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Sound-absorbing asphalts are particularly useful for reducing noise emissions from vehicular traffic. This
solution is perfectly suited for urban areas, in fact the use of sound-absorbing asphalt represents a noise
control measure with a negligible environmental impact. In the present work, the results of an experi-
mental investigation on sound-absorbing asphalts were reported. First, the characteristics of the
sound-absorbing asphalts used were experimentally found. Then, the measurements of the sound
absorption coefficient of the asphalt specimens were investigated. In the final part, numerical simulation
model with artificial neural networks of the acoustic coefficient were compared with the data obtained
from the measurements. The neural network model showed good Pearson correlation coefficient values
(0.894) which can be used with good accuracy to predict the sound absorption coefficient.
� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transport infrastructures are the main sources of noise pollu-
tion in Europe, and if we exclude people who live near airports
and railway lines, traffic flow is the main source of human expo-
sure to noise pollution. In recent years, there has been a constant
and significant increase in noise levels in the environment, mainly
due to the high number of vehicles in circulation, the kilometers
traveled, and the increase in vehicle speed. In urban centers, road
traffic is the main source of noise pollution, to which administra-
tions place a limit by adopting traffic plans, which provides for a
series of coordinated interventions to improve road traffic condi-
tions in these areas (Khan et al., 2018; Heinecke-Schmitt et al.,
2018; Pouikli 2019; Montes-González et al., 2018). Noise levels
resulting from road traffic above a certain threshold are associated
with negative health effects. The World Health Organization
(WHO) recommends to decrease the noise levels emitted by
daytime road traffic to be under 53 dBA Lden level. While, for expo-
sure to night noise, the WHO recommends to decrease the noise
levels emitted by road traffic during the night hours to be under
45 dBA Lnight, since above this level the noise is associated with
negative impact on sleep. Furthermore, WHO recommends the
use of technologies that reduce the propagation of noise from the
source to the population exposed to the noise pollution of the road
traffic (World Health Organization, 2018). Vehicle noise can be
attributed to two main causes: noise produced by the engine,
and noise due to the motion of the vehicle. The noise produced
by the engine depends on the speed and acceleration of the vehicle
and derives mainly from the following elements: engine, intake
and exhaust system, transmission shafts, cooling fan, gearbox,
and hydraulic pumps. The noise due to the motion of a vehicle
depends on the speed of the vehicle and the type of pavement
and generated mainly from rolling, vibrations, tire-road interac-
tion, aerodynamic drag (Sheng, 2012). In cars, the noise caused
by the motion of the vehicle is prevalent over that produced by
the engine except for the acceleration phases. The rolling noise
depends on the speed of the vehicle and on the characteristics
and conditions of the road surface: type of aggregates, roughness,
and grain size, degree of degradation, acoustics properties. Instead,
they have less influence on the weight of the vehicle, its accelera-
tion and the characteristics of the tire: load, tread design, tire pres-
sure, and degree of wear. Rolling noise is due to three main causes:
collision of the tire on the surface, air that is compressed in the
spaces in the tread caused by deformation generating vibrations,
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adhesion phenomena between surface aggregates and tires.
(Thompson and Dixon, 2004; Lu and Jen, 2010). The rolling noise
produced by the tire is at low frequency with values below
1000 Hz, this at the low speeds typical of urban roads. In the case
of wet asphalt, the noise increases by about 5–10 dBA. Aerody-
namic noise grows with the collision of the vehicle against the
air and depends on the speed of the vehicle, but also on the profile
of the bodywork. This noise has components in the frequency rang-
ing from 500 Hz to 3000 Hz with a level that changes from 45 to 60
dBA. For speeds greater than 60 km/h, the impact of rolling noise
caused by the tires grows and becomes predominant for speeds
above 80 km/h. For speeds greater than 100 km/h, the impact of
aerodynamic noise becomes predominant (Iwnicki et al., 2019).
The issue of traffic noise has been underestimated and got little
attention, so much so that most of the built-up areas have been
developed right in the vicinity of important road arteries, and it
is therefore difficult to imagine the implementation of a remedia-
tion work so extensive acoustics, unless huge investments are
made. The problems of noise disturbance connected to road infras-
tructures provided for possible interventions that can be classified
into two categories: the first includes all the solutions applicable in
the design phase that tend to reduce noise at the source. The sec-
ond consists of all possible mitigation interventions following pav-
ing roads (Ouis, 2001; Griffiths and Langdon, 1968; Bluhm et al.,
2004; Stansfeld et al., 1993). To treat this issue, we can use
sound-absorbing asphalt which reduces noise and helps in rainwa-
ter drainage. This type of asphalt is produced from aggregate gran-
ules bonded with bituminous conglomerate. The asphalt obtained
has an alveolar structure characterized by high percentage voids
that keep the resistance of the material almost unchanged. The
draining layer, thanks to its reduced macro-texture with negative
roughness, acts as a sound absorbing septum as the sound waves
penetrating inside the pores are reflected infinite times transform-
ing into thermal energy (Tiwari et al., 2004; Yamaguchi, et al.,
1999). For these materials, absorption is characterized by the
asphalt thickness and the inert materials diameter. Draining
asphalts have a void percentage of more than 15% greater than
conventional asphalts. In addition, the noise produced by the roll-
ing of the tires on the asphalt has lower frequency components
that are less annoying for the human ear. The tire that impacts
the road pavement at high speed compresses the air that surrounds
it, trapping it between the rubber groove and the bottom, thus gen-
erating rolling noise. This bearing, under the wheel, expands after
the passage and generates resonance in the air, the primary cause
of the noise. The asphalt with a high percentage of voids allows the
air to pass under the contact area without compressing too much
and therefore limiting the effect of the resonance. The mechanical
properties of a compacted bituminous conglomerate strongly
depend on the percentage of internal residual voids. The percent-
age of voids essentially depends on the particle size composition
of the aggregates, which is characterized in the compaction phase
(Arenas and Crocker, 2010; Peeters et al., 2010). Recently, several
authors have attempted to create mathematical and numerical
models with the aim of simulating the asphalt acoustic properties.
Attenborough (Attenborough and Howorth, 1990) studied the
effects of porous road pavement on the transmission of noise from
an acoustic perspective. This study confirmed that rough pavement
surfaces cause a significant increase in ambient noise levels. Hamet
(Hamet and Berengier, 1993) studied the relations between sound
absorption and pore structure. This study developed an extensive
phenomenological model often used to describe the porous
asphalt. The parameters necessary for the mathematical expres-
sions contained in the model can be determined by measurements.
Meiarashi (Meiarashi et al., 1996) developed a silent flooring con-
sidering a porous elastic surface. In this study, it was shown that
the noise reductions of this pavement are higher than those of an
asphalt drainage pavement for both cars and trucks, respectively
of 13 and 6 dBA. Gołebiewski (Gołebiewski et al. 2003) investigated
the noise generated by some vehicles on the dense asphalt and
porous asphalt. They then used subjective drive-by noise assess-
ments to evaluate the performance of the two floors. The study
highlighted that exposure to sound and the pavement surface coef-
ficient can be used as acoustic features of a pavement surface. Mun
(Mun, 2010) based on measurements of the acoustic absorption
coefficients of porous asphalt concrete pavements, they have
shown that a better attenuation of the noise is obtained by set
the air vacuum percentage, the asphalt gradation and the thickness
of the road surface. Chu (Chu et al., 2017) studied several mixtures
of a porous asphalt pavement. The authors showed that reducing
the porosity percentage from 25% to 12% caused negligible changes
in the reduction of pavement noise, changing the frequency char-
acteristics of the acoustic absorption. The analytical, correlation
and simulation models developed for the acoustic properties fore-
casting underestimate or overestimate the experimental results,
therefore they do not allow satisfactory predictions to be obtained.
Until now, the only method to obtain reliable or very reliable
results is the experimental method, but it is very expensive both
in terms of time and costs. Artificial Neural Network-based algo-
rithms can represent a valid tool for solving modeling problems
of the acoustic properties of materials. The search for an appropri-
ate model structure allows us to simulate the connection between
the material features and the sound absorption coefficient via com-
puter, to make prediction of the acoustic characteristics of the
material, according to the parameters used (Iannace et al., 2020).
In the present work, sound-absorbing asphalts are experimentally
tested and the characteristics of the asphalts are found. After that,
the measured acoustic properties of the material are reported and
analyzed. A numerical model was developed and validated with
the experimental data.
2. Materials and methods

2.1. Absorbent asphalts characterization

Traditional conglomerates are made up of three layers of grain
size and thickness decreasing upwards. The base layer has the
function of withstanding the stresses without reporting permanent
deformations and of resisting any settling of the underlying soil.
The connection or binder layer joins the base with the wear layer,
transmitting the vertical action of the loads without undergoing
permanent deformation. Finally, the wear layer, the surface part
of the flooring, is made up of aggregates with resistance to sanding
and whose characteristics must be studied to obtain the required
performance. It is precisely in the creation of the wear layer,
responsible for the safety and ride comfort, that the search for dif-
ferent mixtures has been concentrated in response to the various
traffic and climatic needs, arriving at the formulation of high-
performance bituminous conglomerates (Moore et al., 2001; Liu
and Cao, 2009). Draining asphalt is a material characterized by
high porosity, it is created by mixing aggregates of different diam-
eters, leaving small voids that are called pores. The result is there-
fore an open and porous flooring: in case of rain these
characteristics allow the water to go down to the waterproof layer
and, thanks to a slight slope, to make it slide towards the edges of
the road. This asphalt has significant advantages in terms of longer
life, about 30% more than normal asphalt, and in terms of absorp-
tion of vehicular noise (Putman and Kline, 2012; Field et al., 1982).
A good sound absorption is guaranteed by an asphalt with a at least
20% percentage of voids. In addition, the aggregates must hold a
high rate of medium diameter aggregate and a low rate of fine
diameter aggregate. To acoustically characterize this type of



Fig. 1. Specimen used in the experiment with the dimensions.
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asphalt, many specimens that has compound mixture were exam-
ined. The mixture is composed of aggregates bonded together with
a binder, to present a percentage of voids. The study was con-
ducted on specimens assembled with 5.3% bitumen and a void per-
centage equal to 17%. Table 1 shows some parameters of the
asphalt specimens used for the measurements.

Four types of specimens were assembled by changing the size of
the aggregate pieces. The dry and wet weight was measured for
each specimen. Fig. 1 shows a specimen with the dimensions.
The specimens have been sized to be compatible with the instru-
ment for measuring the acoustic coefficient.

2.2. Acoustic properties measurements

To begin, the measurements of the acoustic properties of the
asphalt were carried out: the measurements of the acoustic
absorption coefficient at normal incidence were carried out as indi-
cated by the procedure contained in the ISO 10534–2 standard (ISO
(1053)4–2, 1998) As mentioned earlier, the asphalt specimens
were assembled into four types by changing the dimension of
the aggregate in the mixture. The method describes the procedure
for measuring the acoustic parameters of small specimens. The
measurements were carried out with the help of an impedance
tube, with the following specifications: 10 cm of internal diameter
and 56 cm of length. Two ¼ ’’ microphones are positioned inside
the tube. The impedance tube with these specifications returns
the acoustic absorption coefficient of the specimen for frequencies
ranging from 200 Hz to 2000 Hz. A pink noise is introduced inside
the tube through a loudspeaker located at one end of the tube. The
specimen is housed on the opposite side of the tube, resting on a
rigid circular wall of 10 cm in diameter. The transfer functions
returned by the two microphones inside the tube are combined
to form the absorption coefficient. Fig. 2 shows the impedance tube
(Kundt tube), it is possible to identify the support in which the
specimen is housed (on the left), and the section in which the
microphones and the speaker are housed (on the right).

The measurements were made for each of the four specimens to
limit the effects of irregularities in the specimens. For each mea-
surement, the specimen was removed from the tube and subse-
quently re-housed in it. The result represents the average value
of the absorption coefficients obtained in the four acquisitions.

2.3. Exploring artificial neural network algorithm

The term machine learning refers to a series of algorithms that
allow the automatic knowledge extraction from large databases. In
this way operations such as classification, identification, segmenta-
tion are performed independently by computer systems without
the aid of human beings. These operations are performed by the
machines thanks to the ability to learn of artificial intelligence,
which gives computers the ability to make decisions without the
need to perform preordained tasks. The increasingly complex
industrial processes can be managed independently by the machi-
nes simply by relying on the data collected during the training
phase (Alpaydin, 2020; Mohri et al. 2018). More specifically, an
algorithm based on machine learning can extract common charac-
teristics and models from a dataset provided in the training pro-
Table 1
Parameters of the asphalt specimens.

Specimen Height [m] Diameter [m]

A 0.061 0.099
B 0.056 0.099
C 0.059 0.099
D 0.065 0.099
cess and apply them to new datasets never seen before. The data
are used to form models and to learn extracted knowledge. These
algorithms are trained using different techniques decided by the
type of activity that we must make (Carrasquilla and Melko,
2017). In supervised learning, the training data sets contain labels
indicating whether each item is appropriate or not, for example, if
the expected output value is detected or the class planned is
returned. In this case, the algorithms are trained to fit the models
in order to learn to detect right occurrences in the new data
(Bottou et al., 2018). Machine learning-based models have recently
been developed to address different problems (Hardt et al., 2016;
Iannace et al., 2018; Ward et al., 2016; Iannace et al., 2019b;
Pathan et al., 2019). In analogy to the functioning of the human
brain, artificial neural networks (ANNs) are a very important field
within artificial intelligence. The purpose of this class of algorithms
is to develop numerical models capable of supporting human
beings in decision-making processes using innovative techniques.
Neural networks are based on elementary components that per-
form actions like the common functions of a biological neuron.
These elements are organized similarly to how they occur in the
brain. In addition to looking like the brain they have several brain
features. An essential feature of the ANNs is the ability to learn,
generalizing from previous experiences to new behaviors, manag-
ing to extract key features from a data set. A neural network trans-
forms a set of independent variables � = (x1, . . ., xn), defined as
network inputs, into a set of dependent variables y = (y1, . . ., yk),
which represents the network output using a nonlinear mathemat-
ical function. The output returned as result depends on a set of val-
ues w = (w1, . . ., wn), called weights. In a network, the correlation
between output and input can be exemplified through the follow-
ing equation:

y ¼ f
X
j

wj � xj þ b

 !
ð1Þ

Here:

� xj is the jth input
� wj is the jth weight
� b is the bias
� y is the output
Weight [Kg] Wet weight [Kg]

0.990 1.010
0.950 0.965
0.970 0.989
1.000 1.022



Fig. 2. Impedance tube device used in this work for measurement of the acoustics properties of the sound-absorbing asphalt.
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� f is the activation function

Weights and biases express the knowledge that artificial neu-
rons learn during the training phase and that they will use later
to make predictions. The function f is called the activation func-
tion: it is a threshold function that is activated only if the signal
output from the neuron exceeds the threshold, in this way the sig-
nal is transferred to the next successive layers. Nonlinear functions
as sigmoid or logistic functions are examples of activation func-
tions (Iannace et al., 2019a). As anticipated, the weights are
adjusted during the training phase through an iterative procedure.
This procedure requires intense computational effort and uses a
certain number of input-target pairs, called training sets. In train-
ing, we search for the values of weights that minimize a specific
error function (Rojas, 2013). The architecture of a neural network
has three typical elements, each of which has artificial neurons:
input, output, and hidden layers. The signals supplied to the sys-
tem as inputs reach the output layer, passing through the neurons
present in the internal layers, as shown in the following Fig. 3.

External signals are passed to the network through the input
nodes, connected to each node of the hidden layer. Each node pro-
cesses the received signals by applying the transfer function and
transmits the result to subsequent nodes.
Fig. 3. Artificial Neural Network architecture with nodes and connections.
3. Results and discussion

3.1. Measurements results

To perform the measurements of the sound absorption coeffi-
cient, the asphalt specimen were assembled, in four type (A, B, C,
D). Specimens were assembled with a draining mixture with a
granulometric variety of these components: small and large basalt,
sand, and filler. To subdivide the different types of aggregates, sun
sieves are used with standardized sizes and shapes. The asphalt
specimens were housed into the impedance tube to evaluate the
sound absorption coefficient. In Fig. 4 are reported the results of
these measurements for asphalt specimens of four distinct types.
The normal incidence sound absorption coefficient, in the fre-
quency range 200 Hz � 2000 Hz, was measured. The measure-
ments were performed for the four types of specimens in the
following three configurations:

� Specimen with dry material: For this configuration, the sound
absorption coefficient of the asphalt was measured for a speci-
men with 10 cm of diameter and 6 cm of thickness.

� Specimen with wet material: For this configuration, the sound
absorption coefficient was measured on a specimen soaked in
water. The acoustic performance of the asphalt in wet weather
differs: In these meteorological conditions the voids are par-
tially occupied by water which infiltrates the structure of the
pores. To study the behavior of the material in this configura-
tion, the asphalt specimens were submerged in a water for
about 20 days, after which the specimen was removed and
weighed. Subsequently, the specimen was subjected to the
acoustics measurements using the impedance tube (Kundt’s
tube). Table 1 shows the weight value of the specimen after
these operations.

� Specimen with dirty material: For this configuration, the
sound absorption coefficient of the sound-absorbing asphalt
was measured on a soiled specimen. The road is subject to wear
and tear over time through a slow deterioration process. Speci-
fic maintenance operations can guarantee the sound absorption
characteristics unchanged over time. In the laboratory, a par-
tially deteriorated sound-absorbing asphalt specimen was sim-
ulated: to do this, a layer of earth was added to the upper part of
the specimen to simulate the actual conditions that arise due to
the flow of traffic and the surrounding environment. A layer
composed of sand, potting soil, weeds was added to the
specimen.



Fig. 4. Sound absorption coefficient values of A, B, C, D specimens and for three configurations: Specimen with dry material, Specimen with wet material, and Specimen with
dirty material.
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Fig. 4 shows the trends of the acoustics measurements versus
the frequency for the four specimens (A, B, C, D) in the three con-
figurations just described.

Fig. 4 allows us to analyze the differences shown by the four
specimens in the three configurations provided. Starting from the
first specimen denoted as specimen A we can see that the mea-
surements reaches a maximum value of about 0.6 in correspon-
dence with a frequency equal to 600 Hz: This happens for
specimen A in a dry configuration: We can notice a bell pattern
for the low frequencies ranging from 400 Hz to 800 Hz. The same
trend is also confirmed for the configurations from dirt and wet
only that there is a decrease in the maximum value which drops
to 0.55 for dirt and to 0.5 for the wet. In addition, the bell curves
move towards the lower frequencies. In the medium frequencies
ranging from 800 to 1600 Hz we notice a curve trend with a central
maximum but more flattened with a maximum value ranging from
0.3 to 0.2. In the high frequencies starting from 1600 Hz there is an
increasing trend in the sound absorption coefficient, this trend is
confirmed for all three configurations. Overall, we can see that
the dry specimen is the most performing one, then we have the
dirty one and finally the wet one. The lower performance is due
to the clogging of the pores by dirt and water which reduces the
acoustic performance of the asphalt. A similar argument can be
made for specimen B in which, however, we observe a drastic
reduction in performance, particularly at low frequencies. In this
area, the bell-shaped curves characteristic of the measurement
for many porous materials has a maximum which drops below
0.4. For medium and high frequencies, the trend of specimen B
are comparable with those of specimen A. Also, for specimen B,
the differences between the performances of the three configura-
tions are confirmed: the dry specimen is the best performing then
we have the dirty one and finally the wet one. In this case, the dirty
specimen recorded values comparable with the dry specimen.
Specimen C is the most performing one: we can see that the mea-
surements reaches a maximum value of about 0.85 in correspon-
dence with a frequency equal to 500 Hz: This happens for
specimen C in a dry configuration. Specimen C is the lighter one,
as shown in Table 1 to demonstrate a greater number of pores.
Also, in this case we can see a bell-shaped trend for low frequen-
cies ranging from 300 Hz to 700 Hz with a lowering of the frequen-
cies compared to the previous specimens. For medium and high
frequencies, the trend of specimen C are comparable with those
of specimen A and B. The differences between the performance
of the three configurations are also confirmed for specimen C:
the dry specimen is the most performing then we have the dirty
and finally the wet one. In this case, the dirty specimen recorded
values comparable with the dry specimen. Specimen D confirms
the trends already seen for the other three specimens with poorer
performance. The difference with the other cases is shown by the
dirty configuration which, unlike the other cases, proves to be
the least performing. Perhaps due to a greater presence of contam-
inants that limit its performance, for frequencies ranging from
650 Hz to 900 Hz.

3.2. Simulation model based on ANN

The quality of the forecasts made by a numerical model
depends on the characteristics of the data. A good data preparation
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process, in fact, represents a crucial phase for the construction of a
predictive model and focuses on organizing and preparing the data
to obtain the maximum benefit from the analysis of such data. Typ-
ically, data preparation includes the following: Data Cleaning, Fea-
ture Transformation, and Feature Selection. Data cleaning is about
cleaning information, removing noise or other inconsistencies that
could cause problems in the data analysis process. It also explores
and prepares the data for the next steps. In a good data preparation
process, it is necessary to identify what are the relevant character-
istics that impact on the analysis and construction of the predictive
model. Identifying these characteristics allows you to know what
influences your data most and consequently also the future
decision-making process. The goal in this phase is to identify the
smallest set of characteristics that best describe the problem that
you want to study. In some cases, the need to change the format
or the comparison between the quantities analyzed is required to
avoid obtaining misleading results. In our case we have variables
described by distinct units of measurement which determine
clearly different ranges of data variability. This can represent a
problem in the model training phase as it can impose a different
importance among the variables that cannot be traced back to a
real physical phenomenon. To remove the effect deriving from
the units of measurement, we can perform the standardization of
the variables. This procedure allows the comparability of variables
with different distributions. Standardized variables are non-
dimensional values, that is independent of the unit of measure-
ment, which measure the deviation of the distribution values. It
is obtained by calculating the difference between each value and
the arithmetic mean in relation to the standard deviation, as indi-
cated by the following formula:
xs ¼ x�meanðxÞ
sdðxÞ

The variable scaled which takes on the following properties:

� mean = 0
� standard deviation = 1

In this work we want to develop a neural networks-based
model capable of predicting the values of the sound absorption
coefficient, based on some characteristics of a sound-absorbing
asphalt. To measure algorithm performance, model validation
Fig. 5. Architecture of the neur
must be performed. Validation tends to verify the predictive ability
of the model using previously unused input data. The validation of
the model is intended to avoid excessive adaptation of the model,
problem that arises in the case of excessive adaptation to the
observed data due to an excess of parameters compared to the
observations. The model validation procedure involves dividing
the data set into two subsets: training set and test set. The first
set will be used to train the model, while the test set will be used
to test the prediction capabilities of the model. In this study, the
input data was divided as follows: a training set equal to 70% of
the data obtaining 8517 observations, and a test set equal to the
remaining 30% of the data obtaining 3651 observations. The divi-
sion was done randomly.

The simulation model was developed using an algorithm based
on an feed-forward artificial multilevel neural network with 5
input variables (frequency, dry specimen, dirty specimen, wet
specimen, weight), with 10 neurons in the hidden layer which
returns the acoustic-acoustic property of the sound-absorbing
asphalt. The information regarding the type of configuration of
the specimen among the three available (Specimen with dry mate-
rial, Specimen with wet material, and Specimen with dirty mate-
rial) was inserted in the dataset as a dummy variable. A dummy
variable is a variable that assumes a value of 0 or 1, depending
on whether a given condition is met or not. It is inserted with
the aim of capturing the effect of a qualitative variable on the aver-
age value of the dependent variable. This adds three columns con-
taining a binary value (0.1) to the dataset. This column will contain
1 if the type of specimen coincides with that represented by the
column, otherwise it will contain 0. To calculate the prediction
error in the training phase, the measurements of the acoustic prop-
erties are compared with those simulated by the numerical model.
An iterative procedure is adopted to adapt the connections
weights, minimizing an error function. The weight adjustment pro-
cedure includes the following steps: To begin, the derivatives of the
error function versus weights are evaluated. The results are then
applied to determine the new weights. In this study, the scaled
conjugated gradient Backpropagation (SCG) algorithm was used
which uses the gradient descent technique to locate the minimum
of the error function versus the weights (Daniel, 2013). The archi-
tecture of the neural networks-based model is shown in Fig. 5:

Fig. 5 shows the composition of each layer of the neural net-
work. The input layer consist of five data inputs as follows: fre-
quency, dry specimen, dirty specimen, wet specimen, and weight.
al networks-based model.



Table 2
Input layer to Hidden layer weights and biases.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

I1 �0,028 0,014 �0,002 0,002 �0,031 �0,008 �0,002 0,086 0,002 0,015
I2 0,074 �1,205 0,428 �0,466 1,006 1,387 0,830 0,000 �0,654 �1,280
I3 0,320 �0,969 0,747 �1,154 1,036 1,883 0,422 0,001 �0,574 �0,641
I4 0,448 �0,372 1,194 �0,462 0,947 1,424 0,687 0,000 �0,467 �0,675
I5 0,885 �5,210 �0,110 0,599 2,498 5,370 �0,400 0,001 0,275 �2,019
B1 0,842 �2,547 2,369 �2,082 2,989 4,694 1,939 0,001 �1,695 �2,596

Table 3
Hidden layer to Output layer weights and biases.

H1 - O1 H2 - O1 H3 - O1 H4 - O1 H5 - O1 H6 - O1 H7 - O1 H8 - O1 H9 - O1 H10 - O1 B2 - O1

�1,356 �5,316 �3,915 3,213 3,722 4,108 �3,432 �0,608 2,733 2,614 �0,610

Table 4
Metrics for the simulation model evaluation.

RMSE MAE Person’s Correlation Coefficient

0.066 0.044 0.894
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Ten neurons are contained in the hidden layer. Then, an output
layer with the sound adsorption coefficient is obtained. Fig. 5 con-
tains details to understand the features of the processed neural
network. The thickness of the connections between neurons of dif-
ferent levels represents the weight that the neuron assumes in the
formation of the outcome. Furthermore, the lines colors symbolize
the connection sign: black indicates a positive contribution; gray
Fig. 6. Comparison of acoustics properties - simulated versus measured. The curves of th
absorption coefficients of 4 specimens randomly selected from those available were simu
D; b) Sample D wet; c) Sample A dirty; d) Sample A.
indicates a negative contribution (Møller, 1993; Ripley et al.,
2016). Tables 2-3 reports the weights and biases returned by the
numerical model.

Table 4 shows the RMSE, MAE and the Person’s correlation coef-
ficient for the simulation model.

From the analysis of Tables 4 we can see that the numerical
model has a low error and a good correlation between simulated
data and measured data. Now, we assess the sound absorption
coefficient versus frequency for the simulated and measured val-
ues with the neural network model for the sound-absorbing
asphalt. In this way it will be easier to estimate the achievement
of the simulation model.

From the analysis in Fig. 6 we can see that simulated acoustic
properties rest on the measured ones. In some cases, they fit better,
e measured data are shown in blue, the simulated data curves in red. The acoustic
lated. The data used for the simulation was not used for network training. a) Sample
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for example in correspondence of anomalies due to the uncertain-
ties of the measures.

4. Conclusions

Sound-absorbing asphalts are particularly useful for reducing
noise emissions from vehicular traffic. In urban areas they often
represent the only achievable measure given the negligible envi-
ronmental impact. In the present work, the results of an experi-
mental investigation on sound-absorbing asphalts were reported.
First, the characteristics of the sound-absorbing asphalts used were
examined. Then, the measurements of the sound absorption coef-
ficient were reported and examined. Ultimately, the outcomes
returned by the artificial neural networks-based model were com-
pared with the data obtained from the conducted measurements.
The neural network model returned good values for Pearson’s cor-
relation coefficient (0.894), to represent a good adaptation of the
model to the data with the return of forecasts consistent with
those labeled. The usefulness of a model for predicting the acoustic
properties of the material of a road pavement can concern different
aspects. For example, the model can be adopted to simulate the
acoustic behavior of the road pavement in correspondence with
models for which no acoustic measurements have been made.
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