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Abstract
The aim of this paper is to design the package of the R statistical software called “Annuity
Random Interest Rate”, referred hereinafter as AnnuityRIR, in order to calculate the value
of an n-annuity with payments of one unit each when the interest rate is random. To do this,
we have employed different approaches; the two main methodologies treated in this study
consider that all non-central moments of the capitalization factor are known, or contrarily
some of them are unknown. Consequently, five different approaches have been developed
and the practical application of the proposed methods is reflected in this paper by pricing an
annuity with a random risk-free interest rate during the last ten years. The version is available
from CRAN: https://cran.r-project.org/web/packages/AnnuityRIR/index.html.

Keywords Annuity · Random interest rate · Present value · Non-central moment · R
package · AnnuityRIR

1 Introduction

An annuity is a sequence of n payments separated by the same interval of time (Gerber
1997). The appraisal of an investment, or the development of loan repayments schemes,
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pensions, bonds, mortgages, house rents, insurances and other derivatives contracts are just
a few examples of these periodic payments known as annuities (Date et al. 2007). In the
assessment of the present or the final value of an annuity, traditional actuarial theory has
assumed that the interest rate is fixed for all the involved years (Bowers et al. 1997). In
effect, classic literature on pricing annuities concentrates on using a deterministic discount
factor (Kellison 1991). However, this approach is not valid for those operations embedded in
uncertain environments, given that the interest rate is neither constant nor known (Burnecki
et al. 2003). Therefore, it seems reasonable to let interest rates used in future valuations , vary
as a random variable over time (Kellison 1991). As indicated by Duffee (2002), “the standard
class of affine models produces poor forecasts of future Treasury yields, better forecasts are
generated by assuming that yields follow random walks”.

Nevertheless, in this paper, we will not derive the interest rate as a stochastic process over
time butwewill use the distribution function of the randomvariable obtained starting from the
current values exhibited by the interest rate. In this way, the employment of interest rates as a
part of the stochastic discount factors allows a more accurate pricing of any operation (Date
et al. 2007; Dufresne 2007). Our proposal is that the calculation of the present and the final
value of an annuity with random interest rate must be based on the real data corresponding
to the EURIBOR at the present moment. Starting from these empirical , discrete values, we
can determine easily the non-central moments of all (positive and negative) orders. But, if
the data fit a well-known statistical distribution, we can take advantage of the accuracy of
the distribution and then to determine the moments by using all the powerful information
contained in these distributions.

In general, the assessment of operations in which some parameters are random variables
requires a treatment through the formulation of potential scenarios, which are subsequently
reduced to one by statistical treatment (Cruz Rambaud and Valls Martínez 2002). In the
context of annuities assessment, the interest rate has a great relevance because even small
changes in the ratemaycausemajor changes in the total annuity value.Thus, the determination
of the value of the interest rate should be carried out as accurately as possible. In this respect,
many experts have discussed on the calculation of annuities with random rates of interest.
In particular, Liu et al. (2011) study the present value of increasing, decreasing and paused
rainbow immediate annuities with random interest rate. Specifically, we highlight Zaks’
(2001) contribution, complemented by Burnecki et al. (2003) who modifies some Zaks’
formulas. Both studies analyze deeply the formulation of annuities with random interest
rates. As indicated by Baker (2001), in these studies, the expected value of a payment of $1
at the end of year k is represented as:

E(1 + ik) = 1 + j := μ, (1)

being ik the rate of interest for year k = 1, 2, . . . , n. So,

E[(1 + ik)
2] = E(1 + 2ik + i2k ) = 1 + 2 j + E(i2k ).

Taking into account that:

var(i2k ) := s2 = E(i2k ) − [E(ik)]2 = E(i2k ) − j2,

it can be deduced that:

E(i2k ) = s2 + j2.

Consequently,

E[(1 + ik)
2] = 1 + 2 j + j2 + s2 = (1 + j)2 + s2,
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being where the variance of the amount accumulated during the year k may be determined
as

var(1 + ik) = (1 + j)2 + s2 − μ2. (2)

Zaks (2001) and Burnecki et al. (2003) focus on the mean and the variance of the final
value of an n-year unitary annuity-due, (Cn ), assuming that the interest rates i1, i2, . . . , in
are independent, and have the same mean, 1+ j , and variance, s2. In this case, the following
identity

E(Cn) = s̈n j (3)

holds (Zaks 2001, Theorem 3.1).
Unfortunately, the assumption of independent interest rates is very unrealistic whereby we

are going to approach raise the problem from a different point of view. In effect, the package
“Annuity Random Interest Rate”, hereinafter referred as AnnuityRIR (Cruz Rambaud
et al. 2017b), provides a tool which reflects the different methodologies to approximate the
expression of the present and the final value of an annuity when the interest rate is random. In
order to do it, we will include the approaches showed in solutions provided by Cruz Rambaud
et al. (2015), where it is assumed that all non-central moments of the capitalization factor
are known, and Cruz Rambaud et al. (2017a), where it is assumed that some non-central
moments of the capitalization factor are unknown. Moreover, in this paper, we will propose
some new different treatments of annuities with random interest rate by using R statistical
software. Obviously, although unitary annuities are analyzed, the formulas proposed may be
applied to calculate the value of other annuities with constant amounts where the interest rate
is a random variable. In this paper, the different methodologies to approximate the present
value of an annuity have been developed under three main categories:

– First, it is assumed that all non-central moments of the capitalization factor are known.
Some previous research focuses on obtaining themoment generating function (De Schep-
per et al. 1992) and somemoment values (Zisheng andYin 2003). Specifically, in order to
calculate the value of these annuities, we propose two different expressions by assuming
that the random interest rate is either a discrete or continuous variable.

– On the other hand, it is assumed that some non-central moments of negative order are
known. In this case, the formula of the mathematical expectation of the ratio of two
variables derived by Mood et al. (1974) has been employed to estimate the expected
value of a certain annuity.

– Finally, if only some positive-order moments are known, the formula by Mood et al. and
the cubic discounting, as a more accurate procedure than quadratic discounting, have
been employed to calculate the expected present value of an annuity.

This paper is organized as follows. Section2 introduces the nomenclature and clarifies
what of the five aforementioned methodologies have been used to calculate the mathematical
expression of the present and final expected value of an n-payment unitary annuity, made
at the end/beginning of every year (annuity-immediate and annuity-due, respectively). In
Sect. 2.1, the expected value of the present value is calculated by considering all non-central
moments of negative orders of a discrete (2.1.1) or a continuous random variable (2.1.2).
On the other hand, in Sect. 2.2, these expected values are calculated when some non-central
moments of negative orders are unknown. In Sect. 2.3, we are going to consider onlymoments
of positive orders in order to apply the formula by Mood et al. (1974) (2.3.1) or the cubic
discounting (2.3.2) as amore accurate procedure than quadratic discounting. Finally, Sect. 2.4
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Fig. 1 A summary of presented methodologies. Source: own elaboration

is devoted to determine the variance of the present value approximation. Finally, Section 3
summarizes and concludes.

Despite last paragraph, the structure of this paper is more detailed in Chart Fig. 1.

2 Background

In this paper, we will consider the interest rate as a random variable which will be represented
as X . Therefore, the capitalization factor, 1 + i , is also a random variable represented as U .
Obviously, it is verified that U = 1 + X , so the relationship between means and standard
deviations of both variables is:

μU = 1 + μX and σU = σX .

As a result, if X is defined in an interval [a, b], U will be in the interval [1 + a, 1 + b].
Henceforth, when the mean and standard deviation are mentioned wewill refer to the random
variable U , unless otherwise specified.

Table1 exhibits both the present and the future value (PV and FV, respectively) of an
n-payment annuity, with payments of 1 unit each made at the end/beginning of every year
(annuity-immediate/annuity-due), valued at the rate X = U − 1, approximated by using
several methodologies (see Cruz Rambaud et al. 2015; Cruz Rambaud et al. 2017a).

Specifically, the final value of immediate and due annuities can be calculated by the
folowing methodologies: Mood et al., quadratic discounting, fitted arctan function, normal
distribution and beta distribution. However, the present value of immediate and due annuities
only have been calculated by themethodologies due toMood et al., quadratic discounting and
fitted arctan function. In this paper, we will introduce some new methodologies to calculate
the present value of an annuity (immediate and due).
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Table 1 Updating the status of the research

Methodology FV immediate FV due PV immediate PVdue

Mood et al. � � � �
Quadratic discounting � � � �
arctan function � � � �
Normal distribution � � ××× ×××
Beta distribution � � ××× ×××

2.1 Considering only non-central moments of negative orders

2.1.1 Calculation using the discrete random variable

In this case, the present value of an annuity-immediate is the following random variable:

an U−1 = U−1 +U−2 + · · · +U−n .

Thus, its expected value, which can be computed with the function
PV_post_exact(data, years) (Cruz Rambaud et al. 2017b), is:

E(an U−1) = E(U−1) + E(U−2) + · · · + E(U−n) = μ−1 + μ−2 + · · · + μ−n, (4)

where μ−r = E(U−r ) is the moment of order −r with respect to the origin of the ran-
dom variableU ; it can be computed with the function moment(x, order, central,
absolute, na.rm).

Observe that, as previously indicated, the non-central moments and so the present value
are determined by the information on interest rates at present moment which conditions
all subsequent formulation. Therefore, in this case, we have to calculate the negative-order
moments of the interest rates distribution by applying the definition to the real data, that is
to say, to the distribution of probability obtained from the information on real interest rates.

It is well known that the moment of this discrete random variable adopts has the following
expression:

μ−r =
k∑

i=1

piu
−r
i , (5)

where pi is the probability that the random variable takes the value ui . Finally, the expected
present value of an annuity-due (PV_pre_exact(data,years)) is :

E(än U−1) = 1 + E(U−1) + · · · + E(U−(n−1)) = 1 + μ−1 + · · · + μ−(n−1). (6)

Example 1 Let us consider the annual values of the EURIBOR offered by the main twenty
banking institutions of the European Union, on July 31, 2017. By considering a spread of
2%, the interest rate is (see Table2):

X = EURIBOR + 2%.

In this case, the expected present value of an 10-payment unitary annuity-immediate,
valued at the rate X is, by applying Eq. (4),

E(a10 X ) = 9.054695,
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Table 2 Data values of EURIBOR on July 31, 2017

Bank EURIBOR (%) Interest rates (%)

BNP-Paribas − 0.23 1.77

Banca Monte dei Paschi di Siena − 0.15 1.85

Banco Bilbao Vizcaya Argentaria − 0.15 1.85

Banco Santander − 0.16 1.84

Banque et Caisse d’Épargne de l’État − 0.16 1.84

Barclays Bank − 0.17 1.83

Belfius − 0.15 1.85

Cecabank − 0.15 1.85

Caixa Geral de Depósitos − 0.12 1.88

CaixaBank S.A. − 0.15 1.85

Crédit Agricole S.A. − 0.20 1.80

DZ Bank − 0.16 1.84

Deutsche Bank − 0.09 1.91

HSBC France − 0.15 1.85

ING Bank − 0.16 1.84

Intesa Sanpaolo − 0.15 1.85

National Bank of Greece − 0.14 1.86

Natixis − 0.15 1.85

Société Générale − 0.12 1.88

UniCredit − 0.14 1.86

whilst the present value of the corresponding annuity-due is, by applying Eq. (6),

E(ä10 X ) = 9.221977.

The results can be easily obtained with the examples of the two functions
PV_post_exact(data,10) and PV_pre_exact(data,10) which can be found
in the manual of the R package “AnnuityRIR ”.

2.1.2 Calculation using a continuous random variable

An alternative way to approximate the present value of an annuity is to fit the real interest
rates to a continuous distribution function and then to use all the information implicit in the
fitted adjusted distribution to calculate the negative-order moments. It is well known that, in
the continuous case, the expression of the moment of order −r is:

μ−r =
∫ umax

umin

u−r f (u)du, (7)

for all values of r , being f (u) the density function of the random variable U .

Example 2 Using the function triangular_parameters_U(data) (Cruz Rambaud
et al. 2017b), the data of the interest rates shown in Table2 can be fitted to a triangular
distribution of parameters a = 0.018182, b = 0.018856 and c = 0.018442. There-
fore, by applying Eq. (7) (function triangular_moments_dis_U(data,order)),
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the expected present value of an a 10-payment unitary annuity-immediate, valued at the rate
X and computed with the function PV_post_triang_dis(data,10) is

E(a10 X ) = 9.053807,

whilst the present value of the corresponding annuity-due computed with the function
PV_pre_triang_dis(data,10) is

E(ä10 X ) = 9.221242.

Alternatively and like the positive-order moments, we can use another formula to find
the negative-order moments of a continuous random variable, according to the generating
moments function MU (t) (Meng 2005):

μ−r = E(U−r ) = 1

�(r)

∫ ∞

0
tr−1MU (−t)dt .

Example 3 It can be shown that the interest rates of Table2 fit a normal distribution
of mean μ = 0.01848 and standard deviation σ = 0.00028 (function
norm_test_jb(data)). The problem exhibited by the normal distribution is that all
its negative-order moments are divergent. Alternatively, we can fit the data to a beta distribu-
tion (function beta_parameters(data)) but the calculation of these moments involves
solving the convergence of an alternate series.

We can also use the triangular distribution of Example2, in which the moments of order
−1 and −2 are infinite but the rest of negative-order moments (r > 2) can be determined
with the function triangular_moments_3_U(data,order). In effect, the moment
generating function of the triangular distribution of parameters a (pessimistic), b (optimistic)
and c (most likely) is the following:

g(t) = 2
(b − c)eat − (b − a)ect + (c − a)ebt

(b − a)(c − a)(b − c)t2
.

In this case, taking into account that (k > 0):
∫ ∞

0
t z−1e−ktdt = 1

kz
�(z),

it can be easily shown that (r > 2):

μ−r = 2

(r − 1)(r − 2)(b − a)(c − a)(b − c)

(
b − c

ar−2 − b − a

cr−2 + c − a

br−2

)
.

In this case, the expected present value of a 10-payment unitary annuity-immediate, valued
at the rate X and computedwith the functiondenotedbyPV_post_triang_3(data,10)
is

E(a10 X ) = 9.053807,

whilst the present value of the corresponding annuity-due computed with the function
PV_pre_triang_3(data,10) is

E(ä10 X ) = 9.221242.

Both these results can be easily reproduced with the examples which are displayed in the
manual of the package “AnnuityRIR” (Cruz Rambaud et al. 2017b).
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2.2 Considering some non-central moments of negative orders

In this Subsection, we are going to approximate the expression of the present expected value
of an n-payment annuity, with payments of 1 unit eachmade at the end of every year (annuity-
immediate), valued at the rate X , by using the formula of the mathematical expectation of
the ratio of two random variables X and Y derived by Mood et al. (1974) and introduced as
well by Rice (1995):

E

(
X

Y

)
≈ E(X)

E(Y )
− cov(X , Y )

[E(Y )]2 + E(X)

[E(Y )]3 var(Y ). (8)

Thus, we can obtain the present value as follows:

E(an U−1) = E

(
1 −U−n

U − 1

)
.

Thus, taking into account that (Fisz 1963):

cov(1 −U−n,U − 1) = −μ−(n−1) + μ−nμ

and that

var(U − 1) = μ2 − μ2,

we can write

E(an U−1) = 1 − μ−n

μ − 1
− μ−(n−1) − μ−nμ

(μ − 1)2
+ 1 − μ−n

(μ − 1)3
(μ2 − μ2). (9)

Analogously, the present expected value of an n-payment annuity, with payments of 1
unit each made at the beginning of every year (annuity-due), valued at the rate X , is:

E(än U−1) = E

(
U −U−(n−1)

U − 1

)
.

Thus, taking into account that:

cov(U −U−(n−1),U − 1) = μ2 − μ2 − μ−(n−2) + μ−(n−1)μ

and that

var(U − 1) = μ2 − μ2,

we can write

E(än U−1) = μ − μ−(n−1)

μ − 1
− μ2 − μ2 − μ−(n−2) + μ−(n−1)μ

(μ − 1)2
+ μ − μ−(n−1)

(μ − 1)3
(μ2 − μ2).

(10)

Example 4 By considering the data of the interest rates shown in Table2 and by applying
Eq. (9) with the function PV_post_mood_nm(data,10), the expected present value of
a 10-payment unitary annuity-immediate, valued at the rate X , is

E(a10 X ) = 9.058331,
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whilst the present value of the corresponding annuity-due, computed with the function
PV_pre_mood_nm(data,10) (Eq. (10)), is

E(ä10 X ) = 9.221975.

2.3 Considering only non-central moments of positive orders

2.3.1 Calculation using the Mood et al. formula

In this Subsection, we are going to obtain the expression of the present expected value of an
n-payment annuity, with payments of 1 unit each made at the end of every year (annuity-
immediate), valued at the rate X , by using now the following expression:

E(an U−1) = E

(
Un − 1

Un+1 −Un

)
,

which only involves some positive-order moments. As

var(Un+1 −Un) = E(U 2n+2 − 2U 2n+1 +U 2n) − [
E(Un+1) − E(Un)

]2

= μ2n+2 − 2μ2n+1 + μ2n − μ2
n+1 + 2μnμn+1 − μ2

n

and

cov(Un − 1,Un+1 −Un) = cov(Un,Un+1) − cov(Un,Un)

− cov(1,Un+1) + cov(1,Un)

= μ2n+1 − μnμn+1 − μ2n + μ2
n,

we can write

E(an U−1) ≈ μn − 1

μn+1 − μn
− μ2n+1 − μnμn+1 − μ2n + μ2

n

(μn+1 − μn)2

+ (μn − 1)(μ2n+2 − 2μ2n+1 + μ2n − μ2
n+1 + 2μnμn+1 − μ2

n)

(μn+1 − μn)3
.

Some algebraic calculation shows that:

E(an U−1) ≈ μn(μn+1 − μn)
2 + (μ2n − μ2n+1)(μn+1 − 1) + (μ2n+2 − μ2n+1)(μn − 1)

(μn+1 − μn)3
.

(11)

Analogously, the present expected value of an n-payment annuity, with payments of 1
unit each made at the beginning of every year (annuity-due), valued at the rate X , but can be
estimated by using the following expression:

E(än U−1) = E

(
Un − 1

Un −Un−1

)
.

In this case,

var(Un −Un−1) = μ2n − 2μ2n−1 + μ2n−2 − μ2
n + 2μn−1μn − μ2

n−1

and

cov(Un − 1,Un −Un−1) = μ2n − μ2
n − μ2n−1 + μn−1μn .
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Therefore,

E(än U−1) ≈ μn − 1

μn − μn−1
− μ2n − μ2

n − μ2n−1 + μn−1μn

(μn − μn−1)2

+ (μn − 1)(μ2n − 2μ2n−1 + μ2n−2 − μ2
n + 2μn−1μn − μ2

n−1)

(μn − μn−1)3
.

Some algebraic calculation shows that:

E(an U−1) ≈ μn(μn − μn−1)
2 + (μ2n − μ2n−1)(μn−1 − 1) + (μ2n−2 − μ2n−1)(μn − 1)

(μn − μn−1)3
.

(12)

Example 5 By considering the data of the interest rates shown in Table2 and by applying
Eq. (11) with the function PV_post_mood_pm(data,10), the expected present value
of an 10-payment unitary annuity-immediate, valued at the rate X is

E(a10 X ) = 9.054692,

whilst the present value of the corresponding annuity-due, computed with the function
PV_pre_mood_pm(data,10) (Eq. (12)) is

E(ä10 X ) = 9.221975.

The manual of “AnnuityRIR” (Cruz Rambaud et al. 2017b) allows us to reproduce
these results using the examples number 3 of the aforementioned functions.

2.3.2 Calculation using the cubic approximation

In this Subsection, we are going to introduce a new different procedure consisting of the
expansion of each power U−r = (1 + X)−r by using McLaurin’s formula:

U−r = (1 + X)−r ≈ 1 − r X + r2 + r

2
X2 − r3 + 3r2 + 2r

6
X3.

Therefore,

an U−1 ≈
(
1 − X

12 + 1

2
X2 − 13 + 3 · 12 + 2 · t

6
X3

)

+ · · · +
(
1 − nX

n2 + n

2
X2 − n3 + 3n2 + 2n

6
X3

)
.

Simple algebra shows that:

an U−1 ≈ n − n(n + 1)

2
X + n(n + 1)

4

(
1 + 2n + 1

3

)
X2

−n(n + 1)

6

[
1 + 2n + 1

2
+ n(n + 1)

4

]
X3.

Therefore,

E(an U−1) ≈ n − n(n + 1)

2
E(X) + n(n + 1)

4

(
1 + 2n + 1

3

)
E(X2)
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Table 3 Summary of the obtained values of the present value

Methodology Annuity-immediate Annuity-due

Discrete random variable 9.054695 9.221977

Continuous random variable 9.053807 9.221242

Some negative-order moments 9.058331 9.221975

Only positive-order moments 9.054692 9.221975

Cubic approximation 9.054472 9.221833

−n(n + 1)

6

[
1 + 2n + 1

2
+ n(n + 1)

4

]
E(X3). (13)

Analogously, it can be shown that

E(än U−1) ≈ n − (n − 1)n

2
E(X) + (n − 1)n

4

(
1 + 2n − 1

3

)
E(X2)

− (n − 1)n

6

[
1 + 2n − 1

2
+ (n − 1)n

4

]
E(X3). (14)

This approximation exhibits an inconvenience: the expression of the present value is based
on the moments of the three first orders and this can distort the result, more specially, when
the number of summands is high. Moreover, observe that now the moments involved in (14)
correspond to the random variable X and not U .

Example 6 Byconsidering again the data of the interest rates shown inTable2 and by applying
Eq. (13), the expected present value of a 10-payment unitary annuity-immediate, valued at
the rate X is

E(a10 X ) = 9.054472,

whilst the present value of the corresponding annuity-due (Eq. (14)) is

E(ä10 X ) = 9.221833.

These results can be checked with the functions PV_post_cubic(data,10) and
PV_pre_cubic(data,10), respectively.

Summarizing, Table3 shows the results provided by the five used methods. Observe that
all them give very similar results in calculating the present value of an 10-payment annuity,
with payments of 1 unit each valued at the rate X = U − 1 (with a random interest rate).

2.4 An approximation to the variance

Finally, taking into account that the expression of the present value obtained by Eq. (1) is an
average value, it is necessary to obtain the standard deviation in order to know the possible
error in which we have incurred. It is well known that the general expression of the variance
of the sum of n random variables Xk (independent or not)

Y =
n∑

k=1

Xk
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is the following:

var(Y ) =
n∑

k=1

var(Xk) + 2
∑

1≤r<s≤n

cov(Xr , Xs). (15)

2.4.1 Calculation using the discrete random variable

In the particular case in which Y = ∑n
k=1 X

k , taking into account that var(Xk) = μ2k − μ2
k

and that cov(Xr , Xs) = μr+s − μrμs , where μk is the non-central moment of order k, one
has (n ≤ 2):

var(Y ) =
n∑

k=1

μ2k + 2
∑

1≤r<s≤n

μr+s −
(

n∑

k=1

μk

)2

. (16)

This formula can be shown by recurrence on n. In effect, if n = 2,

var(Y ) = var(X) + var(X2) + 2cov(X , X2). (17)

Writing the variances and the covariance according to its corresponding non-central
moments,

var(Y ) = μ2 − μ2
1 + μ4 − μ2

2 + 2μ3 − 2μ1μ2

=
2∑

k=1

μ2k + 2
∑

1≤r<s≤2

μr+s −
(

2∑

k=1

μk

)2

.

Let us suppose that formula (16) holds for n − 1 and let us demonstrate this expression
for n. In this case, by using expression (17), one has:

var(Y ) = var(X + · · · + Xn−1) + var(Xn) + 2cov(X + · · · + Xn−1, Xn).

Taking into account the recurrence hypothesis and that cov(W + Z , T ) = cov(W , T ) +
cov(Z , T ), one has:

var(Y ) =
n−1∑

k=1

μ2k + 2
∑

1≤r<s≤n−1

μr+s −
(
n−1∑

k=1

μk

)2

+ μ2n − μ2
n

+2(μn+1 + μn+2 + · · · + μ2n−1)

−2(μ1μn + μ2μn + · · · + μn−1μn).

Observe that μ2
n and the last summand in the second side complete the square of the

sum. Moreover, the penultimate summand completes the second sum. Therefore, this leads
to expression (15).

The function variance_drv(data,years) provides the calculation of the variance
according to this method.

2.4.2 Calculation using the Mood et al. formula

In this Subsection, wewill use the formula of the variance of the ratio of two random variables
X and Y derived by Mood et al. (1974):

var

(
X

Y

)
≈

[
E(X)

E(Y )

]2 [
var(X)

[E(X)]2 + var(Y )

[E(Y )]2 − 2cov(X , Y )

E(X)E(Y )

]
.
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A. Considering some non-central moments of negative orders
In this case, the present value of the annuity-immediate is:

an U−1 = 1 −U−n

U − 1
.

The detailed calculations are the following ones (variance_post_mood_nm(data,
years)):

1. E(1 −U−n) = 1 − μ−n .
2. E(U − 1) = μ − 1.
3. var(1 −U−n) = var(Un) = μ−2n − μ2−n .
4. var(U − 1) = var(U ) = μ2 − μ2.
5. cov(1 −U−n,U − 1) = −cov(U−n,U ) = −μ−(n−1) + μ−nμ.

On the other hand, the present value of the annuity-due (variance_pre_mood_nm
(data,years)) is:

än U−1 = U −U−(n−1)

U − 1
.

The detailed calculations are the following ones:

1. E(U −U−(n−1)) = μ − μ−(n−1).
2. E(U − 1) = μ − 1.
3. var(U −U−(n−1)) = μ2 − 2μ−(n−2) + μ−2(n−1) − μ2 + 2μ−(n−1)μ − μ2

−(n−1).

4. var(U − 1) = var(U ) = μ2 − μ2.
5. cov(U − U−(n−1),U − 1) = cov(U ,U ) − cov(U−(n−1),U ) = μ2 − μ2 − μ−(n−2) +

μ−(n−1)μ.

B. Considering only non-central moments of positive orders
In this case, the present value of the annuity-immediate is:

an U−1 = Un − 1

Un+1 −Un
.

The detailed calculations are the following ones (variance_post_mood_pm(data,
years)):

1. E(Un − 1) = μn − 1.
2. E(Un+1 −Un) = μn+1 − μn .
3. var(Un − 1) = var(Un) = μ2n − μ2

n .
4. var(Un+1 −Un) = μ2n+2 − 2μ2n+1 + μ2n − (μn+1 − μn)

2.
5. cov(Un −1,Un+1−Un) = cov(Un,Un+1)−cov(Un,Un) = μ2n+1−μnμn+1−μ2n +

μ2
n .

On the other hand, the present value of the annuity-due (variance_pre_mood_pm
(data,years)) is:

än U−1 = Un − 1

Un −Un−1 .

The detailed calculations are the following ones:

1. E(Un − 1) = μn − 1.
2. E(Un −Un−1) = μn − μn−1.
3. var(Un − 1) = var(Un) = μ2n − μ2

n .
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4. var(Un −Un−1) = μ2n − 2μ2n−1 + μ2n−2 − (μn − μn−1)
2.

5. cov(Un − 1,Un − Un−1) = cov(Un,Un) − cov(Un,Un−1) = μ2n − μ2
n − μ2n−1 +

μnμn−1.

3 Conclusion

In the present or final value of an annuity, slight variations of the employed interest rate may
involve high variations in the results. Additionally, the estimation of the present and final
value of those annuities embedded in uncertain environments, where the employed interest
rate is neither constant nor known, entails a high level of difficulty. In this way, this paper
takes advantage of the accuracy and the powerful information obtained from the statistical
distributions fitted to empirical information on interest rates.

This paper introduces and illustrates some new approaches to estimate the present value
of an n-payment unitary annuity with random interest rate. A package of the R statistical
software, called “Annuity Random Interest Rate” (hereinafter, AnnuityRIR), has been
elaborated as a complementary tool to facilitate the calculation and implementation of these
new methodologies.

The approaches proposals presented in this paper have been developed by using different
and alternative procedures mainly based on the knowledge of some non-central moments
of the random interest rate. More specifically, it should be highlighted the calculation of
the expected present value of an annuity starting from the non-central moments of negative
order of the random variable (discrete or continuous) describing the interest rate. In effect,
negative-order moments have been scarcely investigated and mainly from a theoretical point
of view. It is noteworthy to highlight that all involved moments have been calculated by
taking the present moment as a benchmark, that is to say, instant 0 has been the reference
point for all estimates. This is logical because the present and final values of an annuity
are referenced to the origin of such annuity. This paper presents a practical application to
calculate the expected present value of an annuity, being, to the extent of our knowledge, one
of the few practical applications of negative-order moments.

On the other hand, the expected values have been calculated by using the formula by
Mood et al. when some non-central moments of negative order are given. Moreover, this
paper introduces the so-called cubic discounting, as a proceduremore accurate than quadratic
discounting,which have been employed to calculate the present value of an annuitywhen only
positive moments are given. The non-central moments of all (positive and negative) orders
have been derived from the real data exhibited by the EURIBOR at the present moment.
If possible, the data have been fitted to a well-known statistical distribution, thus taking
advantage of the its accuracy of the distribution. This way we will be able to use all the
powerful information contained in such distribution in order to calculate its negative-order
moments.

Finally, this paper has provided the expressions of the variance of the present value by
considering all the presented approaches. As known, this parameter is completely necessary
to obtain the (absolute and relative) error of the approximate values obtained in this paper.
Clearly, this work is not without limitations; indeed, other distributions may be considered
and other non-parametric approaches could be used in future studies.
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Appendix

All calculations presented in this paper have been made by using the functions included
in the package “AnnuityRIR” and summarized in the following table with their short
descriptions.
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Functions Description

beta_parameters Compute the parameters of the beta distribution and plot normalized data
FV_post_artan Compute the final expected value of an n-payment annuity, with payments

of 1 unit each made at the end of every year (annuity-immediate), valued
at the rate X , using the tetraparametric function approach

FV_post_beta_kmom Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the end of every year (annuity-immediate), valued
at the rate X , using the estimated moments of the beta distribution

FV_post_mood Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the end of every year (annuity-immediate), valued
at the rate X , using the method of Mood et al.

FV_post_norm_kmom Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the end of every year (annuity-immediate), valued
at the rate X , using the estimated moments of the normal distribution

FV_post_quad Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the end of every year (annuity-immediate), valued
at the rate X , using the quadratic discount method

FV_pre_artan Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the beginning of every year (annuity-due), valued
at the rate X , using the tetraparametric function approach

FV_pre_beta_kmom Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the beginning of every year (annuity-due), valued
at the rate X , using the estimated moments of the beta distribution

FV_pre_mood Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the beginning of every year (annuity-due), valued
at the rate X , using the method of Mood et al.

FV_pre_norm_kmom Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the beginning of every year (annuity-due), valued
at the rate X , using the estimated moments of the normal distribution

FV_pre_quad Compute the final expected value of an n-payment annuity, with payments
of 1 unit each made at the beginning of every year (annuity-due), valued
at the rate X , using the quadratic discount method

moment Compute the exact moments of a distribution
norm_mom Fit the data to a normal curve and compute the moments of the normal

distribution according to the definition (as integral)
norm_test_jb Compute the Jarque-Bera test for checking the assumption of normality of

the interest rates distribution and returns the parameters of the fitted
normal distribution

plot_FVs_post Plot the final expected values of an n-payment annuity, with payments of 1
unit each made at the end of every year (annuity-immediate), valued at
the rate X , using different approaches
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Functions Description

plot_FVs_pre Plot the final expected values of an n-payment annuity, with
payments of 1 unit each made at the beginning of every year
(annuity-due), valued at the rate X , using different approaches

plot_FV_post_beta_kmom Plot the final expected value of an n-payment annuity, with
payments of 1 unit each made at the end of every year
(annuity-immediate), valued at the rate X , using the estimated
moments of the beta distribution

plot_FV_post_norm_kmom Plot the final expected value of an n-payment annuity, with
payments of 1 unit each made at the end of every year
(annuity-immediate), valued at the rate X , using the estimated
moments of the normal distribution

plot_FV_pre_beta_kmom Plot the final expected value of an n-payment annuity, with
payments of 1 unit each made at the beginning of every year
(annuity-due), valued at the rate X , using the estimated moments
of the beta distribution

plot_FV_pre_norm_kmom Plot the final expected value of an n-payment annuity, with
payments of 1 unit each made at the beginning of every year
(annuity-due), valued at the rate X , using the estimated moments
of the normal distribution

plot_PVs_post Plot the present expected values of an n-payment annuity, with
payments of 1 unit each made at the end of every year
(annuity-immediate), valued at the rate X , using different
approaches

plot_PVs_pre Plot the present expected values of an n-payment annuity, with
payments of 1 unit each made at the beginning of every year
(annuity-due), valued at the rate X , using different approaches

PV_post_artan Compute present expected value of an n-payment annuity, with
payments of 1 unit each, made at the end of every year
(annuity-immediate), valued at the rate X , using the
tetraparametric function approach

PV_post_cubic Compute the present expected value of an n-payment annuity, with
payments of 1 unit each made at the end of every year
(annuity-due), valued at the rate X , using the cubic discount
method

PV_post_exact Computes the present value of an annuity-immediate considering
only non-central moments of negative orders

PV_post_mood_nm Compute the present expected value of an n-payment annuity, with
payments of 1 unit each made at the end of every year
(annuity-immediate), valued at the rate X , with the method of
Mood et al. using some negative moments of the distribution
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Functions Description

PV_post_mood_pm Compute the present expected value of an n-payment annuity, with payments
of 1 unit each made at the end of every year (annuity-immediate), valued at
the rate X , with the method of Mood et al. using some positive moments of
the distribution

PV_post_triang_3 Compute the present value of an annuity-immediate considering only
non-central moments of negative orders. The calculation is performed by
using the function triangular_moments_3 for the moments greater than −2
(in absolute value)

PV_post_triang_dis Compute the present value of an annuity-immediate considering only
non-central moments of negative orders. The calculation is performed by
using the moments of the fitted triangular distribution of the random variable
“capitalization factor” U (which are obtained from the definition of negative
moment of a continuous random variable)

PV_pre_artan Compute the present expected value of an n-payment annuity, with payments
of 1 unit each, made at the beginning of every year (annuity-due), valued at
the rate X , using the tetraparametric function approach

PV_pre_cubic Compute the present expected value of an n-payment annuity, with payments
of 1 unit each made at the beginning of every year (annuity-due), valued at
the rate X , using the cubic discount method

Functions Description

PV_pre_exact Compute the present value of an annuity-due considering only
non-central moments of negative orders

PV_pre_mood_nm Compute the present expected value of an n-payment annuity, with
payments of 1 unit each made at the beginning of every year
(annuity-due), valued at the rate X , with the method of Mood et
al. using some negative moments of the distribution

PV_pre_mood_pm Compute the present expected value of an n-payment annuity, with
payments of 1 unit each made at the beginning of every year
(annuity-due), valued at the rate X , with the method of Mood et
al. using some positive moments of the distribution

PV_pre_triang_3 Compute the present value of an annuity-due considering only
non-central moments of negative orders. The calculation is
performed by using the function triangular_moments_3 for the
moments greater than −2 (in absolute value)

PV_pre_triang_dis Compute the present value of an annuity-due considering only
non-central moments of negative orders. The calculation is
performed by using the moments of the fitted triangular
distribution of the random variable “capitalization factor” U
(which are obtained from the definition of negative moment of a
continuous random variable)

triangular_moments_3 Compute the negatives moments (different from orders 1 and 2) of
the fitted triangular distribution of the random variable X

triangular_moments_3_U Compute the negatives moments (different from orders 1 and 2) of
the fitted triangular distribution of the random variable
“capitalization factor” U
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Functions Description

triangular_moments_dis Compute the negative moments of the fitted triangular distribution
of the random variable X according to the definition (as integral)

triangular_moments_dis_U Compute the negative moments of the fitted triangular distribution
of the random variable “capitalization factor” U according to the
definition (as integral)

triangular_parameters Compute the parameters and plot the fitted triangular distribution of
the random variable X

triangular_parameters_U Return the parameters of the fitted triangular distribution of the
random variable “capitalization factor” U

variance_drv Compute the variance of the present value of an annuity using
“discrete random variable” approach

variance_post_mood_nm Compute the variance of the present value of an annuity-immediate
using the Mood et al. approximation and some non-central
moments of negative order

variance_post_mood_pm Compute the variance of the present value of an annuity-immediate
using the Mood et al. approximation and some non-central
moments of positive order

variance_pre_mood_nm Compute the variance of the present value of an annuity-due using
the Mood et al. approximation and some non-central moments of
negative order

variance_pre_mood_pm Compute the variance of the present value of an annuity-due using
the Mood et al. approximation and some non-central moments of
positive order
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