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We show that Casimir-like forces in boundary-driven systems with a bulk diffusivity anomaly are
enhanced by cooperative dynamical effects and can be made locally attractive or repulsive depending
on the boundary densities. Theoretical predictions based on mean-field arguments and the explicit
evaluation of the Casimir force in the fluctuating hydrodynamics framework are supported by Monte
Carlo simulation of a 2D exclusion process with selective kinetic constraints. Consistent with the
entropic interpretation of the Casimir effect we find that local repulsive forces do appear whenever
finite-size transverse density fluctuations exceed their infinite-size value. Our results suggest that
the bulk diffusivity anomaly is a crucial ingredient in the small-scale design of driven soft matter
systems with tunable fluctuation-induced forces.

Thermal equilibrium is inherently stable [1], yet sys-
tems in reciprocal equilibrium are not equivalent under
a microscope: The latent molecular agitation at the bot-
tom can be utterly different. This is best epitomized
by kinetic constraints [2, 3]: local time-reversible restric-
tions on the microscopic dynamical evolution of a sys-
tem. They can slow down and possibly prevent ther-
malization, both in the classical [4] and quantum do-
main [5]. But, paradoxically enough, the non-dissipative
dynamical activity that kinetic constraints generate be-
comes especially relevant in the presence of a dissipative
mechanism, e.g., when a system is brought out of equi-
librium by non-Hamiltonian forces [6, 7]. To emphasize
its importance the term, “frenesy” [8], was introduced
in analogy with the role entropy plays in equilibrium.
A most striking manifestation occurs in driven diffusive
systems where the Casimir-like force arising from long-
range nonequilibrium fluctuations [9] acquires a frenetic
contribution that can change its sign and magnitude [10].
This feature can be relevant in the small scale design of
soft matter systems and devices [11]. However, finding
physical systems in which it can be actually observed,
measured and properly quantified, is hard.

In this paper we make a step forward in this direction
by showing that systems with a diffusivity anomaly when
driven in a nonequilibrium steady state by two boundary
particle reservoirs display enhanced fluctuation-induced
force (FIF), which can be locally attractive or repulsive
depending on the distance from the reservoirs and on
their densities. We first consider a microscopic realiza-
tion of a system with a diffusivity anomaly [12], and show
how to get an accurate estimation of FIF by exploit-
ing only a sufficiently precise knowledge of the steady-
state density profile, no matter the underlying dynamics.
The calculation is an improvement over a mean-field ap-
proach [13], and agrees remarkably well with the direct
measurement of FIF we present here using a recently
devised Monte Carlo algorithm [14]. Finally, we show
that locally repulsive FIF do emerge whenever finite-
size transverse density fluctuations are larger than their

infinite-size limiting value. This is consistent with the en-
tropic interpretation of the Casimir effect [9] and offers a
convenient alternative diagnostic tool possibly useful in
numerics and experiments, e.g., on driven colloids.

We consider a two-dimensional driven diffusive system,
with local particle density ρ(x, t) at position x = (x, y)
and time t, obeying the conservation equation:

∂tρ+ ∂xJ = 0, (1)

where the stochastic particle current J is

J = −D(ρ) ∂xρ+ η(x, t). (2)

Here, D(ρ) is a density-dependent diffusion coefficient
and η(x, t) is a space-time uncorrelated white noise
with zero mean and variance satisfying a fluctuation-
dissipation condition σ(ρ) = 2 ρ2D(ρ)κ(ρ), where κ(ρ) is
the fluid compressibility and we set the prefactor kBT = 1
throughout. The density is subject to the boundary con-
dition ρ(0, y, t) = ρ0 and ρ(L, y, t) = ρ1 for any y, t, (see
Fig. 1 for an illustration of the setup). Within the frame-
work of fluctuating hydrodynamics it has been predicted
in Ref. [10] that the fluctuation-induced pressure Π(x)
between two parallel slabs at distance ` is, to the leading
order in δρ = ρ1 − ρ0, given by:

Π(x) =
(δρ)2

4L`
P ′′|ρ(x) c(x) (3)

where P is the pressure, the prime denotes the deriva-
tive with respect to the particle density, and c(x) is a
nonequilibrium correlation factor:

c(x) =

[( ρ
P ′

)′′
+

(
ρ

P ′
D′

D

)′]
x

L

(
1− x

L

)
. (4)

Equation (4) is counter-intuitive because one would
naively expect that Π depends only upon the thermody-
namic state variables, while it contains a term that ex-
plicitly depends on the diffusion coefficient. This purely
dynamic or “frenetic” contribution is very important be-
cause it can turn FIF from attractive to repulsive, when
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FIG. 1. Example of lattice configuration in which forbidden particle hopping are denoted by red

lattice bonds (full periodic boundary condition is assumed).

1

FIG. 1. The setup considered in Monte Carlo simulations
consists of a square lattice of size ` × L connected to two
reservoirs at x = 0 and x = L, with densities ρ(0, y) = ρ0 and
ρ(L, y) = ρ1 > ρ0, respectively. There are periodic bound-
ary conditions in the direction transverse to the particle flux
J . The bulk dynamics is governed by a selective kinetic con-
straint obeying the detailed balance condition: A particle can
hop to a nearby empty site only if it is not surrounded by two
nearest neighboring particles before and after the move. Red
bonds show forbidden hoppings due to the selective kinetic
constraint on a specific configuration of particles. (Hoppings
forbidden by the pure hard-core exclusion are not shown).

D(ρ) presents a minimum at a certain density. However,
its physical relevance is unclear and was left widely open
in Ref. [10], where FIF predictions were tested only in
a very simple case, namely, the simple symmetric exclu-
sion process, for which D(ρ) = 1. In fact, two stumbling
blocks prevent the direct evaluation of Eqs. (3) and (4):
The equation of state and the bulk diffusion coefficient
are hardly known exactly, even for schematic model sys-
tems.

To get around these difficulties we consider a stochas-
tic lattice gas that can be viewed as a coarse-grained
schematic description of a complex fluid in which molec-
ular motion is hindered by steric effects when the local
environment is neither densely packed nor too loose. Mi-
croscopically, this condition can be implemented on a
square lattice by imposing that a particle can move to a
nearby empty site if and only if the particle does not pos-
sess two particles as nearest neighbors, before and after
the move [12]. This selective kinetic constraint requires
(weakly) cooperative rearrangements of particles only in
an intermediate range of density, while it becomes ineffec-
tive when density is either small or large (and the simple
exclusion process is recovered). In this way the model
becomes endowed with a density minimum in the bulk
diffusion, which we call the (bulk) diffusivity anomaly,
in analogy with the (self) diffusivity anomaly that has
been especially studied in water [15, 16] and other sys-
tems [17, 18].

The selective kinetic constraint obeys the detailed bal-
ance condition and the associated Markov chain is irre-
ducible over the whole configuration space [12]. There-

fore the system thermodynamics is trivial and the equa-
tion of state is:

P (ρ) = − log(1− ρ) , (5)

which significantly simplifies the evaluation of Eq. (4).
It is important to contrast the selective kinetic con-
straint considered here with those used to model glassy
behaviour [2, 3]. The equilibrium dynamics is highly non-
trivial in the latter [19], while in the former it is pretty
unremarkable [12]. However, unexpected features, such
as highly nontrivial convexity-change density profiles, are
brought to life in a nonequilibrium steady state. Fig-
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FIG. 2. Normalized profiles, ρ̃(x) = [ρ(x) − ρ0]/(ρ1 − ρ0), in
the cooperative exclusion process with selective kinetic con-
straints on a square lattice of size L × `. The system edges
at x = 0 and x = L are in contact with a particle reservoir at
density ρ0 and ρ1, respectively. There are periodic boundary
conditions in the direction transverse to the particle current.
For comparison, the density profile for the simple exclusion
process is shown as a dotted straight line.

ure 2 shows the absence of finite size effect in the den-
sity profiles obtained in Monte Carlo simulations for sys-
tem sizes and densities of boundary reservoirs, for which
the FIF dynamical contribution will be assessed later on.
Interestingly, profile convexity can be predicted within
a no-correlation approximation for the diffusion coeffi-
cient [12]:

DNCA(ρ) = [1− 3ρ2(1− ρ)]2 , (6)

which can be easily interpreted as the probability for
particle hopping to a nearby empty site, with the term
3ρ2(1 − ρ) encoding the selective kinetic constraint on
the departure and arrival site under the assumption that
occupation variables are uncorrelated, (the power 2 on
square brackets accounting for the microscopic time-
reversibility, i.e., the detailed balance condition). Al-
though crude, such a mean-field approach provides a
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FIG. 8. Rescaled Casimir force for different pairs of boundary densities.
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FIG. 9. Excess density fluctuations rescaled by the space-time volume ν = ℓ × L × T , (with T

being the length of the dynamical trajectory, i.e., the sample size), ...

5

FIG. 3. Main paper results: Rescaled fluctuation-induced

pressure Π̃(x) = `LΠ(x) in a cooperative exclusion process
with selective kinetic constraint on a square lattice. Dashed
lines are the predictions based on the no-correlation approxi-
mation (NCA) of bulk diffusion. Full lines are the predictions
of fluctuating hydrodynamics theory (FHT) obtained from
estimating density profiles with a fifth- or sixth-order polyno-
mial. Data points refer to the direct measurement of pressure
by Monte Carlo (MC) simulations of 108 MC sweeps (aver-
age over 10 independent realizations): multiple ghost sites
with volume ∆V = 2 `, λ ∈ [0, 1] discretized into 24 values
equally spaced over three contiguous subintervals ([0.01, 0.04],
[0.04, 0.2] and [0.2, 1], with a cut-off λmin = 0.001). Panel pa-
rameters for system sizes and boundary densities as in Fig. 2.
Statistical errors on data points are only visible in the panel
(a) because of the lower signal-to-noise ratio.

useful guide in estimating the density minimum in the
diffusion coefficient (ρ? = 2/3) and, therefore, the re-
gion of parameter space in which repulsive FIF can
be observed [13]. Unfortunately, going beyond the no-
correlation approximation is challenging for non-gradient
systems such as those considered here [20, 21]. For this
reason, we follow an alternative route allowing the eval-
uation of FIF in a generic athermal system, even in the
absence of any information about D(ρ). In fact, by ob-
serving that the dynamical contribution enters Eq. (4)
only through the ratio of the diffusion coefficient and its
derivatives, we exploit the knowledge of the steady state
inverse density profile x(ρ):

x(ρ) = a+ b

∫
D(ρ)dρ , (7)

where the constants a and b are fixed by the boundary
condition x(ρ0) = 0 and x(ρ1) = L, to write:

D′

D
=
x′′

x′
, (8)

and analogous relations for other derivative ratios. This
identity enables us to express the dynamic contribution

to Eq. (4) only in terms of ratios of x(ρ) derivatives:

(
ρ

P ′
D′

D

)′
= (1−2ρ)

x′′

x′
+ρ(1−ρ)

[
x′′′

x′
−
(
x′′

x′

)2
]
. (9)

Therefore, even though the FIF certainly depends on the
dynamics, it does so only through a specific dependence
on the density profile, at least to the order (δρ)2. To
make this short-cut even more concrete, we approximate
the function x(ρ) obtained in a Monte Carlo simulation
with a low-order polynomial. This allows the evaluation
of its derivatives without introducing extra numerical ap-
proximations. The predictions of fluctuating hydrody-
namics, obtained with this procedure through Eq. (9),
are illustrated in Fig. 3, where they are compared with
those obtained with Eq. (6). We see that the FIF sign
is consistently well reproduced, while the FIF magnitude
is underestimated in the mean field approach. This sug-
gest that long-range dynamical fluctuations in the par-
ticle motion correlations are the main source of FIF en-
hancement. To understant the extent to which they are
encoded in the density profile and to better assess the
merit of the above procedure we need, however, an ex-
plicit direct evaluation of FIF.

The task of measuring directly the pressure of a sys-
tems of particles without kinetic energy on a lattice is not
an easy one, especially in nonequilibrium conditions and
in the presence of inhomogeneous density profiles. We ex-
ploit here a recently devised Monte Carlo algorithm [14],
that takes advantage of the Dickman method [22]. We
consider an auxiliary system in which multiple ghost sites
of volume ∆V are added to the original system of vol-
ume V . Ghost sites play the role of pressure probes
and are subject to a repulsive potential of magnitude
Uλ = −kBT lnλ. Simple thermodynamic relations lead
to express the system pressure as:

P = lim
∆V→0

∫ 1

0

〈ρ∆V〉
dλ

λ
. (10)

where 〈ρ∆V〉 is the average fraction of particles in ∆V .
For purely hard-core interactions 〈ρ∆V〉 is exactly deter-
mined in the infinite-size limit:

〈ρ∆V〉 =
λρ

1− ρ+ λρ
, (11)

(as can be checked by direct integration). For inho-
mogeneous systems the spatial dependence of density,
ρ = ρ(x), has to be included and therefore the FIF profile
can be measured as:

ΠMC(x) ≈
∫ 1

0

[
〈ρ∆V(x)〉 − λρ(x)

1− ρ(x) + λρ(x)

]
dλ

λ
, (12)

where it is understood that ∆V � V , and the inte-
gral is performed numerically by discretizing the interval
[0, 1]. Monte Carlo results for the two-dimensional coop-
erative exclusion process with selective kinetic constraint
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are shown in Fig. 3 as data points. We see that in an in-
termediate range of densities of boundary reservoirs FIF
is repulsive and generally enhanced. The agreement with
the fluctuating hydrodynamic predictions obtained with
Eq. (9) is very good and, in some cases [Fig. 3(a)] excel-
lent. A closer look at the peaks of the FIF estimated to
the order (δρ)2 through Eq. (9), and the one measured
through Monte Carlo simulation in Fig. 3, Eq. (12), shows
that their difference increases with δρ. This suggests that
the origin of the observed discrepancies is due, at least in
part, to the-next-to-leading-order contributions to FIF.
In general, however, the nonextensive scaling of Π(x) pre-
dicted in Ref. [10] is confirmed, and the attractive FIF
found in the simple exclusion process [10] is recovered
when the local density is either small or large. It is in-
teresting to notice the exquisite dependence of FIF upon
the profile curvature: If the overall shape is very near
to a straight line, as in Fig. 2a, the resulting FIF turns
out to be globally repulsive rather than attractive, as one
would naively expect from the simple exclusion process.
This means that some caution is required in guessing the
FIF sign from ρ(x).
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FIG. 4. Rescaled excess of transverse density fluctuations

∆̃(x) = 100 ∆(x) (`×L)1/4 for the cooperative exclusion pro-
cess with selective kinetic constraint on a square lattice. The
factor 100 is included for sake of a better comparison with
Fig. 3. Panel parameters as in Fig. 2.

Finally, we mention that an alternative signature of
the rich features displayed by FIF, can be observed in
the spatial dependence of transverse density fluctuations.
Although for large system sizes they appear to be uncor-
related [12], a more careful finite-size analysis shows well
defined deviations from the equilibrium value. This is
appreciated by plotting the excess of transverse density
fluctuations ∆(x):

∆(x) = `
[
〈ρ(x)2〉 − 〈ρ(x)〉2

]
− 〈ρ(x)〉 [1− 〈ρ(x)〉] . (13)

Figure 4 shows the rescaled excess ∆̃(x) =
∆(x)(` L)1/4 100 for system parameters correspond-
ing to Fig. 2 (and Fig. 3). The data collapse suggests
that ∆(x) scales with system size as (` L)−1/4 and, more
importantly, that it does follow a pattern very similar
to that observed for FIF, at corresponding values of
system parameters, in Fig. 3. Similarly, in the simple
symmetric exclusion process ∆(x) is always negative
(and obeys the same finite-size scaling), concurrently
with the universal attractive nature of FIF. This
seems consistent with the entropic interpretation of
the Casimir effect [9]. The enhancement of transverse
fluctuations in the intermediate range of density around
the diffusivity minimum can be intuitively interpreted as
due to the extra cooperative rearrangements required by
the selective kinetic constraint to sustain a steady-state
particle current. Nevertheless, the behavior near the
edge at x = L, in Figs. 4(b) and 4(c), where FIF changes
rather quickly from repulsion to attraction, cannot be
interpreted along this line of thought. We were not
able to come up with a satisfactory explanation of this
behavior and leave this puzzle to a future work.

In summary, we have investigated FIF in driven sys-
tems with a diffusivity anomaly by three independent
methods. The direct Monte Carlo evaluation in a lattice
model shows that FIF is generally enhanced and can be
attractive as well as repulsive, depending on the densi-
ties of reservoirs. Our analysis confirms that a simple
mean-field approach is an effective heuristic tool for pre-
dicting the FIF sign, even though it underestimates the
FIF magnitude. We suggested how to extract more de-
tailed quantitative predictions from the fluctuating hy-
drodynamic results to the order (δρ)2 [10], by taking the
density profile as unique input. This method is general
and can be applied to the numerical and experimental
investigation of other systems, even in the absence of
detailed information on bulk diffusion. It would be inter-
esting, for example, to confirm the above findings in more
realistic nearest-neighbor exclusion models. In fact, since
FIF depends, to the leading order in δρ, upon the density
profile alone (the dependence on microscopic dynamics
being generally mild), and pressure is a non-decreasing
function of particle density (for local equilibrium states),
we expect that Eqs. (3) and (4) will not be significantly
affected, on a qualitative level, by the differences in the
equation of state and bulk diffusion of the various mod-
els one can consider. Therefore our results, should be
rather robust and broadly relevant to athermal system
with a diffusivity anomaly in a quasi-isothermal environ-
ment. In particular, once the boundary densities are such
that the density profile goes through the diffusivity mini-
mum, one should observe a repulsive FIF. In the presence
of a temperature gradient, however, the FIF contribution
arising from the coupling between hydrodynamics modes
will become dominant [23].

In conclusion, the generation of attractive and repul-
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sive forces by means of nonequilibrium dynamical fluc-
tuations at the microscopic scale, is a remarkable exam-
ple of the relevance of the bulk diffusivity anomaly and
might play a role in a variety of cellular and biochemical
(isothermal) processes in which mechanical forces of the
order of pN are involved within the organism [24–26]. It
could also offer opportunities for the design of microme-
chanical soft matter systems and devices [11], and be
experimentally accessible [27, 28].
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