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ABSTRACT
In Clinical Trials, not all randomized patients follow the course of treatment they are allocated to. The
potential impact of such deviations is increasingly recognized, and it has been one of the reasons for a
redefinition of the targets of estimation (“Estimands”) in the ICH E9 draft Addendum. Among others, the
effect of treatment assignment, regardless of the adherence, appears an Estimand of practical interest, in line
with the intention-to-treat principle. This study aims at evaluating the performance of different estimation
techniques in trials with incomplete post-discontinuation follow-up when a “treatment-policy” strategy is
implemented. To achieve that, we have (i) modeled and visualized as directed acyclic diagram a reasonable
data-generating model; (ii) investigated which set of variables allows identification and estimation of
such effect; (iii) simulated 10,000 trials in Major Depressive Disorder, with varying real treatment effects,
proportions of patients discontinuing the treatment, and incomplete follow-up. Our results suggest that,
at least in a “Missing at Random” setting, all studied estimation methods increase their performance when
a variable representing compliance is used. This effect is more pronounced the higher the proportion of
post-discontinuation follow-up is.
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1. Introduction

It has long been known that randomized clinical trials (RCTs)
are imperfect experiments. Patients do not always comply with
the treatment course they are assigned to. Due to adverse events,
to a perceived lack of improvement, or to a combination of the
two, patients might decide to discontinue their treatment. Some-
times investigators themselves might need to advise patients to
do so for the same reasons.

Historically, non-outcome events that occur during a trial
have been mostly discussed for their potential to lead to data
missingness of the outcome variable or of other variables of
interest. The description of missingness mechanisms refers to
terms introduced by Rubin (1976). We summarize here their
interpretation based on conditional independencies, widely
reported (e.g., Schafer and Graham 2002; National Research
Council 2010):

• Values for a variable Y are Missing Completely at Random
(MCAR) if the probability of its missingness (RY) is inde-
pendent of all observed data (X, i.e., one or more observed
variables) and of the missing or partially observed (Ymis)
itself:

p (RY) ⊥⊥ X, Ymis. (1)

• Values are missing at random (MAR) if missingness is
independent on the missing or partially observed data
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conditionally on observed data.

p (RY) ⊥⊥ Ymis | X. (2)

• Values are missing not at random (MNAR) if missingness
depends on the missing or partially observed data and no set
of observed variables exists that satisfies (2).

The Estimand framework (International Council on Har-
monization of Technical Requirements for Registration of
Pharmaceuticals for Human Use 2019), explicitly acknowledges
the impact on the question that the study answers of the
choices made to deal with the events that “occur after treatment
initiation and either preclude the observation of the [endpoint]
variable or affect its interpretation” (hereinafter referred to
as “intercurrent events”). Strategies for handling intercurrent
events include:

• Treatment policy where the target of estimation is considered
regardless of the occurrence of the intercurrent event (in line
with the Intention-To-Treat principle).

• Composite where the intercurrent event is made a compo-
nent of the variable (e.g., integrated in the definition of a
composite endpoints of treatment failure or success).

• Hypothetical where the target of estimation refers to a hypo-
thetical scenario where the intercurrent event would not have
occurred.
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• While-on-treatment where the timeframe of interest for the
outcome is defined by the occurrence of the intercurrent
event.

• Principal stratum where the target population is selected
based on the occurrence (or nonoccurrence) of the intercur-
rent event both under the observed and unobserved assign-
ments (e.g., patients who would not discontinue neither the
investigational treatment nor the placebo).

The Estimand framework reframes the problem of missing
data in clinical trials. Research on methods of estimations—
including the treatment of missing data—in relation with the
requirements of this new framework is only recently growing.
The framework has certainly given the vocabulary and context
to discuss whether and how analysis methods shape the question
of interest (Permutt 2019, 2020).

Despite its recent adoption, the framework has been already
included in guidance that the EMA issues to developers (for
example in EMA, 2018a, 2018b, 2018c), confirming its rele-
vance for regulatory decision-making. In this article, we discuss
estimation in the following situation: the estimand of interest
adopts a treatment-policy strategy for treatment discontinua-
tion, the outcome is a nonbinary quantity measured repeatedly,
the treatment can be discontinued at different timepoints, and
some patients (but not all) are followed-up after treatment dis-
continuation.

In Section 2, we will first present and justify the estimand for
which we will then test different possible estimators.

Following that, we will present the data-generating mech-
anism, including assumptions that can generally be made
regarding the missingness mechanism in case of noncompli-
ance. Furthermore, we will present the simulation experiment
implementing the data-generating mechanism described and
in Section 2.4, the estimators tested and the performance
indicators used.

In Section 3, we will focus on the performance of the esti-
mators tested given the scenarios described in Section 2, and we
demonstrate that both available post-baseline measurements of
the outcome and a compliance indicator should be taken into
account in the analysis in presence of noncompliance, treatment
effect, and missingness.

Furthermore, we will explore and discuss in Section 4 how
the performance of such estimators changes depending on cer-
tain characteristics of the data.

2. Methods

2.1. High Level Presentation of the Context and Definition
of the Estimand

We will here consider the case of trials in Major Depressive
Disorder (MDD), comparing an investigational treatment with
placebo at six weeks using the 17-item Hamilton Depression
Scale (Hamilton 1960) (HAM17) as a primary endpoint. In
addition to baseline (t0) and six weeks (t3), the state of the
patients is also simulated at two (t1) and four weeks (t2).

To isolate the effect of different ways of handling treatment
discontinuation, we will here limit the discussion to the han-
dling of such one intercurrent event. In line with the ICH E9
Addendum (ICH 2019), the Estimand is described as follows:

Figure 1. The data-generating mechanism if treatment can affect the outcome,
represented according to Mohan, Pearl, and Tian (2013). Each directed line repre-
sents a causal relationship from a variable to another. Z = random assignment; Xt
= whether the patient complies with the treatment at time t; RYt = the response
indicator at time t; Yt= the real value of HAM17 in a patient at time t; Yt* = the
observed HAM17 value at time t. See text for details.

a. Treatment condition of interest: assigned to treatment with
an experimental antidepressant, regardless of compliance;
alternative treatment condition: assigned to placebo.

b. Population: patients diagnosed with MDD and a baseline
severity of at least 20 points on the HAM17.

c. Variable: change from baseline of the HAM17 score at six
weeks.

d. Population-level summary: difference in variable means
between treatment assignments.

This strategy to deal with treatment discontinuation is described
in the ICH E9 Addendum as “treatment-policy.” In other words,
we acknowledge that our estimand is—in line with the ITT
principle—the effect of the decision to treat a patient rather
than the effect of treatment. To be clear, this does not imply nor
assume the existence of any direct effect of assignment (i.e., it
is compatible with the treatment administration mediating fully
the effect of treatment assignment).

2.2. Representation of the Data-Generating Mechanism

Following the approach proposed by Mohan, Pearl, and
Tian (2013) and Mohan and Pearl (2019), we use a causal
diagram (Pearl 1995) to provide a transparent representation
of the assumptions regarding the data-generating mechanism,
including the mechanism leading to data missingness, and
to encode information regarding conditional independence.
The missingness graph (m-graph) representing the structure
of the data-generating mechanism that we will consider in
this work for any timepoint T is shown in Figure 1, assuming
that the treatment has an effect on the outcome in at least
some of the patients. This is not meant to substitute, but
rather to complement and inform, Rubin’s classification of the
missingness mechanisms described above.

Z is the (randomized) assignment. It has no causes by design,
and it is a cause of the exposure to treatment (Xt), starting with
the exposure to treatment between t0 and t1 (Xt0). When 0, it
assigns patients to placebo (Xt0 = 0), when 1, it assigns to
patients to active treatment (Xt0 = 1).

For any time-point t (e.g., for t3, the time-point used for the
primary measurement of outcome), the node Yt , represented in
white, is the true value of HAM17 at time t, while Yt* is the
observed value of HAM17 at time t.

RYt is the response indicator, if it takes the value “1”, Yt is
observed and Yt* exists and it is equal to Yt , otherwise (i.e., if
RYt is 0) Yt* is missing and Yt is unobserved.

For any t, Yt0,...,t−1 are the values of HAM17 at all time-points
before t. For example, for t = 3, Yt0,...,t−1 are {Yt0; Yt1; Yt2}.
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At each time-point after t0, a patient assigned to the active
treatment can continue or discontinue the treatment. This deci-
sion is represented by the binary variable Xt taking value of 1 if
the treatment was continued and 0 if it was discontinued. Hence,
for any t, Xt0,...,t−1 describes the exposure to treatment between
t0 and t. For example, for a patient who discontinued treatment
at t2 (i.e., received treatment up to t2, but not between t2 and t3),
Xt0,...,t−1 will be {Xt0 = 1; Xt1 = 1; Xt2 = 0}.

With the understanding that patients assigned to placebo will
not be exposed to drug (i.e., Xt0 = Xt1 = Xt2 = 0), Xt
represents—for the patients assigned to active treatment—the
observed compliance.

The representation of compliance between two visits as a
binary variable corresponds to the case for treatments that are
administered in the clinic and for which the effect is postulated
to happen (or last) between visits, and by approximation in
cases where the treatment is made available to the patients
at each visit and taken by the patient independently. A more
granular analysis of the latter scenario might consider exposure
to treatment between visits as a partially observed binary or
discrete covariate, but this will be omitted here for simplicity.

Each directed arrow present or absent in Figure 1 encodes
a causal assumption. Importantly, we assume that (i) HAM17
at any given time-point (Yt) depends on all previous values
of HAM17 (Yt0,...,t−1) and all previous treatment exposures
(Xt0,...,t−1); (ii) whether or not the value of HAM17 at any given
time-point is available (RYt) is dependent on all previous values
of HAM17 (Yt0,...,t−1) and all previous treatment exposures
(Xt0,...,t−1), but not on the current HAM17 (Yt).

It is possible to identify by d-separation (Pearl and Paz 1985)
in the m-graph the set of variables—if one exists—that would
make the probability of missingness (RYt) independent (i.e.,
not connected by a “path” in the diagram) from the partially
observed value Yt . For that purpose, we consider the undirected
paths that might connect the two variables:

• {RYt → Xt+1 ← Yt} is blocked by Xt+1 as arrows point in
its direction on both sides (i.e., it is a “collider”).

• {RYt → Yt∗ ← Yt} is blocked by Yt∗, also a collider.
• {RYt ← Xt0,...,t−1 → Yt} can be blocked by conditioning for

Xt0,...,t−1.
• {RYt ← Yt0,...,t−1 → Yt} can be blocked by conditioning for

Yt0,...,t−1.

The conditional independences identified can be written as

p (RYt) ⊥⊥ Yt| Xt0,...,t−1, Yt0,...,t−1. (3)

As (3) is an instance of (2), we can conclude that the missingness
mechanism described is MAR, provided we condition on values
of HAM17 and exposure to treatment at all previous time-
points.

Figure 1 does not contain a directed arrow from Yt to RYt .
This assumes that the true value of HAM17 does not cause its
missingness. To be clear, the figure does encode an association
between HAM17 and its missingness, but this association is
assumed to be explained by HAM17 at previous timepoints and
previous exposure to treatment.

A missingness mechanism in which Yt causes RYt (corre-
sponding to MNAR) is arguably equally plausible and should

Figure 2. The data-generating mechanism if treatment never affects outcome, rep-
resented according to Mohan, Pearl, and Tian (2013). Each directed line represents a
causal relationship from a variable to another. Z = random assignment; Xt = whether
the patient complies with the treatment at time t; RYt = the response indicator at
time t; Yt= the real value of HAM17 in a patient at time t; Yt* = the observed HAM17
value at time t. See text for details.

Table 1. Some of the parameters allowed to vary at each simulated trial and their
allowed range.

Parameter Allowed range (uniform
distribution)

Sample size (per arm) 150–250
Mean drug effect between t0 and t1 0.01–0.3
Mean drug effect between t1 and t2 Mean drug effect between t0

and t1 to 0.8
Mean drug effect between t2 and t3 Mean drug effect between t1

and t2 to 1.5
% of delayed effect 0.01–0.15
Treatment discontinuation probability (per visit)

for patients performing better than average
0.15–0.45

Treatment discontinuation probability (per visit)
for patients performing worse than average

Rate for the ones performing
better to 0.6

Post-discontinuation retention probability for
patients performing worse than average

0.25–0.5

Post-discontinuation retention probability for
patients performing better than average

Rate for the ones performing
worse to 0.6

be explored in sensitivity analyses. It is outside the scope of
this article where we focus on central estimation of identifiable
quantities.

Figure 1 is elaborated assuming that the treatment has the
potential to influence outcome in at least some of the patients. To
study estimation under the absence of treatment effect, we have
also encoded the assumptions in a scenario when this causal
relationship is absent (Figure 2).

Figure 2 differs from Figure 1 only by the absence of a
directed arrow between Xt0,...,t−1 and Yt . This erases the path
RYt ← Xt0,...,t−1 → Yt and the need of conditioning for
Xt0,...,t−1. However, conditioning for Xt0,...,t−1 in this scenario
does not create new (biasing) paths between RYt and Yt (only
conditioning on colliders open new paths, and Xt0,...,t−1 does
not become a collider in Figure 2). Hence, it is not expected to
bias estimation.

2.3. Simulation Overview

We developed a simulation of a clinical trial in MDD, with three
timepoints—including baseline—where the treatment is given
to patients and four—including baseline and endpoint—where
the HAM17 score is recorded.

To explore the performance of the estimators in a wide
range of scenarios, we have allowed several parameters to vary,
as described below and in Table 1. An alternative could have
been to generate separate sets of simulations for different (but
fixed within sets) values of—for example—treatment effect and
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proportion of missingness. However, the approach we followed
provides greater flexibility when the effect of different param-
eters is of interest. However, given that the performance under
the null hypothesis of no treatment effect is considered a distinct
question, we have generated separate sets of stimulations in
presence and in absence of treatment effect (see below).

At each of the iterations, we start by defining a sample size
(a random even number between 300 and 500) and simulating
an investigational treatment and a population (five times the
sample size).

The investigational treatment is allowed to assume different
level of efficacy for each interval (i.e., between t0 and t1, t1 and
t2, and t2 and t3).

The population is simulated assigning to each individual a
baseline HAM17 score—normally distributed with mean 20
and standard deviation (SD) 5, and responsiveness to treatment
between -0.5 and 2.5, with mean 1 and SD 1. This individual
responsiveness should be interpreted as the (generally unmea-
sured) characteristics that identify patients that respond better,
or worse, to a given treatment. In practice it is a modifier
of each patient’s response to treatment, as it multiplies for
each patient receiving the investigational treatment between
each two time-points the randomly generated (average) drug
effect. It is considered unknown and it is only used for data
generation, as it is not included in any of the imputation and
analysis models. From the simulated population a number
of individuals equal to the sample size randomly chosen
between 300 and 500 with HAM17 ≥ 20 are selected and
assigned to active treatment or placebo in a 1:1 ratio. At each
subsequent timepoints tx, we allowed the HAM17 score to
depend on baseline score, exposures to treatment from t0 to tx,
responsiveness, random natural fluctuation (between -5 and +5)
and measurement error. The heterogeneity of responsiveness
and disease courses has been included in the data-generating
model in order to avoid that unrealistically uniform data
could influence the conclusions on the performance of the
estimators.

Treatment discontinuations and interruption of follow-up
were implemented according to the data-generating mechanism
described in the previous chapter (see Appendix I in the supple-
mentary materials for details).

We allowed the intercurrent event of treatment discontinua-
tion to occur at t1 and t2 and—after treatment discontinuation—
we allowed patients to continue or interrupt follow-up (i.e., to
be missing at t2 and t3). To better isolate the effects of handling
treatment discontinuation, we did not simulate other intercur-
rent events and we did not allow missing data in the control arm
or for other reasons (including before discontinuation, hence
there is no missing data at t0). Both treatment discontinuation
at tx (Xt) and interruption of follow-up at tx+1 (RYt+1) were
set to be more likely in patients performing relatively worse
(i.e., with a higher Yt). The latter means data were MAR and
not MNAR by design. Parameters on treatment discontinuation
and retention after discontinuation were allowed to vary (see
Table 1), but the monotone pattern (see Figure S1) was built
into the simulation and always assumed. In other words, we
assumed both that patients who discontinue treatment do not
resume it and that patients who discontinue follow-up do not
resume it.

2.4. Evaluation of Different Estimators

Under both the data-generating mechanisms described in Fig-
ures 1 and 2 (i.e., in presence and absence of a treatment effect),
10,000 simulations have been performed in R 3.5.1 (R Core
Team 2018).

Owing to the nature of this simulation experiment—and
unlike in practice—the real value of the estimand has been mea-
sured exactly before implementing data missingness. This has
been done in line with the definition of treatment-policy (ICH
2019) whereby data should be used regardless the occurrence of
the intercurrent event. Hence, estimation is straightforward in
case of absence of missing data, which we obtain by simulating
data before simulating their missingness.

The performance of different methods in different configura-
tions (as described below) was then characterized through the
following performance measures (van Buuren 2012):

• Bias, defined as the average difference between the real value
for the estimand in the sample and its estimate. Given the
nature of our simulation experiment, this is a measure of bias
due to missingness, conditional on sample.

• Coverage, defined as the % of times when the real value for
the estimand in the sample falls within the 95% confidence
interval (CI) for its estimate.

• Length of 95%CI.

In addition, we report the mean squared error (MSE), calculated
as the square of the difference between the real and the estimated
values of the estimand in the sample. We considered bias, cov-
erage and MSE as measures of accuracy, and length of 95% CI
as a measure of precision.

In introducing the methods below, we point out that the
alignment between an estimand and an estimator critically
depends on the assumptions we are ready to make regarding the
data-generating mechanism. In line with this principle, we will
discuss which set of assumptions makes each of the estimators
suited to the treatment-policy strategy chosen.

2.4.1. Static Methods
To provide context for the evaluation of the performance of
the methods under investigation, estimations using two simple
methods have been reported.

As an extreme example, we used a complete-case analysis
(i.e., we only included in the analysis complete cases, ignoring
incomplete cases). This method is known to produce biased
estimates if the missingness mechanism is different than MAR
(Baraldi and Enders 2010), so that patients who have complete
data are an unbiased representation of the whole sample. Given
our setting and our estimand, this would require

p (RY) ⊥⊥ Z, Yt0,...,t−1, Xt0,...,t−1, XYtmis. (4)

Which is of course an instance of (1) and not the case in our
simulations and in most realistic scenarios. In particular, for
our estimand, this method would lead to an overestimation of
the effect where there is a treatment effect and patients have
to comply with the treatment to benefit from it (as it is in our
simulations generated according to Figure 1), or at least where—
even in absence of a treatment effect—patients who are missing
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in the treatment arm are worse than the ones who are not
missing by a greater difference than in the control arm. This
could be the case for example when patients who perform worse
more easily drop out from a trial when assigned to an active and
potentially toxic treatment, and it is the case in our simulations.

As a method that does take into account difference between
patients, we investigated a simple mixed-effects model where
patients are included as random effects, and the interaction
between treatment assignment and time as fixed effect. In this
configuration, the effect of treatment would be estimated using
all available data without accounting in any way for the com-
pliance. In other words, given the setting and the estimand
chosen, it would only be an appropriate estimator if, given the
baseline and post-baseline severity measures, the missing values
would be independent from their missingness. More formally, it
requires:

p (RYt) ⊥⊥ Yt| Yt0,...,t−1. (5)

This is obviously an instance of MAR (2) but more restrictive
than (3) as it does not account for compliance and it is not the
case in the simulations performed according to Figure 1 and
in most setting where a treatment has an effect and patients
have to comply with the treatment in order to benefit from it.
Additionally, the way the subject is specified as random effect
would in essence account for the prognosis in patients assigned
to placebo and for prognosis and responsiveness to treatment
in the patients assigned to active treatment, but would be erro-
neous/meaningless for patients that contribute with both on-
treatment and off-treatment data. Maximum likelihood estima-
tion methods are explored in more detail below with auxiliary
variables (see below).

2.4.2. Methods Under Investigation
We have investigated the performance of methods of multi-
ple imputations, maximum-likelihood, and weighting-based
approaches in different configurations, that is, accounting for
the following covariates:

(i) Baseline severity (Y0) only. This is would be expected to
account adequately for missingness in case:

p (RYt) ⊥⊥ Yt| Yt0, (6)

which is not by design the case in our simulations (both in
presence and in absence of a treatment effect). Arguably,
and even extending this configuration to include other
measured baseline variables, it is unlikely they account
for missingness in a satisfactory manner in any realistic
scenario.

(ii) Baseline and post-baseline severity (Yt0,...,t−1). This would
be expected to give unbiased results in case (5) were sat-
isfied. This is the case by design in our simulations in
absence, but not in presence of a treatment effect. In other
words, this would require that both the intercurrent event
and the missingness be noninformative.

(iii) Baseline and post-baseline severity (Yt0,...,t−1) and a
compliance indicator (Xt0,...,t−1). This is expected to allow
unbiased estimates under (3), a permissive definition
of MAR which is true in our simulation and credible
in realistic scenarios. In other words, this requires that

the missingness be non-informative, but allows for the
intercurrent event to be informative.

It is worth emphasizing that our aim was to evaluate how the
proper specification of the covariates would improve the per-
formance of each of the methods, thus the comparison of con-
ceptually different methods was outside the scope of this article.

2.4.2.1. Multiple Imputation Methods. We used three multi-
ple imputation methods for which we included observed com-
pliance and observed disease severity at all previous timepoints
in the prediction matrix, they are briefly described below.

• For the predictive mean matching (PMM), a regression is
built based on all complete cases. This regression is then
applied to predict the outcome on the whole sample (includ-
ing complete cases) in order to identify which ones of the
complete cases have predicted values closer to the predicted
values of incomplete cases. The actual outcome value for one
of the closest 5 potential “donors” is taken to replace each
missing value in each copy of the dataset (Rubin 1986; Little
1988).

• A classification and regression “tree” (CART) (Breiman et al.
1984) is built on the complete data by recursive partitioning.
Each case with missing outcome is then put down the tree
and the value from a neighbor on the same “leaf ” is randomly
taken as a replacement (Doove, van Buuren, and Dusseldorp
2014).

• The Schafer’s linear regression imputation (NORM) (Rubin
1987; Schafer 1997) defines an additive linear regression
model with no interaction terms assuming normal distribu-
tion and imputes adding residual noise.

All imputation methods have been performed on five copies
of the dataset and the pooling of the analysis results has been
performed according to Rubin (1987), as implemented in the R
package MICE (van Buuren 2018).

Given the monotone pattern of missingness (see Figure 2),
imputation methods have been employed with sequential impu-
tation (i.e., Yt2 was imputed first on all cases, and then Yt3 was
imputed).

The covariates accounted for in the different configurations
(see above) have been included in the imputation model.

2.4.2.2. Maximum Likelihood Methods. We applied the full
information maximum likelihood approach (Finkbeiner 1979)
as implemented in the R package lavaan (Rosseel 2012)—a
method for the estimation of parameters without imputation but
using all available data.

The covariates accounted for in the different configurations
(see above) have been added as auxiliary variables (Enders
2008).

2.4.2.3. Weighting-Based Approaches. As complete case
analysis is expected to bias results when the probability of
missingness is associated with the outcome of interest, a
conceptually appealing approach is weighting complete cases
by the inverse of their probability of being complete (Seaman
and White 2013).
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For the inverse probability weighting approach, we have
derived the weights from the baseline values only, then from
all available HAM17 values, and then from the whole set of
predictors in (3) including compliance indicator. The problem
of calculating the weights in presence of a partially observed
predictor has been solved in two different ways:

• In the model using all post-baseline observation of the
HAM17 but not the observed compliance, a single impu-
tation based on the normal distribution with the previous
observations as predictor has been used.

• In the model using all post-baseline observations of the
HAM17 and compliance, the following decomposition was
applied:

p (RY3) | Xt0,...,t−1, Yt0,...,t−1 =
p (RY2)

∣
∣ Xt0,...,t−1, Yt0,...,t−1x p (RY3)

∣
∣ RY2

= 1, Xt0,...,t−1, Yt0,...,t−1. (7)

The two probabilities on the right-hand side were estimated
separately and then the probability on the left-hand side was
calculated and used for the inverse weights. Given monotonicity
of the missing data pattern (see Figure S1), (4) did not require
the use of any missing data (for all patients with missing data at
t2, the probability of missing data at t3 was 1, and did not require
the missing value to be calculated).

Weights have been estimated from a logistic regression, sta-
bilized by the probability of being missing in the whole sample,
and extreme weights (i.e., the top and bottom 2.5%) have been
trimmed (Potter 1993).

3. Results

In total, 10,000 simulations have been produced under a range
of nonzero underlying treatment effects. The simulations had a
median true effect of the estimand in the sample across simu-
lations of −0.89 (IQ −41.28 to −0.5), a median proportion of
missingness in the outcome at t3 of 22.36% (IQ 18.82%–25.2%),
a median proportion of patients discontinuing treatment of 38%
(minimum 15%, maximum 52%) and a median sample size of
398 (IQ 348–448).

On the 10,000 simulations with no underlying treatment
effect, median true effect of the estimand in the sample across
simulations was 0 (IQ −0.32 to 0.33), the median proportion of
missingness in the outcome at t3 is 22.23% (IQ 19%–25.25%), a
median proportion of patients discontinuing treatment of 38%
(minimum 15%, maximum 52%), and the median sample size is
398 (IQ 349.5–448).

In both simulations sets, missingness pattern was always
monotone, as shown in Figure S1. Tables 2 and 3 show—
respectively, for the simulations run with and without an effect
of treatment on outcome—bias, coverage, and length of the
confidence interval for the estimation methods described above.

In presence of a treatment effect, all methods improve their
accuracy (but not their precision) when both post-baseline out-
come values and a compliance indicator are included. Such
gain is particularly relevant in presence of a high proportion of
outcome missingness (Table 2 and Figures 3(a)–(f)).

Table 2. Bias, coverage, length of the 95%CI, and mean squared error (MSE) for the
10,000 simulations performed under the existence of a treatment effect.

Method Bias (SE) Coverage (%) CI length MSE

Complete case analysis −1.026 (0.005) 63.91 2.356 1.315
Mixed effects model −0.606 (0.002) 75.22 1.589 0.451
NORM

Baseline imputation model −0.701 (0.003) 86.85 2.245 0.629
+ other HAM17 values −0.398 (0.002) 99.37 2.112 0.216
+ compliance −0.004 (0.01) 99.8 2.33 0.094

PMM

Baseline imputation model −0.697 (0.004) 86.87 2.255 0.629
+ other HAM17 values −0.401 (0.002) 99.29 2.1 0.219
+ compliance −0.013 (0.003) 99.89 2.314 0.096

CART

Baseline imputation model −0.676 (0.004) 83.38 2.1 0.602
+ other HAM17 values −0.343 (0.002) 99.44 2.048 0.175
+ compliance −0.198 (0.002) 99.877 2.043 0.096

FIML

Baseline as auxiliary −0.699 (0.003) 87.92 2.245 0.613
+ other HAM17 values −0.399 (0.002) 99.59 2.119 0.21
+ compliance 0.029 (0.003) 99.94 2.258 0.08

IPW

Baseline only −0.715 (0.003) 91.62 2.425 0.64
+ other HAM17 values −0.808 (0.004) 84.85 2.433 0.841
+ compliance −0.298 (0.006) 95.47 2.94 0.466

NOTE: A negative bias implies a bigger estimated effect (reduction of the HAM17
score is an improvement). The median true effect of the estimand in the sample
across simulations was −0.89 (IQ −1.28 to −0.5).

Table 3. Bias, coverage, length of the 95%CI, and mean squared error (MSE) for the
10,000 simulations performed under the absence of a treatment effect.

Method Bias (SE) Coverage (%) CI length MSE

Complete case analysis −0.6 (0.005) 88.12 2.3 0.566
Mixed effects model −0.189 (0.002) 99.18 1.57 0.087
NORM

Baseline imputation model −0.274 (0.003) 98.94 2.215 0.174
+ other HAM17 values −0.015 (0.009) 100 2.08 0.0367
+ compliance −0.008 (0.003) 99.86 2.286 0.0973

PMM

Baseline imputation model −0.279 (0.003) 98.94 2.216 0.183
+ other HAM17 values −0.025 (0.002) 100 2.07 0.0382
+ compliance −0.017 (0.003) 99.93 2.268 0.0939

CART

Baseline imputation model −0.277 (0.003) 98.08 2.049 0.185
+ other HAM17 values −0.016 (0.002) 99.99 2.003 0.041
+ compliance −0.014 (0.002) 99.99 2.002 0.045

FIML

Baseline as auxiliary −0.274 (0.003) 99.35 2.187 0.162
+ other HAM17 values −0.012 (0.002) 100 2.069 0.031
+ compliance 0.012 (0.003) 99.94 2.217 0.076

IPW

Baseline only −0.294 (0.003) 99.61 2.367 0.177
+ other HAM17 values −0.387 (0.004) 97.63 2.372 0.294
+ compliance −0.305 (0.006) 96.14 2.866 0.459

NOTE: A negative bias implies a bigger estimated effect (reduction of the HAM17
score is an improvement). The median true effect of the estimand in the sample
across simulations was 0 (IQ −0.32 to 0.33).

Further visualizations of the performances of different meth-
ods depending on trials’ characteristics and of imputed data
from the multiple imputation methods are included in the sup-
plementary materials. All methods improve their accuracy with
higher proportion of post-discontinuation follow-up (Figures
S4(a)–(e)).
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Figure 3. Relationship between proportion of missing outcomes and mean squared error (MSE) with each of the methods in presence of a treatment effect. (a) The
performance of static methods for context, (b–f) how—regardless of the method, the inclusion of post-baseline values and of a compliance indicator increases the accuracy
of the estimates, and that such gain in accuracy increases with the proportion of missingness. Lines are smoothed with span = 0.7 and areas in gray represent the 95% CI.

4. Discussion

The Estimand framework has established a new foundation for
the planning, conduct, and interpretation of clinical trials. Now
that a tool that better defines the treatment effect of interest is
available, analysis methods need to be aligned with the target of
estimation.

We have shown that the use of graphical representation (e.g.,
in form of m-graph) of the a priori beliefs on the data-generation
mechanism allows transparent discussion on the assumption
and guides an efficient analysis.

Our main result is that different approaches improve their
accuracy including the compliance explicitly represented in a
variable. In practice, such variable should be included in the
imputation model for imputation-based approaches, as auxil-
iary variable in likelihood-based methods and as a predictor of

missingness in weights-based approaches. For all these meth-
ods the inclusion of such variable led to an improvement in
accuracy (but not in precision) compared to taking into account
post-baseline severity scores only, despite post-baseline severity
scores (partially) explaining compliance. The inclusion of this
variable allows—under reasonable assumptions—to consider
missingness non-informative, even in presence of an informa-
tive intercurrent event. The performance of methods that ignore
compliance tends toward an overestimation of the treatment
effect, in line with the finding from Mehrotra, Liu, and Permutt
(2017). The use of a binary variable encoding compliance as part
of the imputation model has been recently suggested—limited
to noninferiority trials—by Rabe and Bell (2019), whose results
are in line with ours. Analogies can also be found with the
methods proposed by Carpenter, Roger, and Kenward (2013)
and Carpenter et al. (2014) (see also Liu and Pang 2017) and
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with the placebo multiple imputation proposed by Ayele et al.
(2014). However, the methods we endorse are proposed as more
directly linked to the data-generating mechanism and as MAR-
based main estimators rather than for sensitivity analyses. In
addition, the methods we are proposing (depending on the
observed distribution of the patients who discontinue treatment
but continue follow-up) allows for the initial treatment assign-
ment to still influence post-discontinuation increments.

We have limited our scope to the treatment-policy strategy
for handling treatment discontinuation. We acknowledge
that estimands that employ other strategies might also be
informative—for example, the long-term effect in patients
who tolerate treatment or a strategy that handles differentially
treatment discontinuation depending on the reason (Callegari
et al. 2020). However, this strategy has a special place in a
regulatory context (e.g., as mentioned in EMA 2018a, 2018b,
2018c), and in clinical practice as ultimately prescribers will
make a decision of treatment assignment, and noncompliance
occurs not only in clinical trials but also in practice (Sansone
and Sansone 2012).

In line with our expectations, this improvement in accuracy
is not recorded when simulations are run in the absence of a
treatment effect. However, even in this scenario, the inclusion
of this variable does not introduce a bias. Furthermore, it could
be argued that this scenario does not necessarily corresponds
to all instances of absence of average effect, as it is reasonable
to assume that even in absence of an average treatment effect,
taking or not taking a treatment could modify the outcome for
at least some patients—positively or negatively.

The deterioration of performance of different estimators with
a growing proportion of missingness of the outcome highlights
the importance of continued follow-up after discontinuation. In
practice, this is not always easy to implement as patients might
decide to avoid visits in absence of the expectation to benefit
from a treatment.

We maintain that our results do not contrast with the rec-
ommendation not to include post-baseline measurements in
the main analysis (ICH 1998; EMA 2003). However, we suggest
that such recommendation should be read as regarding the
main analysis model, excluding the imputation model or the
propensity score model.

It should be acknowledged that in most cases for data miss-
ingness related to treatment discontinuation MNAR is equally
reasonable as MAR. Here, we have only used techniques that
are suitable for MAR data (and we have simulated MAR data).
Further research should investigate sensitivity analyses assum-
ing MNAR.

5. Conclusion

Considering our data and the argument presented above, we can
recommend—for the estimation of an estimand that employs a
treatment-policy strategy for treatment discontinuation:

• That every effort to continue follow-up of patients who dis-
continue the treatment is made.

• That assumptions made on data-generating mechanisms,
including mechanisms leading to data missingness, are trans-
parently represented, for example, as m-graphs.

• That, consistently with what could be reasonably assumed
in most scenarios, observed compliance is represented as a
variable and accounted for when working with missing data
with any approach.

The European Medicines Agency has had a leading role in
the development and adoption of the framework and promotes
further research in this field. In particular, more research is
needed to develop sensitivity estimators that allow exploring the
implications of a wider range of assumptions on the missingness
mechanism.

Supplementary Materials

See Supplementary Materials for additional figures and details on the
simulations.
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