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Abstract

We develop an algorithm based on the method proposed by Dickman for directly measuring

pressure in lattice gas models. The algorithm gives the possibility to access the equation of state

with a single run by adding multiple ghost sites to the original system. This feature considerably

improves calculations and makes the algorithm particularly efficient for systems with inhomoge-

neous density profiles, both in equilibrium and nonequilibrium steady states. We illustrate its

broad applicability by considering some paradigmatic systems of statistical mechanics such as the

lattice gas under gravity, nearest-neighbour exclusion models in finite dimension and on regular

random graphs, and the boundary-driven simple symmetric exclusion process.
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Pressure is a key thermodynamic parameter encoding the phase behaviour of macro-

scopic systems in thermal equilibrium [1]. As first realized by Tammann long ago [2, 3],

for systems with many degrees of freedom the pressure behavior may not be as a simple

as a mechanical interpretation would suggest. This is essentially due to the entropic con-

tribution coming from the integral (or the sum) over the whole configuration space, which

is at root of several unusual and conter-intuitive phenomena, such as inverse melting [4–6].

There is also a fundamental interest in extending the notion of pressure to active matter,

a crucial step towards the formulation of a nonequilibrium statistical mechanics [7]. It is

therefore of paramount importance to rely on flexible and viable algorithms that are capable

of measuring the pressure directly, with no reference to a special state as in the standard

thermodynamic integration method. This is all the more true for (athermal) lattice systems

where Montecarlo algorithms are far less developed than their Molecular Dynamics coun-

terpart [8, 9]. Previously proposed methods generally sacrifice the usual periodic boundary

as they involve hard walls and volume fluctuations due to the removal or addition of a layer

next to the wall [10]. We consider here an elegant solution proposed some time ago by Dick-

man in the context of lattice polymers [11, 12], which bears a strong resemblance with the

ghost particle insertion trick suggested by Widom for computing the chemical potential [13].

The Dickman method consists of three simple yet important observations. First, for a lattice

gas with volume V and Helmholtz free energy F , the pressure P = −∂F/∂V is written as:

P = lim
∆V→0

kBT

∆V
ln
Z(V + ∆V )

Z(V )
, (1)

where Z is the canonical partition function. Then, one observes that the partition function

of a system with volume V is equivalent to that of a modified system with volume V + ∆V

in which one has added an infinite repulsive potential acting on the sites contained in ∆V

(preventing particles from entering ∆V ). Thus, if we introduce a repulsive potential of finite

magnitude Uλ = −kBT lnλ acting on the sites in ∆V (in such a way that λ = 0 corresponds

to U =∞, and λ = 1 to U = 0), and denote with Zλ the partition function of this modified

system, we get Z(V ) ≡ Z0(V + ∆V ) and Z(V + ∆V ) ≡ Z1(V + ∆V ), whence the partition

function ratio in Eq. (1) becomes:

ln
Z1(V + ∆V )

Z0(V + ∆V )
=

∫ 1

0

dλ
∂ lnZλ
∂λ

. (2)

To transform this in something useful for the design of a Montecarlo algorithm, one finally
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needs to remark that the partition function Zλ for the modified system can be written as:

Zλ(V + ∆V ) =
∆V∑

∆N=0

λ∆NΩ(N,∆N) , (3)

where the summation is taken over the possible configurations of ∆N particles in ∆V and

Ω is the total number of configurations with ∆N particles in ∆V and N + ∆N in V + ∆V .

Thus, the average number 〈∆N〉 of particles in ∆V can be obtained as:

〈∆N〉 = λ
∂ lnZλ
∂λ

. (4)

This leads to the desired expression for the pressure:

P = lim
∆V→0

kBT

∆V

∫ 1

0

〈∆N〉dλ
λ
. (5)

The pratical implementation of Eq. (5) in a Montecarlo algorithm obviously requires the

interval of λ values be discretized, and numerical simulations carried out for different finite

values of the repulsive potential. Also, the sites of ∆V on which the potential acts needs to be

finite. To the best of our knowledge this is typically chosen to be as small as 1, and the single

pressure-probe site is generally embedded in a wall of codimension 1 confining the system

from one side. In this form it has been observed that the algorithm becomes problematic in

the presence of a strong external bias, as in a lattice gas under gravity [14]. While, when

dealing with pressures as tiny as those generated by the Casimir effect in a nonequilibrium

driven system [15], the algorithm may require excessively long execution times, which is

all the more troublesome for cooperative driven dynamics. Moreover, a naive extension of

the algorithm allowing to probe the pressure at different locations, simultaneously, leads to

unreliable results in nonequilibrium conditions.

We show in this paper that these drawbacks can be actually overcome, and that an

efficient formulation of the algorithm can be consistently applied to a variety of physical sit-

uations of growing complexity, from a simple sedimentation problem to fluctuation-induced

forces in a driven diffusive system. First of all, one should notice that some care is required

when dealing with systems in which 〈∆N〉 ≈ ∆V . In these cases there exists a limitation on

the maximum value of pressure Pmax that can be measured, as Eq. (4) diverges for λ → 0,

while Pmax ≈ − log λmin, (where λmin is the minimum value of the λ discretization). Evidently,

to correctly quantify the pressure when 〈∆N〉 ≈ ∆V one has to choose a suitable value of

λmin. Second, it is important to emphasize that the presence of a confining wall is not a
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FIG. 1. Example of a portion of auxiliary system used for measuring pressure. A two-dimensional

lattice of V = 5 × 5 sites (represented as blue coloured balls), is augmented by two extra ghost

sites (gray coloured balls, ∆V = 2), which act as local pressure probes. Every ghost site increases

by one the number of nearest neighbours of the lattice site to which it is linked (by a dashed line

in the figure) and is subjected to a repulsive potential Uλ = −kBT lnλ, but it does not participate

to the nearest neighbour interactions of the lattice site to which it is linked. No wall is needed and

boundary conditions can be periodic in any direction.

necessary ingredient for computing pressure in a Montecarlo simulation. If for some reason

the spatial translational invariance of system geometry and interactions has to be preserved,

one can use periodic boundary conditions (unless, of course, one is interested in the wall

effects, as in wetting phenomena for example). Third, the size of ∆V can be relatively

large, ∆V � 1, provided that it is sub-extensive, ∆V � V . This improves data statistics

and becomes particularly relevant when the system under study displays an inhomogeneous

density profile. In this case, multiple pressure probes distributed uniformly over the whole

system can give access to the entire pressure profile with a single simulation run. Finally,

once the wall is suppressed, it is important to specify how the (ghost) sites of ∆V are added

to the original system. We do so by adding an extra nearest neighbouring site to a certain

number, ∆V , of sites of the original system. In this way the local geometric structure of the

original system is preserved and its intrinsic dynamics will be only weakly perturbed by the

presence of these extra ghost sites (for a schematic representation, see Fig. 1). This point

is particularly important as statistical mechanical models of interest generally involve static

or dynamic spatially extended interactions.
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In the following, the above points are implemented and carefully examined in systems

for which the pressure has a purely entropic content, i.e., athermal systems. Comparison

with theory is made whenever analytical results are partially or fully available. Montecarlo

simulations are carried out in the grand canonical ensemble, in which the system of volume

V (or one of its parts) is coupled to a reservoir R at chemical potential µ = log[ρR/(1−ρR)],

where ρR is the reservoir density. Unless otherwise mentioned, the pressure-probe ghost

sites are equally spaced in both the transverse and longitudinal directions of the system.

At every Montecarlo time step, a lattice bond in the coupled system (∆V + V + R) is

randomly selected and, depending on the pair of sites involved, one of the three possibilities

is considered: hole-particle exchange within the volume V , hole-particle exchange between

V and the reservoir R, hole-particle exchange between V and the ghost volume ∆V . It

is important to emphasize that the dynamics of the particle reservoir R is not explictly

simulated. Rather, every time the randomly selected bond involves a site of R, its occupation

state is randomly established by extracting a number with probabilty ρR. The results we

present were obtained by using the cut-off λmin = 0.001 and discretizing λ ∈ [0, 1] into 24

values equally spaced over three contiguous subintervals [0.01, 0.04], [0.04, 0.2] and [0.2, 1],

with steps ∆λ = 0.01, 0.02, 0.1, respectively. Compared to a simple uniform discretization of

[0, 1] this makes more effective the numerical evaluation of Eq. (5), because the contribution

of smaller values of λ, which give a large contribution to the integral, is better weighted.

Lattice gas under gravity. To begin with, we discuss what is perhaps the simplest equi-

librium system with a non-trivial inhomogeneous density profiles, the hard-core lattice gas

under gravity. This provides a natural test bed for the algorithm as the system thermody-

namics is simple enough to allow for a detailed comparison with the exactly known results.

For a system of height htop enclosed on the bottom and with the top in contact with a

reservoir at density ρtop, the pressure at height h is given by:

P (h) = −kBT log [1− ρ(h)] , (6)

where ρ(h) is the density profile:

ρ(h) =

{
1 +

1− ρtop

ρtop

exp

[
mg

kBT
(h− htop)

]}−1

, (7)

with mg being the gravity force. A further advantage of this problem is that the average
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FIG. 3. Pressure p and particle density ρ vs height h in a 2D lattice gas under gravity. The system

top is in contact with a particle reservoir at density ρ = 0.1. System size ...., βmg = ..., periodic

boundary condition in the direction normal to the gravity force. Full lines are the expected analytic

results.
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FIG. 4. Equation of state, pressure p vs particle density ρ, in a 2D lattice gas with nearest-

neighbour exclusion. Full periodic boundary condition, linear system size L = 32.The vertical

dotted segment represents the analytic value of the critical density ρc ≃ 0.36774... which corre-

sponds to an inflection point of pressure (= ...thermodynamic potential) and where an Ising-like

transition occurs (sub-lattice ordering). The full line below the critical density is a one-parameter

fit obtained from the approach in Ref.... The full line at high-density is the non-interacting entropic

pressure − log(1 − ρ/ρmax) near the maximum packing density ρmax = 1/2.

2

FIG. 2. Pressure p and particle density ρ vs height h in a tilted lattice gas under gravity. The

system height is htop = 64 and base 64. The system top is in contact with a particle reservoir at

density ρtop = 0.01. Periodic boundary condition in the direction normal to the gravity force. Full

lines are the expected analytic results from Eqs. (6-7).

number 〈∆N〉 of particles in ∆V , Eq. (4), can be computed easily [14]:

〈∆N(h)〉 = ∆V
λρ(h)

1− ρ(h) + λρ(h)
, (8)

providing a further detailed check of the algorithm. In the Montecarlo simulation we assume

that boundary condition in the direction transverse to the gravity force is periodic and the

ghost sites are uniformly distributed along the system diagonal. The square lattice is tilted

by 45◦ and particle hopping is ruled by the standard Metropolis transition probability,

p = min{1, exp(−βmg∆h)}, where ∆h = ±1 is the height difference due to a single hop.

In Fig. 2 we show the results for the density profile P (h) for two different values of the

gravity force, when the system top is kept in contact with a particle reservoir at density

ρtop = 0.01. As we can see the analytic results are perfectly recovered [16]. In this form,

the algorithm can be applied to more complex lattice models of colloidal sedimentation and

granular compaction, like those of Refs. [17, 18].

Lattice gas with nearest neighbour exclusion. Next, we turn to a more interesting

system of interacting particles, that is the lattice gas with nearest neighbour exclusion,

where particles are forbidden to occupy the same or neighboring sites. This model has a

long tradition in the study of critical phenomena as a schematic lattice model of hard-sphere
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FIG. 3. Equation of state, pressure p vs particle density ρ, in a 2D lattice gas with nearest-

neighbour exclusion. Full periodic boundary condition, linear system size L = 32.The vertical

dotted segment represents the analytic value of the critical density ρc ≃ 0.36774... which corre-

sponds to an inflection point of pressure (= ...thermodynamic potential) and where an Ising-like

transition occurs (sub-lattice ordering). The full line below the critical density is a one-parameter

fit obtained from the approach in Ref.... The full line at high-density is the non-interacting entropic

pressure − log(1 − ρ/ρmax) near the maximum packing density ρmax = 1/2.

at different densities. In this context it is well known that even in the absence of specific

interactions there exist long-range correlations that arise from the nonequilibrium driving.

The so called simple symmetric exclusion process is particularly....A striking consequence of

this fact are the fluctuation-induced (Casimir-like) forces that can be observed in a finite

geometry...A recent calculation within the fluctuating hydrodynamics framework has shown

that...

Since pressure a thermodynamic intensive property (ie its average value does not depend

on the position at which it is measured), and since every d-dimensional systems can always

be imagined as a slice of a d + 1-dimensional system constrained to move on a subspace of

codimension 1...

N.B.: The ghosty nature of the pressure probing sites should be emphasized: the particle-

exchange occuring between two sites near a probe is not influenced (when the occupation of

nearest neighbours is considered) by the presence of the probe. (This is consistent with the

very weak perturbation that a probe should cause on the inherent dynamics of the system

under study).

2

FIG. 3. Parametric plot of the equation of state, pressure P = P (µ) vs particle density ρ = ρ(µ),

in a square lattice gas with nearest-neighbour exclusion. Full periodic boundary condition, system

size V = 322 and ghost sites ∆V = 32 located along the main diagonal of the lattice. The vertical

dotted segment represents the analytic value of the critical density ρc = 0.36774. The full line

below the critical density is a one-parameter fit obtained from the approach in Ref. [27] The full

line at high-density is the non-interacting entropic pressure − log(1 − ρ/ρmax) near the maximum

packing density ρmax = 1/2.

fluids, and is closely related to the classical NP-hard combinatorial optimization problem of

finding a minimum vertex cover on a random graph [19]. Numerical and theoretical studies

for various finite dimensional lattices [20–27] have shown that there exists a critical density

ρc (for a square lattice ρc = 0.36774...) at which the model exhibits a continuous phase

transition to an ordered state with exponents that belong to the Ising universality class [25].

Above ρc particles tend to occupy preferentially one of the two sublattices in which the

original lattice can be decomposed (in such a way that the nearest-neighbors of any sites of

one sublattice belong to the other sublattice and vice-versa). The ground state, therefore,

corresponds to a fully occupied sublattice and the maximum packing density is ρmax = 1/2.

In Fig 3 we show the parametric plot of the equation of state P (ρ) obtained in a grand-

canonical simulation by slowly increasing the chemical potential. In agreement with the well

establised numerical and theoretical results the equation of state displays an inflection point,

corresponding to a divergent compressibility, near the critical density at which sublattice

ordering occurs. The full line below the critical density is a one-parameter fit obtained from
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the approach in Ref. [27], while the full line at higher densities is the non-interacting entropic

pressure − log(1− ρ/ρmax) near the closest packing density ρmax = 1/2.
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FIG. 2. Fluctuation-induced pressure profile in a 2D simple symmetric exclusion process in contact

with boundary reservoirs at ρ0 = 0.1 and ρ1 = 0.7. The distance between the two reservoirs is L.

Periodic boundary condition in the direction transverse to the particle flux/current.

1

FIG. 4. Bethe lattice glass. Equation of state, pressure P = P (µ) vs particle density ρ = ρ(µ),

in a parametric form, for a lattice gas on a regular random graph with connectivity k + 1 and

geometric constraint ` on particle occupation (every particle can have no more than ` particles as

nearest neighbours). System size V = 210, and ghost volume ∆V = 25 randomly located on the

graph. Data points are the results of a Montecarlo simulation in the grand canonical ensemble in

which the system is annealed by slowly increasing the chemical potential (starting from an empty

system). Vertical lines correspond to the analytical values of the closest packing density obtained

in Ref. [29].

Bethe lattice glass. The previously considered model can be interestingly generalised to

situations in which every particle cannot have more than ` particles as nearest neighbours

(thus, the nearest neighbour exclusion models is recovered for ` = 0). This class of models

was introduced in the attempt of providing a microscopic finite-dimensional realization of the

thermodynamic scenario for the elusive glass transition [28]. Subsequent works have shown

that in finite dimension a freezing transition towards an ordered ground state occurs [30, 31].

However, some more sophisticated variants appears to be quite stable against crystalization

and display properties of fragile glass-forming liquids [32, 33]. For the purpose of testing the

present algorithm in a geometric structure other than the usual Euclidean lattices, we focus

here on the monodisperse lattice glass model on the Bethe lattice. This is also known as

regular random graph, that is locally tree-like geometric structure, with a fixed connectivity
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k+ 1 and loops of order lnN . This latter feature, an analog of generic boundary conditions,

prevent unphysical surface effects and give arise to frustration precluding crystalline order-

ings. The resulting glassy behaviour can be studied analytically with the tools of disordered

systems theory [28, 29], and has been extended to the quantum domain as well [34]. In Fig. 4

we show a parametric plot of the equation of state obtained in a grand canonical Montecarlo

simulation for the Bethe lattice glass (with connectivity k + 1 mimicking the square and

cubic lattice) for two value of `. Consistently with the analytical calculation[28], no sign

of crystalization is observed in the equation of state and the pressure for large chemical

potential tends to diverge at a density very near the closest packing limit, µ→∞, obtained

with the cavity method of disordered systems theory [29].

Fluctuation-induced force in a driven lattice gas. As a final more stringent test of the

present algorithm we now consider a two dimensional system driven into a nonequilibrium

steady state by two reservoirs at different densities, ρ0 and ρ1, located at its edges x = 0

and x = L, respectively. For such driven diffusive systems it is known that there exists long-

range correlations [35], even for purely hard-core interactions [36]. A striking consequence

is the appearance of Casimir-like forces in a finite geometry [15]. To the leading order in

ρ1 − ρ0 and for a simple symmetric exclusion process [37] on a square lattice of size L× d,

this fluctuation-induced pressure, Π(x), is given by [15]:

Π(x) = − 1

2Ld

[
ρ1 − ρ0

1− ρ(x)

]2
x

L

(
1− x

L

)
, (9)

where ρ(x) = ρ0 + (ρ1−ρ0)x/L is the system density profile and we set kBT = 1. For lattice

system with only infinite hard-core repulsion the thermodynamic limit of the average density

of particle, 〈ρ∆V〉, in the ghost volume ∆V is exactly known, see Eq (8). This means that

the Casimir pressure, ΠMC(x), in a Montecarlo simulation with a finite ∆V can be measured

as:

ΠMC(x) ≈
∫ 1

0

[
〈ρ∆V〉 −

λρ(x)

1− ρ(x) + λρ(x)

]
dλ

λ
. (10)

where it is understood that the integral has to be properly discretized. In Fig. 4 we compare

the Montecarlo results for ΠMC(x) at reservoirs densities ρ0 = 0.1 and ρ1 = 0.7 and different

system sizes, with the theoretical result for Π(x), Eq. (9), in the rescaled form Π̃(x) =

LdΠ(x). Data points of each curve were simultaneously obtained for a dynamical evolution

long 109 Montecarlo sweeps, and averaged over a sample of 10 to 20 elements (statistical
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FIG. 2. Fluctuation-induced pressure profile in a 2D simple symmetric exclusion process in contact

with boundary reservoirs at ρ0 = 0.1 and ρ1 = 0.7. The distance between the two reservoirs is L.

Periodic boundary condition in the direction transverse to the particle flux/current.

1

FIG. 5. Fluctuation-induced pressure profile Π̃(x) = LdΠ(x) in the simple symmetric exclusion

process on a square lattice of size d×L. The system edges at x = 0 and x = L are in contact with

boundary reservoirs at density ρ0 = 0.1 and ρ1 = 0.7, respectively. There are periodic boundary

condition in the direction transverse to the particle current, and the number of ghost sites is

∆V = 2d (so that ∆V/V = 2/L). Red line refers to Eq. (9).

errors are not visible because of the order of symbol size). The agreement is excellent and

fully confirms the efficiency and functionality of our algorithm.

In conclusion, we have developed an algorithm based on the Dickman which can consid-

erably improve the accuracy of Monte Carlo calculations of pressure in lattice models, and is

especially suited for systems with inhomogeneous density profiles, both in equilibrium and

nonequilibrium steady states. The algorithm is quite general and holds the key to many

other statistical mechanics applications.
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