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Conventional condition monitoring involves integration of additional sensors for fault detection and 

diagnosis. They are costly and sensitive to faults themselves. To overcome these issues and data scarcity, 

simulation model data is used as a source of training data for Artificial Intelligence based condition 

monitoring of the axial piston pump. The sensitivity of the simulation model is improved by performing data 

augmentation. The classification of faults for condition monitoring in the model is performed by developing 

a classifier utilizing machine learning algorithm. This was tested for experimental, simulation, and augmented 

simulation data with respective accuracy scores of 84.8%, 70.1%, and 75.7%. Hence, augmented simulation 

data is a suitable option for online condition monitoring.  
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1 Introduction 
Axial piston pumps are widely utilized in industrial and off-road mobile applications, such as forestry, agriculture, 
and mining. They are one of the main components of the hydraulic system to enable high output flow and efficiency. 
However, these qualities along with the reliability of a pump can be affected by failures, which can also influence 
the operation of the machine and, therefore, cause unnecessary downtime due to unplanned maintenance. With 
higher fault tolerance, condition-based monitoring, and maintenance, these potential failures could be identified 
before major damage occurs minimizing downtime and unnecessary costs from maintenance [1]. To diagnose 
failures in hydraulic systems, different approaches have been applied, including model-based [2], and instrumental 
techniques, such as vibration-signal [3],[4], cyclostationary analysis [5], acceleration signal [6], and temperature 
sensors [7],[8]. To classify failures, various approaches have been implemented, e.g., extreme learning machine 
(ELM) [9], extreme-point symmetric mode decomposition and random forests [10], symmetrical polar coordinate 
image and fuzzy c-means clustering algorithm [11], convolutional neural network (CNN) [12], and multi-layer 
perceptron (MLP) [13]. 

Conventionally, the condition monitoring system generally involves integration of additional sensors to the system 
under study for fault detection and diagnosis. However, such systems are themselves costly and are sensitive to 
faults. Consequently, the current trend is artificial intelligence (AI)-based condition monitoring. These methods rely 
on data generated from simulation models for condition monitoring rather than utilizing multi-sensor measurements 
as in the case of conventional condition monitoring [13]. Hence, a simulation model that is validated using 
experimental data can be adapted as a source of training data for AI-based condition monitoring. 

Thus, consequently, a new approach of utilizing machine learning algorithms and data from simulation model for 
condition monitoring of a variable displacement axial piston pump is applied. The monitoring for fault detection is 
performed by training a classifier that automatically orders or categorizes data into healthy and faulty cases by 
adapting machine learning algorithms. This is performed by feeding 70% of the healthy and faulty data into the 
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classifier for training and using the remaining 30% of the data for validating the trained classifier. The healthy case 
is defined as a case where no fault is present in any component within the system. To improve the sensitivity of the 
simulation model, the deviation identified between the healthy case of the simulated and the experimental data is 
utilized to augment the simulation data by adding the deviation to all simulation data. This deviation between the 
simulation and the experimental data arises due to environmental conditions, sensor uncertainties, and other 
components of the system. The deviation obtained from the healthy experimental data under a certain operating 
condition is added to the data generated from the simulation model creating augmented simulation data. This 
approach is different from the traditional approach of filtering noise from experimental data. The augmented 
simulation data can be used for real-time condition monitoring and require no data pre-processing as in the case of 
conventional condition monitoring methods. 

In this paper, a simulation model of the hydraulic axial piston pump is developed in the MATLAB / Simulink 
environment. The model is validated by utilizing the available experimental dataset containing the healthy and the 
faulty cases; A classifier is trained to classify data into healthy, fault I, and fault II cases, respectively. The remainder 
of the paper is as follows. Section 2 provides information on the methodology and contains subsections on the 
simulation model, simulation parameters and data structure, and data analysis. In Section 3, data analysis is 
performed for healthy and faulty cases. Section 4 concludes the paper and provides insights for future development. 

 

2 Methodology 
In section 2.1, the simulation model developed in MATLAB/Simulink is explained in detail. In section 2.2, the 
parameters used in the simulation model and the data structure are described. 

 

2.1 Pump Model 

The three main friction pairs in axial piston pumps are the swash plate and the slipper [14], the valve plate and the 
cylinder block, and the piston and the cylinder bore [9], [15]. The most common failure in axial piston pumps is 
wear of these components. All three of these faults eventually lead to the failure of the pump. Usually, these types 
of faults are caused by contaminated fluid [16], but other factors such as varying load, can increase the wear rate 
[9], [15]. The wear between the valve plate and the cylinder block can be caused by the fluctuating load and 
unbalanced pressure distribution and it can be detected as increased leakages and vibrations [15]. Internal leakages 
in the pump lead to decreased volumetric efficiency. 

The axial piston pump model utilized above presented information and was modelled using MATLAB/Simulink. 
Similar axial piston pump models have been previously used to study flow ripples [17] and leakages [18], [19]. 

The pressures in different sections of the pump are calculated using the continuity equation 

 

,                                 (1) 

 

where  is the bulk modulus,  is the instantaneous volume of the chamber, in is the flow from into the chamber 
and out is the output flow from the mentioned chamber, which contains the possible leakages. Equation (1) is used 
to calculate pressures in different piston chambers, in discharge chamber as well as the output pressure. 

The flows in different sections of the pump are calculated using classical orifice equation 

 

,                       (2) 

 

 is the pressure difference over the orifice, d is the discharge coefficient, v is the cross-section area of 
the orifice, and  is the fluid density. Equation (2) is used to calculate input flow from the tank to piston chambers 
through the valve plate, output flow from the piston chambers to discharge chamber through the valve plate and the 
output flow from the discharge chamber into the system. 

In an axial piston pump, three main leakages can occur during operation. These leakages are modelled as following: 
piston, slipper and swash plate, and valve plate and cylinder block. 

The leakage in a single piston can be described as [23] 
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,                   (3) 

 

where  is the radius of the piston, p is the clearance between the piston and the cylinder block,  is the kinematic 
viscosity,   in this equation is the pressure difference between the piston 
chamber and the case drain chamber. 

The leakage between single slipper and the swash plate is represented using [23] 

 

,                  (4)  

 

where lh is the diameter of the piston leakage hole, s is the clearance between the slipper and the swash plate, 

s and s are the outer and inner radii of the slipper respectively, and p is the length of the piston. The leakage 
occurring between valve plate and cylinder block can be modelled with [23] 

 

,                  (5) 

 

where v is the clearance between the valve plate and the cylinder block, 1 and 2 are the inside and outside radii 
of the inside valve plate seal ring respectively, 3 and 4 are the inside and outside radii of the outside valve plate 
seal ring. Regarding t  is the pressure difference 
between the discharge port and the case drain chamber. 

Figure 1 presents the main parts of the model, including 9 pistons, the leakage between the valve plate and the 
cylinder block, output pressure, flow, torque, and volumetric displacement. 

 

 
Figure 1: MATLAB/Simulink model of axial piston pump 
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Figure 2 contains the subparts which are used to model flow of a single piston. The subparts include the leakage 
between the piston and the cylinder block, the leakage between the slipper and the swash plate, stroke and velocity 
of the piston, the discharge areas of the piston port, input and output flow of the piston chamber, and the 
instantaneous pressure in the piston chamber. 

 

 
Figure 2: MATLAB/Simulink model of a piston 

 

2.2 Simulation Parameters, Data Structure, and Test Rig  

The selected pump model includes nine pistons, and it is assumed that the operation of the pump begins when one 
of the pistons is at the top dead center where the fluid begins to be compressed. The assumptions made regarding 
the model include the constant speed from the drive, the atmosphere tank pressure, the constant fluid density, and 
the temperature. Each simulation run is performed for a duration of 300 seconds, and the time step is 0.01s. The 
data points in each simulation run are 30,000 and 27 simulation runs are performed to generate data for all cases. 
The cases are generated by updating the load pressure parameter in the simulation model and the rotational speed 
parameter.  

The data structure is presented in Table 1. The data is divided into healthy (H), fault I (F-I), and fault II (F-II) 
classes, respectively, and further subdivided into the cases. The healthy case is when no fault is present in the 
system. Fault I and Fault II are injected into the system by changing the parameters in the simulation model. The 
changed parameters include the clearance value between the valve plate and cylinder block for fault I and the 
clearance value between the slipper and swash plate for fault II.  

For a clear understanding, experimental is abbreviated as EXP, simulation is abbreviated as SIM, and augmented 
simulation is abbreviated as AUG SIM throughout this paper. The parameters that are extracted (as training data) 
from the simulation model are pressure (bar), torque (Nm), flow (m3/s), and volumetric displacement (m3/rev). The 
parameters available in the experimental data (for validation purpose) include pressure and torque and are available 
in the same units. 
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Case Pressure 
(bar)

Rotational 
Speed (RPM)

Healthy 
(H)

Fault I 
(F-I)

Fault 
II (F-
II)

A 50 500 H_A F-I_A F-II_A

B 150 500 H_B F-I_B F-II_B

C 250 500 H_C F-I_C F-II_C

D 50 1500 H_D F-I_D F-II_D

E 150 1500 H_E F-I_E F-II_E

F 250 1500 H_F F-I_F F-II_F

G 50 2000 H_G F-I_G F-II_G

H 150 2000 H_H F-I_H F-II_H

I 250 2000 H_I F-I_I F-II_I

Table 1: Case Description

The schematic for the experimental test rig is illustrated in Figure 3. The experimental data is generated from the 
test rig by utilizing a piezo electric (quartz) sensor for measuring the pressure ripple. KISTLER 6005 is the model 
of the sensor and has a range of 0-1000 bar, natural frequency of 140 kHz, and 0.8% full scale accuracy. A flow 
meter with a range of 80 L/min is used to obtain the flow in the system. A torque meter with a range of 0-500 Nm 
and a maximum rotational speed of 12000 RPM is also utilized to measure the torque in the system.   

Figure 3: Experimental Test Rig Schematic

3 Data Analysis
The data analysis is performed to validate the simulation data with the experimental data. The raw signal is plotted 
to compare the simulated data with the experimental data in section 3.1. The validation is then performed by plotting 
the power spectrum density in section 3.2. Cases A, E, and I are selected as presented cases in this paper for clarity. 
Faulty cases E and I are also plotted for power spectrum density validation.

3.1 Data Analysis with healthy data using raw signals

Figure 4 represents the comparison plot for pressure data of healthy cases A, E, and I for experimental and 
simulation data on the left-side. The simulation data is quite close to the experimental data for cases A and E. In 
case I, a larger deviation can be noticed, however, the mean of the experimental signal and simulated signal are 
nearly the same. The experimental data carries noise while the simulation data is pure and ideal. The source of noise 
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produced in the experimental data could be due to the environmental conditions under which the experiment was 
conducted as well as from the utilized sensors. In simulation data, environmental effects are not considered and 
hence a cleaner set of data is produced. It could also mean that the simulation model has limitations and that it does 
not work at high RPM. To account for this deviation between experimental and simulation data, the simulation 
pressure signal for healthy case is subtracted from experimental pressure signal. This value of deviation is added to 
all the simulation run cases. The simulated data with the added deviation is referred to as augmented simulation 
data (AUG SIM). Also, figure 3 demonstrates the comparison plot for pressure data of healthy cases A, E, and I for 
experimental and simulation data on the right-side. The deviation added to all simulated signals are derived by 
subtracting the healthy simulation case A from experimental case. Hence, for case A, the experimental and 
augmented simulation signal overlap. For case E, higher peaks have formed for the augmented simulation signal 
while they were lower in the case of simulation signal. For case I, magnitude of pressure is closer to the experimental 
data behavior when compared to the simulated signal behavior. 

 
Figure 4: The left-side column shows the experimental and simulation data comparison for healthy cases A, E, 
and I. The right-side column shows the experimental and augmented simulation data comparison for healthy 

cases A, E, and I 

 3.2 Data Analysis with healthy and failure data using power spectrum density 

Spectral analysis is performed for data analysis and it accounts for the signals in their frequency domain. Healthy 
cases A, E, and I are chosen for performing spectral analysis. Figure 5 illustrates the power density spectrum for 
healthy pressure signals. It can be noticed that for all three cases, the power spectrum of augmented simulation data 
is closer to the experimental data when compared to pure simulation data. The simulation data is far from 
experimental data by around 5 times for every case. A sample power spectrum density plot of fault I and fault II are 
illustrated in Figure 6.  
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Figure 5: Sample power spectrum density plot for pressure data for selected healthy cases A, E, and I.
Experimental is abbreviated as EXP, simulation is abbreviated as SIM, and augmented simulation is abbreviated 

as AUG SIM.

Figure 6: Sample power spectrum density plot for pressure data. The left side plot depicts Fault 1 pressure for 
case E. Right side plot depicts Fault II pressure for case I.

The augmented simulated signals (AUG) are closer to the experimental (EXP) power spectrum density when 
compared to the simulation data. This shows that the augmented simulation data is more reliable.
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4 Results and Discussion 
The main challenge of fault detection is data scarcity. Experimental data is often unavailable since the manufacturer 
of components do not always provide faulty component data and it is hard to inject real faults into components. The 
sensors may carry errors themselves which generate data that is not reliable. Also, the sensor calibration is critical 
as it also affect the quality of data obtained. Hence, it is important to develop a simulation model that can replace 
experiments. The data analysis section has shown that the data generated from the simulation model represent 
experimental data. To further check the performance of simulation model, classification is performed. Classification 
is used to distinguish between different faulty and healthy cases to identify the type of fault. This tool is used to 
diagnose the location of faults and reduce maintenance downtimes. A classifier trained by using machine learning 
algorithms. In this paper, three different classifiers for experimental simulation, and augmented simulation data are 
developed. Upon testing several machine learning algorithms [13], a multi-layer perceptron classifier turned out to 
be the best choice for the data at hand.  

The various parameters that are used to analyze the classifiers are precision, recall, F1-score, and accuracy score. 
Precision is a machine learning tool that identifies the number of correct positive predictions made. Recall depicts 
the number of correct positive predictions made from all positive predictions that could have been made. F1-score 
is the weighted average of recall and precision. Accuracy score tells us how accurately the classifier can differentiate 
between all the fault types. The accuracy score is highest for experimental data followed by augmented simulation 
and simulation data.  

The results obtained from the three classifiers are shown in Table 2. The classifier trained using the experimental 
data is capable of accurately distinguishing the fault type 88.7% of the time. The classifier trained using simulation 
and augmented simulation data are 70.1% and 75.7% accurate in distinguishing between the fault types. This implies 
that the augmented simulation data is suitable for on-line condition monitoring since it does not depend on additional 
signal processing techniques for denoising the signal. 

 
 

Fault Type Precision Recall F1-score Accuracy Score Data Type 

 
Fault I (F-I) 

 
0.86 

 
0.82 

 
0.84 

 
 
 

0.887 

 
 
 

Experimental 
 

Fault II (F-II) 
 

0.97 
 

0.99 
 

0.98 

 
Healthy (H) 

 
0.83 

 
0.85 

 
0.84 

 
Fault I (F-I) 

 
0.59 

 
0.61 

 
0.6 

 
 
 

0.701 

 
 
 

Simulation  
Fault II (F-II) 

 
0.84 

 
1.00 

 
0.91 

 
Healthy (H) 

 
0.64 

 
0.49 

 
0.56 

 
Fault I (F-I) 

 
0.72 

 
0.44 

 
0.55 

 
 
 

0.757 

 
 
 

Augmented Simulation 
 

Fault II (F-II) 
 

1 
 

0.97 
 

0.98 

 
Healthy (H) 

 
0.61 

 
0.86 

 
0.71 

Table 2: MLP Classifier results for experimental, simulation without noise, and simulation with noise 

To visualize the classifiers better, a confusion matrix is generated for experimental and augmented simulation data 
type as presented in Figure 7. It provides a visual representation of actual versus predicted cases. For the augmented 
simulation data, the classifier is inaccurate for fault types healthy and fault II. This implies that the two cases share 
similarity and, hence, has contributed to the lower accuracy score of 75.7%.   
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Figure 7: Confusion Matrices. Left side represents experimental data. Right side represents augmented simulation data

Training the classifier with additional data generated using the simulation model can bring further improvement 
and increase the accuracy. The accuracy obtained using the augmented simulation data can be further improved by 
generating additional data for the same cases. Generating too much data can also lead to challenges in classification. 
An overfit machine learning model refers to a model that has learned the details and noise in the training data to an 
extent that it negatively impacts the performance of the model on new data. The current accuracy scores are obtained 
by considering the same number of data points for each data type.

There are several reasons for the difference in accuracy scores between the data types. Firstly, the simulation model 
have certain limitations such as not considering or neglecting certain parameters that contribute to losses. (This will 
be investigated as a part of future study) Secondly, the crank angle of the piston might not be the same in the 
simulation and experimental cases. Lastly, certain experimental errors could also occur during performing 
measurements. (It is planned to repeat experiments in IHA laboratories as a part of future study).

5 Conclusion and Future developments
Overall condition monitoring and fault detection of hydraulic systems are instrumental to reduce the maintenance 
cost and to prevent the system from deteriorating by detecting the fault in its incipient stage. The condition 
monitoring system generally involves integration of additional sensors to the system under study for fault detection 
and diagnosis. However, such systems are themselves costly and are sensitive to faults. Consequently, the current 
trend is artificial intelligence (AI)-based condition monitoring . These methods rely on data generated from multi-
sensor measurements rather than utilizing simulation models for condition monitoring as in the case of conventional 
condition monitoring. 

In this paper, simulation model data is used as a source of training data for AI-based condition monitoring. To 
improve the sensitivity of the simulation model, the deviation identified between the healthy case of simulated and 
experimental data is used to augment the simulation data by adding the deviation to all simulation data. Data analysis 
is performed to validate the simulation data with available experimental data. The augmented simulation data turned 
out to be closer to the experimental data when compared to simulation data. To test the reliability of simulation 
data, an AI based classifier is developed that can distinguish faulty and healthy cases. The accuracy scores obtained 
for the three developed classifiers for experimental, simulation, and augmented simulation data are 88.7%, 70.1%, 
and 75.7%, respectively.. The added advantage of augmented simulation data is that pre-processing of online data 
will not be required as the augmented simulation data carries information about the noise that are present in 
experimental conditions. Hence, the augmented simulation data is a suitable candidate for online condition 
monitoring. 

For future development, additional data can be generated for various faults and fed to AI-based classifiers for fault 
detection and to reduce maintenance breakdown times. Validation with experimental data that contains other 
parameters such as flow and displacement can be used to further improve the performance of the simulation model.
The end goal is to develop a software and data acquisition system that is capable of condition monitoring of axial 
piston pump by utilizing the trained classifier.
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Nomenclature 
Variable Description Unit 

Av Discharge orifice area [m2] 

B Bulk modulus [Pa] 

Cd Discharge coefficient [-] 

dlb Diameter of the piston leakage hole [m] 

L Length of leakage passage [m] 

lp Length of the piston [m] 

p Pressure difference [Pa] 

R1 Inside radius of the inside valve plate seal ring [m] 

R2 Outside radius of the inside valve plate seal ring [m] 

R3 Inside radius of the outside valve plate seal ring [m] 

R4 Outside radius of the outside valve plate seal ring [m] 

r Radius of the piston [m] 

Rs Outer radius of the slipper [m] 

rs Inner radius of the slipper [m] 

p Clearance between the piston and the cylinder block [m] 

s Clearance between the slipper and the swash plate [m] 

v Clearance between the valve plate and the cylinder block [m] 

µ Kinematic viscosity [m2/s] 

 Fluid density [kg/m3] 
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