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Abstract: We demonstrate a two-wavelength differential-phase-measuring OTDR sensor that
uses perfect periodic correlation phase codes to enhance the measurement performance. The
two-wavelength technique extends the measurement range of OTDR sensors by synthesizing a
virtual longer-wavelength measurement from two simultaneous measurements of phase using
different lasers. This increases the range free from phase unwrapping errors. However, we
find that the application of this technique greatly increases the relative measurement noise. To
compensate for this issue, we introduce the use of optical pulse compression using perfect periodic
correlation phase codes to increase the measurement signal-to-noise ratio and also to facilitate
the simultaneous compensation of Rayleigh and polarization fading. In addition, we apply a
method to further reduce the relative noise that is added to the two-wavelength measurement by
using the synthetic wavelength measurement to unwrap the differential phase measured with a
single wavelength. All this is highlighted in a 1-km sensing link in which up to 20-cm spatial
resolution and 12.6 pϵ/

√
Hz strain sensitivity are demonstrated as well as a 67-fold enhancement

in measurement range compared with the use of the conventional single-wavelength method.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Distributed acoustic (vibration) sensing (DAS) based on reflectometric fiber optic techniques
has recently received a great deal of attention due to its interesting applications in areas such
as intrusion detection, seismic monitoring, structural health monitoring, or traffic monitoring
[1]. A number of different methods have been developed to implement these sensors working
either in the time or frequency domains [2,3]. Among them, phase-sensitive optical time-domain
reflectometry (ϕ-OTDR) has been one of the most explored methods. Particularly, the so-called
differential phase-measuring ϕ-OTDR (dϕ-OTDR), which can detect and quantify very small
strain variations simply by measuring the optical phase difference of the backscattered light from
contiguous locations in the fiber [1].

To date, the focus of research on dϕ-OTDR has been mainly on the high-precision applications
that exploit the extreme sensitivity of these sensors. However, in principle, dϕ-OTDR sensors
could also be deployed to provide measurements of the larger strain ranges normally associated
with structural health monitoring (SHM) applications in fields such as civil engineering or
condition monitoring of large machines such as wind turbines or electrical generators [4].
This would make dϕ-OTDR a simpler and better-performing alternative to dynamic Brillouin
distributed sensors [5]. However, dϕ-OTDR sensors are intrinsically constrained by their
phase-measuring nature and the associated need to deploy phase unwrapping methods. These
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methods fail for large rates of strain change for which successive differences in phase change
by more than π radians between samples, according to the so-called Itoh criterion [6]. This
effect constrains the measurement range of the sensor, which is defined in the DAS context as the
maximum amplitude of the vibration-induced strain that can be measured without distortion for
a given vibration frequency [7,8]. Furthermore, it imposes the use of high temporal sampling
frequencies even when the excitation of interest may be of a much lower frequency, as it is the
case in most strain-measuring SHM applications.

We have recently demonstrated a method to overcome the π-phase constraint of dϕ-OTDR
sensors by subtracting the differential phases measured for the two axes of a polarization-
maintaining (PM) fiber [9]. The technique is based on making simultaneous measurements of the
differential phase using two optical signals having slightly different wavenumber. The principle
is similar to the so-called two-wavelength methods that have been used for years in digital
holography [10] and interferometry [11], and that have been recently applied to DAS sensors too
[12]. In these methods, the wavelength difference instead of refractive index difference is used to
provide simultaneous measurement of the differential phase with two different wavenumbers.
Thus, two lasers are used to synthesize a virtual longer-wavelength measurement for which the
π-phase constraint is greatly relaxed.

In this paper, we investigate the application of two-wavelength methods to dϕ-OTDR and find
that the relative noise of the measurement is greatly increased by the application of this technique.
To compensate for this issue, we demonstrate the use of optical pulse compression (OPC) using
perfect periodic correlation (PPC) phase codes to increase the measurement signal-to-noise
ratio (SNR) and also to facilitate the simultaneous compensation of Rayleigh and polarization
fading. In addition, we apply a method to further reduce the relative noise that is added to the
two-wavelength measurement by making enhanced use of the measurement data provided by the
two wavelengths. All this is highlighted in a 1-km sensing link in which 20-cm spatial resolution
measurements with very large measurement range and strain rate are demonstrated.

2. Noise and fading in a two-wavelength dϕ-OTDR and its compensation

In a conventional dϕ-OTDR, the phase difference of the optical signals backscattered from two
sections of the fiber, A and B, each with a length given by half the pulse duration and separated
by the gauge length of the measurement, L, is given by [1]:

∆ϕ =
4πn
λ
ξ∆L(t) + ϑB − ϑA = ∆φ(t) + ϑ (1)

where n is the refractive index, λ is the wavelength of the optical source, ∆L(t) is the change in
the gauge length induced by strain in the fiber, ξ is a correction to the optical path length change
that accounts for the strain-optical effect, and ϑA and ϑB are the intrinsic random phase-shifts
of the reflection from A and B. In (1), ∆φ(t) and ϑ ≡ ϑB − ϑA are defined in order to group the
excitation and the intrinsic phase terms.

As explained in the introduction, the requirement for phase unwrapping imposes that the
change of ∆ϕ for successive measurements obtained by two consecutive pulses launched into
the fiber is no greater than π radians. This was demonstrated by Itoh [6], which theoretically
derived the necessary condition for exact tracking of phase differences from the definition of
the wrapping and differentiating operators. This π-rad phase-difference threshold constrains
the maximum amplitude of the strain that can be measured and the minimum pulse repetition
frequency (slow-time sampling frequency) deployed. For instance, if we assume a sinusoidal
excitation in the fiber with a frequency, fe, the maximum amplitude of the strain that ensures that
the phase-difference between successive temporal samples remains within the π-rad bound is
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given by:

ϵ0 ≈
λ

8πnξL
fs
fe

(2)

where fs is the slow-time sampling rate established by the period of the pulses launched into the
fiber. This expression is derived simply by calculating the maximum slope of the phase-difference
change for a sinusoid. Notice that there is a trade-off between the measurement range and the
bandwidth of the measurement that is established by the π-phase constraint. This trade-off can
be relaxed by increasing the temporal sampling rate, but this is limited in practice by the need to
avoid the presence of more than one pulse in the fiber. Moreover, increasing the sampling rate to
avoid the π-phase constraint beyond what is really demanded by the bandwidth of the excitation
in the fiber, which tends to be small for SHM applications, translates to increased specifications
for the measurement acquisition and processing subsystem of the sensor. This is not a minor issue
for DAS systems that need to handle very large data throughput. Lastly, in systems where optical
pulse compression is used to boost the SNR and the spatial resolution of the sensor, like the one
that we are presenting in this paper, longer sequences are desirable because the compressed pulse
amplitude is proportional to the energy of the sequence [13]. However, longer sequences mean a
lower sampling rate, which, according to (2), compromises the measurement range.

Two-wavelength methods were proposed to mitigate the π-phase constraint in interferometry
[11] and digital holography [10]. Their underlying idea is to perform the differential phase
measurement simultaneously using two wavelengths, λ1, λ2, and substract the resultant phase
shift differences to give:

∆ϕS = ∆ϕ1 − ∆ϕ2 =
4πn
λS
ξ∆L(t) +

[︁ (︁
ϑB1 − ϑA1

)︁
−

(︁
ϑB2 − ϑA2

)︁ ]︁
= ∆φS(t) + ϑ1 − ϑ2

(3)

where λS = λ1λ2/(λ1 − λ2) when dispersion is neglected. Again, ∆φS is defined in (3) to
group the terms directly related to the phase difference between A and B induced by the fiber
excitation, and ϑ1 and ϑ2 convey the intrinsic phase terms for each wavelength. Notice that
∆φS is equivalent to the differential phase that would be measured in a conventional dϕ-OTDR
if the larger synthetic wavelength λS were used. This two-wavelength differential phase is
reduced from the differential phase measured with any of the two single-wavelengths by a
factor M1 = ∆φ1/∆φS = λ2/|λ1 − λ2 | and M2 = ∆φ2/∆φS = λ1/|λ1 − λ2 |, respectively. This
reduction in the sensitivity of the differential phase measurement leads to an equal increment of
the measurement range, which, according to (2) is directly proportional to the wavelength used.
Notice that if dispersion is taken into account and a different refractive index is considered for
each wavelength, the derivation of a slightly more complex form of (3) and M1 and M2 is also
straight forward.

However, the relaxed π-phase constrain for two-wavelength measurements comes at a cost.
We have found that the relative noise of the measurement is greatly increased by this technique.
The actually measured differential phase for each of the individual wavelength (i = 1, 2) when
noise is taken into account is given by:ˆ︃∆φi = ∆φi(t) + φni (5)

where φni is the noise added to the measurement. The hat operator (ˆ) is used throughout this
explanation to denote measured quantities with noise. Then, the SNR of the phase measurement,
which we will call dynamic SNR (DSNR) following the convention in [14], is given by:

DSNRi =
⟨∆φ2

i (t)⟩
σ2

i
(6)



Research Article Vol. 29, No. 4 / 15 February 2021 / Optics Express 6024

where σ2
i is the variance of the noise term. As mentioned above, the phase difference measured

with the synthetic wavelength is a scaled version of that measured with the individual wavelengths,
∆φS = ∆φi/Mi. Therefore, the DSNR for the synthetic wavelength measurement can be calculated
as:

DSNRS =
⟨∆φ2

i (t)⟩
2M2

i σ
2
i

(7)

Notice that there is a 2M2
i penalty in the measurement DSNR compared with those for the

individual wavelengths that is due to the fact that the noise of the individual wavelengths adds
in the combined two-wavelength measurement and it is not scaled as the differential phase.
This penalty introduces a serious degradation in the sensor performance as highlighted in the
experimental section of this paper.

2.1. Noise compensation in a two-wavelength dϕ-OTDR

We propose the application of a simple method to compensate the noise penalty in two-wavelength
dϕ-OTDR sensors. This is also based on principles that were first proposed in two-wavelength
digital holography [15]. The fundamental idea behind the method is to take advantage of the
synthetic wavelength measurement, which is free from the π-phase constrain, to unwrap the
measurements of the individual wavelength measurements. The differential phase in (1) can be
expressed as:

∆φi = ̇∆φi + 2πki (8)
where ̇∆φi represents the actual wrapped phase that is measured in the ideal dϕ-OTDR receiver
and ki is an integer that gives the fringe order of the total phase difference. Then, assuming that
we can measure the unwrapped two-wavelength phase difference, ˆ︃∆φS, the fringe order for one of
the individual wavelength measurements, ̇∆φi, can be calculated by:

ˆ︁ki = round

(︄ ˆ︃∆φSMi −
ˆ̇︃
∆φi

2π

)︄
(9)

with ˆ̇︃
∆φi the measured wrapped differential phase for one of the wavelengths. Notice, that,

basically, what the method does is to re-scale ˆ︃∆φS and use it to determine the fringe order of
∆φi. Once this is done, the differential phase measurement, and from it the strain measurement
of interest, can be retrieved with an unwrapped version of ∆φi that does not face the π-phase
constrain and has the DSNR of the single-wavelength measurement as in (5).

However, (8) is free from phase wrapping errors just up to a certain level of noise in ˆ︃∆φS.
Indeed, if we separately consider added noise, (8) becomes:

ˆ︁ki = round
(︃
∆φSMi − ̇∆φi

2π
+
φnSMi − φni

2π

)︃
(10)

The first term within the round operator is the ideal result, which gives the integer fringe
order. The second term is the added noise, which, to avoid errors in the determination of the
order, should be smaller than ±1/2. For instance, we can set a 3-σ limit for the noise, i.e. limit
three times the standard deviation of the noise term in (9) to be smaller than 1/2 (3σ<1/2). This
ensures that (9) gives the correct result 99.73% of the time. In this case, the allowable standard
deviation of the noise for each wavelength is given by:

σi<
2π

6
√

2Mi
(11)

In practical deployments, achieving the level of noise required by (10) is difficult, particularly
if long lengths of sensing fiber are deployed and a good spatial resolution is necessary. This
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is where PPC OPC comes into play. OPC is a method borrowed from radar in which pulses
with a broadened spectra are compressed using a matched filter to increase the SNR and spatial
resolution of measurements [16,17]. PPC are an enhanced type of phase codes used for OPC
that have been already demonstrated to greatly increase the SNR and the spatial resolution in
dϕ-OTDR sensors [9,18]. The main advantages for this application of PPC OPC compared to
the more conventional OPC deploying linear frequency-modulated (LFM) pulses is, firstly, the
reduction of sidelobes in the compressed pulse, which are nonexistent in ideal PPC OPC, and,
secondly, the simplicity of the generation and tuning of these sequences. The PPC sequence
can be generated by modulation of the phase of an optical carrier using a simple setup based
on a Mach-Zehnder electro-optic modulator (MZ-EOM) biased at minimum transmission [9].
Moreover, the pulse compression, and with it, the spatial resolution, can be enhanced simply
by reducing the duration of the individual bits in the sequence. The use of PPC OPC is also
advantageous compared with the use of other codes such as Golay codes that require the injection
in the fiber of four complementary code sequences and provide a lower coding gain.

We propose the use of PPC OPC in two-wavelength dϕ-OTDR sensors to achieve the
performance levels required to increase the DSNR of the synthetic wavelength measurement (6),
partially compensating the incurred penalty, and even reaching the low noise levels required to
apply the fringe order determination technique that we propose. Furthermore, the combination
of PPC OPC and two-wavelengths measurements is particularly advantageous because the use of
the synthetic wavelength measurement, as it has been explained, relaxes the requirement on the
slow-time sampling rate. Therefore, longer PPC sequences can be used which translates into
an increased SNR because the amplitude of the compressed signal is proportional to the PPC
sequence energy.

2.2. Fading compensation

Another system issue of two-wavelength dϕ-OTDR sensors whose solution can be facilitated
by the use of PPC OPC is that of the signal fading due to the destructive interference of
the backscattered signals within a pulse-length. This fading probability follows the Rayleigh
distribution and corrupts the phase measurement when the signal amplitude is so small as to be
contaminated by noise.

The most common method to compensate for fading in dϕ-OTDR sensor setups is to make
use of wavelength diversity to obtain several measurements that are sufficiently uncorrelated
[19]. The implementation of this principle has been demonstrated with simpler schemes using
simultaneous pulses of different frequencies [20,21], and, more recently, also embedded within
sensors employing LFM OPC [22,23]. In every case, the need to accommodate the multiple
frequencies translates to either an increase in the required receiver and acquisition system signal
bandwidth or in a reduced spatial resolution if bandwidth is maintained. This is traded-off for
fading compensation.

Here, we deploy another fading compensation method that takes advantage of PPC OPC and
that offers similar trade-offs to the multiple-frequency methods but with a simpler implementation
in the spatial domain. What we do is simply to increase the spatial resolution of the measurement
by reducing the duration of the bit of the PPC sequence. If we reduce the duration of the bit
by an integer factor N, the spatial resolution is increased by N. Then, we can use the increased
number of measurements provided by the compression, which are uncorrelated as they come from
non-overlapping locations of the compressed pulse, in much the same way that with measurements
with multiple frequencies. Moreover, the penalty for the fading compensation with this technique
is similar to the use of multiple frequencies, as the reduction in the duration of the pulse leads to
a factor of N increase in the received signal bandwidth.

In order to take advantage of the measurement diversity provided by this technique, the rotated-
vector-sum method can be applied [22], followed by a moving average with a window equivalent
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to N pulse-lengths in the fiber. Nevertheless, other methods of combining the independent
measurements provided by the method are possible [24]. In any case, it has been shown that just
using N = 3 would be enough, by and large, to compensate fading. However, larger factors can
be used to further increase the SNR, as will be shown in the experiments section.

Finally, the use of two wavelengths in dϕ-OTDR sensors also provides a simple method to
compensate polarization fading. This fading is the result of the mismatch between the state of
polarization (SOP) of the local oscillator used in the coherent detection used to obtain full phase
information of the optical field and the SOP of the backscattered signals from certain locations in
the fiber. The standard method to compensate this fading is to use receivers with polarization
diversity [25]. However, the use of the synthetic wavelength measurement, and the already
mentioned relaxation in the requirement for slow-time sampling rate, provides the opportunity
to deploy a much simpler polarization switching in which consecutive measurements with
orthogonal polarization of the optical signals launched into the fiber are performed. Inexpensive
polarization switches, typically based on the Faraday effect, are available. These devices have
switching times of several tens of microseconds that are impossible to handle by single-wavelength
dϕ-OTDR because of the π-phase constraint associated with such a large sampling period. On
the contrary, they can be deployed when using the synthetic wavelength measurement because
the technique provides enough time between consecutive pulses to rotate the SOP.

3. Experimental setup

Figure 1 depicts the experimental setup used to demonstrate our two-wavelength dϕ-OTDR
sensor. This is basically a dϕ-OTDR sensor in which PPC coding and a second laser are added.
The outputs of two lasers at λ1=1551.72 nm and λ2=1530.33 nm are split into two branches each.
The linewidth of the two lasers was 0.1 kHz and 2.1 kHz, respectively. One branch is directly
connected to the local oscillator input of a homodyne receiver that comprises a 90◦ optical hybrid
and two balanced detectors.

Fig. 1. Experimental setup of the two-wavelength phase-measuring dϕ-OTDR sensor.

The other two branches are combined and fed to a Mach-Zehnder electrooptic modulator
(MZ-EOM). The MZ-EOM is of the push-pull type, in which opposite phase-shifts are applied to
the two arms of the interferometer, and it is biased at the minimum transmission. This makes
the modulator generate a pure BPSK modulation in response to the applied voltage [9]. The
PPC sequence signal applied to the modulator is generated in an arbitrary waveform generator
(AWG) and then amplified in a driver. At the output of the MZ-EOM, a polarization switch with
a switching time of approximately 100 µs is used to obtain polarization diversity in successive
sequences. The PPC sequences are constantly generated by the AWG and the switching of the
polarization switch is synchronized so that all the measured backscattered signals from a single
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sequence are received with stable polarization. Notice that both λ1 and λ2 were well within the
operating wavelength range of the MZ-EOM and the polarization switch.

Then, the optical signal from the polarization switch is amplified in an EDFA and launched
into the sensing fiber. The two wavelengths present in the signal backscattered from the fiber are
separated using a wavelength demultiplexer (WDM) and sent to their respective receiver. Finally,
the received electrical signals are digitized in a 4-channel scope and processed on a computer.

The sensing fiber link was made of a 1.1-km length of standard single-mode fiber. At the far
end of the fiber, a 10-m piezoelectric fiber stretcher (PZT) is used to introduce dynamic strain.

4. Experimental results

First, we analyze the pulse compression obtained with the PPC coding. Figure 2 depicts
the autocorrelation of the detected signal measured by directly connecting the output of the
MZ-EOM to the homodyne receiver. This is the measurement for the λ1 channel, but, apart
from the background noise, it is identical for both channels. The duration of each bit of the
deployed PPC code was 2.5 ns with a code length of 52027 for a total duration of 130 µs for the
sequence. Figure 2(b) shows the detail of the PPC compression peak where a spatial resolution
of approximately 20 cm is measured for the full-width half-maximum amplitude (−6dB). Also
displayed in Fig. 2 is the theoretical autocorrelation of an LFM wave with a passband bandwidth
equal to that of the PPC sequence (approx. 800 MHz). This figure highlights the advantage of
using PPC codes compared to OPC based on the more conventional linear frequency modulated
(LFM) waveforms. Ideally, the PPC should have no sidelobes. However, a couple of small
sidelobes that are 29 dB below the peak are visible. After performing some simulations of the
effect of a nonlinear transfer function on pulse compression, the existence of these sidelobes was
attributed to the nonlinear distortion introduced by the driver feeding the MZ-EOM. Therefore,
they could be suppressed in principle by devising a pre-distortion of the generated code sequence
signal. However, this is outside the scope of this work. Nevertheless, it can be seen that the
sidelobe amplitude is 13-dB lower than the sidelobes present in LFM compression, hence, their
effect in terms of degradation of the spatial resolution and cross-talk between measurements
from closely-spaced excitation can be neglected. Notice that the crosstalk of the measurement in
one position of the fiber on another closely spaced position just depends on the relative amplitude
of the compressed backscattered signals from both locations. Therefore, a sidelobe 29 dB below
a backscattered signal would only affect nearby signals that were already experiencing a high
fading that would have to be compensated anyway.

Fig. 2. (a) Measured pulse compression with a PPC sequence of 2.5-ns bit duration and
52027-bit length (blue line) and theoretical compression of an 800-MHz bandwidth LFM
signal (grey line). (b) Expanded view of (a) around the autocorrelation peak.
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Next, we demonstrate the fading compensation method taking advantage of the high resolution
provided by PPC coding. Figure 3(a) depicts the received signal for one of the wavelengths after
matched filtering and pulse compression. A great number of signal fadings can be observed.
The differential phase measurement at those low-amplitude locations is contaminated by the
random phase of the noise floor. The histogram on the side depicts the distribution for the signal
amplitude, which follows a Rayleigh profile as expected. Figure 3(b) shows the same signal
after vector rotation and moving average has been applied with a window length equivalent to 3
pulse-lengths, which, in this case, is 3 × 25 cm. Hence, the spatial resolution is slightly reduced
to 0.75 m. We can see that this simple processing is enough to suppress most fadings. Notice
that in the histogram of amplitudes the values close to zero are suppressed. Figure 3(c) displays
the same process but extending the window length to 20 pulse-lengths, which translates to a final
spatial resolution of the resultant measurement of 5 m. We see that the distribution of amplitudes
is further migrating from a Rayleigh to a normal distribution. Besides, we can see in the trace
outside the fiber that the noise is reducing its amplitude as a result of the window averaging.
Hence, the SNR of the measurement is improved. This is confirmed in Fig. 3(d) where the static
SNR of the measurement as a function of the number of equivalent pulse-lengths in the moving
average is shown. This enhanced SNR is traded-off for a reduction in the spatial resolution. It
must be pointed out that the moving average does not alter the differential phase measurements
obtained in the dϕ-OTDR sensor because in the applied rotated-vector-sum algorithm the initial
optical phase for the compressed backscattered signal from all positions in the sensing fiber is
rotated to a common angle [22].

Figure 4(a) highlights the polarization fading compensation that is achieved with the use of
the polarization switch. Two groups of compressed backscattering traces, which correspond
to the two orthogonal SOP launched into the fiber for alternating measurements, are depicted.
Notice that there are positions along the fiber in which the amplitude for one of the polarizations
is very small whereas the other polarization displays a reasonable amplitude. These positions
correspond to areas of polarization fading for one of the SOPs. If it were not for the availability
of another measurement with orthogonal SOP, the measurement from those locations would be
contaminated by noise leading to high noise on the recovered phase difference measurements.
On the contrary, there are locations where both polarizations have a small amplitude. In these
cases, the fading is due to the destructive interference from the set of backscattered optical
signals received from the pulse length corresponding to those locations. This fading needs to be
compensated by other methods such as the moving average technique described above.

Figure 4(b) demonstrates the effect of the use of polarization diversity on the measurements
performed with a single wavelength. The standard deviation of the slow-time differential phase
measured for a section of the fiber that was enclosed in an acoustic isolation box to prevent any
excitation is depicted. The polarization fading compensation strategy that has been deployed
for these measurements is to keep the measurement with the highest amplitude at each position,
although other options are possible. Notice that this strategy reduces the overall noise of the
measurement compared to the use of any of the single-polarization measurements.

Figure 5(a) depicts the differential phase measurements obtained in the fiber stretcher, which
was excited with a sine wave of 25-Hz frequency and 60-V amplitude. Note that the excitation
frequencies used throughout this work are in the tens of hertz order because those are typical of
the SHM of large structures in which the two-wavelength method has its primary application.
The two single-wavelength measurements as well as the synthetic wavelength measurement are
depicted. A 10427 code length with a bit duration of 2.5 ns and a total sequence duration of
26 µs was used in these measurements. The slow-time sampling period was set to 156 µs to give
time to the polarization switch to transition between polarization states in polarization diversity
measurements. Notice that the synthetic wavelength measurement uses the right vertical axis
with a different scale to account for the phase reduction factor associated with this measurement.
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Fig. 3. Fading compensation based on PPC compression with (a) no moving average and
with averaging of (b) 3 pulse-lengths and (c) 20 pulse-lengths. (d) Static SNR as a function
of the number of equivalent pulse-lengths in the moving average.

Fig. 4. Experimental results for the polarization diversity technique. (a) Amplitude of the
detected signal for each of the two orthogonal states of polarization (SOP1 and SOP2) of the
light launched into the fiber. (b) Standard deviation of the phase for each state of polarization
(blue and red lines) and for the result of applying the polarization diversity strategy (yellow
line).
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The synthetic wavelength, given the values of λ1 and λ2, is 111 µm. Hence, the scale factors
are M1 ≈ 72.5 and M2 ≈ 71.5, respectively. The gauge length for these measurements was set
to 20 m so as to include all the phase change induced by the 10-m stretcher. A 3-pulse-length
moving average was implemented to compensate fadings as described above. Figure 5(b) depicts
the strain calculated from the three phase measurements using (1). The strain measured by
the three measurements is identical, but notice the increased noise in the synthetic wavelength
measurement. In fact, the DSNR measured for the single-wavelength traces by taking a fast
Fourier transform was 86 dB above the noise floor, and for the synthetic wavelength measurement
was 43 dB. This confirms a DSNR penalty approximately equal to the 40 dB theoretically
predicted by (6).

Fig. 5. Measurement of differential phase and strain in the piezoelectric fiber stretcher
for a 25-Hz sinusoidal excitation: single-wavelength (red and yellow lines) and synthetic
wavelength (blue line) measurements of (a) differential phase and (b) strain for 60-V amplitude
of the excitation, (c) strain measurements for 170-V amplitude of the excitation, and (d)
distribution of the strain measurements at the position of the fiber stretcher and its vicinity.

Obviously, in the measurement scenario depicted in Fig. 5(a) and Fig. 5(b), it would make little
sense to deploy the two-wavelength method because any of the conventional single-wavelength
measurements provides the correct measurement with much less noise. In fact, that is precisely
the way this sensor would work in practice: upon performing a measurement, first, the synthetic-
wavelength differential-phase measurement, after proper scaling, would be used to determine
whether a particular excitation is below the rate of phase change that can be handled by the
single-wavelength measurements according to the threshold defined by (2). If that is the case as
in Fig. 5(a), the strain measurement would proceed by using the single-wavelength measurement
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to obtain the low-noise strain measurement in Fig. 5(b). However, the situation changes if
a higher strain is induced in the fiber stretcher by increasing the applied voltage to 170 V as
depicted in Fig. 5(c). This increment is enough to pass the threshold defined by (2) and make
the single-wavelength measurement to incur errors in the phase unwrapping because the phase
difference between consecutive measurements changes by more than π rad. In such a high strain
scenario the single-wavelength measurements can no longer be trusted. However, we can see
that the synthetic wavelength measurement still provides a correct measurement. Furthermore,
Fig. 5(d) depicts the distribution of the synthetic wavelength measurements at the position of
the fiber stretcher and its vicinity demonstrating the correct localization and quantification of
vibration amplitudes beyond the capabilities of standard single-wavelength phase-measuring
distributed vibration sensors.

Figure 6(a) depicts the dependence of the measured strain amplitude on the applied PZT
excitation for the sensor parameters used in Fig. 5. Notice that the response is linear for single-
wavelength as well as synthetic wavelength measurements for the lower part of the amplitude
range. However, from 65 V the single-wavelength measurement breaks because it crosses the
π-phase threshold, as it was highlighted in Fig. 5(c), and depart from linearity giving a wrong
response. The synthetic wavelength measurement, by contrast, remains linear throughout the
excitation range. Figure 6(b) and Fig. 6(c) display identical measurements to Fig. 6(a) but for
excitation frequencies of 12.5 Hz and 50 Hz, respectively. Notice that the higher the frequency,
the lower the maximum amplitude that can be measured by the single-wavelength sensors before
breaking, which are approximately 130 V and 32.5 V for the 12.5-Hz and 50-Hz frequencies,
respectively. In fact, the amplitude threshold directly scales with the inverse of the excitation
frequency as predicted by (2). By increasing the excitation frequency, we are increasing the
differential phase change rate so that the maximum amplitude that can be measured without
phase unwrapping errors reduces. Finally, Fig. 6(d) shows the measurement for 25-Hz excitation
but increasing the slow-time sampling period to 4 ms. This gives a reasonable fs=250 Hz of
sampling frequency, which is enough to follow the time-domain evolution of a 25-Hz signal
without the unnecessarily high number of samples provided by the fs = 6.4 kHz in the other
measurements. The single-wavelength measurements for these conditions give wrong results
from 2.5 V, as calculated from (2), whereas the two-wavelength measurement reaches 170 V. This
means that our two-wavelength system is demonstrating an approximately 67-fold enhancement
in the measurement range of the dϕ-OTDR sensor, which is defined as the maximum amplitude
of the vibration-induced strain that can be measured by a DAS without distortion for a given
vibration frequency [7,8]. This is close to the theoretical limit of measurement range enhancement
which would be equal to the scale factor M2 ≈ 71.5.

Once the improvement in measurement range provided by the two-wavelength dϕ-OTDR
method has been highlighted, we focus on demonstrating the methods that we propose to
compensate the noise added by the application of the technique. Figure 7(a) depicts the strain
measurement in the PZT location using the same sensor parameters as in Fig. 5, but reducing the
amplitude of the strain excitation in the PZT an order of magnitude to 15 V. In addition, the slow-
time sampling period was set to 1.17 µs, which gives a comfortable 854-Hz sampling frequency.
Notice that the reduction of the measured excitation makes the noise in the measurement even
more visible. The DSNR for the synthetic wavelength measurement was 25 dB above the FFT
noise floor. Moreover, we can not resort to the single-wavelength measurements for a lower-noise
measurement because they are already broken due to the phase-unwrapping errors.

Figure 7(b) highlights the first method that can be used to reduce the noise, which is to increase
the length of the PPC sequence to increase its energy. In this case, it was extended to 52027 bits
for a total duration of 130 µs. The increased energy of the PPC sequence leads to an increment
of the DSNR obtained after matched filtering, which reaches 31 dB. This improvement could be
made larger by further increasing the sequence length. One limit to this improvement would be
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Fig. 6. Response of the two-wavelength dϕ-OTDR sensor strain measurement as a function
of the amplitude of the excitation in the piezoelectric fiber stretcher for excitation frequencies
of (a) fe = 25 Hz, (b) fe = 12.5 Hz, and (c)fe = 50 Hz, with a sampling frequency of
fs = 6.4 kHz, and (d) for excitation frequency of fe = 25 Hz with a sampling frequency of
fs = 250 Hz. Both the two-wavelength (red circles) and single-wavelength (blue crosses)
measurements are shown, along with the theoretical response (black dashed-line)

to ensure that the resultant reduced slow-time sampling rate as a result of the increased sequence
length does not compromise the measurement range in accordance with (2). The other issue
to consider is the effect that phase noise may have in terms of added noise or degraded spatial
resolution, which needs to be further studied. However, in our proof-of-concept experiments,
the limiting factor to further increase the sequence length and with it the SNR was the storage
memory of the digital oscilloscope that was used to capture the signal. Due to this limitation,
we had to resort to the other strategy outlined in section 2 to increase the SNR by increasing
the moving average window to 30 pulse-lengths. This gave the measurement in Fig. 7(c). The
DSNR of this measurement raises to 38.5 dB. Notice that this cleaner signal is obtained at the
price of reducing the spatial resolution to 7.5 m.

Once the noise of the measured signal was small enough, the fringe order determination
method described in section 2.1 could be applied. Figure 7(d) depicts the single-wavelength
wrapped differential phase measured and the fringe order calculation obtained using (8) with the
synthetic wavelength measurement in Fig. 7(c). This calculation is finally used to unwrap the
single-wavelength measurement and obtain the strain measurement depicted in Fig. 7(e), which
highlights the complete compensation of the noise added due to the two-wavelength method. This
is confirmed in Fig. 7(f), which depicts the spectral density of the strain before (measurement in
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Fig. 7. Measurement of strain in the piezoelectric fiber stretcher for excitation amplitude of
15 V and demonstration of the noise compensation method: (a) Measurement with 10427-bit
PPC code length and 3-pulse-length moving average, (b) measurement extending the PPC
code length to 52027 bits, (c) measurement increasing the moving average window to a
30 pulse-length window, (d) application of the fringe-order determination technique, (e)
compensation of the synthetic wavelength noise using the fringe-order method, and (f)
spectral density of the measured strain before (red line) and after (blue line) application of
the fringe-order noise compensation method.
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Fig. 7(c)) and after (measurement in Fig. 7(e)) applying the noise compensation method. The
DSNR of the final measurement increases to 76 dB and the sensitivity reaches 12.6 pϵ/

√
Hz.

This later value is directly obtained from the measured noise floor in Fig. 7(f), which is already
expressed in units of spectral density of strain.

5. Conclusions

We have demonstrated that the application of the two-wavelength method to dϕ-OTDR sensors
serves to greatly extend their measurement range making them suitable for applications in SHM
where high strain ranges are expected. Moreover, we have studied in detail the measurement
performance of these sensors, particularly the noise penalty incurred by the method, and have
proposed techniques to overcome its degradation. Proof-of-concept experiments have been used
to demonstrate these techniques, but to obtain the ultimate performance of the sensor a series
of modifications in the sensor setup would be desirable. First of all, it is the issue of choosing
wavelengths. In our case, the deployed wavelengths were determined by the lasers that we had
available, but, depending on the application, it would be more interesting to choose another set
of wavelengths. In our setup, the wavelengths are relatively close and this leads to a very large
resultant synthetic wavelength, which is good because the strain range without phase wrapping
errors due to the π-phase constrain is very large. However, the SNR penalty is also large and this
complicates achieving the minimum noise level required to apply the fringe order determination
technique in (8). In practice, more widely spaced wavelengths would be desirable to reduce
the SNR penalty. The synthetic wavelength would be also reduced in this case, which could
compromise the achievable measurement range enhancement according to (2). However, there is
still room to increase the measurement range by applying techniques that have been used for this
purpose in two-wavelength interferometry and digital holography [26,27]. The other issue of the
setup, which is common to all dϕ-OTDR sensors, is that of the linearity of the measurements.
All the derivations in this paper assume that ϑB and ϑA, the intrinsic phase from the reflections
from the two extremes of the gauge length, are approximately constant. However, in a system in
which there are large strains in those positions this assumption would be invalid, which would
break the measurements. Therefore, dϕ-OTDR sensors are really more suitable for application
in quasi-distributed measurements in which there are point reflection areas along the fiber. A
particularly convenient and cost-effective arrangement would be to deploy a fiber with localized
reflectors induced through the cladding using a laser [28].
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