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Abstract— Electroencephalogram (EEG) plays a significant role in
the analysis of cerebral activity, although the recorded electrical
brain signals are always contaminated with artifacts. This repre-
sents the major issue limiting the use of EEG in daily life applica-
tions, as artifact removal process still remains a challenging task.
Among the available methodologies, Artifact Subspace Reconstruc-
tion (ASR) is a promising tool that can effectively remove transient
or large-amplitude artifacts. However, the effectiveness of ASR and
the optimal choice of its parameters have been validated only for
high-density EEG acquisitions. In this regard, the present study
proposes an enhanced procedure for the optimal individuation of
ASR parameters, in order to successfully remove artifact in low-
density EEG acquisitions (down to four channels). The proposed
method starts from the analysis of real EEG data, to generate a large
semi-simulated dataset with similar characteristics. Through a fine-
tuning procedure on this semi-simulated data, the proposed method identifies the optimal parameters to be used for
artifact removal on real data. The results show that the algorithm achieves an efficient removal of artifacts preserving
brain signal information, also in low-density EEG signals, thus favoring the adoption of EEG also for more portable and/or
daily-life applications.

Index Terms— electroencephalography, EEG, low density system, artifact removal, Artifact Subspace Reconstruction,
ASR, BCI, measurement system

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a well-
established neuroimaging technique largely used to ana-

lyze brain activity, mostly in clinics and laboratories [1], [2].
Indeed, new EEG-based applications for more practical use are
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being investigated, thanks to its non-invasiveness, ease of use,
and potential wearability and portability [3]–[7]. However, the
use of EEG outside of clinical and research settings is still
limited because the cerebral signal is heavily influenced by
noise and interference, leading to a variety of artifacts [8] that
compromise the correct extraction of the features of interest
[9]. Artifacts can be caused either by non-physiological [10] or
physiological sources [11]. The latter, which are more difficult
to remove [12], are due for example to eye movements, blinks,
and muscle activity [13]–[15]. As a result, EEG data is a non-
stationary, non-linear stochastic mixture of brain signals and
artifacts. The removal of EEG artifacts and the identification of
interfering signals outcomes are a critical pre-processing step
for the correct measurement of neuro-physiological phenom-
ena of interest related to brain activity [16], [17]. At the state of
the art, there are many techniques and algorithms developed
for artifact removal, which can be grouped into four major
categories: regression methods, filtering methods, blind source
separation methods (BSS), and source decomposition methods
[11], [18]–[21]. However, such techniques often require the
use of additional reference channels (e.g., electrooculogra-
phy, electromyography) or classifiers to identify and discard
artifact-related components. Additionally, they carry a high
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computational burden [22]. Indeed, there is still no agreement
on an optimal removal technique for all types of artifacts.
Several factors, such as the total number of channels, the need
for a reference channel, and the characteristics of the chosen
algorithm (e.g., linearity, automation, and online applicability),
need to be considered in practice. These factors may lead
to increased system noise and complexity, but also to an
increased user discomfort. The total number of channels, in
particular, limits the ability to successfully remove artifacts;
only a few algorithms are suitable for single-channel and
multichannel applications [23].
To overcome these limitations, the Artifact Subspace Recon-
struction (ASR) method has been proposed in recent years
as an online, automatic, component-based artifact removal
method for nonstationary large-amplitude or transient artifacts
[24], [25]. As observed in the literature, the ASR method holds
unexplored potential, although recent studies have reported
promising results [26]–[28]. These works have mainly focused
on using ASR to remove artifacts from high-density EEG ac-
quisitions, typically using suboptimal default ASR parameters.
However, it has recently been demonstrated that ASR performs
better than other multi-channel techniques as the number of
channels decreases by down to four [29]. Moreover, excellent
performance of ASR has been demonstrated in removing
artifacts on 8-channel Steady-State Visual Evoked Potentials
signals [30]. Nevertheless, its application and optimization for
low-density EEGs is still in question.

Based on these considerations, this study proposes a method
for tuning ASR parameters in order to make artifact removal
more efficient by considering 8, 6 and 4 channels. In doing so,
not only the user-defined ASR Rejection Threshold Parameter
k but also the ASR sliding window length wl were investigated.
However, tuning these two parameters directly on real data is
not possible, since the original pure signal is not available to
calculate comparison metrics and quantify the efficiency of the
correction. Thus, the basic idea of the proposed method lies
in the generation of semi-simulated data with characteristics
similar to the real available data to be processed. Once the
algorithm is tuned on the semi-simulated data, it is possible
to find the best ASR parameters values to apply on the real
data.

The outline of this paper is as follows. Section II provides
the background on the ASR algorithm. Section III outlines
the proposed method and the metrics used to evaluate its
performance. Section IV describes the data used in this study
and the implementation of the proposed approach. Finally,
Section V reports the results obtained applying the proposed
approach on semi-simulated data and real data.

II. BACKGROUND

The basic concept of the ASR process is the extraction
of reference statistics from an artifact-free data segment to
calibrate the correction of contaminated data [24]. High-
amplitude non-stationary artifacts, such as muscle artifacts
and eye blinks, are identified and rejected with an automatic
thresholding in the domain of the principal components (PCs).

The ASR process consists of three major steps [22]:

1) Extraction of reference data. A portion of the signal
without artifacts is identified by calculating the root-
mean-square (RMS) values on 1-second sliding windows
for each channel. Then, z-score is computed along the
entire channel to assess the dispersion degree and discern
clean reference data. A minimum 30-second/1-minute
length is usually recommended for reference data, but
the duration can vary.

2) Threshold definition to identify artifact components. Af-
ter an Infinite Impulse Response (IIR) filtering, a mixing
matrix is calculated as the square root of the covariance
matrix of the filtered reference data. Furthermore, the
eigenvectors are used to project onto the PC space. In the
projected space, RMS values with mean µi and standard
deviation σi are calculated on sliding windows of the
new data. The default sliding window length (wl) is set
at 0.5 s. Then, a rejection criterion Γi is determined by
a user-defined cutoff threshold parameter (k) multiplied
by the standard deviation:

Γi = µi + k · σi. (1)

The cutoff parameter k establishes how aggressively
faulty data are removed. Smaller values of k are as-
sociated with higher aggressiveness.

3) Artifact component rejection and signal reconstruction.
Finally, the transformation procedures of the second step
are applied to the uncleaned EEG data. For each win-
dow, the algorithm identifies which principal component
exceed the rejection threshold Γi in the projection space.
Artifact components that fulfill the criterion are set to
zero before reconstructing the cleaned signal.

Hence, the ASR algorithm performance is heavily influenced
by user-selected parameters, in particular the already men-
tioned cutoff threshold parameter (k) and sliding window
length (wl). However, as reported in Section I, the majority
of ASR-based works use standard parameters [24], [30].
Studies focusing on the optimal value of k, in particular,
revealed that this value could be between 20 and 30, which
is small enough to remove artifact and preserve most of brain
information [27], [22].

III. PROPOSED METHOD

The proposed method allows for the customization of
ASR parameters to improve artifact removal. Starting from
semi-simulated data, the two considered parameters k and wl
are optimized, and then their best values are applied to the real
data. Figure 1 describes this three-step procedure in full depth.

1) Preliminary analysis of real EEG data and generation
of semi-simulated dataset: At this phase, the real EEG data
corrupted by artifacts are preliminary analysed. The data are
analyzed both in the time and frequency domain in order
to identify some characteristics, such as artifact type and
duration, amplitude and sampling rate. In particular, semi-
simulated EEG data are generated with the same channels
and sampling rate as the real data. A further check was
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Fig. 1: Pipeline of the proposed method for fine-tuning ASR parameters

then made in terms of comparing the amplitudes of the two
EEGs through the evaluation of the mean and the standard
deviation of the signal in time domain and, finally, the
spectral similarity of the semi-simulated and real EEG signals
was quantified by comparing the two Power Spectral Density
(PSD). Based on these considerations, semi-simulated data
are generated to reflect the available real data characteristics.

2) ASR parameters customization: This step provides a first
search to investigate aggressive and non-aggressive values of
k at a fixed value of wl. Then, once the best value for k was
calculated, the wl value was parameterized.
Regarding the automatic choice of the best k and wl values,
it was carried out considering three metrics between pure and
corrected signals: Root Mean Square Error (RMSE), Gamma
Value (γ) and Correlation Coefficient (ρ). Each of these
metrics measures quantitatively how well the EEG dataset has
been corrected and it can be calculated for the entire EEG
trace and for specific signal conditions, i.e. with muscular
or ocular artifacts. Then, an auto-select function determines
the k and wl that optimize the greatest number of metrics
on the different segments of the signals. In addition to this
quantitative evaluation, the results were visually inspected.
The procedure was iterated by determining the best k and wl
parameters on the the whole semi-simulated data set.

3) Application of k and wl values to real data: The mean and
standard deviation of the best k and wl values obtained in
the preceding step are computed. On real data, extreme and
average values of the obtained range are used in the ASR
algorithm. The effectiveness of artifact removal is evaluated
through visual inspection.

A. Metrics for Automatic Choice of k and wl

On semi-simulated data, several metrics can be found
in literature to evaluate the artifact removal performance.
Some of them rely on the evaluation of the distortion in
each specific band of EEG signal [31]. However, this kind of
approach is not adequate for efficient numerical computation
and does not preserve the overall power of the EEG signal.
Starting from these considerations, in this work, the following
three metrics were chosen [32]:

1) RMSE: This is an absolute error measure in which
deviations are squared to prevent positive and negative values
from cancelling each other out. With this measure, larger
value errors are also amplified, a feature that can facilitate
the elimination of methods with the most significant errors.
The RMSE formula is:√√√√ n∑

i=1

(EEGcorr,i − EEGtrue,i)2

N
(2)

where EEGtrue is the original simulated EEG dataset,
EEGcorr is the corrected dataset after ASR and N is the
number of samples of data. In an ideal case of the corrected
signal being perfectly equal to the true signal, the RMSE
would be equal to 0.

2) Gamma Value γ: An efficient parameter for evaluating
artifact removal enhancements is artifact removal gain γ. It
is defined as the ratio between two different signal-to-artifact
ratio (SAR):

γ = 10 · log
(
SARA

SARB

)
(3)

where SARB is the signal-to-artifact ratio between
EEGtrue and contaminated EEG signal (EEGcont), while
SARA is the signal-to-artifact ratio between EEGtrue and
EEGcorr. Therefore, γ value also takes into account the
contribution of the corrupted EEG signal, which is not the
case of RMSE, and this makes the parameter particularly
useful. It is clear that positive gamma values identify an
improved signal-to-noise ratio, while negative values indicate
a decrease, and zero is no improvement at all.

3) Cross-correlation: Cross-correlation is a measure of sim-
ilarity of two signals as a function of a time shift or translation
applied to one of them. For EEGtrue and EEGcorr discrete
functions, the cross-correlation is defined as:

(EEGtrue ∗ EEGcorr)[n] =
∞∑

m=−∞
EEGtrue[m]EEGcorr[m+ n]

(4)

where n is called displacement or lag and the complex
conjugate of the signal does not appear since the EEG is a
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real signal. Since there is no interest in the translation of
the signals, we considered the cross-correlation value for n=0,
normalized between -1 and 1.

The automatic choice of k and wl parameters is made by
selecting the parameters in order that:

• the Root Mean Square Error between EEGtrue and
EEGcorr was minimum,

• the Gamma Value and Correlation Coefficient between
EEGtrue and EEGcorr was maximum.

IV. IMPLEMENTATION

In this section, the implementation of the proposed method
is described in detail.

A. Description of the Data Sets

1) Real Data: Real EEG data were collected from a publicly
available dataset in order to test artifact removal techniques
[33]. Each trace was recorded with a Brain Products helmet
with 27 EEG channels and 3 electrooculographic channels
[34] at a sampling rate of 1000Hz and then made available
at a resampling rate of 200Hz. This dataset contains clean
and contaminated data from one recording session for each of
the 13 subjects. Data were collected over the course of two
experimental sessions. The first phase required participants to
focus their attention on a fixation cross on a screen while
avoiding movement. In this way, 30 seconds of clean signal
(baseline) was acquired for each subject. Participants in the
second phase performed muscular and ocular artifacts guided
by cues on the screen. In a random order, ten repetitions
of nine different types of artifacts were performed, for a
total length of 40min to 50min. To reduce computational
costs, the entire EEG trace was trimmed. The two baseline
segments, in particular, were preserved, as were nine sub-
sequent contaminated segments from the artifact conditions.
Furthermore, eight channels were extracted to assume a few-
channel acquisition. In the end, the raw EEG traces were base-
normalized and filtered. As well known, base-normalization
allows for a signal normally distributed, whereas filtering is
a preprocessing step fundamental to improve the signal-to-
noise ratio, by attenuating noisy frequencies. As a matter
of fact, EEG signals can often be exposed to strong power
line interference at 50 or 60 Hz or can be influenced by the
presence of a DC offset. For this reason, filtering is a good
practice before the subsequent processing. Table I summarizes
real data characteristics.

TABLE I: Summarized characteristics of real data and semi-
simulated

Real data Semi-simulated data
Baseline 60 s 60 s
Artifacts 60 s 60 s
Sampling frequency 1000Hz 256Hz
Re-sampling frequency 200Hz 200Hz

2) Semi-simulated Data: Pure EEG signals were simulated
with the generation function of the MRC EEG data simulator
available online [35]. To simulate pure signal, a duration of
120 s and a sampling frequency of 256Hz were chosen. The
first 60 s of the trace were fully preserved to represent clean
calibration data (baseline) for ASR applications, while the
remaining 60 s were contaminated with real ocular and muscle
artifacts. The used real artifact segments were extracted from
the online DenoiseNet database [36] and combined with the
pure semi-simulated data. In order to obtain 30 s of muscular
artifacts and 30 s of ocular artifacts, 15 2 s-long segments for
each artifact kind were randomly extracted and combined. To
properly combine these signals, the artifact amplitude was
scale-adapted to obtain a signal-to-noise ratio from −20 dB
to 5 dB [37]. Furthermore, the inclusion of ocular artifacts
was weighed channel-wise due to different propagation of
eye components over the scalp [38]. The weights for eight
selected channels were determined by calculating the corre-
lation coefficients between genuine electrooculographic data
and the matching EEG real data [39]. Ocular artifacts were
more visible in the frontal and occipital areas [40], whereas
the central area was thought to better appreciate muscle
movements [41]. Table II summarizes the selected channels
and the aforementioned correlation coefficients.

The whole simulation process was repeated 20 times in
order to obtain different virtual subjects with a random choice
of the artifacts. Finally, all the semi-simulated signals were
filtered and re-sampled to match real data characteristics, as
shown in Table I. The spectral similarity of two EEG sets was
quantified by comparing the PSD of each semi-simulated data
to the PSD of one of the real sources.

TABLE II: Correlation coefficients to weigh ocular artifacts.

Channel Fp1 Fp2 Fz C3 Cz C4 O1 O2
Weight 1 1 0.73 0.24 0.01 0.12 0.31 0.28

B. Algorithm Implementation

As described in Section III, the method proposed in this
study entails first fine-tuning the parameters on a semi-
simulated dataset, based on the real data, followed by applying
the mean of best results obtained on synthetic data to real data.

More in detail, the generated semi-simulated signal was pro-
cessed in MATLAB through EEGLAB, an open-source toolbox
for EEG analysis [42]. With a focus on low-density EEG,
the number of acquisition channels was reduced from eight
(Table II), associated with the brain areas mainly considered in
BCI applications, to six channels (excluding Fp1 and C4) and
then to four channels (excluding Cz and O1). The channels
were reduced randomly, with at least one related to the brain
areas initially considered remaining.

The ASR algorithm was implemented with clean rawdata()
EEGLAB plug-in, by using the clean asr.m function. The basic
principle is to find a baseline and perform statistics on it. With
a sliding window on the data, the function searches the sub-
spaces where activity deviates from the baseline. Then, the
bad sub-spaces are treated as missing data and their contents
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Fig. 2: Boxplot for all the semi-simulated data when the number of channels decreases. The three considered metrics are
calculated on the entire EEG trace. Red line: median value; blue box: interquartile range; red cross: outlier.

are reconstructed by using statistics calculated on clean data,
ensuring the data does not contain unusually strong power.
As mentioned in Section III, the present study focused on
adjusting k and wl user-selected parameters to improve artifact
removal with the ASR algorithm. In particular:

• k search has been made by varying k in a range from 5
to 30 with 1 step. Quite conservative value is 20, which
is default clean asr.m function parameter.

• wl [s] search, once the best value for k, has been
performed by changing its value in a range from 0.2 s
to 2 s, with 0.1 s step. The default clean asr.m function
value is 0.5 s.

Before applying ASR, real raw signals were base-
normalized and filtered with the EEGLAB functions
pop rmbase.m and pop eegfiltnew.m. In particular, the EEG
signals were filtered with a high-pass filter to filter out slow
frequencies less than 0.5 Hz and with a notch filter (48-52 Hz)
to eliminate the line interference at 50 Hz.

The described algorithm to optimize ASR parameters was
made available at https://github.com/anthonyesp/
low_density_eeg_asr.git.

V. EXPERIMENTAL RESULTS

The procedure described in the previous sections was first
tested on 20 randomly generated semi-simulated EEG traces
and, subsequently, was applied on the real EEG data. More in
detail, the results obtained on the semi-simulated data allow
to highlight the effectiveness of the automatic optimization
algorithm in choosing the best ASR parameters. Finally, the
best k and wl parameters in terms of the mean of all values
obtained from the 20 iterations of the procedure, were used on
the real dataset, showing a significant improvement in ASR
correction over that made with the default parameters. The
procedure shows the same encouraging results at both 8- and
6- and 4-channels.

A. Results on Semi-simulated Data

As mentioned in Section III, for each configuration of the
20 semi-simulated dataset, the optimal pair of parameters in
terms of k and wl was found through the use of the automatic

TABLE III: Metrics values for default parameter and best
parameters of a single subject

Muscolar artifacts
Default parameters Best parameters

# Ch RMSE Gamma Corr MAE
(PSD) RMSE Gamma Corr MAE

(PSD)
8 4.01 22.49 0.83 14.92 3.09 24.77 0.89 11.88
6 4.61 21.27 0.79 16.47 3.45 23.70 0.87 11.76
4 4.20 22.1 0.80 13.89 3.59 23.44 0.85 11.28

Ocular artifacts
Default parameters Best parameters

# Ch RMSE Gamma Corr MAE
(PSD) RMSE Gamma Corr MAE

(PSD)
8 3.55 16.54 0.86 8.37 2.93 18.2 0.89 7.66
6 3.99 14.79 0.84 10.93 3.15 16.87 0.88 8.39
4 4.04 16.21 0.81 9.86 3.58 17.26 0.83 8.98

Total EEG trace
Default parameters Best parameters

# Ch RMSE Gamma Corr MAE
(PSD) RMSE Gamma Corr MAE

(PSD)
8 2.68 20.76 0.92 7.68 2.13 22.76 0.95 6.51
6 3.05 19.52 0.90 8.99 2.36 21.75 0.94 6.82
4 2.91 20.18 0.90 7.98 2.54 21.38 0.92 6.98

choice procedure described in the second step of proposed
method III-.2 (see Figure 1). The use of such a function based
on different types of metrics allows to identify the k and wl
that ensure the best correction. As a matter of fact, to assess
artifact removal on each semi-simulated EEG trace, RMSE
(Eq. 2), Gamma Value (Eq. 3) and Correlation Coefficient (Eq.
4) were chosen (see Section III-A). These metrics highlights
the difference between the contaminated signal EEGcont and
the corrected signal EEGcorr after artifact removal.
Table III shows the metrics values both in the case of corrected
dataset with the default parameters (k = 20 and wl = 0.5 s)
and in the case of the best k and wl chosen by the automatic
function. To be brief, the table only includes one of the
semi-simulated EEG traces. A clear improvement in terms of
metrics can be noted, since the RMSE decreases ever more
to 0, the correlation coefficient increases reaching nearly 1,
and also the γ value increases. The efficiency of correction
with the best parameters is also demonstrated by calculating
mean absolute error (MAE) in power spectral density (PSD),
which is a useful metric for analyzing information loss after
signal correction [43]. More in detail, this metric measures the
average magnitude of the errors in original signal PSD and
corrected signal PSD. Therefore, in the current work, MAE-
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Fig. 3: Comparison between EEGtrue (black), EEGcorr with
default parameters (red) and EEGcorr with best parameters
(green) traces at 8 channels. Residual panels (the difference
between EEGtrue and EEGcorr) for each figure are reported.

PSD values between the EEGtrue and the EEGcorr with
the two parameters sets, default and best, were calculated. As
shown in Table III, MAE-PSD values are lower for the correct
signal with the best parameters.

Instead, for an overview, the boxplots of the three metrics
on the total of the semi-simulated traces are shown as the
number of channels decreases in Figure 2. As can be seen,
when the signal is corrected with the default parameters, the
RMSE reaches a higher median value and a larger standard
deviation. On the contrary, when the signal is corrected with
the best parameters, the RMSE has lower median values and
smaller standard deviation, approaching the ideal value of zero.
Similar considerations can be made for gamma and cross-
correlation. Considering both metrics, higher median values
and better standard deviation ranges are observed in the case
of the signal corrected with the best parameters.

The results obtained in terms of metrics and automatic
choice of the best k and wl are reflected directly in the
EEG trace by comparing EEGtrue with both the dataset
corrected with the default parameters EEGcorr,DP and the
dataset corrected with the best parameters EEGcorr,BP . In
particular, Figure 3 represents the same simulated subject of
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Fig. 4: Comparison between EEGtrue (black), EEGcorr with
default parameters (red) and EEGcorr with best parameters
(green) traces at 6 channels. Residual panels (the difference
between EEGtrue and EEGcorr) for each figure are reported.

Table III at 8 channels. For the sake of clarity, out of the
eight channels, only the most significant in terms of effective
removal of artifacts are reported. In particular, the Fp2 channel
was chosen for ocular artifacts and the Cz and C3 channel for
muscle artifacts.
It is evident in Figure 3 the EEGcorr,DP is still compromised
by artifacts. In particular, there are typical peaks of ocular
artifacts for the Fp2 channel and the presence of muscle
artifacts characterized by a high-frequency trend for the Cz
channel. On the other hand, the EEGcorr,BP better follows
the trend of the original signal preserving its shape. Finally,
Figure 4 and Figure 5 show the same results for the 6- and 4-
channel case, respectively. It is clear that, even if the number
of channels decreases, the algorithm works well. The results
highlight how the use of the optimization algorithm allows
for a much more efficient correction of the EEG data: this is
evident from both the analysis of the metrics and the graphs.

B. Application on Real Data

Finally, in order to improve the process of artifacts correc-
tion and removal on real data, the optimal range for the ASR
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Fig. 5: Comparison between EEGtrue (black), EEGcorr with
default parameters (red) and EEGcorr with best parameters
(green) traces at 4 channels. Residual panels (the difference
between EEGtrue and EEGcorr) for each figure are reported.

TABLE IV: Best k and wl parameters for each channel in terms
of mean and standard deviation for real data

8 channels 6 channels 4 channels
k [adim] 11.75 (4.29) 10.20 (3.59) 9.75 (2.57)
wl [s] 1.58 (0.45) 1.47 (0.55) 1.61 (0.37)

k and wl parameters was calculated based on the 20 semi-
simulated dataset. As described in the third step of proposed
method III-.3 (see Figure 1), the optimal range was found in
terms of mean and standard deviation for each channel, as
reported in Table IV. However, on real data it is not possible
to use a metric that quantitatively defines the improvement in
artifact correction, since in this case the EEGtrue in unknown.
Therefore, it is not possible calculate the differences between
the true clean signal and the corrected signal. As a matter of
fact, there is a lack of consensus between researchers on the
evaluation criterion for the applied artifact removal techniques.
In the recent literature, some assessment processes have been
proposed but none of them still outperforms visual inspection
[17]. In fact, visual inspection by an expert operator is still
considered the best criterion for evaluating artifact removal
techniques on real EEG data.
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Fig. 6: Comparison between EEGcont (black), EEGcorr with
default parameters (red) and EEGcorr with best parameters
(green) traces at 4 channels for real data EEG.

On such basis, Figure 6 shows the comparison between the
original contaminated signal EEGcont and the two corrected
signals with the default parameters EEGcorr,DP and with
the mean of best parameters EEGcorr,BP of Table IV. In
particular, for the sake of brevity, the results obtained on only
one trace of real EEG signal and only the 4-channel low-
density case are shown, since it represents the most critical
situation. As a matter of fact, in Figure 6 EEGcorr,DP , in
some time intervals, follows the trend of the EEGcont, not
performing artifact removal. Indeed, the EEGcorr,BP shows
a clear removal of the remaining artifacts. This signal has
amplitude values between −10 µV and 10 µV, an optimum
range for EEG signals amplitudes. However, this is not always
evident in Figure 6 for scaling reason, having to visualize on
the same graph the very pronounced artifact. The clear removal
of artifacts can be seen especially in the range 151-152 s and
152.5-153 s of Fp2 channel and in a small range centered on
251.5 and 252 s of Fz channel. In addition, it is worth noting
how the EEGcorr,BP follows the same trend in terms of shape
as the original signal: this means that there was no over-
correction or loss of information. Finally, artifact correction
was also tested using the upper and lower extremes of the
optimal range of Table IV for k and wl. As a matter of fact,
the lower value and the upper value lead to an overcorrection
and an undercorrection of some artifacts, respectively. For this
reason, mean values of k and wl allow for better and more
balanced results. However, in practical cases, the operator can
change the parameters within the proposed range according to
specific needs.
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VI. CONCLUSIONS

In the present work, the performance of the ASR for the
removal of artifacts in a low-density scenario was investigated.
This is a promising artifact-removal technique that has been
used in a variety of applications but has received little attention
in the literature for low-density EEG. The goal of this research
was to develop an automatic algorithm to optimize the choice
of the ASR’s two main user-selected parameters, namely the
cutoff threshold parameter k and the sliding window length
wl. Starting from semi-simulated EEG data based on the actual
data at hand, the ASR was applied for a number of channels
from 8 to 4. A range from 5 to 30 was explored for k, while
wl was varied between 0.2 s to 2.0 s. Three different metrics,
RMSE, γ, and cross-correlation, were calculated on different
signal segments to assess artifact removal in order to identify
the best values of these parameters. For statistical significance,
the algorithm was repeated on several semi-simulated traces.
In each iteration, the value of k and the value of wl most voted
by the considered metrics were selected. Visual inspection
of signals confirmed better performance of the ASR with
optimized parameter values compared to default values.

Therefore, the results of this optimization were applied on
real EEG data using the average values among the best k and
among the best wl. The resulting signal was then compared
to the signal corrected using the default ASR configuration.
Also in this case, an improvement in the removal of the ocular
and muscle artifacts was observed through visual inspection.
In conclusion, ASR proved to be a powerful and automatic
method for removing artifacts in low-density EEG signals,
which can favor the successful employment of EEG also for
portable, practical applications. As a result, the proposed tech-
nique has the great advantage of identifying the fundamentals
parameters of ASR to be used for a good artifact removal
process on real data. In this way, artifacts can be removed
more effectively than with the use of the default parameters.
However, it is necessary to simulate data that is as close to the
real signals as possible, in order to find the best parameters
for the algorithm application on them. As mentioned above,
this is related to lack of knowledge of the original pure real
signal, making calculating comparison metrics between pure
and corrected signals not feasible. In this regard, future work
will be dedicated to overcoming this limitation by developing
a quantitative metric for selecting the best parameters for
removal based on real data. This, in fact, in addition to visual
inspection, could enhance parameters optimization, with the
purpose of embedding ASR as an online processing technique
in portable systems.
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