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Abstract 

In the present research work, the fatigue strength assessment of a DCI containing solidification defects is theoretically carried out 
by means of a procedure implementing: (i) a defect content analysis, (ii) the area -parameter model, and (iii) the multiaxial critical 
plane-based criterion by Carpinteri at al.  An experimental campaign available in the literature, performed on DCI specimens under 
multiaxial fatigue loading, is analysed.  The comparison between the obtained results and the experimental data shows a quite 
satisfactory agreement, highlighting the criterion accuracy. 
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1. Introduction 

Due to its advantageous mechanical properties (that is, high tensile strength, yield strength, elongation and 
toughness), when compared to gray iron and malleable iron, Ductile Cast Iron (DCI) is widely employed in several 
structural applications, such as critical automotive parts (as crankshafts), big engine blocks, parts of hydraulic presses, 
canisters for nuclear waste storage and wind turbines (Jenkins and Forrest, 1990).  Such a DCI is a cast iron with a 
microstructure characterised by small spherical graphite particles embedded in a matrix, which is usually ferritic and/or 
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pearlitic, depending on alloy composition, casting control and final heat treatment.  When DCIs are employed in heavy 
section components casting, thus involving long solidification times, the microstructure quality of DCIs cannot be 
properly controlled with the consequent introduction of material intrinsic defects, named also solidification defects 
(Borsato et al., 2018.).  Such defects, which may be non-nodular graphite elements, non-metallic inclusions, slag 
inclusions, and macro-/micro-shrinkage porosities, have a detrimental effect on the DCI fatigue properties, which has 
to be taken into account in fatigue strength assessment of heavy section DCI components.  Therefore, a procedure for 
such an assessment is here proposed by implementing: (i) a defect content analysis, (ii) the area -parameter model, 
and (iii) the multiaxial critical plane-based criterion by Carpinteri at al. (Carpinteri et al., 2015; Vantadori et al., 2020).  

 

Nomenclature 
I , T   error index mean value and return period, respectively 
V , 0V   useful cross-section volume and standard inspection volume, respectively 

1af , − , 1af , −  experimental fatigue strengths under fully reversed normal and shear stresses, respectively 

eq,a   equivalent uniaxial stress amplitude 

w , w   computed fatigue strengths under normal and shear stresses, respectively 

2. Examined experimental campaign 

The experimental campaign (Endo, 2000), hereafter examined, was performed on a ferritic DCI with 14% graphite 
nodules in a white ferrite matrix, named DCI EN-GJS-400-18 according to the European designation (FCD400 in the 
original Japanese designation).  Its ultimate tensile strength is equal to 418 MPa, elongation at failure equal to 25.0 % 
and Vickers hardness equal to 186.  Small cylindrical specimens were subjected to both uniaxial (tension or torsion) 
and biaxial (combined tension and torsion) cyclic loading with a constant amplitude (Endo and Yanase, 2014).  The 
fatigue tests were characterised by loading ratio R  equal to -1, and three values of the ratio between shear and normal 
stress amplitudes were considered, that is, 0xy ,a x,a  = , 1 and  .  The phase shift,  , between axial and torsional 
loading, was either 0° or 90°.  The fatigue data related to the above experimental campaign are listed in Table 1.  The 
run-out condition was assumed when a specimen survived more than 710  cycles, whereas the failure condition was 
defined when the crack was visually observed during the test.  From the uniaxial fatigue data, the fully reversed normal 
and shear fatigue limits were computed as 1 205 af , MPa − =  and 1 175 af , MPa − = , respectively.   

Table 1. Fatigue data of the experimental campaign reported in Endo (2000) and Endo and Yanase (2014). 

Test 
No. 

  
(°) 

,x a  

(MPa) 
,xy a  

(MPa) 
 

1 - 195 - Run-out 
2 - 200 - Run-out 
3-4 - 205 - Run-out 
5 - 210 - Failure 
6 - 220 - Failure 
7 - - 165 Run-out 
8 - - 175 Run-out 
9 - - 180 Failure 
10 - - 185 Failure 

 

Test 
No. 

  
(°) 

,x a  

(MPa) 
,xy a  

(MPa) 
 

11 0 115 115 Run-out 
12 0 120 120 Run-out 
13 0 125 125 Failure 
14 0 130 130 Failure 
15 90 120 120 Run-out 
16 90 130 130 Run-out 
17 90 135 135 Failure 
18 90 140 140 Failure 
19 90 160 160 Failure 

 

3. Proposed procedure for fatigue strength assessment 

Now, the proposed procedure is outlined and applied to the above experimental campaign by implementing: (i) a 
defect content analysis, (ii) the area -parameter model and (iii) the multiaxial critical plane-based criterion by 
Carpinteri at al. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2022.05.056&domain=pdf
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3.1. Defect content analysis 

The defect content analysis is performed according to the extreme value theory (Murakami et al., 1988; Murakami et 
al., 1994).  The distribution of the defects (macro-/micro-porosities in this case) was determined by examining a 
fracture surface, normal to the specimen longitudinal axis, by using a Scanning Electron Microscope with an 
inspection area equal to 0.5 mm2.  The largest defect was determined inside such an area and the inspection was 
repeated 50 times on the examined surface (Endo and Yanase, 2014).  The measured square root area values jarea  
are listed in ascending order and the probability graph is plotted in Figure 1(a), showing a linear trend. 

  

Fig. 1. (a) Probability graphs of the defect distribution according to the extreme value theory; (b) error index mean value vs return period, T . 

Once the return period 0T V V=  is properly set, the value of the square root of the expected maximum defect size, 
maxarea , may be written as function of T  as follows: 

1 1 3778
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where V  is the useful cross-section volume and 0V  is the standard inspection volume. 

3.2. area -parameter model 

The fatigue limits under normal loading, w , and shear loading, w , are computed according to Murakami and Yanase 
formulations (Murakami, 2002; Yanase and Endo, 2014), respectively, by assuming the presence of the defect just 
below the surface: 
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3.3. Multiaxial critical plane-based criterion by Carpinteri at al. 

The fatigue strength assessment is finally performed, according to the multiaxial critical plane-based criterion by 
Carpinteri et al. (Carpinteri et al., 2015; Vantadori et al., 2020).  First, the orientation of the critical plane is determined 
by means of an off-angle, ( )2 453 2 1 w w     =  −  , formed by the normal to the critical plane and the averaged 

direction of the maximum principal stress.  Therefore, the multiaxial fatigue limit condition is expressed by the 
following non-linear combination of the equivalent normal stress amplitude eq ,aN  and the shear stress amplitude aC  
acting on the above critical plane:  

( ) ( )
2 2 1eq,a w a wN C + =    with   ( )eq,a a w m uN N N = +  (3) 

where mN  and aN  are the mean value and the amplitude of the normal stress, respectively, and u  is the material 
ultimate tensile strength.  From Eq. (3), an equivalent uniaxial normal stress amplitude eq,a  is defined as follows: 
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( )22 2
eq,a eq,a w w aN C  = +  (4) 

The accuracy of the fatigue strength assessment is evaluated through the following error index: 

100eq,a w

w

I
 


−

=   (5) 

3.4. Optimisation procedure 

The above procedure provides for the optimisation of the return period, T , allowing to obtain an error index mean 
value equal to zero (Vantadori et al., 2021; Vantadori et al., 2022).  Since such a return period is defined as the ratio 
between the useful cross-section volume V  and the standard inspection volume 0V  (here equal to 2 32 55 10  . mm− ), five 
values of V  are considered.  For each value of the return period, the fatigue strength assessment is performed by using 
the computed fatigue strengths and the corresponding error index mean value is determined (Table 2).  Then, such 
error indexes are plotted against T  in Figure 1(b), and the points are interpolated by a logarithmic curve, whose 
expression is here reported:  

( )2 157 14 647I . ln T .= −  (6) 
The optimal return period optT  (and the related 322.7 optV mm= ) is determined for 0I = , and the fatigue strengths are 
computed as 183 22 w . MPa =  and 154 64 w . MPa = .  Finally, the last fatigue assessment is performed.   

Table 2. Useful cross-section volume, return period, square root of the maximum defect size, fatigue strengths and error index mean value. 

Prediction volume T  
maxarea  w  w  I  

Symbol Size (mm3) (-) ( m ) (MPa) (MPa) (%) 
, 1af

V −
 13.21 10−  11.28 10  81.17  207.35  175.00  9.47−  

, 1af
V −

 14.27 10−  11.67 10  86.92  205.00  173.01  8.44−  

1V  31.41 10  45.54 10  256.77  171.14  144.44  9.68  

5V  37.07 10  52.27 10  290.37  167.67  141.51  12.82  

10V  41.41 10  55.54 10  304.84  166.31  140.36  12.86  

optV  12.27 10  28.89 10  170.51  183.22  154.64  −  

4. Results and discussion 

The results in terms of stress components are plotted in Figures 2 for all data being examined by applying both the 
proposed procedure (Fig. 2(a)) and the Carpinteri et al. criterion, that is, by employing the experimental fatigue limits 
(Fig. 2(b)).  The fatigue endurance condition, given by Eq. (3), defines an ellipse in the eq ,aN - aC  plane.   

  

Fig. 2. Shear stress amplitude vs equivalent normal stress amplitude determined by employing the: (a) present procedure and (b) the Carpinteri 
et al. criterion with the experimental fatigue strength values 
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( )22 2
eq,a eq,a w w aN C  = +  (4) 

The accuracy of the fatigue strength assessment is evaluated through the following error index: 

100eq,a w

w

I
 


−

=   (5) 

3.4. Optimisation procedure 

The above procedure provides for the optimisation of the return period, T , allowing to obtain an error index mean 
value equal to zero (Vantadori et al., 2021; Vantadori et al., 2022).  Since such a return period is defined as the ratio 
between the useful cross-section volume V  and the standard inspection volume 0V  (here equal to 2 32 55 10  . mm− ), five 
values of V  are considered.  For each value of the return period, the fatigue strength assessment is performed by using 
the computed fatigue strengths and the corresponding error index mean value is determined (Table 2).  Then, such 
error indexes are plotted against T  in Figure 1(b), and the points are interpolated by a logarithmic curve, whose 
expression is here reported:  

( )2 157 14 647I . ln T .= −  (6) 
The optimal return period optT  (and the related 322.7 optV mm= ) is determined for 0I = , and the fatigue strengths are 
computed as 183 22 w . MPa =  and 154 64 w . MPa = .  Finally, the last fatigue assessment is performed.   

Table 2. Useful cross-section volume, return period, square root of the maximum defect size, fatigue strengths and error index mean value. 

Prediction volume T  
maxarea  w  w  I  

Symbol Size (mm3) (-) ( m ) (MPa) (MPa) (%) 
, 1af

V −
 13.21 10−  11.28 10  81.17  207.35  175.00  9.47−  

, 1af
V −

 14.27 10−  11.67 10  86.92  205.00  173.01  8.44−  

1V  31.41 10  45.54 10  256.77  171.14  144.44  9.68  

5V  37.07 10  52.27 10  290.37  167.67  141.51  12.82  

10V  41.41 10  55.54 10  304.84  166.31  140.36  12.86  

optV  12.27 10  28.89 10  170.51  183.22  154.64  −  

4. Results and discussion 

The results in terms of stress components are plotted in Figures 2 for all data being examined by applying both the 
proposed procedure (Fig. 2(a)) and the Carpinteri et al. criterion, that is, by employing the experimental fatigue limits 
(Fig. 2(b)).  The fatigue endurance condition, given by Eq. (3), defines an ellipse in the eq ,aN - aC  plane.   

  

Fig. 2. Shear stress amplitude vs equivalent normal stress amplitude determined by employing the: (a) present procedure and (b) the Carpinteri 
et al. criterion with the experimental fatigue strength values 
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The dashed lines correspond to an error band equal to 10% , whereas the dash-dot lines to an error band equal to 
20% .  We can observe that, according to the present procedure, the estimations are conservative and in agreement 

with the experimental evidence for the in-phase loading, whereas they are not conservative for out-of-phase loading 
although the points representing failures fall within the 20%− scatter band.  On the contrary, the Carpinteri at al. 
criterion provides more non-conservative results.   

Finally, only the tests which experiment failure are considered and the equivalent stress amplitude is plotted in 
Figure 3.  The results obtained through the present procedure are represented by both the symbols and the line in red, 
whereas the eq,a  values computed according to the Carpinteri et al. criterion and the line representing the 
experimental fatigue strength are plotted in blue.  It can be noted that, when the present procedure is applied, 78% of 
the estimations are conservative, whereas only 22% of them are conservative according to the Carpinteri et al. 
criterion. 

 

Fig. 3. eq,a  against the test No., according to the present procedure (in red) and the Carpinteri et al. criterion (in blue). 

5. Conclusions 

A procedure for fatigue strength assessment of a ductile cast iron with solidification defects is here proposed and 
applied to the data of an experimental campaign available in the literature.  A content analysis has been performed 
according to the extreme value theory and the value of the maxarea has been obtained after an optimisation of the 
return period.  The results, in terms of endurance strength assessment, are quite satisfactory, highlighting the good 
accuracy of the present procedure. 
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