹 𝑟𝜃) = 

𝓁 2 

4(1 + 𝜈) ∫
ℎ 

2 

− ℎ 2 

(1 , 𝑧 2 , 𝑧 4 ) 𝐸( 𝑧 ) 𝑑𝑧 

nd 

̄
 𝑟𝑟 = 𝐵 𝑟𝑟 − 𝛼𝐸 𝑟𝑟 , �̄� 𝑟𝑟 = 𝐷 𝑟𝑟 − 𝛼𝐹 𝑟𝑟 , 𝐹 𝑟𝑟 = 𝐹 𝑟𝑟 − 𝛼𝐻 𝑟𝑟 , 

�̄� 𝑟𝑧 = 𝐴 𝑟𝑧 − 𝛽𝐷 𝑟𝑧 , �̄� 𝑟𝑧 = 𝐷 𝑟𝑧 − 𝛽𝐹 𝑟𝑧 
(126) 

he equations of equilibrium in Eqs. (115) –(117) can be expressed in

erms of the generalized displacements using Eqs. (124a) –(124g) . 

.4. Exact solution 

As shown in the following pages, it is not possible to determine the

xact solution of the TST equations due to the presence of higher-order

tress resultants 𝑃 𝑟𝑟 and 𝑃 𝜃𝜃 . We outline the steps similar to those fol-

owed for the FST in Section 4.5 to find the exact solutions of the lin-

arized equations without the foundation modulus ( 𝑘 = 0 ) and the cou-

le stress terms. 

We begin with some mathematical identities: 

𝑑 

𝑑𝑟 

(
𝑟𝑁 𝑟𝑟 

)
− 𝑁 𝜃𝜃 = 𝐴 𝑟𝑟 

[ 
𝑑 

𝑑𝑟 

(
𝑟 
𝑑𝑢 

𝑑𝑟 

)
− 

𝑢 

𝑟 

] 
+ �̄� 𝑟𝑟 

[ 
𝑑 

𝑑𝑟 

( 
𝑟 
𝑑𝜙𝑟 

𝑑𝑟 

) 
− 

𝜙𝑟 

𝑟 

] 
− 𝛼𝐸 𝑟𝑟 

[ 
𝑑 

𝑑𝑟 

( 
𝑟 
𝑑 2 𝑤 

𝑑𝑟 2 

) 
− 

1 
𝑟 

𝑑𝑤 

𝑑𝑟 

] 
= 𝐴 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝑢 ) 
]
+ �̄� 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝜙𝑟 ) 
]

− 𝛼𝐸 𝑟𝑟 𝑟 
𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 

(
𝑟 
𝑑𝑤 

𝑑𝑟 

)]
, (127) 

𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃 = 𝐵 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝑢 ) 
]
+ �̄� 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[ 1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝜙𝑟 ) 
]

− 𝛼𝐹 𝑟𝑟 𝑟 
𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 

(
𝑟 
𝑑𝑤 

𝑑𝑟 

)]
, (128) 

𝑑 

𝑑𝑟 

(
𝑟𝑃 𝑟𝑟 
)
− 𝑃 𝜃𝜃 = 𝐸 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝑢 ) 
]
+ 𝐹 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝜙𝑟 ) 
]

− 𝛼𝐻 𝑟𝑟 𝑟 
𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 

(
𝑟 
𝑑𝑤 

𝑑𝑟 

)]
, (129) 

hen from Eq. (115) we have 

 𝑟𝑟 

𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝑢 ) 
]
+ �̄� 𝑟𝑟 

𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝜙𝑟 ) 
]
− 𝛼𝐸 𝑟𝑟 

𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 

(
𝑟 
𝑑𝑤 

𝑑𝑟 

)]
= 0 . (130)

ntegration with respect to 𝑟 twice yields 

 𝑟𝑟 𝑢 + �̄� 𝑟𝑟 𝜙𝑟 − 𝛼𝐸 𝑟𝑟 

𝑑𝑤 

𝑑𝑟 
= 

𝑐 1 𝑟 

2 
+ 

𝑐 2 
𝑟 
, (131)

here 𝑐 1 and 𝑐 2 are constants of integration. 

Integrating Eq. (116) (note that 𝑉 𝑟 = �̄� 𝑟𝑧 for the linear case and 𝑘 =
 ) with respect to 𝑟 results in 

 �̄� 𝑟𝑧 + 𝛼

[
𝑑 

𝑑𝑟 
( 𝑟𝑃 𝑟𝑟 ) − 𝑃 𝜃𝜃

]
= − ∫ 𝑟 𝑞( 𝑟 ) 𝑑𝑟 + 𝑐 3 . (132)

ubstituting for �̄� 𝑟𝑧 from Eq. (117) into Eq. (132) , we obtain 

𝑑 

𝑑𝑟 

(
𝑟𝑀 𝑟𝑟 

)
− 𝑀 𝜃𝜃

]
= − ∫ 𝑟 𝑞( 𝑟 ) 𝑑𝑟 + 𝑐 3 . (133)
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[  
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[  

[  
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hen, in view of the identity in Eq. (128) , we obtain 

 𝑟𝑟 𝑟 
𝑑 

𝑑𝑟 

[ 1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝑢 ) 
]
+ �̄� 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[ 1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝜙𝑟 ) 
]
− 𝛼𝐹 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[ 1 
𝑟 

𝑑 

𝑑𝑟 

(
𝑟 
𝑑𝑤 

𝑑𝑟 

)]
= − ∫ 𝑟 𝑞( 𝑟 ) 𝑑𝑟 + 𝑐 3 . (134) 

ntegrating the above equation twice with respect to 𝑟 , we obtain: 

 𝑟𝑟 𝑢 + �̄� 𝑟𝑟 𝜙𝑟 − 𝛼𝐹 𝑟𝑟 
𝑑𝑤 

𝑑𝑟 
= − 

1 
𝑟 ∫ 𝑟 

[ 
∫

1 
𝑟 

( 
∫ 𝑟 𝑞( 𝑟 ) 𝑑𝑟 

) 
𝑑𝑟 

] 
𝑑𝑟 

+ 𝑐 3 
𝑟 

4 
( 2 log 𝑟 − 1 ) + 

𝑐 4 𝑟 

2 
+ 

𝑐 5 
𝑟 

= − 𝐹 ( 𝑟 ) + 𝑐 3 
𝑟 

4 
( 2 log 𝑟 − 1 ) + 

𝑐 4 𝑟 

2 
+ 

𝑐 5 
𝑟 
, (135) 

here 

 ( 𝑟 ) = 

1 
𝑟 ∫ 𝑟 

[ 
∫

1 
𝑟 

( 
∫ 𝑟 𝑞( 𝑟 ) 𝑑𝑟 

) 
𝑑𝑟 

] 
𝑑𝑟. (136)

Solving Eqs. (131) and (135) for 𝑢 and 𝜙𝑟 in terms of 𝑑 𝑤 ∕ 𝑑 𝑟 , we

btain 

 ( 𝑟 ) = 

�̄� 𝑟𝑟 𝑝 ( 𝑟 ) − �̄� 𝑟𝑟 𝑔( 𝑟 ) 
�̄� 

∗ 
, 𝜙𝑟 ( 𝑟 ) = 

𝐴 𝑟𝑟 𝑔( 𝑟 ) − 𝐵 𝑟𝑟 𝑝 ( 𝑟 ) 
�̄� 

∗ 
, (137)

here 

 ( 𝑟 ) = 𝛼𝐸 𝑟𝑟 

𝑑𝑤 

𝑑𝑟 
+ 

𝑐 1 𝑟 

2 
+ 

𝑐 2 
𝑟 
, (138a) 

( 𝑟 ) = 𝛼𝐹 𝑟𝑟 
𝑑𝑤 

𝑑𝑟 
− 𝐹 ( 𝑟 ) + 𝑐 3 

𝑟 

4 
( 2 log 𝑟 − 1 ) + 

𝑐 4 𝑟 

2 
+ 

𝑐 5 
𝑟 
, (138b) 

̄
 

∗ = 𝐴 𝑟𝑟 �̄� 𝑟𝑟 − 𝐵 𝑟𝑟 �̄� 𝑟𝑟 . (138c) 

We see that the solution for 𝑢 and 𝜙𝑟 includes the unknown 𝑑 𝑤 ∕ 𝑑 𝑟 .
n the first-order shear deformation plate theory (FST), we have used

q. (132) without the higher-order stress resultants. However, the pres-

nce of these higher-order terms makes the task of solving for 𝑑 𝑤 ∕ 𝑑 𝑟
ifficult. To see this, use Eqs. (129) and (132) and obtain 

̂
 𝑟𝑧 

(
𝜙𝑟 + 

𝑑𝑤 

𝑑𝑟 

)
+ 𝛼

{ 

𝐸 𝑟𝑟 𝑟 
𝑑 

𝑑𝑟 

[ 1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝑢 ) 
]
+ 𝐹 𝑟𝑟 𝑟 

𝑑 

𝑑𝑟 

[ 1 
𝑟 

𝑑 

𝑑𝑟 
( 𝑟𝜙𝑟 ) 
]

− 𝛼𝐻 𝑟𝑟 𝑟 
𝑑 

𝑑𝑟 

[1 
𝑟 

𝑑 

𝑑𝑟 

(
𝑟 
𝑑𝑤 

𝑑𝑟 

)]} 

= − ∫ 𝑟 𝑞 ( 𝑟 ) 𝑑𝑟 + 𝑐 3 (139) 

he form of the above equation makes it very difficult (if not impossible)

o obtain the exact solution. The exact solutions of the simplified third-

rder beam theory (SBT) were discussed in [1] . One may follow similar

pproach here to determine the exact solutions to a simplified TST . 

. Summary 

Three different plate theories, namely, the classical, first-order, and

hird-order plate theories are presented for axisymmetric bending of cir-

ular plates, accounting for the through-thickness variation of the ma-

erial, modified couple stress effect, and the von Kármán nonlinearity.

xact solutions for bending of the first two theories are presented for

everal boundary conditions. The approach to develop exact solution

or the third-order theory is presented but short of obtaining a solution
10 
s it involves additional unknown. It may be possible to obtain a sim-

lified theory and obtain a solution as was done in the case of beams.

umerical examples are also presented to illustrate the accuracy of var-

ous models and bring out certain salient features of functionally graded

ircular plates. Finite element models of the nonlinear theories of circu-

ar plates presented herein can be found in the monograph by Reddy [2] ,

hich contains detailed discussions of obtaining analytical and numer-

cal solutions. Extensions of the theories presented herein to buckling

nd vibration [2,16] , especially accounting for nonlocal effects [17] ,

re also awaiting. 
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