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This paper presents the governing equations and analytical solutions of the classical and shear deformation the-
ories of functionally graded axisymmetric circular plates. The classical, first-order, and third-order shear defor-
mation theories are presented, accounting for through-thickness variation of two-constituent functionally graded
material, modified couple stress effect, and the von Kdrman nonlinearity. Analytical solutions for bending of the
linear theories, some of which are not readily available in the literature, are included to show the influence of
the material variation, boundary conditions, and loads.

1. Background

Recently, the authors have published a comprehensive paper on the-
ories and analytical solutions of the bending of functionally graded ma-
terial (FGM) beams [1]. The present paper considers functionally graded
axisymmetric circular plates. Like beam theories, plate theories are de-
rived from the three-dimensional elasticity theory by making certain
simplifying assumptions concerning the kinematics of deformation and
stress states. The present study has the dual purpose of presenting the
classical, first-order, and third-order theories of circular plates and ana-
lytical solutions of the associated linear theories for the case of bending.
The theories to be described account for the through-thickness variation
of two-constituent material, modified couple stress effect, and geometric
nonlinearity in the form of the von Karman nonlinear strains.

For the convenience of analysis, we use the cylindrical coordinate
system (r,0, z) to describe the deformation and stress state in circular
plates. The word “axisymmetry” refers to the case in which the solution
(i.e., displacements as well as stresses) is independent of the angular
coordinate 6 (see Fig. 1). This is possible if and only if the geometry,
material properties, loads, and boundary conditions are also indepen-
dent of 6. We assume such is the case in this paper.

The variation of properties through the thickness is considered to
be of the power law type. A typical material property P is varied as a
function of the thickness coordinate z as

1, z\"
P@) = (P-P)f@+P [@)=(5+71) M

* Corresponding author.

where P, and P, are the material properties of material 1 (at the top) and
2 (at the bottom), respectively, and » is the volume fraction exponent
(power-law index). Note that when n = 0, we obtain the single-material
beam (with property P,).

A large number of papers on modified couple stress theories for
beams and plates, including circular plates, can be found in the liter-
ature (see, e.g., [2]). The modified couple stress theory brings a single
length scale through a phenomenological constitutive model relating the
couple stress to the curvature relation (see, e.g., [3-91). The contribu-
tion due to the couple stress is included into a plate theory by modifying
the strain energy expression of the plate. To this end, suppose that u de-
notes the displacement vector of an arbitrary point in the plate. Then
the rotation vector @, which represents the macro-rotation, is defined
as

m:%VXu 2)

The curvature tensor y represents the rate of change of rotations, which
are assumed to be small:

x= %[V{u +(Vo)'] 3)

The modified couple stress theory is based on the hypothesis that the
rate of change of macro-rotations cause additional stresses, called couple
stresses, in the continuum. The modified couple stress tensor m is related
to the curvature tensor y through the constitutive relations [10]:

m=2G¢2y )

where ¢ is the length scale parameter and G is the shear modulus.
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Fig. 1. Geometry and coordinate system used for circular plates.

The strain energy potential of a circular plate is modified to account
for the energy due to modified couple stress as

WV
UZE/[ (o-:e+m:)()dz]dx )

_h
2

where £ is the thickness of the plate, b is the inner radius of an annu-
lar plate, a is the outer radius, ¢ is the Cauchy stress tensor, ¢ is the
simplified Green-Lagrange strain tensor, m is the deviatoric part of the
symmetric couple stress tensor, and y is the symmetric curvature ten-
sor. In the coming sections, these relations will be specialized to various
plate theories.

2. Mechanics preliminaries
2.1. Modified Green-Lagrange strains

Let u denote the displacement vector with components (u,, uy, u,) in
the (r, 0, z) coordinate directions, respectively. Due to the assumed ax-
isymmetry (i.e., the material properties, loads, and boundary conditions
are independent of the coordinate #), we have u, = 0 and u, and u, are
independent of 0. In addition, if we assume the inextensibility of the
transverse normal lines, then u, is only a function of the radial coordi-
nate r.

The modified Green-Lagrange strain tensor that accounts for mod-
erate rotations of normal lines perpendicular to the plane of the plate is
given by (see Reddy [11])

u. 0
Ez%[Vu+(Vu)T+ﬁ "z

o>

or or o ] =€ ©

where (&,,8é,, €,) are the basis vectors in the cylindrical coordinate sys-

tem. Thus, the nonzero strain components in the cylindrical coordinate
system for the axisymmetric case are:

ou, 1 (0du, 2 1(0u. Ou, u,
=ZL4+-(=), ===+ =), ==L, 7
= o T 2< or ) T\ T ) T D
2.2. Curvature tensor

The only nonzero component of the rotation vector  for axisymmet-
ric deformation is

1(0u. Ou,
== _= 8
“o 2( 9z or ®
Then the nonzero components of y for the axisymmetric case are
1[0wy, oy 1/ %, 0%u, 1 [ 0u, Ou,
e=z\—>-——|)=7% - -\ ) (%)
2\ or r 4\ 0zor  or? r\ 0z or
10wy 1( 0%, 0&u,
=-—r ==z - . 9b
Y0 =3%; T % < 0z2  o0zor 0)
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2.3. Stress—strain relations

For a two-constituent functionally graded linear elastic material, the
plane stress-strain equations relating the nonzero stresses (c,,, 69y, 6.,
to the nonzero strains (¢,,. €49, €,,) of the axisymmetric case are

1 v 0
| E@ |, €
o =
o0 -2
O,

rr

10 Rep (10)
1—

0 TV ZErZ

rz

where Young’s modulus E varies with z according to
1, z\"

E@) = (B - B)oi@) + By, 0y(2) =5+ (11)
and Poisson’s ratio v is assumed to be a constant. The modified couple
stress constitutive relation becomes
_ E

20+v)°
where m,, is the nonzero component of the symmetric couple stress ten-
sor m.

m,y =2Gt* g9, G 12)

2.4. Strain energy functional

According to the modified couple stress theory, the strain energy
potential for linear elastic case can be expressed as (the common factor
2z is omitted throughout the development)

h
U—1 ’ (o
—50 _g(o‘.

h

1 [ [z

) / [/ h (60 €11 + 0o 99 + 20,2 €,z + 2myg Ire)dz:| rdr, (13b)
0 -3

e+m: )()dz] rdr (13a)

where a is radius of the plate, o is the Cauchy stress tensor, ¢ is the sim-
plified Green-Lagrange strain tensor defined in Eq. (6), m is the devia-
toric part of the symmetric couple stress tensor, and y is the symmetric
curvature tensor defined in Eq. (3).

3. Governing equations of the CPT
3.1. Displacements and strains

The total displacements (u,,u,) along the coordinate directions (r, z),
as implied by the Love-Kirchhoff hypothesis for axisymmetric bending
of circular plates, are assumed in the form

u=ué +u,é,

aw (14)

u(r,z) =u(r)—z T Yo = 0, u,(r,z) =wr),

where u is the radial displacement and w is the transverse deflection
of a point on the midplane of the plate. The Love-Kirchhoff hypothe-
sis amounts to neglecting both transverse shear and transverse normal
effects.

The von Karman strains in (7) for the classical plate theory take the
form

0, 1
Epp = 65(3) + zeip, Egp = 6(96,) + ze(%) 1s)
where
2 2
E<o>=ﬂ+l(d_w) ) (o _dw
™ dr  2\dr ” dr?
(16)
RO LD _ldw
00— 00 "y dr

The rotation and curvature components are

wzl du,_duZ __dw 4o =0
0 dz  dr dr’ 0T

_1(dog @\ _1(_dw  1dw
20 = 5\ Tar r) 2 dr2  rdr

an
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Fig. 2. An element of a circular plate with stress resultants at a “point”.

3.2. Equations of equilibrium

The principle minimum total potential energy (or the principle of
virtual displacements) can be used to derive the equations of equilib-
rium:

17d
[ (N = Ngg| =0 as)
{dir(rN,z)+§dir[dir(rP,g)—P,9]+§dir(rN,Tfi—"rV)+q:o (19)
17d
—= |5 (M) = My | + N, =0, (20)

where g = g(r, 1) is the distributed transverse load, and N,,, Ny, M,,,
Mgy, and P,, are the stress resultants (see Fig. 2 for the notation),

TR

h
N,r(r)=/ c,.dz, Nge(r)=/ oy dz

M= [
Prg(r):/ m.dz,

The boundary conditions involve specifying one element of each of
the following duality pairs:

ST

o,zdz, Mgg(r)=/2 o9z dz @

h
2

RIs PRI Rl R

ST

u or rN,,
d o
w or r|V,+ E(rprg) + Pyl =1V, (22)
w -
—— or rM,+rPy=rM,,.
ar
where V, is the effective transverse shear force acting in the rz-plane
dw _17d dw
V,=N.+N, 2=~ [E(rM,,) — My + rN"—r] 23)

The equations of equilibrium and the duality pairs for the case in which
the couple stress effect is not considered are obtained by setting P,, = 0.

3.3. Plate constitutive relations
The stress resultants N,,, Ngy, M,,, My,, P., of the classical plate

theory are related to the displacements (u, w) according to the following
equations:

du 1 2 u dw | v dw
Nrr—“rr[zw(z) +V;]‘Brr<m+r dr> (24
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u du _v/dw)? dw 1 dw
Ngg = A, | = +vEE -( ) -B, (v 24b
00 "[r+vd 2\ ] "(V dr? Ty dr) (24b)
M, =B, |% l(—“'w)zwﬂ _p, (Lw v dw) (240)
me o ldr 2\ dr "\ dr2 " r dr
u  du  v(idw)? dw 1 dw
Mgy =B, | = +vEE -(—) -D -2, 24d
06 "[r+vdr+2 dr ] "(Vdrz * r dr> (24d)
Py =s,(-Lw, Ldw (24e)
0TS0\ g2 T rdr ) ©
17d
Neo= 2[5 (rM,,) - My . (24D

where A,,, B,,, D,,, and S,, are the extensional, extensional-bending,
bending, and shear stiffnesses, respectively:

A, = a _Vz)/ E(z)dz, rr: v2) /% E(z)zdz

D —;/ E(z)z?dz, S —L/iE(z)dz
T =2) T 21+ ) kb

For the material distribution through the thickness according to Eq. (11),
the following integrals are useful in computing A,,, B,,, and so on:

(25)

TR N\:

I

h

2 h
dz=——,
/_ﬁ o(2)dz n+1

ol

h
2 nh?

/_g n@zdz= T 20
5 R Q@+ n+ )3

/—% n@zdz= A D+ 3)

3.4. Displacement formulation of the CPT

We now can write the governing equations of the CPT solely in terms
of u and w with the help of the plate constitutive equations. The resulting
differential equations would be second order in « and fourth order in w,
the total order being six. Here we present such equations for the case in
which the couple stress effect is omitted.

The equilibrium equations of the CPT without the couple stress effect
are obtained by setting P,, to zero:

17d

—;[E(rN,,) —Ngg] =0, @7
1dfd 1d d

= ar g M) = Muo| = (W G )| a0 @9

Substituting for N,,, Nyy, M,,, and My, from Eqgs. (24a)—(24f) into the
equations of equilibrium, Eqs. (27) and (28), we obtain

1df d_u+1 dw\ay  ul_,p (Pw  vdw
rdr "\ dr dr r "\ dr2 r dr
1 du dw 2] 1( d*w 1dw
B. - ~ == )=0, (29
A [ v dr+2(dr> ”r(vdr2+r dr @9
1d|d du  1(dw u d*w | v dw
_.4 B, N 2 -rp, (22
rdr[dr{r [ +2< >+ r} ! <a’2+r dr)}
[l (e w1 dw
"r 2\ dr Drr d r dr
_ld d_“ 1(dw
rdr 2\ dr

dw | vdw
-B —_— - — —-q=0.
! dr<dr2 rdr>} 4

(30)
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3.5. Analytical solutions for bending

3.5.1. Governing equations

In this section, we develop the exact solutions of the linearized equi-
librium equations governing functionally graded material (FGM) circu-
lar plates. Of course, the isotropic plate solutions can be deduced from
the results to be derived here for the FGM plates.

First, we summarize the relevant equations for the purpose of this
section. The equations of equilibrium in terms of the stress resultants
are (without the couple stress effect and nonlinear terms):

17d
—;[E(rN,,) —Ngg] =0, 31
1djd
—;E[;(rM,,) -Mgg] —g=0. (32)
The bending Eq. (32) can be cast as a pair of equations:
1d
———(rN,,)—qg=0, 33
~—-(rN.:) -4 (33)
4y M, N..=0 34
_E(r rr)+ 6€+r rz — Y- ( )
Equation (34) defines the bending moment-shear force relationship:
d
rN,, = = —(rM,,) — Mg,.

In the linearized theory, the stress resultants N,,, Ny,
are related to the displacements by

M,,, and M,

W= (G t) -5 ( G+ 1 5E)
NQQ:A,,<M+V%)—B,,(VZZ—:;+%[i,—lf), (36)
M,,:B,,(%+v§)—D,r<dz—;}+¥d—’f>, @7
My, = B,,(% +v%) - D,r<v‘f12:20 + % ‘2-?) (38)
7= 0= g)”(%’L:ZL:)}’ 9
699:(1——E\/2)|:(V%+%>_Z<V§TZU+%Z_’:]>]’ (40)

where the expressions for ¢,, and oy, are obtained using Eqs. (10) and
(29) (omitting the nonlinear contributions).

3.5.2. Exact solutions
From Eq. (33), we obtain

rN,, = —/ rq(&)dé +cy. 1)

Substituting Eqgs. (37), (38), and (41) in Eq. (34), and integrating twice
with respect to r, we obtain (after some algebraic manipulations)

wrens ] 1 )

—(210gr— 1)+c2 > +c3. 42)

Following the same procedure with Eq. (31) as we did with Eq. (34), we
obtain
2

A,.ru— B, rdw !

" F:%?"'CS- 43)
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From Egs. (42) and (43), we can solve for ru and r(dw/dr) as

— r2
ru(r) = D}, <c47 +¢5 F(r)+cz ) +C3 44)
dw _ g A (F r 45
r; o 4= +ces ) — r (r)+C25+C3 5 ( )
where
_ A _ B, _ D,
At =lr g _Cr e _Zr v o_ap BB (46)
rr D:r rr D;kr rr D:r xx rr==rr rrerr

r 3 1 n )
F(r>=—/ {:/ [;/ ﬂq(ﬂ)du]dn}d§+clz(210gr—1). 7)

Integrating Eq. (45) once, we arrive at the expression for w(r)

_ 2 _ r 2
w(r) = Bf,<c4% +c5 10gr> - A,,(/ éF(ﬁ) dé+ cz% +cylogr+ cﬁ>,
(48)
The six constants of integration can be determined using six bound-

ary conditions, three at r = b (b is the inner radius; b = 0 for solid plate)
and three at r = a (the outer radius) from the duality pairs:

dw
dr
To facilitate the determination of the constants of integration using the

boundary conditions, we write N,, and M,, in terms of the displace-
ments u and w. First, we compute du/dr and d*w/dr*:

du _ =, (1 e\ . [d (F), 1 &
o= 0(za-3) Bl 5 ()30 2] 50)
d>w o, (1 cs —.[d (F 1 3
i = B(5e-3) A5 (F) v 53] S

Next, we write N,, and M,, in terms of the constants of integration (after
some simplifications) as:

(u,N,,), (w,N,;), ( M) (49)

1+ 1—
N,,=Tvc4— rzvcs, (52)
) d (F F
rr_(1+ )(———>+E<r)+\/r—2 (53)

The function F(r) depends on ¢(r) and the constant of integration c,.
Two cases that are of interest are when ¢(r) = 0 and ¢(r) = ¢, a constant.
Then we have (for g, = 0 or ¢ is a constant)

4
F(r)=— 16 +c1z(210gr— 1. (54

The exact solutions for deflection, moments, and stresses in an FGM
circular plate with clamped edge, r = a and subjected to uniformly dis-
tributed load of intensity ¢, [the coefficients /ifr and B;*r are defined in
Eq. (46)] are

— 3 2
u(r)=—B:r%§(l—%>, (55)
1100 r\? :
o= 52 21]

Expressions for the stress resultants from Egs. (35)-(38) become (N,, =
Ngg = 0)

2
M,(r) = [(1 -G+ v)( ) ] 57

a? 2
My = 2L (1 4v)— (1 + 3\/)( ) ] (58)




J.N. Reddy, E. Ruocco, J.A. Loya et al.

0.35 cocdadedo
n =20

Clamped circular plate
under UDL (exact solutions)
alh=100

0.30

0.25 %:10, E, =3x10°psi,

0

v=0.3
0.20

0.15

0.10

Transverse deflection, w

0.05

Solutions are
normalized with g,

0.00

0.0 0.2 0.4 0.6 0.8 1.0

Normalized coordinate, r/a

Fig. 3. Variation of the transverse w(r) with r/a for various values of the volume
fraction index n.
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Fig. 4. Variation of the bending moment M,,(r) with r/a for various values of
the n.

2
_ qoa° E(z) . . _ r\?
0p(r.2) = A T (Bl + 24 (14 v) (3+v)<a) ] (59)
2 E _ _ 2
ogp(F2) = % 1 _(ZV)2 (B* + zA:‘r)[(l -+ 3v)(£) ] (60)

The results presented can be simplified to an isotropic plate by setting
B, =B =0,A* =1/D,,, and D} =1/A,,.

To generate numerical results, we consider circular plates of radius
a =10 in., thickness 4 = 0.1 in., and modulus ratio E,/E, = 10 with
E, =30x 10° psi and v = 0.3. Figure 3 shows plots of the transverse
deflection w(r) as a function of the normalized radial distance r/a for
various values of the volume fraction index n (n = 0 corresponds to the
isotropic plate). The deflections are normalized with respect to the load
qo- Figure 4 shows plots of the bending moment M,,.(r) as a function of
r/a for various values of n.

The expressions for the transverse deflection, bending moments, and
stresses in a FGM circular plate with pinned edge at r = a and subjected
to uniformly distributed load of intensity ¢, and an applied bending
moment M, at r = q are

40‘13 r r2

u(r):—B*—-<1——>, (61)

" 16 a a?
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1.0 (Exact solution)
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21 -1,
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0.0 0.2 0.4 0.6 0.8 1.0

Normalized coordinate, r/a

Fig. 5. Plots of the center deflection of pinned circular plates as functions of
the normalized radial coordinate, r/a, for various value of n.

25 [RTTRRRARI ANRRRRRNARNRARRRINARRRRARRRT] AARURANAN,
3 Pinned circular plate under UDL |
3 a/lh =100; independent of n E
= Exact solution E
gt 20 — E
g 2
s 15 —J —
g = =
=1 b =
= 3 E
oo = =
g 10 D e
o 4 =
g = =
) = =
[=a] = E
5 E 10, BE,—3x10° psi,v=0.3 =
E E, g
3 Solution is normalized with g, E

0 7||||||\\\‘\\\\\\\\\‘\\\\\\HIIIIIIIIIIIlIIIIIIIII

0.0 0.2 0.4 0.6 0.8 1.0

Normalized coordinate, r/a

Fig. 6. Plots of the bending moment M,, of pinned circular plates as a function
of the normalized radial coordinate, r/a. The results are independent of the n.

4 2 4
. dod <5+v> (3+v)r F
= Ax 0% ) LA
wn =4~ |\ A
_Bj’—%ﬂo_ﬁ)_kﬂ(l_ﬁ)’ (62)
(1+wv)Dx 16 a? 2(1 +v)D,, a2
2 2
M) =G+ (1-Z )+ M, 63)
16 a?

where the coefficients A;‘r, B;‘r, and D;*r are defined in Eq. (46). We
nte that M, does not contribute to u(r).

Numerical results are presented for the case in which M, = 0 and the
following data:

a=10in., h=0.11in., % =10, E, =30x 10° psi, v=0.3. (64)
All results are normalized by the load ¢,. Figure 5 contains plots of the
deflections w(0) predicted for the pinned FGM plates as a function of the
normalized radial coordinate, r/a, for various values of the power-law
index n; Fig. 6 contains plots of the variation of the bending moment
M,, as function of the normalized radial coordinate, r/a; the results are
independent of n.
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Fig. 7. Plots of the center deflection w(0) of pinned and clamped circular plates
as a function of the power-law index, n.

Figure 7 shows the center deflection w(0) as a function of the power-
law index n for the pinned and clamped circular plates. We note that
the rate of increase of the deflection has two different regions; the first
region has a rapid increase of the deflection while the second region
is marked with a relatively slow increase. This is primarily because of
the fact that the coupling coefficient B, varies with » rapidly for the
smaller values of n followed by a slow decay after n > 3. The rate of
increase in the deflection or slope in the second part is less for clamped
plates than for the pinned plates. The reason is the fact that the clamped
plate is relatively stiffer than the pinned plate.

4. The first-order shear deformation theory
4.1. Displacements and strains

The displacement field of the first-order shear deformation plate the-
ory (FST) is

u=u € +u, &, ulr,zt)=ulrt+zp.(r,t), u,(r,zt)=wrt), (65)

where ¢, denotes the rotation of a transverse normal in the plane
0 =constant. The FST includes a constant state of transverse shear strain
with respect to the thickness coordinate, and hence, requires the use of
a shear correction factor.

The nonzero von Kérman strains of the theory are

0 1
Epp = eie) + zeilr), Egp = ( ) + 25(99), £, (r(;), (66)
where
(O _du 1(dw)? L _
rr dr 2\dr /)’ m dr”’ 67)
(0) (1) ¢ O _ dw
€09 = €9 = 26m =0ty

The rotation and curvature components are
1[do, 1 dw  ldw
= Ly _Ldw) 68
<¢’ dr ) *ro 4[ dr r¢r dr2  rdr ©8)

4.2. Equations of equilibrium

The governing equations of equilibrium of the FST are:

i1d
;[;(VN,V) - Nee] =0, (69)
1 d L dd

~o )+ ZE[E(rPrH) +Pr9] +q=0, (70)
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114 1d
T (rM,y) = Myg + 320 (rPg) + 3 Prg| = Nz =0, (n
where
h h
(Nrr’Mrr) =/_2ﬁ(1’z)o—rrdz’ N =KS/2ﬂ r'zdZ
h2 " 2
3 72
(Ngg, Mog) —f (1 Z)‘Teedz Py fzﬁ myydz 72
2
v, _N +N,

rr dr
and K denotes the shear correction coefficient.

The boundary conditions involve specifying one element of each of
the following pairs:

u or rN,; w or rVr+%[di(rP,9)+Pr9] =rV,
r

73
dw (73)

1
- E or -— E"Prg;

¢, or rM,, + %rP,B =rM,,
4.3. Plate constitutive relations
The stress resultants appearing in Eqgs. (69)—(71) can be expressed in

terms of the generalized displacements (u, w, ¢,) as (thermal effects are
not included)

e[S (220,

Nyy=A,, g +v% + %(d—':})z +B,,<vdd;¢;r + %qﬁ,),
M,,:B,,:z—l:+%<(z—l:))2+v% +D,,<%+;¢,>, (74)
M= £ $(5E) 40 (Ve 4 L)

N, = Srz(¢r+ Z—I:)) By = %Srﬂ [% - tf;TLZU - %( = %)]
where A,., B,, D,., S..=K;A,, and S,, are the extensional,

extensional-bending, bending, shear, and couple stress stiffness coeffi-
cients, respectively:

A, (1 — vz) L E(z) dz, B, = iz v2) E(z)zdz

n
_ 2 2

oy = a9 _% E(z)z°dz, A,, = 2(1 I g E(z)a’z (75)
h h
2 2

S, = E(z)dz, m; —/ p(2)(2) dz.
20+v) J_n 4

N1

4.4. Equations of equilibrium in terms of the displacements

The equations of equilibrium in Egs. (69)—(71) can be expressed in
terms of the generalized displacements (u, w, ¢,) by invoking Eq. (74):

1d du dw u do,
LECAD i ) “l 4B
rdr{ " dr+2<dr +Vr]+r "< *y ¢r

+1{A,,[“+v@+3(d—w)]+3,<d¢'+ qs,)}:o, (76)
r r 2

dw dwldu 1/dw\? u
{r rz ¢’+dr tr " dr [dr+2 dr +Vr

0
rBrraa_w< ¢r + !¢r>

1d? [ d¢,_dw_l( _d_w)
Trdr 0 ar dr2 r\""  dr

1d dp, d*w 1 dw _
_7E{S’9[dr_m_7(¢’__)]}_q_0’ a7

_1
p

Sls
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1d du  1/dw\> u dp, v
—;E{rB,, $+—(—) +v;]+rD,,(—’+;¢,

1 U du _v/dw)? dé, 1
+;{B",;+v_+§(_>]+D"<V L+ =@,

1 d¢, d*w 1 dw dw
_;Sré’ r____((br_E) +Srz<¢r+_

4.5. Exact solutions

4.5.1. Governing equations

In this section, we develop the exact solutions of functionally graded
material (FGM) plates using the FST. The couples stress effect is not in-
cluded here, although it is possible to include but algebraically a bit
more complicated. The developments to be presented are similar to
those presented in Section 3.5.

The equations of equilibrium of the FST in terms of the stress re-
sultants are (without the couple stress effect and setting the nonlinear
terms to zero) are:

I7d

—;[E(’Nn)_Nee] =0, @)
1d

- (rN,;) —q=0, (80)
d

——r(rM,r) + Mgy +rN,, =0. (81)

The stress resultants (N,,, Ngy, M,,, Myy, N,.) and stresses (o,,., 6gy, 0,,

of the linearized FST are related to the displacements by

N,,=Arr(%+v§)+3ﬂ<%+§¢,>, ®2)
Nee=A,r(§+v%)+3n(v%+}¢,>, 83)
M,,=Br,(%+v§)+Dn<dd"i’ +§¢,>, 84)
M99=B,,(L—r‘+v%)+Drr<vddd;’ +}¢,>, (85)
ar,=ﬁ[(%+v%)+z<d$’+¥¢,>], (86)
Opp = “_—Iz‘/z)[(v%+%)+z<vd;ﬁ' +%¢,>}, 87)
Npo=S,:(90+ G2 ). o= 5 (004 52 )
From Eq. (80), we obtain
IN,, = - / ra@detey. (89)

Substituting Egs. (84), (85), and (89) in Eq. (81), and integrating twice
with respect to r (and with several algebraic simplifications), we obtain

r £ n
Br,ru+D,rr¢,=—/ {5/ [%/ Mq(ﬂ)dﬂ]dn}dcf

2 2
+C|Z(210gr—1)+c23+c3. (90)

Following the same procedure with Eq. (79) as we did with Eq. (81), we
obtain

L) -1 n 4 (5)- L] o
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and
2
A,ru+ B, rp. = Gy +cs. 92)
Solving Egs. (90) and (92) for u(r) and ¢, (r), we obtain
_ r Cs _ 1 r C3
u(r):Dfr<c4§+7>—Bfr(;F(r)+c2§+7), 93)
_ r Cs — 1 r C3

¢,(r):—B:r<c4§+7>+A’:r<;F(r)+c2§+7). (94)
where
_ A _ B _ D,

=B B= g D= pE. D =AD, BB 09

rr rr rr

r ¢ 1 /" 72
F(r)=—/ {é/ [ﬁ/ uq(u)du]dn}d§+clz(210gr—1)- (96)

Substituting for N,, from Eq. (88) into Eq. (89) and solving for
dw/dr, we obtain

dw 1|5 r? - r?
e ;[Bfr<c47 +c5) —A:‘r<F(r)+c23 +c3>

- - Sl ( / rg(@) dé + c1>, ©7)

and integrating once with respect to r

_ 2 _ r 2
w(r) = Bfr<c4rz +05108r> _Ajr</ %F(é)d§+02% +C3logr+cﬁ>

r ¢
< / % / nq(n)dnd§+c|10gr>- 98)

The constants of integration are determined using boundary conditions
arising from the specification of one element of each of the following
three duality pairs:

(u,N,), (w,N,.;), (¢, M) 99

Here, we consider couple of examples to illustrate the use of the
boundary conditions to determine the exact solutions. Expressions for
the function F(r) [see Eq. (96)] and the integrals involving it are needed
in the examples to be discussed. Two cases that are of interest are when
q(r) = 0 and g = g, a constant. In these two case we have

1
SrZ

2

F(r)=c1%(210gr—1), forqg=0, (100)
2 4

F(r):cl%(Zlogr—l)—%, or ¢ = qp. (101)

1 2 qort _
/;F(r)dr—clx(Zlogr—l)—G—“, or q = qp. (102)
We also need the following integral when g(r) = gy:

r & 2
1 do’

= dndé = —. 103

/ : / nq(n) dndé 1 (103)

The exact solutions for deflection, moments, and stresses in an FGM
circular plate with clamped edge, r = a, are [the coefficients A* and B
are defined in Eq. (96)]

3 2
_ . qoa
u(r)=—B;‘r(1)—6§(l—:;—2>, (104)
3 2
_. qoa
$,(r) = &, = 2(%%) (105)

wiry = i, [1 - (i)2

2 2 )

1 qoa r
—_— — (| 1-=). 106
64 + S 4 < a2> ( )
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1.2 \IIIJHIIlJHIIJHIlIHIIIJ\IIJHIIJH’

a/h =100
a/h =10

0 =wh®x10° __

Pinned circular plates

o
'S

Clamped plates

lIIII|HlIIIIH|IIIIHIlllHHIIIH“IIIIHII

Center deflection, w
o
[ep}

Pinned and clamped circular plates

under uniform load
T T T[T T T[T T T[T 7T

0 5 20

HJIIIHIlIJH

10 15

Power-law index, n

Fig. 8. Variation of the transverse maximum deflection @ versus the power-
law index n for clamped and pinned circular plates for two different radius-to-
thickness ratios, a/h = 10, 100.

The displacements and bending moments of an FGM circular plate
with pinned edge at r = @ and subjected to uniformly distributed load
of intensity g, as well as an applied bending moment M, at r = a are:

3 2
=5, 800 (1-2), (107)
Qe r <3+v) T B:réjr i
A —p—rm gD 108
¢r(") 16 a|: 1+v rr (1+V)D:‘r g2 ( )
4 2 4 B* B* 4 2
w(r)zA;qoa <5+v)_2<3+v>r_+r_}_#ﬁ<1_’_
64 |\T+v T+v/a2 " d| (1+wD: 16 a
M, 2 ? 2
—“ S P LAy e (109)
*a+wD, a?) 4S8, a?
40“2 r?
Mrr(r)=(3+v)7 l_a +M,, (110)

where the coefficients Ajr, >, and D* are defined in Eq. (46). We note
that M, does not contribute to u(r).
The numerical results generated with the data

h=0.1in, =L =10, E,=30x10°psi, v=03

a=10in., —
2

coincide with the plots presented in Figs. 3 and 4, indicating that the

effect of shear deformation is negligible for this thin plate (a/h = 100).

Figure 8 shows @ = w(0)h> x 10% versus the power-law index » for two

different ratios a/h = 10 (thick) and a/h = 100 (thin), showing the effect

of shear deformation on the transverse displacement w. Figure 8 also

contains results for pinned circular plates.
5. Third-order shear deformation theory
5.1. Displacements and strains

In this section we develop the Reddy third-order shear deformation
plate theory (TST) of the axisymmetric circular plates. We use an higher-
order expansion of the radial displacement u, through the thickness of
the plate and thus further relax the Love-Kirchhoff hypothesis by remov-
ing the assumption of straightness of a transverse normal (in all theories
the inextensibility of a transverse normal can be removed by assuming
that the transverse deflection also varies through the thickness).

)
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The third-order plate theory of Reddy [12-15] is based on the dis-
placement field

u(r,z,t) = u,(r,z,t) &, + u,(r,z,1)€,, (111a)
(. 2.1) = u(r, ) + 2, (r 1) — a 23 (q&, + ‘Z—”r”),

4
u,(r,z,t) = w(r,t), a= e (111b)

where (u,,u,) are the total displacement components along the r and z
coordinates, respectively, (u, w, ¢,) are the generalized displacements,
and 4 is the total thickness of the plate. The displacement field ac-
commodates quadratic variation of transverse shear strains and shear
stresses and vanishing of transverse shear stress on the top z = 4/2 and
bottom z = —h/2 planes of a plate, and there is no need to use shear
correction coefficient in the third-order theory.
The nonzero von Kdrman nonlinear strains can be written as

Epp = 65(3) + zeg) + 2369, Egp = (0) + ze(l) +2z 6(02 £, = 65(? + 2265?
(112)
where
£<0>:ﬂ+1<d_w>2, £<1):dir, B = _ <d¢r _)
moodr o 2\ dr ” dr ” dr dr?
=t = - ;(¢r+‘;—b:) ary

dw
26} =+ 0 260 = —ﬂ(qs,

)yt

The rotation and curvature components are

e () o (00 2)
1)

wo=t (-2 ) = o -p)(2-
_(1+ﬂ22)<d_w_

dr?

1dw
7?)]' (114)

5.2. Equations of equilibrium

Using the principle of virtual displacements for the third-order the-
ory we obtain the following equations of equilibrium:

11d
| £ (rN.) = Ny =0 (115)
1d (= 11d7[54 d 5
g (7)o Gl ) = Pu] =35 G [P+ Pl =0,
(116)
174 d =
~| 5 (ri,) - Mgg] +N,, - 2 [ (rPrg)] =0. 117
where the stress resultants (N,,, Ngg, N,,, M., My,), higher-order stress

resultants (P,,, Py, P..), (P9, O,¢) are defined by

h
o (Grr’ GHH)dZ (Mrr’ MGG) =

(N, Nogg) = h(Grr,Ggg)Z dz (118a)
2 T2
h
2
(N,,, P.,) = /n o.,(l,z 2dz, ( P.., Py) = h(a,,,o'%)z dz, (118b)
2 T2
h
2
(Py.0,) = /h my(1,2%) dz, (118¢)
-2
dw
V.,=N,,+N, — P (118d)
and
M".=M". aPrr’ MG€=M9€_QP99’ Nr ﬁ rze (119a)
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Pr9 = Pr() - ﬂQrQ’ Pr9 = Pr9 +ﬁQrH

The boundary conditions involve specifying one element of each of
the following four duality pairs:

(119b)

W rN; W, rV,); (b r My, + SrPyg); <0r,arP,,+%r}3,9), (120)

where the slope 6, and the effective shear force V, are defined as

0, = —‘Z—’f, V,=N,. + N,,‘Z—‘f +a[%(rp,,) - ng] + %[Pr,, + ; (rBy )].
121)
5.3. Plate constitutive equations
The Young’s modulus E varies with z according to
E2) = (E, - E)v,(2) + Ey, 0)(2) = (% + %) (122)
and v is a constant. The modified couple stress constitutive relation is
m,g =2GE? y,9, G = ﬁ (123)

where m,, is the nonzero component of the symmetric couple stress ten-
sor m, ¢ is the length scale parameter, and G is the shear modulus.

The stress resultants appearing in Eqgs. (118a)—(118c) can be ex-
pressed in terms of the generalized displacements (u, w, ¢,) as

_ du dw u = (do,
N”_A”[EJ”z(dr) +V7]+B"<d 7 ¢’

vdw | d w
—aE,,(;E+ﬁ), (124&)
u du  v/dw\? _ do, 1
Nw:*‘rr[;*”dr +3(5) ]*Brr<vd—/+:‘f’r>
2
_aErr<llj;:)+ ‘fir”2”>, (124b)
du  1/dw\> u do,
M”ZB”[E+§(W) +v r]+D,,( o +r¢,>
vdw  d*
_ aF,r<;—r 3 ) (124¢)
du v(dw\? do
Mo = B[St 2 (40 |0, (Ve w10, )
2
ap,,<1 duw #%”) (124d)
du 1 /dw u do,
P, Err[z 5(_,.) r]+Frr< dr +r¢r>
2
-aH,,<3d—w d_bz”> (124e)
r dr r
u du v /(dw\? = do,
P =y i S () 4 h, (Vo + L)
ldw = d*w
—aH,,(;E vd7>, (1246)
- dw = dw
er=Arz<¢r+E)’ erzDrz(¢r+W>’ (124g)
do, 1 d’w  1dw
Py=A - =g, - -—
0 ’€< dr r¢r dr2  rdr
¢ 1 d’w 1dw
+ﬂDr9< o Pt T ) (124h)
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d¢, 1 d? 1dw
Qr0=Dr6’< r__¢r_ w+ w

dr r dr2 " rdr
do, 2w 1ldw .
+ fF, + - —_— =), 124
ﬂ r9< dr ¢r d rdr ( 1)
where A,,, B,., D,,, E,., F,., H,., Ay, D,y, F, are the extensional,
extensional-bending, bending, and higher-order stiffness coefficients:
1 h
2
(Arr’Brr’Drr’Err’ rr’Hrr) a —V2) h(l’ z, Zz» 23» Z47 ZG)E(Z)dZ»
"2
1 2204
(A2 D, Fp) = A+ _%(1,2 ,2)E(z)dz, (125)
(A. D F)—L ’ (1,2 E@R)d
rf> ~ro> Lro _4(1+V) 7§ 52,2 z)dz
and
Brr = Brr _a_E‘rr’ Drr = D a}_?rr’ F Frr - aHrr’ (126)
ArzzArz_ﬂDrz’ Drz rz_ﬂFrz

The equations of equilibrium in Egs. (115)-(117) can be expressed in
terms of the generalized displacements using Eqs. (124a)—(124g).

5.4. Exact solution

As shown in the following pages, it is not possible to determine the
exact solution of the TST equations due to the presence of higher-order
stress resultants P,. and P,,. We outline the steps similar to those fol-
lowed for the FST in Section 4.5 to find the exact solutions of the lin-
earized equations without the foundation modulus (k = 0) and the cou-
ple stress terms.

We begin with some mathematical identities:

d _ d (du\ ul . & do, [
ar ("Ner) = Noo —Arr[;(’;) - ;] +Brr[dr< ) 7]

_ep |4 (,Lw) _Ldw
" dr dr2 rodr
d

d—[-—< o]+ BrL[L L))

orrt [ (5]

dJfld - dfld
~ My = By 2 )] + Br 2[00,

dfld / dw
—akerg dr rdr( W)]’ (128)

d
Z (VM”.)

% (rP,) = Py = E, P4 [1 i(ru)] + Frrri [% %(rqﬁr)]

" dr dr
1d
~aHyr dr[r dr (r dr )] (129
Then from Eq. (115) we have
d[ld = d[ld d[ld/ dw
4114 B, 5 [2 20| - aE, S (r22)] = 0. 30
"dr[r dr(ru)]+ "dr rdr(r¢’) *Er ey ar\"ar (130)

Integration with respect to r twice yields

— dw clr Cy
Ay ut B, b, —aE, —= ===+ =, (131

where ¢, and ¢, are constants of integration.
Integrating Eq. (116) (note that V, = N,, for the linear case and k =
0) with respect to r results in

rN,, + a[di(rp,,) - Peg] =- / ra(r)dr + c. (132)
r
Substituting for N,, from Eq. (117) into Eq. (132), we obtain

[%(err) —Mee] = —/rq(r)dr+c3. (133)
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Then, in view of the identity in Eq. (128), we obtain

dld =~ dfld 1d/ dw
bt o] 0[] -or 2[5
”rdr ra'r(m) * ”rdr rdr(r(ﬁr) * rd dr( dr

_/rq(r)dr+c3. (134)
Integrating the above equation twice with respect to r, we obtain:
= dw 1 1
B,,u+ D, ¢.— “FrrE:—;/"[/;(/rlI(r)dr>dr]dr
+c3£(210gr—l)+% &
r cur  cs
=—F(r) +c;oQlogr—1)+ = + 2, (135)
"4 2 r
where
1 1
Firy=- [ r - rq(r)dr )dr|dr. (136)
r r

Solving Egs. (131) and (135) for u and ¢, in terms of dw/dr, we
obtain

D, p(r) =B, g(r) _ A, 8(r) = B, p(r)
u(r) = o , @.(r)= o s (137)
where
dw  ¢r ¢
P =ak, -+ —+—, (1382)
dw r €4 G5
gry=aF,.— o F(r)+c3Z(210gr—l)+7+—, (138b)
*=A,D,. - B,.B,,. (138¢)

We see that the solution for u and ¢, includes the unknown dw/dr.
In the first-order shear deformation plate theory (FST), we have used
Eq. (132) without the higher-order stress resultants. However, the pres-
ence of these higher-order terms makes the task of solving for dw/dr
difficult. To see this, use Egs. (129) and (132) and obtain

‘Z_w)+a{ d[rdr(ru)]+Frrrd[1d(¢r]
—aH,

d[ld/ dw
rr’;[;;(”;)]} —‘/“1“)”””3

The form of the above equation makes it very difficult (if not impossible)
to obtain the exact solution. The exact solutions of the simplified third-
order beam theory (SBT) were discussed in [1]. One may follow similar
approach here to determine the exact solutions to a simplified TST.

A(9,+

(139)

6. Summary

Three different plate theories, namely, the classical, first-order, and
third-order plate theories are presented for axisymmetric bending of cir-
cular plates, accounting for the through-thickness variation of the ma-
terial, modified couple stress effect, and the von Kdrman nonlinearity.
Exact solutions for bending of the first two theories are presented for
several boundary conditions. The approach to develop exact solution
for the third-order theory is presented but short of obtaining a solution

10
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as it involves additional unknown. It may be possible to obtain a sim-
plified theory and obtain a solution as was done in the case of beams.
Numerical examples are also presented to illustrate the accuracy of var-
ious models and bring out certain salient features of functionally graded
circular plates. Finite element models of the nonlinear theories of circu-
lar plates presented herein can be found in the monograph by Reddy [2],
which contains detailed discussions of obtaining analytical and numer-
ical solutions. Extensions of the theories presented herein to buckling
and vibration [2,16], especially accounting for nonlocal effects [17],
are also awaiting.
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