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Résumé 

Au cours des dernières décennies, l'augmentation de la production primaire (PP) dans l'océan Arctique (AO) a 

en partie été associée à une augmentation de la biomasse phytoplanctonique, comme l’ont montré des études 

de télédétection. La concentration en chlorophylle a (Chl), un indicateur de la biomasse phytoplanctonique, est 

un facteur clé qui peut biaiser les estimations de la PP quand elle comporte des erreurs de mesure. En d’autres 

mots, une estimation précise de la Chl est cruciale pour améliorer notre connaissance de l'écosystème marin et 

de sa réponse au changement climatique en cours. Cependant, la télédétection de la couleur de l'océan dans 

l'océan Arctique présente plusieurs défis. Tout d'abord, il est bien connu que l'échec des algorithmes standards 

de la couleur de l'océan dans l'AO est dû à l'interférence des matières colorées et détritiques (CDM) dans le 

spectre visible, mais comment et dans quelle mesure cela va biaiser l'estimation de la Chl reste inconnu. En 

outre, la Chl étant un facteur clé utilisé pour estimer la PP, la propagation des erreurs des estimations de la Chl 

aux estimations de la PP doit être évaluée. Le dernier mais le plus important est qu'un algorithme robuste avec 

une incertitude raisonnable, en particulier pour les eaux côtières complexes et productives, n'est pas encore 

disponible. Pour résoudre ces problèmes, dans cette étude, nous avons d'abord compilé une grande base de 

données bio-optiques in situ dans l'Arctique, à partir de laquelle nous avons évalué de manière approfondie les 

algorithmes de couleur de l'océan actuellement disponibles du point de vue des impacts des CDM. Nous avons 

constaté que plus le niveau de CDM par rapport à la Chl dans la colonne d'eau était élevé, plus il biaisait les 

estimations de la Chl. L'analyse de sensibilité des estimations de la PP sur la Chl a montré que l'erreur des 

estimations de la Chl était amplifiée de 7% lorsqu'elle était passée dans l'estimation du PP en utilisant un modèle 

de PP résolu spectralement et verticalement. En outre, pour obtenir de meilleurs résultats, nous avons optimisé 

un algorithme semi-analytique (Garver-Siegel-Maritorena, GSM) pour l'AO en ajoutant la bande spectrale de 

620 nm qui est moins affectée par le CDM et le signal ici est généralement élevé pour les eaux riches en CDM, 

devenant anisi important pour le GSM afin d’obtenir des estimates précises de la Chl. Notre algorithme ajusté, 

GSMA, n'a amélioré la précision que de 8% pour l'AO, mais l'amélioration pour les eaux côtières a atteint 93%. 

Enfin, étant donné que les algorithmes qui n'exploitent pour la plupart que les parties bleue et verte du spectre 

visible sont problématiques pour les eaux très absorbantes/obscures, nous avons introduit un modèle d'émission 

de fluorescence pour tenir compte des propriétés bio-optiques du phytoplancton dans la partie rouge du spectre 

visible. En se couplant avec le GSMA, le nouvel algorithme à spectre complet, FGSM, a encore amélioré la 

précision des estimations de la Chl de ~44% pour les eaux eutrophes. À l'avenir, des couplages sont nécessaires 

à des fins de validation en ce qui concerne l'application satellitaire. De plus, de nouvelles approches pouvant 

être appliquées pour détecter le maximum de chlorophylle sous la surface (SCM), les efflorescences en bordure 

de glace et/ou sous la glace, les types fonctionnels de phytoplancton (PFT), sont attendues. 
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Abstract 

In the recent decades, the raise of primary production (PP) in the Arctic Ocean (AO) is mainly driven by the 

increase of phytoplankton biomass as multiple remote sensing studies have suggested. Chlorophyll 𝑎 

concentration (Chl), a proxy of phytoplankton biomass, is a key factor that biases PP estimates. In terms of 

bottom-up control, accurate Chl estimate is crucial to improve our knowledge of marine ecosystem and its 

response to ongoing climate change. However, there are several challenges of ocean color remote sensing in 

the Arctic Ocean. Firstly, it is well known that the failure of standard ocean color algorithms in the AO is due 

to the interference of colored and detrital material (CDM1) in the visible spectrum, but how and to what extend 

it will bias the estimation of Chl remains unknown. Besides, Chl as a key factor used to estimate PP, error 

propagation from Chl estimates to PP estimates needs to be assessed. The last but most important is that a robust 

algorithm with reasonable uncertainty, especially for the complex and productive coastal waters, is not yet 

available. To address these problems, in this study, we first compiled a large Arctic in situ bio-optical database, 

based on which we thoroughly evaluated presently available ocean color algorithms from a perspective of the 

impacts of CDM. We found that the higher the level of CDM relative to Chl in the water column, the larger it 

would bias Chl estimates. Sensitivity analysis of PP estimates on Chl showed that the error of Chl estimates 

was amplified within 7% when passed into the estimation of PP using a spectrally- and vertically-resolved PP 

model. Besides, to obtain better results, we tuned GSM for the AO by adding 620 waveband which is less 

affected by CDM and the signal here is generally high for CDM-rich waters thus become important for GSM 

to retrieve accurate Chl estimates. Our tuned algorithm, GSMA, merely improved the accuracy by 8% for the 

AO, but the improvement for coastal waters reached up to 93%. Finally, given that algorithms that only exploits 

visible spectrum are problematic for highly-absorbing/dark waters, we introduced the fluorescence emission 

model to account for the bio-optical properties of phytoplankton in the near infrared spectrum. By coupling 

with GSMA, the novel full-spectrally algorithm, FGSM, further improved the accuracy of Chl estimates by 

~44% for eutrophic waters. In the future, matchups are needed for validation purposes with respect to satellite 

application. Moreover, new approaches that can be applied to detect subsurface chlorophyll maximum (SCM), 

ice-edge and/or under-ice blooms, phytoplankton functional types (PFT) and so on are expected. 

  

 

1 The term CDM used in this study is refer to the combination of colored dissolved organic matter and non-

algae particles. 
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Introduction 

Changes in the AO 

Climate change has influenced a wide spectrum of marine, cryospheric, terrestrial, and atmospheric 

environments, especially in the Arctic Ocean (AO), which is one of the most sensitive areas to the ongoing 

climate change. It has been evidenced that temperatures in the Arctic have increased more than twice as fast as 

the global average (AMAP, 2017; Cohen et al., 2014; Screen and Simmonds, 2010; Serreze et al., 2009). As a 

consequence, Arctic sea ice extent has been shrinking in all seasons over the last 4 decades (Onarheim et al., 

2018), particularly during summer by nearly 40% (Comiso et al., 2008; Stroeve et al., 2007; Stroeve et al., 

2012). It is predicted that there will be near ice-free summer conditions sometime in the coming decades 

(Serreze et al., 2007) or even much earlier (Wang and Overland, 2012). Sea ice is also thinning (Lindsay and 

Schweiger, 2015) and becoming more dominated by younger ice types (Comiso, 2012; Maslanik et al., 2011; 

Parkinson and Comiso, 2013). In addition to changes in space, on temporal scale, Bliss and Anderson (2014) 

and Stroeve et al. (2014) have observed an earlier onset of ice surface melt and a longer melt season. The 

increased melt season length is due to later freeze up more than to earlier melt onset, but the earlier melt onset 

is more important in terms of the input of solar radiation to the sea ice (Perovich et al., 2011). On average, the 

melt season has been documented to be lengthened by 5 days per decade, and for coastal regions, the increase 

in the length of melt season reaches up to 11 days per decade (AMAP, 2017). These changes in the AO are 

manifested due to Arctic Amplification and associated feedback. For instance, the dark melted surface areas 

with significant lower albedo absorb more solar energy, offering a positive feedback to the loss of sea ice 

(Flanner et al., 2011; Wadhams, 2012). As a consequence, the under-water light fields are experiencing 

pronounced alterations, which impact marine ecosystem dynamics (Ardyna and Arrigo, 2020). 

The AO contains only 1% and 3% of the global seawater volume and area respectively, but is receiving 11% of 

the world’s river flow (Carmack et al., 2016; Lammers et al., 2001). Its drainage basin covers 19 million km2, 

even larger than the AO area (14.2 million km2), making it the most river-influenced and landlocked of all 

oceans (Lammers et al., 2001; Vörösmarty et al., 2000). Annual mean freshwater input to the AO is dominated 

by river discharge (38%) which has been reported to increase over most of the Arctic (Feng et al., 2021; 

Overeem and Syvitski, 2010; Peterson et al., 2002). The rising sea level (Church et al., 2013) and increasing 

storm surges (Vermaire et al., 2013) are putting coastal areas at greater risk of erosion. Accompanied by the 

melt of ice sheets, glaciers and permafrost, large amounts of terrestrial materials across various vegetation and 

soil types from the Arctic watersheds are now delivered by river runoff into the AO, replenishing the water 

bodies with nutrients and complicating water optical properties by various intricate biogeochemical processes. 
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Figure 0.1 Schematic representation of major observed changes in the Arctic caused by global warming 

(AMAP, 2017). 

 

However, changes in the AO are wide in scope. As sea ice extent in the AO continues to decrease, light 

penetration into the ocean increases, accompanied by a long-term increase in river discharge containing 

significant amounts of organic and inorganic materials (Frey and McClelland, 2009). Annual primary 

production (PP) of the AO has been reported to increase as a series of ocean color remote sensing studies suggest 

(Ardyna and Arrigo, 2020; Arrigo and van Dijken, 2015; Bélanger et al., 2013b; Pabi et al., 2008). In the period 

from 1988~2012, the increase of PP was driven primarily by the loss of sea ice (Figure 0.2). The increased 

open-water habitat incubated more phytoplankton, accompanied with longer growing season. The pan-Arctic 

PP in the open water has increased by 30% from 1998~2012 (Arrigo and van Dijken, 2015). While from 

2012~2018, without significant change in both open-water phytoplankton habitat and the length of growing 

season, the entire Arctic annual PP increased at a rate of 13.5 TgC yr–1, which was twice of that during the 

period from 1998~2012 (Ardyna and Arrigo, 2020; Lewis and Arrigo, 2020). The faster increase of PP during 

this period was highly correlated to the increase of phytoplankton biomass likely resulting from increased 

nutrient supplies, indicating that the controlling factor of PP switched from the loss of sea ice (1988~2012) to 

the increase of phytoplankton biomass (2012~2018) (Ardyna and Arrigo, 2020). 
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Figure 0.2 Global trends in Arctic primary production over the last two decades. a–c, Annual time series of 

Arctic Ocean mean open-water area (a), mean Chl (b) and NPP (c). The time series is separated into two time 

periods because from 1998–2012, loss of sea ice was responsible for the increase in NPP for the Arctic 

Ocean. After that time, the loss of sea ice slowed considerably but NPP continued to increase. This increase 

from 2012–2018 was due primarily to an increase in phytoplankton biomass, likely because of increased 

nutrient supply into Arctic surface water. (d) Map showing the rate of change in Chl (mg m–3 yr–1) between 

1998 and 2018. (Ardyna and Arrigo, 2020)  

 

Phytoplankton 

Phytoplankton are photosynthesizing microorganisms that inhabit the sunlit top layers of oceans. They harvest 

light to create organic compounds from carbon dioxide dissolved in the water. As primary producers, 

phytoplankton form the base of the marine food web and are responsible for energy transfer to higher trophic 

levels. They only take up 1% of the global plant biomass, but account for about half of global photosynthetic 

activity and at least half of the oxygen production (Chapman, 2013). Through photosynthesis, inorganic carbon 

is fixed into organic matter, some of this carbon is carried to the deep ocean when phytoplankton die, and some 

is transferred to different layers of the ocean as phytoplankton are eaten by other creatures. After a series of 

biological processes, carbon are then sequestered away from the atmosphere into the deep ocean. Worldwide, 

this “biological carbon pump” transfers about 11 gigatonnes of carbon from the atmosphere to the deep ocean 

each year (Basu and Mackey, 2018). Even small changes in the growth of phytoplankton may affect atmospheric 

carbon dioxide concentrations, which would in return impact global warming through associated feedback. 
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Chlorophyll 𝑎, the primary pigment for photosynthesis of organic carbon in the ocean, can be found in all 

phytoplankton species. Chlorophyll 𝑎 concentration (Chl), a proxy of phytoplankton biomass, is widely used 

for primary productivity studies to evaluate the aquatic ecosystems and monitoring eutrophication (Ardyna and 

Arrigo, 2020; Arrigo and van Dijken, 2015; Bélanger et al., 2013a). The main uncertainty in primary production 

estimates obtained using ocean color remote sensing lies in the most important input Chl (Bélanger et al., 2013a; 

Mustapha et al., 2012). Therefore, accurate estimation of Chl is crucial for a better understanding of spatio-

temporal trends of primary production over recent decades as a consequence of climate change. 

Challenges in satellite-based surface chlorophyll 𝒂 concentration retrieval 

Due to the harsh environment, logistical difficulties, and cost constraints, in situ measurements in the AO are 

scarce. But they are of significant importance as they provide the most accurate data required for calibration 

and validation of airborne and satellite observations. In this context, ocean color remote sensing (OCRS) has 

become a powerful tool for providing a quantitative assessment of the biological state of the surface ocean at 

synoptic and temporal scales inaccessible from traditional field observations, and it has been used extensively 

by oceanographers. Even though, OCRS has its limitations when applied to the Arctic Ocean. 

Challenges in data acquisition 

Prevailing low solar elevations 

The Sun zenith angle in the Arctic is often larger than 70°. Due to relative larger pathlength, water-leaving 

signal in the blue band reached at sensor in the space accounts less than 10% of the total signal. Therefore, 

higher accuracy of atmospheric correction in the AO is required, which is still a challenge and needs to be 

addressed. 

Persistence of clouds and fog 

AO is located in the sub-polar low pressure systems, associated with heavy cloud cover and substantial 

precipitation in all seasons. The mixed-phase clouds are largely distributed and can persist several days which 

influences solar radiation field. As a consequence, strict cloud filters are needed to avoid any cloud 

contamination during the process of atmospheric correction. In addition, fog develops near the sea surface when 

sea ice starts to melt. These features impact ocean color data availability which may make it difficult to monitor 

changes in the Arctic Ocean over short time scales (Perrette et al., 2010). 

Impact of ice on remotely sensed reflectance 

Sea ice has a bright surface, 80% of the sunlight that strikes it is reflected back into space. The resulting sea ice 

adjacency and sub-pixel ice contamination presents problems when deriving ocean color products. Adjacency 

effect enhances the water-leaving reflectance toward the shorter wavelength, leading to an underestimation of 

Chl. Sub-pixel contamination by sea ice depends on the type and age of sea ice. It tends to be seen as an aerosol 
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resulting in overcorrection in the blue band, and consequently leads to an overestimation of Chl (Wang et al., 

2009). But the extent of these impacts in the Arctic Ocean Color studies remains poorly known. 

Complex optical properties 

Besides challenges with regard to data acquisition from space by ocean color sensors, the main problems that 

must be overcome in order to derive accurate observation of Chl are associated with the complex optical 

properties of the AO, that is higher package effects of phytoplankton pigments (Cota et al., 2004; Matsuoka et 

al., 2011; Matsuoka et al., 2007) and high proportion of colored dissolved organic matter (CDOM) (Bélanger 

et al., 2008; Matsuoka et al., 2013, 2012; Matsuoka et al., 2011; Matsuoka et al., 2007) observed in the AO. 

Higher package effect 

As a consequence of photoacclimation to low irradiance in the Arctic, phytoplankton cells often exhibit high 

intracellular pigment concentrations (Falkowski and Owens, 1980) which decreases the efficiency of light 

absorption. This phenomenon, known as package effect (Falkowski et al., 1985), generally strengthens with the 

increase of cell size and intracellular pigment concentrations, making the chlorophyll-specific phytoplankton 

absorption coefficient ( 𝑎𝑝ℎ
∗ , defined as phytoplankton absorption coefficient 𝑎𝑝ℎ  normalized by Chl) a 

nonlinear function of Chl (Morel and Bricaud, 1981). Figure 0.3 illustrates the relationships between 𝑎𝑝ℎ(440) 

and Chl for various water bodies. Red, green, blue, and black lines refer to the relationships obtained from 

various areas of world ocean (Bricaud et al., 1998), the Labrador Sea (Cota et al., 2003), the Beaufort and 

Chukchi Seas (Wang et al., 2005), and western Arctic Ocean (Matsuoka et al., 2007) respectively. It can be 

seen that the black and blue lines belonging to the AO lie below the others corresponding to lower latitude 

waters, indicating the mean 𝑎𝑝ℎ
∗  is generally lower in the AO, which is also an evidence suggesting that package 

effects in the AO is relative higher than that in lower latitude waters. 

This higher package effect flattens the absorption spectrum of chlorophyll 𝑎 especially at the blue absorption 

peak. As a consequence, when applying global empirical algorithms to the AO, relatively larger decrease of 

𝑎𝑝ℎ
∗  at blue wavelengths than green wavelengths yields larger maximum blue-to-green band ratio, which will 

lead to a certain underestimation of Chl (Lewis et al., 2016). 

CDOM-dominated optical property 

The AO receives the largest amount of river discharge relative to its volume (11% of global river discharge but 

its volume is only 1% of global ocean, Carmack et al., 2016), and its drainage basin is even larger than its area, 

making it characterized by high CDOM relative to other optically significant components when compared to 

the other oceans. In addition, under the pressure of global warming, large amounts of dissolved organic carbon 

(DOC) due to the thawing of permafrost are delivered into the AO with a long-term increasing river discharge 

(Peterson et al., 2002; Raymond et al., 2007). As a result, unlike other oceans, the optical properties of the AO 

are dominated by CDOM as multiple studies have suggested (IOCCG, 2015; Matsuoka et al., 2015, 2007; 

Matsuoka et al., 2012; Matsuoka et al., 2011). The ternary plot is taken from IOCCG 2015 (see Figure 0.3b,) 
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to get a basic idea of the proportion of 𝑎𝑐𝑑𝑜𝑚 to total non-water absorption (𝑎𝑤),. It can be seen that the mean 

proportion of 𝑎𝑐𝑑𝑜𝑚 at 443 nm reached up 62%, which is about three times that of the other components (i.e., 

phytoplankton and non-algae particles). 

It is known that CDOM exhibits high absorption in the ultraviolet portion of the spectrum, and in the visible. 

The absorption decays approximately exponentially to the red. When applying global empirical algorithms to 

the AO, the presence of CDOM at levels higher than the global mean will reduce the reflectance signal at blue 

wavelengths due to its strong absorption, yielding lower maximum blue-to-green band ratio, which will lead to 

an overestimation of Chl (Lewis et al., 2016). 

 

Figure 0.3 (a) Relationship between 𝑎𝑝ℎ(440) and Chlfluo showed in Matsuoka et al., 2011. SBI spr and sum 

refer to data collected through the Western Arctic Shelf Basin Interaction cruise in spring and summer 2004, 

respectively. MR aut stands for the data obtained in the Chukchi and Beaufort Seas via the Japanese R/V 

Mirai cruise in autumn 2004. All represents the combination of SBI spr, SBI sum and MR aut. Regression 

curves from literature are also shown for comparison: B98 (various area of world ocean, Bricaud et al., 1998), 

C03 (Labrador Sea, Wang and Cota 2003), and W05 (summer in the Beaufort and Chukchi Seas, Wang et al., 

2005). (b) Ternary plot depicting the relative partitioning of the non-water absorption coefficient at 440 nm 

into contributions by phytoplankton (𝑎𝑝ℎ), non-algal particles (𝑎𝑑), and coloured dissolved organic matter 

(𝑎𝑔) for observations from the polar data set. The red square and solid lines represent the mean values for the 

contribution by each component. (figure from IOCCG, 2015) 

 

Heterogeneous optical properties 

The AO is a spatially heterogeneous sea. In other words, the composition of non-water constituents and its bio-

optical properties significantly differ from region to region due to various degree of river inputs, nutrient levels, 

sea ice coverage, shelf widths, and circulation patterns (Lewis et al., 2016; Matsuoka et al., 2013). Such a degree 

of variability makes it difficult to establish a standard empirical formulation between observed reflectance and 

Chl that can provide robust predictions with acceptable error limits, at least on the scale of the entire Arctic 

region. 

Turbid coastal waters 
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As the most river-influenced and landlocked ocean (Vörösmarty et al., 2000), most Arctic coastal regions, 

especially large river plumes, are experiencing various intricate biogeochemical changes. River discharge, 

coastal erosion, and permafrost thaw are responsible for a significant supply of organic matter from coastal land. 

Besides, ice melt and glacial run-off from nearby land also represents a large input in sediment loading. Under 

the pressure of climate change, these changes are manifested due to Arctic amplification and associated 

feedback, leading to increased coastal turbidity. Due to the complex optical properties, the estimation of Chl 

for coastal waters is one of the main problems of OCRS. 

Given that coastal phytoplankton blooms are a major ecological event providing a substantial part of the annual 

primary production and energy transfer supporting the entire marine food web (Field et al., 1998; Winder and 

Sommer, 2012), the estimation of Chl for turbid coastal waters draw more attention nowadays, and needs to be 

addressed for better understanding the marine ecosystem and its response to ongoing climate change. 

General overview of existing chlorophyll 𝒂 algorithms for the AO 

Since the bio-optical relationships between ocean color and Chl in polar regions differ markedly from lower 

latitude waters, existing operational ocean color algorithms perform poorly when applied to the Arctic waters 

as many studies have reported (Cota et al., 2004, 2003; Matsuoka et al., 2007; Mitchell, 1992; Mustapha et al., 

2012; Naik et al., 2010; Sathyendranath et al., 2001; Stramska et al., 2003; Wang and Cota, 2003). These failures 

are often explained by the adaptation/acclimation of polar phytoplankton to the extreme environmental 

characteristics (such as low solar radiation, cold temperature) and different composition of optically-significant 

constituents. 

Empirical algorithms 

It was shown more than four decades ago that ocean color, often expressed by the ratio of above-water remote-

sensing reflectance (𝑅𝑟𝑠, sr-1) at blue (~440 nm) and green (~550 nm) wavelengths, provides a good index of 

Chl in oceanic waters (Morel and Prieur, 1977). This empirical way of analyzing ocean color data is the most 

reliable, robust, and computationally simple approach. It does not require knowledge of the fundamental 

relationships between 𝑅𝑟𝑠 and inherent optical properties (IOPs), but requires an adequate data set to develop 

the empirical coefficients of the relationship. Since they do not necessarily represent all natural variations, the 

performance of such algorithms is always subject to compatibility between the waters under study and the 

waters from which data were obtained for algorithm development (see Table 0.4). 

Basically, Chl is derived empirically as 𝐶ℎ𝑙 = 10𝑎0+𝑎1𝑅+𝑎2𝑅2+𝑎3𝑅3+𝑎4𝑅4
, where R is the maximum blue-to-

green band ratio, and 𝑎0 to 𝑎4 are empirical coefficients which are derived from in situ data sets. Table 0.1 

summarizes the global operational and available Arctic empirical algorithms. 
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The performance of global operational algorithms (including their previous versions) in the AO have significant 

regional variability (see Table 0.3). Stramska et al. (2003) has reported that the NASA global algorithms (i.e., 

OC2 and OC4 developed for SeaWiFS (Sea-viewing Wide Field-of-view Sensor) overestimate Chl by a factor 

of about 2 when Chl<0.2 mg m-3 in the north polar region of the Atlantic Ocean. Later, OC4v4 has been 

documented to overestimate Chl in the low range (<0.6 mg m-3) but underestimate at the other ranges (Cota et 

al., 2004; Matsuoka et al., 2007) in the Western AO. The latest version, OC4v6, obtained 4.83 and 2.15 MAPDs 

(mean absolute percentage difference) in the Mackenzie Shelf and Amundsen Gulf and coastal waters of 

Svalbard, respectively (Mustapha et al., 2012; Son and Kim, 2018). As for MODIS (Moderate-resolution 

Imaging Spectroradiometer) algorithms, chlor-MODIS leads to two-fold underestimation when Chl>2.5 mg m-

3 in the north polar region of the Atlantic Ocean (Stramska et al., 2003). OC3M shows an overestimation when 

Chl<0.6 mg m-3 for the western AO (Matsuoka et al., 2007), while in the Chukchi Sea, it tends to lead an 

underestimation when Chl<0.9 mg m-3 but an overestimation at the other values (Lewis et al., 2016). The 

MAPDs of OC3M-derived Chl are 2.0 for the Beaufort and Chukchi Seas (Chaves et al., 2015), 2.09 for the 

coastal waters of Svalbard (Son and Kim, 2018), 4.8 for the Mackenzie Shelf and Amundsen Gulf (Mustapha 

et al., 2012), and 2.36 at a pan-Arctic scale (Lewis and Arrigo, 2020). The MERIS (Medium Resolution Imaging 

Spectrometer) algorithm OC4E generates a MAPD of 5.2 in the Mackenzie Shelf and Amundsen Gulf 

(Mustapha et al., 2012). 

There are multiple regional Arctic algorithms, such as OC4L (Cota et al., 2004), OC3L (Lewis et al., 2016), 

OC4P (Wang and Cota, 2003), SC2S/SC3M/SC4 (Son and Kim, 2018), and AOReg.emp (Lewis and Arrigo, 

2020). They can yield quite good performance locally (e.g., RMSE=0.13, Matsuoka et al. 2007), but due to the 

compatibility problem, they exhibit even pronounced regional variability compared to global algorithms when 

applied to the AO. For instance, OC4L obtained 1.31 MAPD when applied to the Beaufort and Chukchi Seas. 

However, when used in the Mackenzie Shelf and Amundsen Gulf, the MAPD reached up 5.64, which was larger 

than that of the global operational algorithms (Mustapha et al., 2012). Therefore, given the large variability in 

water bio-optical properties within the AO, it seems to be difficult to establish standard empirical formulations 

to estimate Chl with reasonable uncertainty from observed reflectance at a pan-Arctic scale. However, thanks 

to the efforts by ocean color researchers, there is an Arctic Ocean empirical algorithm available–AO.emp (Lewis 

and Arrigo, 2020). Before applying this algorithm routinely to satellite images for the AO, plenty of validations 

are still needed. 

Semi-analytical algorithms 

Ocean color semi-analytical algorithms are based on the fundamental relationships of ocean optics. Several 

assumptions of biogeophysical conditions are incorporated to retrieve certain IOPs, and then in-water 

constituents from apparent optical properties (AOPs). Currently well-known semi-analytical algorithms are 

GSM (Garver-Siegel-Maritorena semi-analytical model, Maritorena et al., 2002), FLH (Fluorescence Line 

Height, Huot et al., 2005), GIOP (Generalized Inherent Optical Property model, Werdell et al., 2013), and QAA 

(Quasi-Analytical Algorithm, Lee et al., 2002). Note that, only GSM directly targets Chl, while the others 
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retrieve 𝑎𝑝ℎ instead of Chl, but can be converted to Chl based on empirical relationship obtained through in situ 

data sets. Since these algorithms adopt several bio-optical models to describe IOPs, their performance depends 

on the validity of the assumptions related to the parameterization of the IOP spectral shapes of the model. Thus, 

model parameters are often optimized for waters under study before application. However, we should keep in 

mind that these optimized IOPs spectral do not always properly represent all combinations of water constituents. 

GSM 

The GSM01 model was initially developed by Garver and Siegel (1997) and later updated by Maritorena et al. 

(2002). And it was designed for use with SeaWiFS data over non-polar Case 1 waters (Morel and Prieur, 1977). 

The basic idea is to minimize the difference between the modeled and measured below-surface remote-sensing 

reflectance 𝑟𝑟𝑠, using non-linear optimization until a predefined converge threshold is met. In order to simulate 

the 𝑟𝑟𝑠  spectrum, GSM01 incorporates 3 bio-optical models to describe the spectral dependency of the 

absorption coefficient of phytoplankton, 𝑎𝑝ℎ (m-1), and colored and detrital material, 𝑎𝑐𝑑𝑚 (m-1), and of particle 

backscattering coefficient, 𝑏𝑏𝑝 (m-1) respectively with 3 empirical parameters (Table 0.2). However， these 

empirically adjusted parameters optimized for the non-polar case 1 waters may not properly represent the 

combination of water constituents in the AO. This has been confirmed by Maritorena et al. (2010) that the errors 

of the GSM01 model are greater in high-latitude regions, as well as the coastal regions. Besides, Mustapha et 

al. (2012) have also documented that the MAPD of GSM01 reached up to 2.84 in the western AO. 

Besides the original GSM01, there are two Arctic-tuned versions: One is GSM01-MOD (Mustapha et al., 2012) 

which is tuned locally for the western AO. It has been reported to perform quite well in the western AO 

(MAPD=0.81). Whether it can be applied to other Arctic regions, however, needs to be assessed. The other one 

is AO.GSM tuned for the entire AO, with a MAPD of 2.23, which is slightly higher than that of AO.emp (Lewis 

and Arrigo, 2020). 

Table 0.2 Summary of available GSM algorithms. 

 GSM01 GSM01-MOD AO.GSM 

Region Non-polar Southeastern Beaufort Sea Arctic Ocean 

𝑎𝑝ℎ
∗ (412) 0.00665 0.00931 0.28503 

𝑎𝑝ℎ
∗ (443) 0.05582 0.07815 0.21099 

𝑎𝑝ℎ
∗ (490) 0.02055 0.02877 0.089298 

𝑎𝑝ℎ
∗ (510) 0.01910 0.02674 0.066926 

𝑎𝑝ℎ
∗ (555) 0.01015 0.01421 0.029377 

𝑎𝑝ℎ
∗ (670) 0.01424 0.01994 0.15073 

𝑆 0.0206 0.018 0.018996 

𝜂 1.0337 1.4 1.3309 

Reference (Maritorena et al., 2002) (Mustapha et al., 2012) (Lewis and Arrigo, 2020) 
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Fluorescence-based algorithms 

About 10 years after Lorenzen (1966) introduced the idea to determine Chl from in vivo fluorescence, Neville 

and Gower (1977) brought the idea to airborne remote sensing. After a series of successful applications 

(Coleman et al., 2000; Cullen et al., 1997; Fell et al., 1999; Fischer and Kronfeld, 1990; Kiefer et al., 1989) and 

the launch of 3rd generation sensors (e.g., MERIS, MODIS, etc.) which configured with several fluorescence 

wavebands, algorithms based on Sun-induced Chlorophyll 𝑎 fluorescence (SICF) became one of the main 

approaches to retrieve Chl via OCRS. 

As a result of photosynthesis and heat dissipation, only a small fraction (usually less than 5%) of absorbed 

energy is re-emitted as fluorescence (Babin et al., 1996; Huot, 2004). That is to say, in oceanic waters where 

Chl is generally low, the fluorescence signal is too weak to be detected precisely. Therefore, empirical 

algorithms based on blue-to-green band ratio are more efficient for this type of water. While in coastal eutrophic 

waters where Chl is generally high, traditional empirical algorithms perform poorly as the signal in the blue 

range is likely to drop below the limits of detection due to the high absorption by algae and/or CDOM. Thus, 

the use of fluorescence-based approach there is crucial to Chl estimates as it has been demonstrated to be more 

powerful and efficient. 

There are several prominent advantages when utilizing fluorescence-based algorithm to retrieve Chl for coastal 

eutrophic waters: 1) The present fluorescence signal is uniquely attributed by Chl, in other words, it is unlikely 

to be confused with anything else, such as yellow substance or suspended matters (Xing et al., 2007), and it is 

one of the most powerful probes of phytoplankton photosynthesis and physiology (Huot, 2004). 2) When blue 

light signal drops below the detection limits for eutrophic waters with extremely high Chl, unlike other 

algorithms relying on the signal observed in blue, the fluorescence signal is still powerful to probe. 3) The 

impact of atmosphere on the red spectrum is smaller than that on the blue-green, thus fluorescence algorithm is 

less dependent on the accuracy of atmospheric correction. 

FLH is the most widely used approach to describe the satellite-observed fluorescence signal. The basic idea is 

to firstly form the baseline by a linear interpolation of two baseline bands (e.g., 673.75 and 708.75 nm for 

OLCI), and then subtracted from radiance of fluorescence band (e.g., 681.25 nm for OLCI) to obtain the FLH. 

Finally, Chl can be derived by comparing the observed FLH with modeled water-leaving fluorescence radiance 

using the vertical-resolved fluorescence emission model (Huot et al., 2005). However, due to the complex 

physiological mechanisms, particular spectral characteristics and simplified assumptions adopted, there is still 

some problems in the application of FLH to derive Chl for coastal eutrophic waters. Firstly, the bio-optical 

models incorporated in FLH were established for case 1 waters. For instance, the attenuation coefficient for 

upwelling fluoresced radiance was approximated as the sum of water and phytoplankton absorption, which is 

not valid for waters with high CDOM. Besides, since FLH contains information of both fluorescence quantum 

yield (𝜙) and Chl, to obtain information about a given one requires assumptions/measurements of the other one 

(Huot et al., 2005). Therefore, it is difficult to distinguish Chl from 𝜙 to obtain accurate estimates. Furthermore, 
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when Chl increases, the fluorescence peak position tends to shift toward infrared, thus the FLH algorithm would 

be inappropriate or even useless. 

Nonetheless, with the development SICF remote sensing, fluorescence-based algorithm is becoming more and 

more important for coastal eutrophic waters. Although the performance in the AO remains unknown, 

fluorescence-based algorithms have a good prospect in the AO, especially for the turbid and productive coastal 

waters. 

GIOP 

GIOP is also a spectral-matching approach. The only difference between GIOP and GSM is that GIOP uses 𝑎𝑝ℎ 

rather than Chl to describe phytoplankton spectral absorption. Chaves et al. (2015) has applied GIOP to generate 

Chl in the Beaufort and Chukchi Seas through the relationship 𝑎𝑝ℎ(443) = 0.055 Chl, and found that Chl was 

overestimated by 56%. 

QAA 

QAA was developed by Lee et al. (2002) to derive inherent optical properties. It is mathematically simple and 

physically transparent. Basically, it has two consecutive sections in the inversion process. The first section is 

the derivation of coefficients of total absorption and backscattering coefficients, which are of high accuracy 

regardless of water types as there is no involvement of spectral models for non-water constituents. In the second 

section, the derived total absorption coefficient is decomposed into the absorption spectra of three major 

components, namely absorption of CDOM (𝑎𝑐𝑑𝑜𝑚), absorption of non-algal particles (𝑎𝑛𝑎𝑝), and 𝑎𝑝ℎ using 2 

bio-optical models for 𝑎𝑐𝑑𝑚 and 𝑏𝑏𝑝 with empirical parameters as well. Zheng et al. (2014) have shown that the 

absorption-partitioning component of the QAA significantly underestimated 𝑎𝑝ℎ and overestimated 𝑎𝑛𝑎𝑝  in the 

Arctic waters, indicating that these empirical parameters are not suitable for the AO. Note that Chl is not a 

direct retrieval, but it can be converted from 𝑎𝑝ℎ(670) according to their in situ relationship (e.g. Bricaud et al. 

(1995); Bricaud et al. (1998); Bricaud et al. (2004)). The performance of QAA in the AO remains unknown. 
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Table 0.3 Summary of performance of currently available ocean color algorithms in the AO. 

Algorithm Region N Performance 

(Stramska et al., 
2003) 

The north polar 
region of the 
Atlantic Ocean 

50 OC2, OC4: overestimate by a factor of about 2 at low Chl (<0.2 
mg m-3) and underestimate by 20% when Chl>2.5 mg m-3  

Chlor-MODIS: underestimate by nearly a factor of 2 at high 
Chl> 2.5 mg m-3 

(Cota et al., 
2004) 

The Beaufort, 
Chukchi, and 
Labrador Seas 

686 OC4v4: overestimate at Chl<0.6 mg m-3 and underestimate by 
nearly a factor of 2 at high Chl (>0.6 mg m-3) 

(Matsuoka et al., 
2007) 

Western AO 24 OC4v4: overestimate at Chl<0.6 mg m-3 and underestimate at 
Chl>0.6 mg m-3 

OC3M: overestimate at Chl<0.6 mg m-3 and underestimate at 
Chl>0.6 mg m-3 

OC4L: RMSE=0.13 
(Mustapha et al., 
2012) 

The Mackenzie 
Shelf and 
Amundsen Gulf 

44 OC4v6: MAPD=4.83 

OC3Mv6: MAPD=4.80 

OC4E: MAPD=5.20 

OC4L: MAPD=5.64 

OC4P: MAPD=5.27 

GSM01: MAPD=2.84 

42 GSM01-MOD: MAPD=0.81 

(Chaves et al., 
2015) 

The Beaufort and 
Chukchi Seas 

33 OC3M: overestimate by a factor of 2, RMSE=0.295 

32 GIOP: overestimate by 56%, RMSE=0.245 

(Lewis et al., 
2016) 

The Beaufort and 
Chukchi Seas 

62 OC3M: MAPD=1.97, RMSE=4.91 

OC4L: MAPD=1.31, RMSE=4.42 

OC4P: MAPD=7.18, RMSE=803 

OC3L: MAPD=0.82, RMSE=2.9 

(Son and Kim, 
2018) 

Western coastal 
waters of Svalbard 

34 OC2: MAPD=2.42 

OC3Mv6: MAPD=2.09 

OC4v6: MAPD=2.15 

33 OC4L: MAPD=2.62 

31 SC2S: MAPD=0.51 

SC3M: MAPD=0.51 

SC4: MAPD=0.49 

(Lewis and 
Arrigo, 2020) 

Arctic Ocean 501 OC3M: MAPD=2.36 

OC4L: MAPD=2.35 

OC3L: MAPD=2.17 

AO.emp: MAPD=2.16 

AOReg.emp: MAPD=1.97 

418 GSM01: MAPD=2.34 

393 AO.GSM: MAPD=2.23 

 

Neural Network algorithms 

Since the direct use of a purely Radiative Transfer Equation (RTE) approach is hindered by complexity and 

lack of underlying physical models, empirical data driven models are still a good choice if the underlying 
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characteristics of the water properties can be assimilated into the algorithms. One possible solution is the 

application of artificial neural network algorithms which work for both open ocean and complex coastal waters. 

NNs are very generic, accurate, and convenient mathematical models that emulate complicated nonlinear 

input/output relationships through statistical learning algorithms. They approximate the transfer functions 

between a large number of possibly-interconnected inputs and multiple outputs, even for nonlinear and not well 

known relationships. 

For ocean color applications, the NN approaches are complementary to empirical and semi-analytical 

approaches as they are capable of inverting directional water-leaving radiance reflectance directly into 

absorption and scattering coefficients or concentrations of different constituents present in waters using a highly 

non-linear system. But they require a large data set to be trained to determine a set of weights so that the given 

input produced the desired output. Therefore, they are dependent of the simulated data set and the choice of 

architecture inside. In the end, a forward optical model must be used, with assumptions similar to those made 

in semi-analytical algorithms. Besides, the training process is usually computationally expensive and time-

consuming. After training, computation is however very cheap and fast, making NN-based algorithms, such as 

C2RCC (Case 2 Regional CoastColor, Brockmann et al. (2016)), capable for operational and near-real time 

satellite observations. ONNS (OLCI Neural Network Swarm, Hieronymi et al. (2017)) is a novel one coupled 

with several NNs and incorporate water type classification. 

C2RCC Processor 

The MERIS Case-2 water algorithm, originally developed by Doerffer and Schiller (2007), uses a large database 

of radiative transfer simulations inverted by neural networks as basic technology. After amended by a set of 

additional NNs performing specific tasks to cover extreme ranges of scattering and absorption, it has been 

renamed as C2RCC and is applicable to all past and current ocean color sensors. Generally, the C2RCC 

processor relies on a large database of simulated water-leaving reflectances, and related TOA (top-of-

atmosphere) radiances. NNs are trained in order to perform the inversion of spectrum for the atmospheric 

correction, i.e. the determination of the water-leaving radiance from the TOA radiances, the retrieval of IOPs, 

as well as bio-optical components in the water column. It is one of the very few algorithms actually developed 

and validated for Case 2 waters, and it is used to generate the Case 2 water products in Sentinel 3 OLCI (Ocean 

and Land Colour Instrument) standard ESA (European Space Agency) products. 

ONNS 

ONNS is a novel in-water algorithm for the retrieval of ocean color products from Sentinel-3 OLCI images 

using a series of classification-based NNs (Hieronymi et al., 2017). The distinctive feature of this algorithm is 

the wide range of applicability in terms of optical water properties ranging from oligotrophic ocean waters to 

extremely turbid (scattering) or dark (absorbing) waters. However, since it is an in-water processor. Its 

performance relies strongly on the accuracy of atmospheric correction. 
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So far, the existing state-of-the-art NNs have not been tested for Arctic waters. But once appropriately trained, 

NN is believed to make a difference in the current situation of OCRS in the Arctic. 

Table 0.4 Summary of the advantages and disadvantages of 3 types of algorithms. 

Algorithm type Advantages Disadvantages 

Empirical Simple 
Robust 
Computationally simple  

Dependent on simulated data set  
Subject to compatibility 

Semi-analytical Direct 
Multiple retrievals 
Independent of simulated data set 
Non-linear 

Require fundamental relationships of ocean optics 
Convergence problem 
CPU intensive 
Require initial guess 

Neural network Plenty of retrievals 
Always converges 
Non-linear 

Dependent on simulated data set 
Slow training 
CPU intensive 
Choice of architecture 

 

Objectives 

It is known that the operational ocean color algorithms perform poorly in the AO due to its complex bio-optical 

properties that significantly distinguish it from other oceans. Hence, the aim of this thesis (composed of three 

research papers, i.e., chapter 1-3) is to better detect phytoplankton in the Arctic Ocean using OCRS, especially 

for CDOM-rich turbid coastal waters. This thesis is based on the premise that, adding longer wavelengths that 

are less affected by CDOM to semi-analytical algorithms is important to better describe the roles of optical-

significant components, thus leading to better results.  

The main objective of the first chapter is to thoroughly evaluate currently available chlorophyll 𝑎 algorithms 

from the perspective of the impacts by CDM. This is motivated by the fact that one of the main problems of 

OCRS in the AO is the interference of CDM with the phytoplankton signal in the visible spectrum. We want to 

figure out how and to what extent that CDM will bias the estimation of Chl, especially in and around large river 

plumes with high level of CDM. In addition, since Chl is a key variable used for PP estimation, there is a 

complementary objective in this chapter, which is to assess the error propagation from algorithm-derived Chl 

to PP estimates.  

In the second chapter, we tune GSM for the AO by adding 620 nm waveband. Lewis et al., 2020 has tuned 

GSM with original 6 wavebands for the AO, and found that the MAE (mean absolute error) of their tuned 

algorithm AO.GSM improved by 11% when compared with the original version (GSM01). We want to know 

how much further improvement we can make by tuning the GSM through the addition of 620 nm. The reasons 

for doing so are 1) AO.GSM fails too often for waters with high CDM, thus is not robust when applied to coastal 

waters; 2) signal observed at 620 nm is believed to be useful to better distinguishing absorption by 

phytoplankton and CDM, and absorption from scattering, which would in return lead to more accurate retrievals 

for the CDOM-rich coastal waters; 3) signals at 620 nm can be detected by OLCI (Ocean and Land Colour 

Instrument), therefore, the newly tuned GSM model is able to be widely used for satellite applications. 
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The third chapter is to propose a novel full-spectral algorithm by coupling GSM and fluorescence emission 

model. We get an impression that a single algorithm is not likely to work out for the heterogenous AO, at least 

for extremely turbid coastal waters. For instance, in extremely dark/absorbing waters, the blue signal would 

drop below the detection limits, then algorithms rely on blue signal (e.g., empirical algorithms, GSM) become 

useless. Although the fluorescence signal in the red spectrum is powerful to probe, FLH is still not applicable 

as the background signal can not simply assumed spectrally flat. The coupling of GSM with fluorescence-based 

algorithm might be a solution as they complement each other. That it, for oligotrophic waters where 

fluorescence algorithm is weak, we should make full use of GSM, while for eutrophic waters, although GSM 

is not good at, but it is very useful to describe the background signal to make the fluorescence algorithm work. 
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Chapitre 1 Performance of algorithms for retrieving chlorophyll-a 

concentrations in the Arctic Ocean: impact on primary production estimates 

Juan Li, Atsushi Matsuoka, Xiaoping Pang, Marcel Babin 

1.1 Résumé 

La concentration en chlorophylle 𝑎 (Chl) est une variable clé pour estimer la production primaire (PP) à l’aide 

de la télédétection de la couleur de l'océan (OCRS). Une estimation précise de la Chl est essentielle pour mieux 

comprendre les tendances spatio-temporelles de la PP au cours des dernières décennies en raison du changement 

climatique. Cependant, de nombreuses études ont rapporté que les algorithmes de chlorophylle 𝑎 actuellement 

disponibles sont peu performants dans l'océan Arctique (AO), ce qui s'explique principalement par l'interférence 

des matériaux colorés et détritiques (CDM) avec le signal du phytoplancton dans le spectre visible. Afin de 

déterminer comment et dans quelle mesure le CDM pourrait biaiser l'estimation de la Chl, nous avons évalué 

les performances des algorithmes de couleur de l'océan actuellement disponibles: trois algorithmes empiriques 

globaux - OC4v6 (SeaWiFS), OC3Mv6 (MODIS), OC3V (VIIRS), deux algorithmes régionaux - OC4L et 

OC4P, un algorithme arctique AO.emp et deux algorithmes semi-analytiques - GSM01, AO.GSM du point de 

vue de l'impact du CDM. Il a été constaté que plus le niveau de MDP dans la colonne d'eau était élevé, plus il 

biaisait les estimations de la Chl. Pour les eaux avec un niveau élevé de CDM, c'est l'AO.GSM qui était le moins 

biaisé avec une MAE (erreur absolue moyenne) inférieure à 2,02. Cependant, l'AO.GSM présentait 16,2 % 

d'échecs pour ces types d'eau, ainsi, un algorithme de chlorophylle 𝑎 capable de discriminer et de quantifier les 

rôles des constituants non-phytoplanctoniques et donc de générer des estimations de Chl aussi raisonnables que 

possible est toujours attendu dans les recherches futures. En outre, l'analyse de sensibilité de la Chl sur 

l'estimation de la PP en utilisant le modèle de production primaire de l'Arctique résolu spectralement et 

verticalement suggère que les erreurs de la Chl se propagent principalement proportionnellement à la PP, et ont 

été amplifiées de moins de 7%.  
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1.2 Abstract 

Chlorophyll 𝑎 concentration (Chl) is a key variable to estimate primary production (PP) through ocean color 

remote sensing (OCRS). Accurate Chl estimate is crucial for better understanding of spatio-temporal trends of 

PP over recent decades as a consequence of climate change. However, many studies have reported that currently 

available chlorophyll 𝑎 algorithms perform poorly in the Arctic Ocean (AO), which is mainly explained by the 

interference of colored and detrital material (CDM) with phytoplankton signal in the visible spectrum. To 

determine how and to what extent that CDM would bias the estimation of Chl, we evaluated the performances 

of current available ocean color algorithms: three global empirical algorithms - OC4v6 (SeaWiFS), OC3Mv6 

(MODIS), OC3V (VIIRS), two regional algorithms - OC4L and OC4P, one Arctic algorithm AO.emp and two 

semi-analytical algorithms - GSM01, AO.GSM from a perspective of the impact of CDM. It was found that the 

higher the level of CDM in the water column, the larger it would bias Chl estimates. For waters with high CDM, 

it was AO.GSM that was least biased with MAE (mean absolute error) less than 2.02. However, AO.GSM had 

16.2% failures for such water types, thus, chlorophyll 𝑎 algorithm that is capable to discriminate and quantify 

the roles of non-phytoplankton constituents and hence generate as much as reasonable Chl estimates is still 

expected in future researches. In addition, sensitivity analysis of Chl on PP estimation using the Arctic 

spectrally- and vertically-resolved primary production model suggests that errors in Chl mostly propagate 

proportionally to PP, and were amplified less than 7%. 

  



 

 19 

1.3 Introduction 

The Arctic Ocean (AO) is one of the most sensitive areas to ongoing global warming on Earth. As sea ice extent 

in the AO continues to decrease, light penetration into the ocean increases which concomitantly increases the 

growth of phytoplankton when sufficient amounts of nutrients are available. As a consequence, primary 

production (PP) of the AO is likely to increase as many ocean color remote sensing (OCRS) studies have 

suggested (Ardyna and Arrigo, 2020; Arrigo et al., 2008; Bélanger et al., 2013a; Pabi et al., 2008). Chlorophyll 

𝑎 concentration (Chl), a proxy of phytoplankton biomass, is a key variable used for PP estimate through OCRS. 

Accurate Chl estimate is crucial for better understanding of spatio-temporal trends of PP over recent decades 

as a consequence of climate change. 

Due the unique bio-optical properties of the AO, operational chlorophyll 𝑎 algorithms perform poorly in the 

AO as multiple studies have suggested. Stramska et al. (2003) has reported that the NASA global algorithms 

(i.e., OC2 and OC4 developed for SeaWiFS (Sea-viewing Wide Field-of-view Sensor) overestimate Chl by a 

factor of about 2 when Chl<0.2 mg m-3 in the north polar region of the Atlantic Ocean. Later, OC4v4 has been 

documented to overestimate Chl in the low range (<0.6 mg m-3) but underestimate at the other ranges (Cota et 

al., 2004; Matsuoka et al., 2007) in the Western AO. The latest version, OC4v6, obtained 4.83 and 2.15 MAPDs 

(mean absolute percentage difference) in the Mackenzie Shelf and Amundsen Gulf and coastal waters of 

Svalbard, respectively (Mustapha et al., 2012; Son and Kim, 2018). As for MODIS (Moderate-resolution 

Imaging Spectroradiometer) algorithms, chlor-MODIS leads to two-fold underestimation when Chl>2.5 mg m-

3 in the north polar region of the Atlantic Ocean (Stramska et al., 2003). OC3M shows an overestimation when 

Chl<0.6 mg m-3 for the western AO (Matsuoka et al., 2007), while in the Chukchi Sea, it tends to lead an 

underestimation when Chl<0.9 mg m-3 but an overestimation at the other values (Lewis et al., 2016). The 

MAPDs of OC3M-derived Chl are 2.0 for the Beaufort and Chukchi Seas (Chaves et al., 2015), 2.09 for the 

coastal waters of Svalbard (Son and Kim, 2018), 4.8 for the Mackenzie Shelf and Amundsen Gulf (Mustapha 

et al., 2012), and 2.36 at a pan-Arctic scale (Lewis and Arrigo, 2020). The MERIS (Medium Resolution Imaging 

Spectrometer) algorithm OC4E generates a MAPD of 5.2 in the Mackenzie Shelf and Amundsen Gulf 

(Mustapha et al., 2012). 

As for Arctic empirical algorithms, there is one Arctic algorithm AO.emp (Lewis and Arrigo, 2020) and several 

regional algorithms: OC4P (Wang and Cota, 2003), OC4L (Wang et al., 2005) and OC3L (Lewis et al., 2016). 

Usually, OC4P performs worse than OC4L as many studies have reported (Lewis et al., 2016; Matsuoka et al., 

2007; Mustapha et al., 2012). OC4L outperforms global empirical global algorithms in the western Arctic Ocean 

(Lewis et al., 2016; Matsuoka et al., 2007), but the contrary is showed for the Mackenzie Shelf and Amundsen 

Gulf (Mustapha et al., 2012). While at a pan-Arctic scale, AO.emp outperforms OC3L and OC4L, but the 

MAPD is still as high as 2.16 (Lewis and Arrigo, 2020). 

In addition to these empirical ocean color algorithms, semi-analytical algorithms, such as GSM01 (non-polar 

case 1 water, Maritorena et al. (2002)) and AO.GSM (tuned version for the AO, Lewis and Arrigo (2020)) do 

not work well in the AO either. It has been documented that GSM01 underestimates Chl by ~50% for the 
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Beaufort and Chukchi Seas (Wang and Cota, 2003), but overestimates Chl by a factor of 2 in Mackenzie Shelf 

and Amundsen Gulf (Mustapha et al., 2012). Although AO.GSM has better performance than GSM01 in the 

AO, but the MAPD reaches up to 2.23 which is larger than the empirical algorithm AO.emp. 

These poor performances are mainly due to the interference with phytoplankton signal in the visible spectrum 

by high level of CDM (colored and detrital material) in the water column as multiple studies have suggested 

(Lewis et al., 2016; Lewis and Arrigo, 2020; Matsuoka et al., 2012; Matsuoka et al., 2011; Matsuoka et al., 

2007). However, how and to what extent it will bias Chl estimates remain unknown. In addition, Chl as a key 

variable used for PP estimates, the impact of algorithm-derived Chl on PP estimates needs to be investigated as 

well. 

To address these issues, we first built an in situ high-quality bio-optical data set at a Pan-Arctic scale. Based on 

which, the objectives of this study were to 1) evaluate the performances of current available ocean color 

algorithms from a perspective of the impacts from CDM; 2) determine how errors of algorithm-derived Chl 

would propagate to PP estimates using an Arctic spectrally- and vertically-resolved primary production model. 
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1.4 Data 

1.4.1 In situ data 

The Arctic data set used for algorithm evaluation was composed of the following five cruises: the France-

Canada-USA joint Arctic campaign MALINA (http://www.obs-vlfr.fr/proof/php/malina/), ICESCAPE 

(Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment, 

https://seabass.gsfc.nasa.gov/) 2010 and 2011, Tara Oceans Polar Circle expedition 

(https://oceans.Taraexpeditions.org/), and GREEN EDGE (http://www.obs-vlfr.fr/proof/php/GREENEDGE/). 

Sampling of MALINA and GREEN EDGE (ship operation) was conducted aboard the Canadian icebreaker 

CCGS Amundsen. The two ICESCAPEs were aboard the US icebreaker USCGC Healy. The Tara expedition 

was conducted using the French schooner, Tara. 

 

Figure 1.1 Map of the Arctic Ocean showing the locations of stations from various datasets. 

 

Table 1.1 Summary of in situ datasets. 

Data Station Year Month Region Source 

MALINA 37 2009 July-August Southern Beaufort Sea SeaBASS 
ICESCAPE2010 34 2010 June-July Chukchi and Beaufort Sea SeaBASS 
ICESCAPE2011 18 2011 June-July Chukchi and Beaufort Sea SeaBASS 
TARA 27 2013 May-November Polar circle SeaBASS 
GREEN EDGE 34 2016 June-July Baffin Bay Individual 
PPARR 973 1959-2011 August Arctic Ocean NOAA NCEI 
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Among the measured variables, remote-sensing reflectance 𝑅𝑟𝑠(𝜆) and Chl are the two most important variables. 

In the present study, all 𝑅𝑟𝑠(𝜆) were determined with the same instrument, the Compact-Optical Profiling 

System (C-OPS, Biospherical Instrument Inc.). Specific information about the C-OPS is provided by Hooker 

et al. (2013). Briefly, the C-OPS consists of two 7 cm diameter radiometers: one measures in-water upwelling 

radiance 𝐿𝑢(𝜆, 𝑧) and the other measures in-water downward irradiance 𝐸𝑑(𝜆, 𝑧), pressure/depth, and dual axes 

tilts. The above-water downward solar irradiance (𝐸𝑠(𝜆)) was also measured to account for changes in the 

incident light field during in-water profiles. All radiometers are equipped with 19 state-of-the-art 

microradiometers spanning the 320–780 nm spectral range, and only data with tilt angle less than 5∘ were used. 

Subsurface 𝐿𝑢
−(𝜆) and 𝐸𝑑

−(𝜆) were derived by loess extrapolating 𝐿𝑢(𝜆, 𝑧) and 𝐸𝑑(𝜆) through progressively 

optimized depth interval within the first optical depth. Finally, 𝑅𝑟𝑠(𝜆)  was calculated as: 𝑅𝑟𝑠(𝜆) =

0.52𝐿𝑢
−(𝜆)/𝐸𝑑

−(𝜆). Details of the process protocols are described in Antoine et al. (2013). Only common 

wavebands (412,443,490,510,555,670 nm) of these 5 cruises were used in this study. 

Chl was determined by High-Performance Liquid Chromatography (HPLC). Generally, 25 mm GF/F filters 

were used to collect phytoplankton from seawater samples. Filters were extracted in 100% methanol, disrupted 

by sonication and clarified by filtration (GF/F Whatman) before being analyzed by HPLC later in the laboratory 

to obtain separated pigments. HPLC measurements for ICESCAPEs samples followed the protocols described 

in Van Heukelem and Thomas (2001), while for MALINA, Tara-Arctic, and GREEN EDGE samples, we 

applied a protocol modified from Ras et al. (2008) to increase sensitivity in the analysis of ultra-oligotrophic 

waters. Finally, total chlorophyll-a pigment concentration was defined as the sum of mono and divinyl 

chlorophyll 𝑎 concentrations, chlorophyllide a and the allomeric and epimeric forms of chlorophyll 𝑎 (Hooker 

and Zibordi, 2005; Reynolds et al., 2016). 

Absorption coefficient of colored detrital material (𝑎𝑐𝑑𝑚(𝜆)) is the sum of absorption coefficient of colored 

dissolved organic matter (𝑎𝑐𝑑𝑜𝑚(𝜆)) and non-algal particles (𝑎𝑛𝑎𝑝(𝜆)). 𝑎𝑐𝑑𝑜𝑚(𝜆) was measured using a liquid 

core waveguide system, UltraPath (WPIInc.,http://www.wpi-europe.com/products/spectroscopy/ultrapath.htm) 

following (Bricaud et al., 2010; Matsuoka et al., 2012). 𝑎𝑛𝑎𝑝(𝜆) was determined following the methodology 

described in (Bricaud et al., 2010; Kishino et al., 1985; Stramski et al., 2015). Note that, in this study, 

𝑎𝑐𝑑𝑚(443) was only used for classification purpose. 

Data collected through PPARR in this study was used for comparison purpose with the satellite climatology 

products only. Briefly, at each station, surface Chl was measured via fluorometric method between 0 and 5 m 

depth, while PP was measured at various depths using 13C- or 14C-labeled compounds. Details were described 

at https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0161176. Numbers of 

stations, sampling dates, sampling regions and data source from all expeditions are summarized in Table 1.1, 

the locations of sampling stations are shown in Figure 1.1. 
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1.4.2 Satellite products 

OC-CCI (Ocean Color Climate Change Initiative, https://esa-oceancolour-cci.org/) L3b daily chlorophyll 𝑎 

products and reflectance products, MODIS atmospheric products (MYD08, 

https://ladsweb.modaps.eosdis.nasa.gov) on August from 2003 to 2018 were downloaded to generate 

climatology Chl and PP products for the AO. Note that the OC-CCI chlorophyll 𝑎 products are merged products 

based on SeaWiFS, MERIS, aqua-MODIS and VIIRS (Visible Infrared Imaging Radiometer Suite) data to get 

as many as pixels, Chl values are calculated using blending algorithms based on the water types as documented 

in ATBD-OCAB (Algorithm Theoretical Baseline Document (Ocean Color Algorithm Blending)) (Jackson and 

Grant, 2016), which is substantially an empirical approach. 
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1.5 Methods 

1.5.1 Descriptions of existing operational ocean color algorithms 

In this study, global empirical algorithms for SeaWiFS (OC4v6), MODIS (OC3Mv6), VIIRS (OC3V), two 

regional empirical algorithms - OC4L and OC4P, one AO empirical algorithm AO.emp, and two semi-

analytical algorithm GSM01 and GSM.AO were evaluated. 

Empirical algorithms 

All empirical algorithms use polynomial functions to fit the relationship between Chl and the maximum blue-

to-green ratio of remote sensing reflectance: 

Chl = 10𝑎0+𝑎1𝑅+𝑎2𝑅2+𝑎3𝑅3+𝑎4𝑅4
     (1) 

Where 𝑅 is the base 10 logarithm of the maximum blue-to-green band ratio of 𝑅𝑟𝑠  and 𝑎𝑖  are empirically-

derived coefficients listed in Table 1.2. 

Note that wavelengths used for the blue and green bands varies slightly among sensors (see Table 1.2) and they 

were designed for different water bodies. OC3Mv6, OC4v6, and OC3V were obtained using a global in situ 

data set mainly from Case 1 and non-polar waters (O’Reilly et al., 2000; O’Reilly et al., 1998). OC4P and OC4L 

were tuned using in situ measurements made in the Canadian Arctic waters (in the vicinity of Resolute Bay and 

in Labrador sea, Wang and Cota (2003)) and the western Arctic (Chukchi and Beaufort Seas, Cota et al. (2004)), 

respectively. AO.emp was optimized using a large data set compiled at a pan-Arctic scale (K. Lewis et al., 2020; 

Lewis and Arrigo, 2020). 

Table 1.2 Band configurations and coefficients of the empirical chlorophyll ɑ algorithms evaluated. 

Algorithms Blue Green a0 a1 a2 a3 a4 

OC3Mv6 443>488 547 0.2424 -2.7423 1.8017 0.0015 -1.2280 
OC3V 443>486 551 0.2228 -2.4683 1.5867 -0.4275 -0.7768 
OC4v6 443>490>510 555 0.3272 -2.9940 2.7218 -1.2259 -0.5683 
OC4P 443>490>510 555 0.2710 -6.2780 26.29 -60.94 45.31 
OC4L 443>490>510 555 0.5920 -3.6070 - - - 
AO.emp 443>490>510 555 0.1746 -2.8293 0.6592 - - 

 

Semi-analytical algorithm - GSM 

The GSM semi-analytical ocean color model was initially developed by Garver and Siegel (1997) and later 

updated by Maritorena et al. (2002). It was initially designed for SeaWiFS over non-polar Case 1 waters. The 

basic principle is to minimize the difference between the measured and modeled below-surface remote-sensing 

reflectance 𝑟𝑟𝑠  using non-linear optimization until a predefined convergence threshold is met. A detailed 

description of the GSM01 model and values of model parameters can be found in Maritorena et al. (2002). 

The GSM model can be easily tuned by reparameterization model parameters using bio-optical data. Lewis and 

Arrigo (2020) optimized the model parameters using a genetic optimization method for the AO using the Arctic 

dataset described in Lewis et al. (2020), and the tuned model was named AO.GSM. They found that the 
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optimized parameters represent the unique bio-optical characteristics of the AO more accurately. Details of the 

genetic optimization procedure and parameter values were described in Lewis and Arrigo (2020). 

1.5.2 Evaluation criteria 

The performance of each ocean color algorithm was assessed following the metrics described in Seegers et al. 

(2018). First is the number of effective retrievals. For example, GSM01 might generate negative Chl values due 

to the optimization regime. Next two metrics are bias and mean absolute error (MAE) which have been proven 

to be robust and straightforward quantities for evaluating ocean color algorithms with non-Gaussian 

distributions and outliers (Seegers et al., 2018). 

bias = 10mean(𝑙𝑜𝑔10(𝑋𝑀)−𝑙𝑜𝑔10(𝑋𝐸))     (2) 

MAE = 10mean|𝑙𝑜𝑔10(𝑋𝑀)−𝑙𝑜𝑔10(𝑋𝐸)|     (3) 

Bias illustrates the systematic direction of error, as either underestimation or overestimation on average. A bias 

close to 1 means minimum bias, while a value lower than 1 reflect underestimation. A bias of 0.8 for instance 

reflects 20% underestimation on average. The same reasoning holds for overestimations. MAE indicates the 

random error. It is always larger than 1. For instance, a MAE of 1.2 means average 20% relative error in 

retrievals compared to measured values. 

The fourth metric is wins, which is obtained through pair-wise comparison. That is, for each pair of estimated 

and measured variable, residuals (defined as estimated value minus measured value) for model A and model B 

are calculated, the model with lower residual is the winner, model failures are directly designated as loser. Wins 

is the percentage of winners to the total number of pairs, which can be used to tell which model performs better 

and help to decide which model should be used in applications. 

Besides, slope and coefficient of determination (𝑟2) for log-transformed variable were also produced via type 

II reduced major axis (RMA) regression (Legendre, 1998) as complementary metrics. 

1.5.3 Classification 

Based on measured median value of Chl (0.35 mg m-3), we split the in situ dataset by half. For the part with Chl 

≤ 0.35 mg m-3, samples with 𝑎𝑐𝑑𝑚(443) ≤ 0.067 m-1 were classified as chl.acdm, the others with 𝑎𝑐𝑑𝑚(443) > 

0.067 m-1 were regarded as chl.ACDM. The same procedure was applied to the other part of the dataset with 

Chl > 0.35 mg m-3. Therefore, we got CHL.acdm and CHL.ACDM. The illustration of the classification 

approach is summarized in Table 1.3. 

Table 1.3 Classification criteria. 

Water type Threshold Number 

chl.acdm Chl  0.35 mg m-3, 𝑎𝑐𝑑𝑚(443)  0.067 m-1 48 
CHL.acdm Chl > 0.35 mg m-3, 𝑎𝑐𝑑𝑚(443)  0.067 m-1 26 
chl.ACDM Chl  0.35 mg m-3, 𝑎𝑐𝑑𝑚(443) > 0.067 m-1 26 
CHL.ACDM Chl > 0.35 mg m-3, 𝑎𝑐𝑑𝑚(443) > 0.067 m-1 48 
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1.5.4 Primary production model 

The spectrally-resolved primary production model for the Arctic waters developed by Bélanger et al. (2013a) 

was adopted in the present study. One advantage of this model relative to others (Arrigo et al., 2008; Pabi et al., 

2008; Perrette et al., 2010) is the consideration of the propagation of spectral light in the atmosphere and the 

ocean using methods appropriate for both Case 1 and Case 2 waters. In recent years, this model has been further 

optimized to account for subsurface chlorophyll 𝑎 maxima often observed in the AO. This was achieved using 

the statistical relationships between Chl at surface and at depth published by Ardyna et al. (2013). Besides, 

instead of using 𝑅𝑟𝑠 and Chl data from the GlobColour dataset as in Bélanger et al. (2013a), in the present study, 

𝑅𝑟𝑠(𝜆) merged products based on SeaWiFS, MERIS, aqua-MODIS and VIIRS data from OC-CCI were used, 

and Chl products were derived through the merged 𝑅𝑟𝑠(𝜆)  products using the chlorophyll 𝑎  algorithms 

mentioned above. 

The structure of this spectrally- and vertically-resolved Arctic primary production model is illustrated in Figure 

1.2. Basically, the daily rates of the carbon fixation PP in unit of mgC m-2 d-1 by phytoplankton cells is estimated 

using the classical photosynthesis versus light model (Platt and Gallegos, 1980): 

PP = PB
max ∫ ∫ Chl

𝑧100%

𝑧0.1%

24ℎ

𝑡=0
(𝑧)(1 − 𝑒

−
PUR(𝑧,𝑡)
𝐸𝑘(PUR))d𝑧d𝑡     (4) 

Where PB
max (mgC mgChl-1 h-1) is the light-saturated chlorophyll-normalized carbon fixation rate, which is 

assumed constant at 2.0 mgC mgChl-1 h-1 (see Bélanger et al., 2013a and references therein). Chl(𝑧)  is 

chlorophyll 𝑎 concentration at a given depth 𝑧, which can be propagated from surface values following Ardyna 

et al. (2013). PUR(𝑧, 𝑡) is the photosynthetically usable radiation expressed in µmol photons m-2 s-1 (Morel, 

1978), which can be estimated using input atmospheric data and satellite-observed 𝑅𝑟𝑠(𝜆), and the spectral 

model of light propagation through the atmosphere and ocean has been described in Bélanger et al. (2013a). 

𝐸𝑘(𝑧) (µmol photons m-2 s-1) is the saturation irradiance, parameterized here as a function of PUR(𝑧, 𝑡) 

(Bélanger et al., 2013a). In this study, in order to perform sensitivity analysis to assess the impact of Chl on PP 

estimates, all the other inputs and parameters except Chl were kept unchanged. 
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Figure 1.2 Structure of the spectrally- and vertically-resolved Arctic primary production model. Yellow, gray, 

blue, green and red frames refer to model inputs, methods described in literature, intermediate variables, 

constant values and photosynthesis model, respectively (by courtesy of Marcel Babin and Simon Bélanger). 

 

1.5.5 Climatology products 

Chl climatology product on August was obtained by averaging all the CCI daily Chl products collected in 

August from 2003 to 2018. While for PP climatology product in August, firstly, each daily Chl product acquired 

in August was passed into the Arctic primary production model (described in section 1.5.4) along with 

corresponding daily reflectance product and MODIS atmospheric product to derive daily PP product. Then all 

daily PP products were averaged to obtain the climatology PP product. 
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1.6 Results 

1.6.1 Overview of product performances 

Given the lack of in situ and satellite matchups, to get a general insight of the accuracy of Chl product at a pan-

Arctic scale, climatology Chl product in August (Figure 1.3(a)) was compared with the in situ Chl 

measurements taken in August from PPARR by a kernel density plot (Figure 1.3(b)). It can be seen that the Chl 

product shows a general trend of overestimation (median Chl = 0.66 mg m-3) when compared with in situ values 

(median Chl = 0.40 mg m-3), mainly in the section where Chl < 1.2 mg m-3 (accounts for nearly 2/3 of all pixels). 

Besides, there is a small percentage of noticeable overestimation in the range from 4.0 to 11.0 mg m-3. 

Combining Chl distribution showed in Figure 1.3(a), this part of overestimations happened along the eastern 

coastal areas where there are large amounts of CDM resulting from river discharge. 

The corresponding climatology PP product is shown in Figure 1.3(c), and the density curve compared with PP 

measurements from PPARR (same pairs of Chl measurements showed in Figure 1.3(b)) is illustrated in Figure 

1.3(d). We can see that PP estimates were also overestimated overall (median PP = 0.33 gC m-2d-1) when 

compared with in situ values (median PP = 0.22 gC m-2d-1). There is only one crest located at 0.33 gC m-2d-1. 

1/3 of all the PP estimates in the lower range (from 0.007 to 0.2 gC m-2d-1) were overestimated, which was 

likely due to the overestimation of input Chl. In the higher range (PP > 0.6 gC m-2d-1), another 1/3 PP estimates 

were however underestimated. The overestimation on the left side and underestimation on the right side 

steepened the crest, making the density at the crest is nearly 8 times that of the in situ one. It is noticeable that 

the overestimation of Chl estimates along the eastern coastal areas did not lead to overestimation in PP estimates. 

It is likely that the high proportion of CDM in the water column highly absorbs the sunlight, which in return 

resulting in less PUR for the absorption by phytoplankton (Hessen et al., 2010). 
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Figure 1.3 (a) Climatology chlorophyll product in August derived through empirical blended algorithm, (c) 

climatology primary product in August produced through the Arctic primary production model using OC-CCI 

daily reflectance and chlorophyll products. Kernel density comparison of Chl (b), PP (d) between 

measurements from PPARR and climatology product. 

 

1.6.2 Bio-optical algorithms evaluations 

Chl is one of the most critical variables influencing PP estimates (Bélanger et al., 2013a). Because several 

chlorophyll 𝑎 algorithms are available, the performance of those chlorophyll 𝑎 algorithms need to be examined 

first. Figure 1.4 shows the comparison between estimated and measured Chl using various algorithms 

mentioned above for the 4 water types (see definition in section 1.5.3). Overall, all the algorithms showed a 

trend of overestimation. OC4v6 and OC4L overestimated the most by 132%. Chl derived from OC4P was the 

least biased but had the largest MAE (Table 1.4). The MAE of AO.GSM was the smallest, followed by GSM01 

and AO.emp, and lastly by the three global algorithms. It was noticeable that the MAE of OC4L was larger 

than that of the global algorithms, indicating that regional Arctic empirical algorithm was not suitable for the 
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pan-Arctic Ocean because regional algorithms were subject to the compatibility between the waters under study 

and the waters from which data were obtained for algorithm development. As for the performance of regression, 

AO.GSM has the largest 𝑟2, but the slope is not as close to 1 as the other algorithms except the two Arctic 

regional algorithms OC4P and OC4L. 

To rank the overall performances of all the algorithms tested, percent wins between all possible pairs of 

algorithms were calculated (Table 1.5). Among the three global algorithms, OC3Mv6 performed the best and 

OC4v6 was the worst. They all outperformed the two regional Arctic algorithms, but lost when compared with 

AO.emp, GSM01 and AO.GSM. OC4L only performed better than OC4P which had the worst performance 

among all. As for GSM01, it outperformed the other algorithms except AO.emp and AO.GSM. Percent wins of 

AO.emp was equal to that of AO.GSM. However, AO.emp had larger overall wins (65.6%). Thus AO.emp was 

the best algorithm of all. 

When look closer between water types, symbols represent waters with high CDM (i.e., ‘diamonds’ for 

chl.ACDM and ‘plus’ for CHL.ACDM) are more scattered distributed than waters with low CDM for all 

empirical algorithms and GSM01 (Figure 1.4). While this phenomenon is not obvious for AO.GSM. That was 

because for waters with high CDM, AO.GSM obtained 24 failures (accounts for 16.2% of the total sample) 

which were excluded for comparisons (see Figure 1.6 and Table 1.6). In other words, AO.GSM is more likely 

to fail for waters with high CDM. These findings indicate that the high proportion of CDM in the water column 

is the main obstacle for the success of these empirical and semi-analytical algorithms. 
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Figure 1.4 Comparisons between estimated and measured Chl for individual chlorophyll ɑ algorithm at 4 

water types (see context for definition). 

 

Table 1.4 Performance metrics of the various algorithms evaluated. 

Algorithm n bias MAE Overall Wins (%) r2 slope 

OC3Mv6 148 2.22 2.68 48.9 0.49 0.86 
OC3V 148 2.17 2.64 48.0 0.49 0.83 
OC4v6 148 2.32 2.75 37.2 0.52 0.83 
OC4P 112 1.08 3.16 38.8 0.21 1.61 
OC4L 148 2.30 2.82 43.2 0.55 1.28 
AO.emp 148 1.36 2.15 65.6 0.54 0.92 
GSM01 141 1.59 2.08 58.6 0.62 0.97 
AO.GSM 124 1.24 1.73 58.0 0.79 0.77 
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Table 1.5 Algorithm performance assessed through pair-to-pair comparison. 

 Percent Wins 

Algorithm OC3Mv6 OC3V OC4v6 OC4P OC4L AO.emp GSM01 AO.GSM 

OC3Mv6 - 46.6 27.7 39.9 41.9 72.3 66.9 62.2 
OC3V 53.4 - 29.1 39.2 42.6 71.6 67.6 60.8 
OC4v6 72.3 70.9 - 39.2 46.6 73.0 73.0 64.9 
OC4P 60.1 60.8 60.8 - 56.1 67.6 60.8 55.4 
OC4L 58.1 57.4 53.4 43.9 - 67.6 63.5 53.4 
AO.emp 27.7 28.4 27.0 32.4 32.4 - 42.6 50.0 
GSM01 33.1 32.4 27.0 37.2 36.5 57.4 - 59.5 
AO.GSM 37.8 39.2 35.1 39.9 46.6 50.0 35.8 - 

Overall Wins 48.9 48.0 37.2 38.8 43.2 65.6 58.6 58.0 
Failure    36 (24.3%)   7 (4.7%) 24 (16.2%) 

 

Boxplots were deployed to quantify the difference between measured and estimated Chl by individual algorithm 

for each water type (Figure 1.5). The MAEs were also labeled. Generally, the MAE of every algorithm (except 

OC4P and AO.emp) was the smallest for CHL.acdm (1.33 to 1.44), but the largest for chl.ACDM (2.02 to 7.11). 

Combined with the finding that the MAE for chl.acdm was smaller than that for CHL.ACDM, we can see that 

the higher the level of CDM relative to Chl, the larger the uncertainties on Chl estimates. Given OC4P had the 

largest MAE (3.16) and failures (24.3%), it was excluded from further analysis. For chl.acdm, the three global 

algorithms had the highest MAE up to 2.86, followed by OC4L, GSM01 and AO.GSM. AO.emp got the lowest 

MAE (1.75), however, it obtained the largest MAE (2.01) for CHL.acdm, which was confirmed by the notable 

underestimation showed by the ‘x’ symbols in Figure 1.4. MAEs of the other algorithms were just around 1.4 

for CHL.acdm, with GSM01 being the smallest (1.33). As for chl.ACDM and CHL.ACDM, OC4L obtained 

the largest MAEs (7.11 and 3.48 respectively), indicating that this regional Arctic empirical algorithm is more 

inapplicable for CDM-rich waters than the global empirical algorithms. AO.emp got the smallest MAE among 

all empirical algorithms tested for waters with high CDM, but the contrary was found for CHL.acdm. It seems 

that empirical algorithms only consider the main characteristic of the water bodies, thus not able to work well 

for all types of waters. The two GSM models had the smallest MAEs for chl.ACDM, and obtained quite good 

performance for other water types. Although these semi-analytical algorithms tend to generate failures for 

CDM-rich waters, they seem to be a solution for waters had heterogenous bio-optical properties, such as the 

AO. 

AO.GSM obtained smaller MAEs than GSM01 for waters with high CDM, but it also had 11.5% more failures 

than GSM01. It is hard to tell which one performs better for such water types. Therefore, the two GSM models 

were taken out for further statistic comparisons for each water type. Table 1.6 summarizes the performance 

metrics of GSM01 and AO.GSM for each water type. According to the wins, AO.GSM outperformed GSM01 

for chl.acdm and chl.ACDM, but lost for CHL.acdm and CHL.ACDM. Note that even though AO.GSM had 

11 failures (accounted 42.3%), it still worked better than GSM01. Figure 1.6 shows the pair-to-pair comparisons, 

the diamond symbols represent the samples which failed with AO.GSM but succeeded with GSM01. They all 

belonged to water types with high CDM, and most of them located far from the 1:1 regression line. When 

excluding the diamonds, AO.GSM outperformed GSM01 with 71.0% wins (see Table 1.6). It seems that 

AO.GSM has the ability to eliminate retrievals with poor performance to remain robust. 
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Considering the overall wins, AO.emp was the best chlorophyll 𝑎 algorithm tested, followed by GSM01 and 

AO.GSM. For water types with high proportion of CDM, the existence of CDM biased the two Arctic regional 

algorithms OC4P and OC4L most, followed by the three global algorithms, and lastly by AO.emp and the two 

GSM models. AO.GSM performed better than GSM01 for chl.ACDM, but worse for CHL.ACDM. 

 

Figure 1.5 Boxplots of absolute difference between measured and estimated Chl (red), between PP derived 

using measured Chl and PP estimated from algorithm-derived Chl (green) for 4 water types (see context for 

definition). Labels above boxplots are MAE, below are numbers of samples classified into a certain water 

type. 

 

Table 1.6 Performance metrics of GSM01 and AO.GSM by individual water type and across all water types. 

Water Type Algorithm n bias MAE Wins (%) Failure r2 slope 

chl.acdm 
GSM01 48 1.96 1.99 6.2  0.71 0.85 
AO.GSM 48 1.74 1.78 93.8  0.75 0.92 

CHL.acdm 
GSM01 26 0.83 1.33 69.2  0.52 1.09 
AO.GSM 26 0.74 1.41 30.8  0.50 1.11 

chl.ACDM 
GSM01 24 2.10 2.72 34.6 2 (7.7%) 0.08 1.03 
AO.GSM 15 2.02 2.02 57.7 11 (42.3%) 0.65 1.25 

CHL.ACDM 
GSM01 43 1.57 2.45 47.9 5 (10.4%) 0.27 1.03 
AO.GSM 35 0.92 1.81 41.7 13 (27.1%) 0.47 0.79 

Across all 
GSM01a 124 1.47 1.81 29.0  0.80 0.81 
AO.GSM 124 1.24 1.73 71.0  0.79 0.77 

asubset of GSM01-derived retrievals with common data to that of AO.GSM. 
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Figure 1.6 Pair-to-pair comparison between GSM01 and AO.GSM, circles and x symbols refer to the same 

data pairs derived from GSM01 and AO.GSM, diamonds refer to the data failed using AO.GSM but 

succeeded using GSM01. 

 

1.6.3 Error propagation from Chl to PP 

A sensitivity analysis of PP on measured and various algorithms-derived Chl was applied using the Arctic 

primary production model described above to quantify the error propagation. Briefly, measured Chl and 𝑅𝑟𝑠(𝜆) 

along with the temporally and geographically matched atmospheric parameters were put into the Arctic primary 

production model to derive spectrally- and vertically-resolved PP (named as PP-Ref). Then only the Chl input 

was replaced by the Chl estimates derived through various chlorophyll 𝑎 algorithms mentioned above using 

measured 𝑅𝑟𝑠(𝜆) to obtain PP estimates (named as PP-Algorithm, for instance, PP generated via OC4L derived 

Chl was called PP-OC4L). Note that, since the primary product model is a bin-based approach, several samples 

might project to a same bin, therefore the total number of PP estimates was 135 rather than 148. Figure 1.7 

shows the comparisons between PP-ref and each PP-Algorithm. Generally, the distributions of PP were more 

contracted than that of Chl, and the bounds of water types became vague. For instance, some ‘plus’ symbols 

which represented water type CHL.ACDM went to the left of some ‘circle’ symbols which referred to water 

type chl.acdm, indicating that PP was suppressed in waters with high proportion of CDM even though Chl level 

was high. 

The same boxplots of absolute difference between PP-ref and PP-Algorithm are showed in Figure 1.5. It can be 

seen that the absolute differences followed the trend of Chl, and the rankings of MAE kept the same as that of 

Chl but with relative larger values. Taking the best algorithm AO.emp as an example, the MAEs of PP were 

0.5%, 3.4%, 5.1%, and 3.9% larger than that of Chl for water type chl.acdm, CHL.acdm, chl.ACDM and 

CHL.ACDM respectively. The amplifications of difference from Chl to PP were larger in waters with relative 
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high proportion of CDM. However, considering all the algorithms, the amplification of difference from Chl to 

PP did not exceed 7%. 

 

Figure 1.7 Comparisons between PP estimated from in situ Chl and PP estimated from algorithm-derived Chl 

for 4 water types (see context for definition). 
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1.7 Discussion 

1.7.1 Chl retrieval error 

Difference between simulated and measured Chl is due to the fact that these chlorophyll 𝑎 algorithms are not 

capable to properly estimate the biomass for the AO with distinguish bio-optical characteristics. 

For the three global chlorophyll 𝑎 algorithms - OC3Mv6, OC3V and OC4v6, because the absorption properties 

of the AO are fundamentally different from typical Case 1 waters, the relationship between 𝑅𝑟𝑠  and Chl 

assumed for global waters are problematic for the AO. Many studies (Bélanger et al., 2008; Matsuoka et al., 

2013, 2012; Matsuoka et al., 2011; Matsuoka et al., 2007; Mustapha et al., 2012; Wang et al., 2005) have 

documented that the non-water absorption of the AO is dominated by CDOM even at the phytoplankton 

absorption peak at 443 nm. Thus, the presence of CDOM at levels higher than the global mean will reduce the 

𝑅𝑟𝑠 signal at blue wavelengths due to its strong absorption. As a consequence, global empirical algorithms using 

maximum blue-to-green 𝑅𝑟𝑠 ratio tend to have lower maximum band ratio, leading to an overestimation of Chl. 

Generally, the predominant influence of CDOM is to increase the intercept of the in situ versus algorithm-

derived Chl regression and only minimally change the slope (Lewis et al., 2016). 

In addition, as a consequence of photo-acclimation to low irradiance and cold temperature of the Arctic, an 

increase in phytoplankton cell size and/or in intra-cellular pigment concentration decreases the light absorption 

coefficient per unit Chl (Cota et al., 2004; Matsuoka et al., 2011; Matsuoka et al., 2007). This higher package 

effect flattens the absorption spectrum of chlorophyll 𝑎, especially at the blue absorption peak. Thus, in contrast 

to the effect of CDOM, relatively larger decrease of 𝑎𝑝ℎ
∗  at blue wavelengths than green wavelengths yields 

larger maximum band ratio, leading to an underestimation of Chl when using global empirical algorithms for 

the AO. Thus, relative higher pigment package effect decreases the slope of the in situ versus estimated Chl 

regression without appreciably changing the intercept (Lewis et al., 2016). 

Overall, difference between simulated and measured Chl is a consequence of combined effects of Chl 

overestimation due to relative higher CDOM absorption and underestimation due to relative higher pigment 

package effects. In this study, the three global algorithms showed obvious overestimation at all Chl ranges 

(Figure 1.4a-c), indicating that relative higher CDOM absorption was the dominant factor that biased Chl 

estimates in the AO. 

The failure of the two Arctic regional chlorophyll 𝑎 algorithms were imputed to the significant spatial variance 

of bio-optical properties at a pan-Arctic scale. The AO is a spatially heterogeneous sea. That is the composition 

of non-water constituents and their bio-optical properties significantly differ from region to region due to 

various degree of river inputs, nutrient levels, sea ice coverage, shelf width, and circulation patterns (Lewis et 

al., 2016; Matsuoka et al., 2013). Hence, a single regional empirical algorithm, like OC4L or OC4P tuned for 

the Beaufort and Chukchi seas, is not appropriate for the entire AO. This is likely reflected in the worse 

performance than the global empirical algorithms evaluated in the present study (see Figure 1.4 and Table 1.4). 

Such a degree of variability makes it difficult to establish a standard empirical formulation that provides robust 
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predictions with acceptable error limits, at least on the scale of the entire Arctic region. Such was the case of 

AO.emp. Although the MAE of AO.emp was lower than the other algorithms for chl.acdm, for CHL.acdm the 

MAE was even larger than the global algorithms. Thus, it is recommended to use a semi-analytical algorithm 

which compensates optical properties in a given location through an optimization process and allows 

discrimination and quantification of the roles of non-phytoplankton constituents to the optical properties of 

seawater, to improve the accuracy of Chl estimates from OCRS in polar waters. 

The standard semi-analytical algorithm GSM01, with parameters optimized for non-polar Case 1 waters, could 

not properly represent the combination of water constituents of the AO. In other words, due to the high CDOM 

proportion in the AO, spectral slope for 𝑎𝑐𝑑𝑚 should be sharper, and 𝑎𝑝ℎ
∗ (𝜆) should be lower to account for 

higher package effect. That may be the reason why the performance of GSM01 was worse than AO.emp (see 

Table 1.4). After reparameterized for the AO, AO.GSM outperformed GSM01 in the pair-wise comparison and 

showed the lowest MAEs for waters at water types chl.ACDM and CHL.ACDM. However, for these two water 

types, AO.GSM had 24 failures, which represents 16.2% of the total samples. Therefore, in future research, 

chlorophyll 𝑎 algorithm which can produce as much as possible effective retrievals with reasonable uncertainty 

should be sought for. 

1.7.2 PP estimate error 

PP was estimated using the classical photosynthesis versus light model based on the integration of carbon 

fixation by phytoplanktonic cells in the present study. The prime determinant of PP variations for ice-free waters 

in such models designed for OCRS data is Chl, except during seasons when incident irradiance becomes highly 

limiting. It is expected that errors in Chl should mostly propagate proportionally to PP, especially when all other 

variables are kept constant from one set of simulations to another, as in our study. In the model we used, 

however, Chl also drives the vertical distribution of chlorophyll concentration, as well as the chlorophyll-

specific absorption coefficient of phytoplankton. Nevertheless, our results suggest and largely confirm that 

errors in Chl mostly propagate proportionally to PP.  

In the present study, because of the lack of coincident PP measurements in the dataset used for algorithm 

evaluation, we do not know exactly the errors of PP estimates, but we could get an insight by comparing it with 

the relationship between in situ PP and Chl. Figure 1.8(a) shows the relationship between in situ PP and Chl 

using PPARR dataset. It can be seen that, in the range from 0.1 to 1.0 mg m-3, PP varied across three orders 

from 0.01 to 10.0 gC m-2 d-1. Besides, when Chl < 6.0 mg m-3, the triangle symbols were likely evenly distributed 

along the regression line, while Chl > 6.0 mg m-3, all triangles lay below the regression line. Figure 1.8(b) 

illustrates the relationship between estimated PP and measured Chl using the dataset used for algorithm 

evaluation, the regression line of Figure 1.8(a) was also showed for comparison. All symbols were more likely 

to locate at right of regression line, indicating the estimated PP was somewhat underestimated. 
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Figure 1.8 (a) Relationship between in situ PP and Chl from PPARR, (b) relationship between PP estimates 

and in situ Chl using the dataset used for algorithm evaluation. The dash black line is the regression line 

between in situ PP and Chl from PPARR. 

 

1.7.3 Conclusion 

Given that the failure of standard empirical algorithms in the AO is due to the interference by CDM on 

phytoplankton signal in the visible spectrum, in this study, we evaluated currently available algorithms from a 

perspective of the impact of CDM. We found that the higher the level of CDM in the water column, the larger 

it would bias the estimation of Chl. For waters with high CDM, the existence of CDM biased the Arctic regional 

algorithms (i.e., OC4P and OC4L) the most, followed by the global algorithms, lastly by AO.emp and the two 

semin-analytical algorithms. Therefore, the use of an empirical algorithm for the entire AO should be avoided 

when possible. It is recommended to use semi-analytical algorithm (such as AO.GSM) which can discriminate 

and quantify the roles of non-phytoplankton constituents for the heterogenous AO. However, AO.GSM is more 

likely to fail for waters with high CDM, thus, semi-analytical algorithm that can produce as much as possible 

effective retrievals with reasonable uncertainty is still expected in future researches. 

Through the sensitivity analysis of Chl on PP estimation, we found that errors in Chl mostly propagate 

proportionally to PP, and were amplified less than 7%. In addition, by comparing with the relationship between 

in situ PP and Chl, we discovered that the Arctic spectrally- and vertically-resolved primary production model 

used in this study underestimated PP to some extent. However, sea-truth data is still needed to quantify the error 

of PP estimations. Our PP calculations provide some quantitative appreciation of the uncertainty in PP estimates 

that should be expected in Arctic, for different seawater optical categories as defined here.  
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Chapitre 2 A newly tuned algorithm for the Arctic Ocean: a preliminary 

solution for CDM-rich waters 

Juan Li, Atsushi Matsuoka, Stanford B. Hooker, Xiaoping Pang, Marcel Babin 

2.1 Résumé 

L'océan Arctique (AO) est l'océan le plus influencé par les rivières. Situés à l'interface terre-mer, les plans d'eau 

côtiers de l'Arctique où la prolifération du phytoplancton est fréquente sont parmi les plus touchés par le 

changement climatique. Étant donné que le phytoplancton joue un rôle essentiel dans le transfert d'énergie qui 

soutient l'ensemble du réseau alimentaire, une estimation précise de la concentration de chlorophylle 𝑎 (Chl, un 

indicateur de la biomasse du phytoplancton) est essentielle pour améliorer notre connaissance de l'écosystème 

marin de l'Arctique et de sa réaction au changement climatique en cours. Cependant, étant donné 

qu'actuellement le meilleur algorithme semi-analytique AO.GSM échoue trop souvent pour les eaux côtières 

où le niveau de CDM (matériel coloré et détritique) est généralement élevé, dans cette étude, nous avons 

optimisé davantage le modèle GSM en ajoutant 620 nm qui pourrait aider à distinguer l'absorption du 

phytoplancton du CDM, et l'absorption de la diffusion. Nos résultats suggèrent que notre algorithme ajusté 

GSMA a donné des résultats similaires à AO.GSM en termes de performance de Chl pour les eaux océaniques 

où le niveau de CDM est généralement faible, mais était beaucoup plus robuste que AO.GSM pour les eaux 

avec un CDM élevé. Lorsqu'elle a été testée à l'aide du jeu de données COASTlOOC, la GSMA a amélioré la 

performance des estimations de la Chl de 93%. De plus, l'amélioration concernant les estimations de 𝑎𝑐𝑑𝑚(443) 

(coefficient d'absorption du CDM à 443 nm) était encore plus importante, atteignant jusqu'à 168 %. Ces résultats 

impliquent que, en l'absence d'autres algorithmes pouvant être appliqués aux eaux côtières avec une grande 

précision, le GSMA pourrait être une alternative pour récupérer simultanément la Chl et 𝑎𝑐𝑑𝑚(443). 
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2.2 Abstract 

The Arctic Ocean (AO) is the most river-influenced ocean. Located at the land-sea interface, Arctic coastal 

waterbodies where phytoplankton blooms are common are among those most affected by climate change. Since 

phytoplankton is critical for energy transfer supporting the entire food web, accurate estimation of chlorophyll 

𝑎 concentration (Chl, a proxy of phytoplankton biomass) is critical to improve our knowledge of the Arctic 

marine ecosystem and its response to the ongoing climate change. However, since currently the best semi-

analytical algorithm AO.GSM fails too often for coastal waters where CDM (colored and detrital material) level 

is usually high, in this study, we further optimized the GSM model by adding 620 nm which help to distinguish 

the absorption of phytoplankton from CDM, and absorption from scattering. Our results suggest that our tuned 

algorithm GSMA performed similarly to AO.GSM in terms of the performance of Chl for oceanic waters where 

CDM level is generally low, but was much more robust than AO.GSM for waters with high CDM. When tested 

using COASTlOOC data set, GSMA improved the performance of Chl estimates by 93%. In addition, the 

improvement regarding 𝑎𝑐𝑑𝑚(443) (absorption coefficient of CDM at 443 nm) estimates was even larger, 

reaching up to 168%. These findings imply that, in the absence of other algorithms that can be applied to coastal 

waters with high accuracy, GSMA might be an alternative to retrieve Chl and 𝑎𝑐𝑑𝑚(443) simultaneously. 
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2.3 Introduction 

The Arctic Ocean (AO) contains only 1% of the global volume of seawater but is receiving 11% of the world’s 

river flow (Lammers et al., 2001). Its drainage basin covers 19 millions km2, even larger than the Arctic Ocean 

area (14.2 million km2), making it the most river-influenced and landlocked of all oceans (Lammers et al., 2001; 

Vörösmarty et al., 2000). Being located at the land-sea interface, Arctic coastal waterbodies are subjected to 

the combined changes from a wide range of physical-chemical processes, such as large amounts of nutrients 

input into the AO from river inflow (Dittmar and Kattner, 2003; Frey and McClelland, 2009), coastal upwelling 

(Tremblay et al., 2011; Williams and Carmack, 2008), wind-mixing (Crawford et al., 2020; Uchimiya et al., 

2016), loss of sea ice (Ardyna et al., 2014; Arrigo et al., 2008) and so on, which would foster phytoplankton 

blooms, making these coastal waterbodies highly dynamic and productive. Given that coastal phytoplankton 

blooms are a major ecological event providing a substantial part of the annual primary production and energy 

transfer supporting the entire marine food web (Field et al., 1998; Winder and Sommer, 2012), accurate 

estimation of phytoplankton biomass in these coastal waterbodies is essential to improve our knowledge about 

marine ecosystem and its response to ongoing climate change. 

IOCCG Polar Seas Working Group has suggested to use semi-analytical algorithm in the AO, especially coastal 

waters where there are large amounts of CDM (colored and detrital material) resulting from river discharge 

(IOCCG, 2015). Multiple studies have showed that GSM models might be a good choice. Mustapha et al. (2012) 

have documented that GSM01, a broadly-used semi-analytical algorithm (Maritorena et al., 2002) outperforms 

the global (OC4v6, OC3Mv6, OC4Mev6) and Arctic regional (OC4L and OC4P) empirical algorithms for the 

southeast Beaufort Sea. Besides, they have optimized the parameters of GSM model for the southeast Beaufort 

Sea and obtained a regional GSM model (N=45, slope = 1.1, 𝑅2=0.76). Recently, Lewis and Arrigo (2020) 

have tuned the GSM model at a pan-Arctic scale using a large bio-optical database (Lewis et al., 2020), and 

proven their tuned algorithm AO.GSM performs better than any other algorithms yet applied to the AO. In 

addition, according to our evaluation of AO.GSM from a perspective of the impact of CDM, AO.GSM-derived 

Chl estimates are indeed the least biased for waters with high CDM, but the MAE (mean absolute error) is still 

as high as 2.02. Besides, we noticed that AO.GSM obtained 16.2% failures for CDM-rich waters. It seems that 

AO.GSM is not that robust for coastal waters.  

In this context, we further tuned the GSM model for the AO by adding 620 nm waveband using a high-quality 

bio-optical in situ data set. This is motivated by the fact that for CDM-rich Arctic waters, the signal observed 

at the additional channel (620 nm) is generally high and less interfered by CDM compared to blue-green 

wavelengths. Therefore, the tuned model with extra effective and important information at 620 nm should help 

GSM-like models to obtain better results for such waters. Besides, the tuned model is able to be widely used 

for satellite applications, such as OLCI (Ocean and Land Colour Instrument). After tuning, it was tested using 

an Arctic data set which is different from the tuning data set, a non-Arctic coastal data sets and an OLCI satellite 

image taken at the Lena River Delta. 
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2.4. Data 

2.4.1. Bio-optical in situ data sets 

Three bio-optical datasets were used in this study. The first dataset was collected in the Arctic Ocean and was 

used to tune the GSM model (from hereafter referred to as T-Arctic). The second dataset is also from the Arctic 

Ocean and was used in this study for validation purpose (named as V-Arctic), together with a non-Arctic coastal 

dataset, the COASTlOOC (Coastal Surveillance Through Observation of Ocean Color) one. 

The T-Arctic dataset is composed of five cruises: MALINA, ICESCAPE2010, ICESCAPE2011, Tara Oceans 

Polar Circle expedition, and GREEN EDGE. There are 148 samples in total containing concurrent 

measurements of above-water remote-sensing reflectance ( 𝑅𝑟𝑠(𝜆) ) and Chl. Numbers of coincident 

phytoplankton absorption spectra 𝑎𝑝ℎ(𝜆) , absorption coefficient of CDM at 443 nm ( 𝑎𝑐𝑑𝑚(443) ), and 

backscattering coefficient at 443 nm (𝑏𝑏𝑝(443)) are 101, 96 and 36, respectively. 

The V-Arctic data set includes in situ measurements from ArcticNet2011, ArcticNet2013, and AREX2017 

cruises. Data contributed by SB Hooker are also involved. As for COASTlOOC dataset, it consists of 

measurements in various coastal waters around Europe during six campaigns in 1997 and 1998. Details can be 

found in (Babin et al., 2003; Doron et al., 2007). For these two validation datasets, only samples have concurrent 

measurements of 𝑅𝑟𝑠(𝜆) and Chl were kept in this study, and the total numbers of samples are 77 and 168 for 

V-Arctic and COASTlOOC, respectively. Details about numbers of stations, sampling dates, sampling regions 

and data sources of the two Arctic datasets are summarized in Table 2.1, station locations are shown in Figure 

2.1. 

 

Figure 2.1 Map of the Arctic Ocean showing the locations of stations from various datasets. 
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Table 2.1 Summary of in situ datasets. 

Data Station Year Month Region Source 

MALINA 37 2009 July-August Southern Beaufort Sea SeaBASS 
ICESCAPE2010 34 2010 June-July Chukchi and Beaufort Sea SeaBASS 
ICESCAPE2011 18 2011 June-July Chukchi and Beaufort Sea SeaBASS 
ARCTICNET2011 9 2011 August Baffin Bay Individual 
ARCTICNET2013 9 2013 August Baffin Bay Individual 
TARA 27 2013 May-November Polar circle SeaBASS 
GREEN EDGE 34 2016 June-July Baffin Bay Individual 
AREX 11 2017 July Greenland Sea Individual 
SB Hooker 48 2010, 2013-2017 March-December Arctic Ocean Individual 
COASTlOOC 168 1997-1998 January-December Europe coastal areas Individual 

 

𝑅𝑟𝑠(𝜆) measurements 

𝑅𝑟𝑠(𝜆) (sr-1) in the two Arctic data sets were determined with the same instrument, the Compact-Optical 

Profiling System (C-OPS, Biospherical Instrument Inc.) which has been comprehensively documented in 

Hooker et al. (2013). Briefly, in-water upwelling radiance 𝐿𝑢(𝜆, 𝑧), in-water downward irradiance 𝐸𝑑(𝜆, 𝑧), 

above-water downward solar irradiance ( 𝐸𝑠(𝜆) ), pressure/depth, and dual axes tilts were measured 

simultaneously. After normalization by 𝐸𝑠(𝜆) and 5° tilt filtering, 𝐿𝑢(𝜆, 𝑧) and 𝐸𝑑(𝜆, 𝑧) were extrapolated to 

subsurface values 𝐿𝑢
0−(𝜆) and 𝐸𝑑

0−(𝜆) through progressively optimized depth interval within the surface layer. 

Finally, 𝑅𝑟𝑠(𝜆) was calculated as: 𝑅𝑟𝑠(𝜆) = 0.54𝐿𝑢
0−(𝜆)/(𝐸𝑑

0−(𝜆)/0.97). Details of the process protocols are 

described in Antoine et al. (2013). 

For the COASTlOOC data set, in-water upwelling irradiance 𝐸𝑢(𝜆, 𝑧) and downwelling irradiance just above 

the sea surface 𝐸𝑑
0+(𝜆) were measured with a Satlantic free-fall SPMR (SeaWiFS Profiling Multichannel 

Radiometer) and SMSR (SeaWiFS Multichannel Surface Reference), respectively (Bélanger et al., 2008). 

𝐸𝑢
0−(𝜆) was obtained by extrapolating 𝐸𝑢(𝜆, 𝑧) to subsurface by fitting an exponential function. Then 𝐿𝑢

0−(𝜆) 

was calculated as 𝐿𝑢
0−(𝜆) = 𝐸𝑢

0−(𝜆)/3.8 (Bélanger et al., 2008). Afterwards, 𝑅𝑟𝑠(𝜆) was obtained by the same 

process described above. Note that, in the present study, only common wavebands (412, 443, 490, 510, 555, 

620, 670 𝑛𝑚) were used. 

Chl measurements 

All Chl measurements were determined by High-Performance Liquid Chromatography (HPLC). Generally, 25 

mm GF/F filters were used to collect phytoplankton from seawater samples. Filters were extracted in 100% 

methanol, disrupted by sonication and clarified by filtration (GF/F Whatman) before being analyzed by HPLC 

later in the laboratory obtain separated pigments (Ras et al., 2008; Van Heukelem and Thomas, 2001). Finally, 

total chlorophyll 𝑎  pigment concentration was defined as the sum of mono- and divinyl chlorophyll 𝑎 

concentrations, chlorophyllide 𝑎 and the allomeric and epimeric forms of chlorophyll 𝑎 (Hooker and Zibordi, 

2005; Reynolds et al., 2016). 

Absorption measurements 
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Only the absorption measurements of the T-Arctic dataset were used in this study for algorithm tuning. 

Absorption spectra of particulate 𝑎𝑝(𝜆) (m-1) and non-algal particles 𝑎𝑛𝑎𝑝(𝜆) (m-1) were determined using a 

Perkin-Elmer Lambda-19 spectrophotometer equipped with a 15 𝑐𝑚  integrating sphere following the 

methodology described in (Bricaud et al., 2010; Kishino et al., 1985; Stramski et al., 2015). Phytoplankton 

absorption spectra 𝑎𝑝ℎ(𝜆)  were calculated by subtracting 𝑎𝑛𝑎𝑝(𝜆)  from 𝑎𝑝(𝜆) . The chlorophyll-specific 

absorption spectra for phytoplankton 𝑎𝑝ℎ
∗ (𝜆) (m2 mg-1) are defined as 𝑎𝑝ℎ(𝜆) normalized by Chl. 𝑎𝑐𝑑𝑜𝑚(𝜆) was 

measured using a liquid core waveguide system, UltraPath following (Miller et al., 2002). Absorption spectra 

of CDM (𝑎𝑐𝑑𝑚(𝜆), m-1) is the sum of 𝑎𝑐𝑑𝑜𝑚(𝜆) and 𝑎𝑛𝑎𝑝(𝜆). Spectral slope of 𝑎𝑐𝑑𝑚(𝜆) (𝑆) was calculated by 

fitting individual spectra (350~500 nm) to equation (10) below with reference waveband 𝜆0 = 443. 

2.4.2 Satellite image 

For application purposes, a Sentinel 3B OLCI image (file name: 

S3B_OL_2_WFR____20200910T031808_20200910T032108_20200911T114327_0179_043_175_1620_MA

R_O_NT_002.SEN3) of full resolution (~300 m) around the Lena River delta taken on 10 September 2020 was 

downloaded from https://catalogue.onda-dias.eu. 𝑅𝑟𝑠(𝜆) was derived from reflectance product by dividing by 

𝜋, which was then used to generate Chl and 𝑎𝑐𝑑𝑚(443) through GSM models. 
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2.5 Methods 

2.5.1. GSM model 

Gordon et al. (1988) have found the following functional relationship between 𝑟𝑟𝑠(𝜆) and Inherent Optical 

Properties (IOPs): 

𝑟𝑟𝑠(𝜆) = 𝑔0
𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
+ 𝑔1(

𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
)2     (5) 

Where 𝑔0 ≈ 0.0949 and 𝑔1 ≈ 0.0794 for oceanic case 1 waters. Backscattering 𝑏𝑏(𝜆) and absorption spectra 

𝑎(𝜆) can be expanded as: 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆)     (6) 

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑝ℎ(𝜆) + 𝑎𝑐𝑑𝑚(𝜆)     (7) 

Absorption spectra and backscattering spectra of seawater (𝑎𝑤(𝜆) and 𝑏𝑏𝑤(𝜆) respectively) are assumed to be 

known constants (Morel, 1974; Pope and Fry, 1997). The non-water IOP spectra are then parameterized in 

terms of a known shape but an unknown magnitude: 

𝑏𝑏𝑝(𝜆) = 𝑏𝑏𝑝(𝜆0)(𝜆/𝜆0)−𝜂     (8) 

𝑎𝑝ℎ(𝜆) = Chl 𝑎𝑝ℎ
∗ (𝜆)     (9) 

𝑎𝑐𝑑𝑚(𝜆) = 𝑎𝑐𝑑𝑚(𝜆0)𝑒−𝑆(𝜆−𝜆0)     (10) 

Where 𝑎𝑝ℎ
∗ (𝜆) is the chlorophyll 𝑎 specific absorption coefficient, 𝑆 is the spectral decay constant for 𝑎𝑐𝑑𝑚(𝜆), 

𝜂 is the power-law exponent for the particulate backscattering spectra, and 𝜆0 is a scaling wavelength (443 nm). 

These 3 model parameters (termed as a vector 𝛹  hereafter) are pre-optimized and then used as model 

parameters of GSM. Afterwards, a certain optimization method (e.g., Ameoba, Quasi-Newton, Gauss-Newton, 

etc. Mu et al. (2011)) is applied to retrieve the 3 unknowns (𝛩 = {Chl, 𝑎𝑐𝑑𝑚(443), 𝑏𝑏𝑝(443)}) by minimizing 

the mean square difference between modeled and measured 𝑟𝑟𝑠(𝜆). 

2.5.2 Simulated annealing optimization 

In order to optimize the parameters of GSM model, the simplest way is to list all potential interacting sets of 𝛹 

within the assumed limits for each parameter. For 𝑎𝑝ℎ
∗ , 𝑆 and 𝜂, the associated limits are [0.001, 0.3 m2 mg-1], 

[0.01, 0.035 nm-1], and [0, 4.3], respectively. But since the number of possible sets of 𝛹 is too large and the 

GSM model is highly nonlinear, this simplest exhaustive method would be extremely time-consuming and labor 

costly. To circumvent this complicated problem, an iterative heuristic method, simulated annealing, was 

deployed as it has been proven very useful to search for global optimization of complex non-linear objective 

function with large numbers of optima (Xiang et al., 2013). Basically, simulated annealing is a hill-climbing 

method except that, instead of picking the best move, it picks a random move. This randomness introduced 

allows it to ultimately find a global optimum by accepting worse move with a certain probability. This feature 
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also reduces the importance of the first guess used to initiate the process which is often a critical aspect of 

minimization techniques based on the steepest descent methods. 

Simulated annealing includes three basic elements: 1) a cost function to evaluate the performance of the model 

when a set of 𝛹 is given, 2) a candidate generator that randomly proposes new values for 𝛹, and 3) a decreasing 

temperature that introduces the randomness in the process and controls the overall progress. 

Firstly, cost function was used for the quantification of the model performance for a given set of 𝛹 proposed 

by the candidate generator. It was also the objective to be optimized. In this study, a modified version of the 

cost function described in (Kostadinov et al., 2007) was adopted: 

𝐶𝐹 = 0.2𝑁𝐼𝑁𝑉 + ∑ (
𝑁𝛩
𝑘=1 𝑎𝑘|1 − 𝑟𝑘

2| + 𝑏𝑘|1 − 𝑆𝑙𝑜𝑝𝑒𝑘| + 𝑐𝑘  𝑅𝑀𝑆𝐸𝑘)     (11) 

𝑁𝐼𝑁𝑉 is the number of invalid retrievals. The effective ranges of Chl, 𝑎𝑐𝑑𝑚(443), and 𝑏𝑏𝑝(443) are [0.01, 64 

mg m-3], [0.0001, 20 m-1], and [0.0001, 1.0], respectively. 𝑟𝑘
2 and 𝑆𝑙𝑜𝑝𝑒𝑘 are the square of the determination 

coefficient and the slope generated through type II regression between the 𝑘th measured and estimated variable 

in log scale, respectively. 𝑅𝑀𝑆𝐸𝑘 is the root mean square error of the 𝑘th variable. 𝑎𝑘 , 𝑏𝑘, and 𝑐𝑘  are subjective 

weights associated with 𝑅𝑘
2, 𝑆𝑙𝑜𝑝𝑒𝑘 and 𝑅𝑀𝑆𝐸𝑘. For the first retrieval Chl, 𝑎1, 𝑏1, and 𝑐1 were assigned 1, 1.5, 

and 1 separately. For the second retrieval 𝑎𝑐𝑑𝑚(443), because only 96 of the total 148 samples have concurrent 

𝑎𝑐𝑑𝑚(443) measurements, thus 𝑎2, 𝑏2 and 𝑐2 were set as 0.65, 0.98, and 0.65 to keep the weight relative to Chl. 

Since merely 24.3% of the total samples has coincident 𝑏𝑏𝑝(443)  measurements, the performance of 

𝑏𝑏𝑝(443) estimates was not determined in this study. Therefore, the number of retrievals 𝑁𝛩 in this case is 2. 

GenSA package in R program was adopted to realize the parts of candidate generator and temperature control 

process as it has been proven to be robust and efficient in searching for global optimal solution compared with 

other packages (such as differential evolution algorithm “DEoptim” (Mullen et al., 2011) and genetic algorithm 

“rgenoud” (Mebane Jr and Sekhon, 2011)) (Xiang et al., 2017). Inside the package, the candidate generator is 

highly dependent on temperature in the optimization process. That is, the next candidate is generated 

accordingly to Cauchy-Lorentz distribution with scale proportional to the actual temperature (Xiang et al., 2017), 

which needs to be initialized and will decrease according to the logarithmic cooling schedule described in 

(Bélisle, 1992). Note that, the starting temperature is of significant importance because it directly influences 

the likelihood of accepting worse responses and thus the stochastic part of the optimization. When temperature 

is high, solution that is worse than the current solution is kept more often. This property allows for a more 

extensive search for the global optimum, making it the fundamental part of simulated annealing optimization. 

Apart from these 3 basic elements, GenSA also provides other controlling parameters, such as the upper and 

lower bounds of 𝛹 to be optimized, maximum number of iterations, maximum running time, etc. In this study, 

the upper and lower bounds of 𝛹 were set according to their limits mentioned above, the other controlling 

parameters were kept as the default values assigned inside the package as they have been proven to work well 

for general optimization cases (Xiang et al., 2017). The flowchart of the whole tuning process is illustrated in 

Figure 2.2. 
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Figure 2.2 Flow chart illustrating the strategy used to find the best set of input parameters of the GSM model 

(see context for variable definitions). To be brief, firstly, candidate generator was used to propose new set of 

parameters 𝜑. Then for a given 𝜑, the performance was quantified using the cost function. The third part is 

temperature which is used to control the whole process and also introduce the randomness to enable the model 

to jump out of local minimum thus to find global minimum. Finally, when the process cool down as designed, 

it will return the best parameter for the AO. 

 

Table 2.2 Model Parameters for GSM01, AO.GSM, and GSMA. 

Parameters GSM01 AO.GSM GSMA MMa 

𝑎𝑝ℎ
∗ (412) 0.00665 0.28503 0.00646 0.05120 

𝑎𝑝ℎ
∗ (443) 0.05582 0.21099 0.06243 0.05923 

𝑎𝑝ℎ
∗ (490) 0.02055 0.089298 0.02471 0.04157 

𝑎𝑝ℎ
∗ (510) 0.01910 0.066926 0.03181 0.02626 

𝑎𝑝ℎ
∗ (555) 0.01015 0.029377 0.01407 0.00884 

𝑎𝑝ℎ
∗ (620) - - 0.00677 0.00770 

𝑎𝑝ℎ
∗ (670) 0.01424 0.15073 0.01670 0.02431 

𝑆 0.0206 0.018996 0.0196 0.0142 

𝜂 1.0337 1.3309 1.0316 - 
aMM refers to measured median values. 

 

2.5.3 Evaluation metrics 

The performance of GSM models are assessed following the metrics described in Seegers et al. (2018), that is, 

the number of effective retrievals, bias and mean absolute error (MAE), percent wins through pair-wise 

comparison, slope and coefficient of determination (𝑟2) for log-transformed variable via type II reduced major 

axis (RMA) regression (Legendre, 1998): 

bias = 10mean(𝑙𝑜𝑔10(𝑋𝑀)−𝑙𝑜𝑔10(𝑋𝐸))     (12) 

MAE = 10mean|𝑙𝑜𝑔10(𝑋𝑀)−𝑙𝑜𝑔10(𝑋𝐸)|     (13) 
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Where X stands for Chl or 𝑎𝑐𝑑𝑚(443). 

2.5.4 Classification 

Based on measured median value of Chl (0.35 mg m-3), we split the in situ data set by half. For the part with 

Chl ≤  0.35 mg m-3, samples with 𝑎𝑐𝑑𝑚(443)  ≤  0.067 m-1 were classified as chl.acdm, the others with 

𝑎𝑐𝑑𝑚(443) > 0.067 m-1 were regarded as chl.ACDM. The same procedure was applied to the other part of the 

dataset with Chl > 0.35 mg m-3. Therefore, we also got CHL.acdm and CHL.ACDM classes. The classification 

approach is summarized in Table 2.3. 

Table 2.3 Classification criteria. 

Water type Threshold Number 

chl.acdm Chl  0.35 mg m-3, 𝑎𝑐𝑑𝑚(443)  0.067 m-1 48 
CHL.acdm Chl > 0.35 mg m-3, 𝑎𝑐𝑑𝑚(443)  0.067 m-1 26 
chl.ACDM Chl  0.35 mg m-3, 𝑎𝑐𝑑𝑚(443) > 0.067 m-1 26 
CHL.ACDM Chl > 0.35 mg m-3, 𝑎𝑐𝑑𝑚(443) > 0.067 m-1 48 
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2.6 Results and discussions 

2.6.1 Optimized algorithm GSMA 

One innovation of our tuned GSM algorithm (GSMA) compared to AO.GSM (Lewis and Arrigo, 2020) was 

the addition of 620 nm waveband. For optimization, 148 coincident in situ measurements of 𝑅𝑟𝑠 (at 412, 443, 

490, 510, 555, 620 and 670 nm) and Chl, accompanied by 96 concurrent 𝑎𝑐𝑑𝑚(443) were used in the simulated 

annealing optimization strategy to find out the optimal 𝛹 = {𝑎𝑝ℎ
∗ (𝜆), 𝑆, 𝜂} (section 2.2). Table 2.2 lists the 𝛹 

for GSM01, AO.GSM and GSMA. The measured median values of 𝑎𝑝ℎ
∗ (𝜆)  and 𝑆  are also showed for 

comparison, 𝜂 is missing due to the lack of concurrent measurements. 

In Table 2.2, we can see that 𝑎𝑝ℎ
∗ (𝜆) of GSMA are closer to the measured median values when compared with 

GSM01 and AO.GSM, especially at 620 nm. Looking more closely at GSMA, 𝑎𝑝ℎ
∗ (510) is higher than the 

value at 490 nm, and 𝑎𝑝ℎ
∗ (412) is much smaller than the measured median value, which is not realistic. 

However, the side effects of these anomalous parameters are somewhat compensated by the influences of higher 

𝑆 and lower 𝜂 used in the model (Lewis and Arrigo, 2020; Maritorena et al., 2002). Although the optimized 𝛹 

is not ideal, we accept it as long as it helps to improving the accuracy of Chl estimates. 

Since AO.GSM algorithm is currently the best semi-analytical chlorophyll 𝑎 algorithm in the AO (Lewis and 

Arrigo, 2020), Chl retrievals generated via AO.GSM were compared with that derived through our tuned 

algorithm GSMA using the T-Arctic data set (Figure 2.3(a) and Table 2.4). Seen from Figure 2.3(a), when 

measured Chl < 0.1 and Chl > 5.0 mg m-3, ‘x’ symbols represented GSMA distributed closer to the 1:1 line, 

indicating better performance. In the range from 0.1 to 5.0 mg m-3, GSMA produced 14 (accounts for 9.5% of 

the total samples) more retrievals belonging to either chl.ACDM or CHL.ACDM water type, than AO.GSM 

(see the diamonds in Figure 2.3(a)). As for the performance matrices showed in Table 2.3, both GSMA and 

AO.GSM had positive biases (1.09 and 1.24 respectively), showing a trend of overestimation. GSMA-derived 

Chl retrievals were less biased, and the regression slope was much closer to 1. However, because several ‘x’ 

symbols and diamonds distributed far from the 1:1 line (see Figure 2.3(a)), resulting in the higher MAE and 

lower determination coefficient 𝑟2 of GSMA than that of AO.GSM. In terms of the decision metric wins, 

GSMA outperformed AO.GSM with 59.5% wins overall. As for each water type, except CHL.acdm, GSMA 

performed better than AO.GSM. The percentage wins at chl.acdm, chl.ACDM and CHL.ACDM were 89.6%, 

69.2% and 52.1%, respectively. However, we must recognize that the improvement of GSMA is limited to 

some extent. For chl.acdm, GSMA improved the accuracy of Chl estimats by 22%, while for CHL.acdm, it was 

AO.GSM-derived Chl retrievals that were less biased. As for waters with high CDM, the MAEs of GSMA were 

larger than that of AO.GSM. The reason why GSMA outperformed AO.GSM for these water types was that 

GSMA generated 14 more valid retrievals with however low accuracy (see the ‘diamond’ symbols in Figure 

2.4(a)). In other words, GSMA only increased its robustness for waters with high CDM but not its accuracy 

when compared with AO.GSM.  
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𝑎𝑐𝑑𝑚(443) is another retrieval of GSM models. Comparison between measured and estimated 𝑎𝑐𝑑𝑚(443) 

derived from AO.GSM and GSMA is shown in Table 2.4 and Figure 2.3(b). There was obvious underestimation 

when 𝑎𝑐𝑑𝑚(443) < 0.2 and 𝑎𝑐𝑑𝑚(443) > 2.0 m-1 by AO.GSM, resulting in scattered circles showed in Figure 

2.3(b). Besides, the high MAE (2.99) and 33.7% failures confirmed the poor performance of 𝑎𝑐𝑑𝑚(443) 

retrievals via AO.GSM. While for our tuned algorithm GSMA, the 168% improvement in the accuracy and 

wins as high as 91.6% showed overwhelming superiority over AO.GSM in terms of 𝑎𝑐𝑑𝑚(443) estimates. 

 

Figure 2.3 Results of AO.GSM and GSMA algorithms for (a) Chl, and (b) 𝑎𝑐𝑑𝑚(443) using T-Arctic dataset. 

circles and x symbols refer to the same data pairs derived through AO.GSM and GSMA, diamonds refer to 

the data failed via AO.GSM but succeeded via GSMA. 

 

Figure 2.4 Validation of AO.GSM and GSMA using the (a) V-Arctic and (b) COASTlOOC datasets. Circles 

and x symbols refer to the same data pairs derived through AO.GSM and GSMA, diamonds refer to the 

retrievals failed using AO.GSM but succeeded using GSMA. 

 

It is well acknowledged that algorithm tuning and validation should base on different independent datasets. 

Thus, another Arctic data set (V-Arctic) was applied to validate Chl performance of our tuned algorithm GSMA. 

For comparison, Chl estimates derived through AO.GSM were also shown in Figure 2.4(a) and Table 2.4. No 
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matter the metric among bias, MAE, wins, slope or 𝑟2, GSMA showed better performance than AO.GSM, 

indicating that our tuned algorithm indeed improved the performance of Chl estimates in the AO. However, the 

overall improvement of accuracy is merely 8%.  

Table 2.4 Performance matrices of Chl and 𝑎𝑐𝑑𝑚(443) derived by AO.GSM and GSMA using T-Arctic, V-

Arctic, and COASTlOOC datasets, respectively. 

Data Algorithm n bias MAE Wins (%) Failure r2 slope 

T-Arctic 
n = 148 

chl.acdm, n = 48    

AO.GSM 48 1.74 1.78 10.4  0.75 0.92 
GSMA 48 1.48 1.56 89.6  0.74 0.88 

CHL.acdm, n = 26    

AO.GSM 26 0.74 1.41 92.3  0.50 1.11 
GSMA 26 0.59 1.71 7.7  0.47 1.26 

chl.ACDM, n = 26    

AO.GSM 15 2.02 2.02 19.2 11 (42.3%) 0.65 1.25 
GSMA 23 1.98 2.31 69.2 3 (11.5%) 0.08 1.26 

CHL.ACDM, n = 48    

AO.GSM 35 0.92 1.81 39.6 13 (27.1%) 0.47 0.79 
GSMA 44 0.82 2.25 52.1 4 (8.3%) 0.27 1.26 

Across all, n = 148    

AO.GSM 124 1.24 1.73 35.8 24 (16.2%) 0.79 0.77 
GSMA 141 1.09 1.90 59.5 7 (4.7%) 0.55 0.94 

𝒂𝒄𝒅𝒎(𝟒𝟒𝟑), n = 95    

AO.GSM 63 0.36 2.99 8.4 32 (33.7%) 0.74 1.46 
GSMA 95 0.89 1.31 91.6  0.92 1.15 

V-Arctic  
n = 77 

AO.GSM 74 1.38 1.92 35.1 3 (3.9%) 0.70 0.78 
GSMA 76 1.28 1.84 63.6 1 (1.3%) 0.71 0.84 

COASTlOOC  
n = 168 

AO.GSM 65 0.46 3.19 17.3 103 (61.3%) 0.00 0.05 
GSMA 161 0.65 2.26 81.5 7 (4.2%) 0.36 0.77 

 

2.6.2 Satellite application 

A general insight of the applicability of AO.GSM and GSMA for coastal waters was obtained by applying them 

to the OLCI image taken by Sentinel 3B around the Lena River delta on 10 September 2020 (see Figure 2.5). 

We can see that AO.GSM failed to generate valid Chl retrievals along the coastal areas, resulting in a blank gap 

between the shelf and the open ocean. The performance of the accompanied retrieval 𝑎𝑐𝑑𝑚(443) was even 

worse. Contrary to Chl, AO.GSM was only capable to produce 𝑎𝑐𝑑𝑚(443) along the coastal areas but led to 

missing values in the open ocean (see Figure 2.5(b)). For GSMA, it filled in the missing pixels caused by 

AO.GSM both for Chl and 𝑎𝑐𝑑𝑚(443) estimates (see Figure 2.5(c)-(d)), indicating its strong robustness for 

coastal waters.  

Figure 2.6 shows the kernel density plot of AO.GSM and GSMA generated Chl estimates for further 

comparisons. Failures of AO.GSM and GSMA accounted for 11.2% and 1.3% of the total effective pixels 

(7207409), respectively. GSMA-derived Chl reached up to ~40.0 mg m-3, and the median value is 2.09 mg m-

3. While the maximum and median of AO.GSM-derived Chl were ~10.0 and 1.39 mg m-3 separately. As for 

𝑎𝑐𝑑𝑚(443), GSMA produced 7204683 (accounted 99.96%) retrievals, while the number of effective retrievals 
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generated via AO.GSM was merely 834325 (11.6%). Thus, GSMA exhibited much better robustness than 

AO.GSM when applied to the AO, especially for coastal waterbodies. 

 

 

Figure 2.5 AO.GSM-derived (a) Chl, (b) 𝑎𝑐𝑑𝑚(443), and GSMA-derived (c) Chl, (d) 𝑎𝑐𝑑𝑚(443) using the 

OLCI reflectance image taken by Sentinel 3B around the Lena River plume on 10 September 2020. 
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Figure 2.6 Kernel density plot of Chl estimates through AO.GSM and GSMA using the OLCI reflectance 

product taken by Sentinel 3B around the Lena River plume on 10 September 2020. 

2.6.3 Application for coastal waters 

Given that our major concern is to tune the GSM model for coastal waterbodies, and due to the lack of in situ 

measurements along the Arctic coastal areas, especially in and around large river plumes, the COASTlOOC 

dataset was introduced to test the applicability of our GSMA model for coastal waterbodies. Results are shown 

in Figure 2.4(b) and Table 2.4. AO.GSM-generated Chl estimates showed significant underestimation when 

Chl > 2.0 mg m-3 where most of the failures occurred. In addition, the metrics such as MAE (3.19), 𝑟2 (0), slope 

(0.05) and 61.3% failures demonstrate that AO.GSM was not appropriate for turbid coastal waters. While for 

GSMA, there was only 4.2% failures. It generated 57% more valid retrievals and improved the accuracy by 93% 

compared to AO.GSM. Therefore, GSMA showed remarkable superiority over AO.GM for coastal waters. In 

the absence of other algorithms that can be applied to coastal waters with high accuracy, GSMA might be an 

alternative to estimate Chl for coastal waters. 

2.6.4 Model limitations 

The basic principle of the GSM model is to minimize the difference between measured and modeled 𝑅𝑟𝑠(𝜆) 

using non-linear optimization until a predefined convergence threshold is met. Substantially, it is a spectral 

fitting method. Thus, it is more likely to obtain the optimal solution of Chl when more spectral information is 

inputted, which is also the motivation of the present study to tune the GSM model by adding 620 nm. However, 

the most important reason why adding 620 nm works maybe because that signal observed at 620 nm helps better 

distinguish the absorption of phytoplankton from CDM, and absorption from scattering, which in return would 

lead to more accurate retrievals. For oceanic waters where CDM level is usually low, the signal at 620 nm is 

often too weak to differ absorption from scattering, that might be the reason why GSMA performed similarly 

with AO.GSM for such type of waters. While for coastal waters where CDM level is generally high, signal 

observed at 620 nm is strong enough to be used by GSMA to better distinguish the role of phytoplankton from 

CDM, leading to remarkable improvement when compared with AO.GSM. 
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However, the GSM model itself has some limitations as it adopts several simplified assumptions to limit the 

number of unknowns. For instance, 𝑔0 and 𝑔1 were used to described oceanic case 1 waters (Gordon et al., 

1988). Lee et al. (1999) has found that 𝑔0 = 0.084 and 𝑔1 = 0.17 work better for higher-scattering coastal 

waters. In particular, 𝛹 is held constant to describe the spectral shapes of IOP (Inherent Optical Properties), 

which actually varies in nature. 𝑎𝑝ℎ
∗ (𝜆) is expressed as a constant mean spectrum, while true phytoplankton 

absorption spectra vary dramatically due to photoadaptation and/or composition of phytoplankton assemblage 

(Bricaud et al., 1998). 𝑆 actually depends on a complex system involving land/sea interactions, the productivity 

and state of the phytoplankton communities, the microbial loop and photochemistry (Maritorena et al., 2002). 

Similarly, 𝑏𝑏𝑝 is modeled using a simple function with a fixed spectral dependence (𝜂), while 𝜂 varies in the 

world ocean and such wavelength dependence tends to disappear in turbid waters. Furthermore, GSM is a blue-

light-dependent algorithm. That is to say, for extremely eutrophic waters where Chl is high, the blue signal 

might drop below the limits of detection due to the high absorption of phytoplankton. Then GSM becomes less 

efficient and even useless. Nevertheless, GSM has been extensively and widely used by oceanographers as it 

can outperform standard empirical algorithms, such as in the AO (Mustapha et al., 2012; Lewis and Arrigo, 

2020). 

2.6.5 Conclusion 

In the AO, since the currently best semi-analytical algorithm AO.GSM fails too often for waters with high CDM, 

we further tuned GSM for the AO by adding 620 nm which is useful to better distinguish the absorption of 

phytoplankton from CDM, and absorption from scattering. In terms of the performance of Chl estimates, our 

tuned algorithm GSMA performed similarly to AO.GSM for oceanic waters where CDM level is generally low, 

but showed much more robustness than AO.GSM for waters with high CDM, and the improvement that GSMA 

has made for coastal waters could reach up to ~93%. Besides, GSMA exhibited remarkable advantage over 

AO.GSM regarding the performance of 𝑎𝑐𝑑𝑚(443) estimates as the improvement was as high as 168%. These 

findings imply that, in the absence of other algorithms that can be applied to coastal waters with high accuracy, 

GSMA might be an alternative to retrieve Chl and 𝑎𝑐𝑑𝑚(443) simultaneously. 

However, we should keep in mind that the success of GSMA depends on the reliable detection of blue signal. 

When the observed blue signal drops below the limits of detection due to the high absorption of phytoplankton, 

GSMA becomes less efficient and even useless. Thus, semi-analytical algorithm that does not rely on blue 

signal (such as fluorescence-based algorithms) is still expected in future research, especially for eutrophic 

coastal waters.  
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Chapitre 3 A novel coupled full-spectral chlorophyll 𝒂 algorithm: a 

fluorescence-based approach 

Juan Li, Atsushi Matsuoka, Stanford B. Hooker, Xiaoping Pang, Marcel Babin 

3.1 Résumé 

Étant donné que les algorithmes standards de couleur de l'océan qui n'exploitent que le spectre visible sont peu 

performants dans l'océan Arctique (AO) en raison de l'interférence de la matière organique dissoute colorée 

(CDOM), il est crucial d'inclure des longueurs d'onde plus grandes qui sont moins affectées par la CDOM pour 

récupérer les propriétés de l'eau, en particulier pour les eaux turbides. Cependant, les algorithmes basés sur la 

fluorescence qui n'exploitent que la région rouge du spectre ne sont pas non plus appropriés pour les eaux 

côtières turbides car le signal de fond est difficile à décrire correctement en raison des interactions complexes 

entre les composants optiques significatifs dans la colonne d'eau. Il semble que les algorithmes qui n'exploitent 

que la région bleu-vert ou rouge soient problématiques lorsqu'ils sont appliqués à des eaux turbides.  Dans ce 

contexte, nous avons proposé un algorithme full-spectral en couplant le GSMA (version ajustée du GSM pour 

l'AO) avec le modèle d'émission de fluorescence. Nous avons constaté que notre nouvel algorithme couplé, 

FGSM, générait 4 à 10 % de données valides en plus par rapport à GSMA, et améliorait la précision des 

estimations de la Chl, en particulier pour les eaux eutrophes, l'amélioration atteignant jusqu'à 44 %. Les 

applications satellitaires du FGSM dans le delta de la rivière Lena ont montré des modèles assez différents de 

ceux dérivés d’un algorithme à réseau de neurone. Cependant, des mesures coincidentes satellite-in situ 

correspondances sont nécessaires à des fins de validation. 
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3.2 Abstract 

Since standard ocean color algorithms exploiting only visible spectrum perform poorly in the Arctic Ocean (AO) 

due to the interference of colored dissolved organic matter (CDOM), it is crucial to include longer wavelengths 

which are less affected by CDOM to retrieve water properties especially for turbid waters. However, 

fluorescence-based algorithms that only exploit the red region of the spectrum are not appropriate for turbid 

coastal waters as well because the background signal is difficult to described properly due to the complex 

interactions between optical-significant components in the water column. It seems that algorithms only exploit 

blue-green or red region are problematic when applied to turbid waters. Within this context, we proposed a full-

spectral algorithm by coupling GMSA (tuned version of GSM for the AO) with fluorescence emission model. 

We found that our new coupled algorithm, FGSM, generated 4%~10% more valid retrievals when compared 

with GSMA, and improved the accuracy of Chl estimates, especially for for eutrophic waters, the improvement 

reached up to ~44%. Satellite applications of FGSM at the Lena River Delta showed quite different patterns 

with that derived from neural network algorithm. However, coincident satellite-in situ matchups are needed for 

validation purposes. 
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3.3 Introduction 

Ocean color remote sensing (OCRS) has been a powerful tool for monitoring ocean phytoplankton at various 

spatio-temporal scales and has been used extensively and widely by oceanographers, especially in the Arctic 

Ocean (AO) where in situ measurements are scarce due to the harsh environment, logistical difficulties and cost 

constrains. However, around the runoff of several major rivers and in shallow areas of a huge continental shelf 

(more than 50% of the area of this ocean), the AO contains large amounts of colored dissolved organic matter 

(CDOM) (Matsuoka et al., 2014, 2013; Matsuoka et al., 2007), CDOM strongly absorbs towards short 

wavelengths of the visible spectrum, where it strongly interferes with the phytoplankton signal. Therefore, 

standard operational ocean color algorithms such as OC4v6 (O’Reilly et al., 2000; O’Reilly et al., 1998), 

OC3Mv6 (O’Reilly et al., 2000), OC3V (Wang et al., 2013) and OC4Me (Antoine and Morel, 1999) which 

only exploit blue and green spectral bands, show poor performance when applied to high-CDOM areas of the 

AO, as multiple studies have suggested (Lewis and Arrigo, 2020; Mustapha et al., 2012). To circumvent this 

problem, the use of spectral bands in the red and near-infrared spectral regions, which are less affected by 

CDOM, has been proposed (e.g., Gons et al., 2002). The latter approach performs well only at high chlorophyll 

𝑎 concentrations (Chl) though. Another solution for addressing CDOM-rich waters for the AO is to use the 

fluorescence of chlorophyll 𝑎 (Gower and Borstad, 2004). 

Since fluorescence spectral bands have been proposed and implemented on few satellite OCRS sensors (see 

Babin et al., 1996 and Gower et al., 2004, and references therein), algorithms have been proposed and applied 

(Behrenfeld et al., 2009; Gower et al., 2004; Huot et al., 2005; Morrison and Goodwin, 2010) to interpret 

satellite-observed Sun-induced chlorophyll 𝑎  fluorescence (SICF) to retrieve Chl or quantum yield of 

fluorescence (𝜙, defined as the fraction of absorbed photons re-emitted as fluorescence). These algorithms are 

generally based on an analytical function describing water-leaving radiance due to fluorescence but with a series 

of empirical or semi-empirical relationships. By setting the 𝜙 to some known value, Chl can be estimated 

through SICF (Behrenfeld et al., 2009; Huot et al., 2005; Sathyendranath et al., 2004). 

Fluorescence line height (FLH) has been routinely implemented on MODIS/OLCI to obtain SICF, which has 

been used to invert Chl by multiple studies (Behrenfeld et al., 2009; Huot et al., 2007, 2005). There are, however, 

some problems when using FLH algorithm to derive Chl. Firstly, FLH is described as the radiance at 

fluorescence emission band distinguished from the background elastic signal using a baseline obtained through 

linear regression between two wavebands around the fluorescence emission band. However, due to the various 

composition of optical-significant constituents (i.e., seawater, phytoplankton, CDOM and non-algal particles) 

in the water column, the background radiance spectra in the fluorescence emission wavelengths are not actually 

spectrally flat and varies in shape, making it difficult to extract the fluorescence signal accurately. This problem 

is especially acute in highly turbid waters (Gower et al., 1999). Secondly, since FLH contains information both 

on 𝜙 and Chl, to obtain information about a given one requires assumptions/measurements of the other one 

(Behrenfeld et al., 2009; Huot et al., 2005). Therefore, it is difficult to distinguish Chl from 𝜙 variations to 

obtain accurate estimates. Usually, 𝜙 is given a statistic mean value, but in essence, 𝜙, described as the ratio of 
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photons fluoresced by chlorophyll 𝑎 over the whole fluorescence band to the photons absorbed by all cellular 

pigments, is related to much more complex processes. It varies over an order of magnitude among various 

phytoplankton communities with different functional organization of the photosynthetic apparatus, and depends 

on nutrient and dyrological conditions (Babin et al., 1996). Lastly, some bio-optical models incorporated in 

FLH were established for case 1 waters. For instance, the attenuation coefficient for upwelling fluorescence 

radiance was approximated as the sum of water and phytoplankton absorption, which is not valid for waters 

with high colored detrital matter. 

In this study, to circumvent the problems of blue-green algorithms in high-CDOM waters, and the limitations 

of the FLH approach, we propose a semi-analytical algorithm that covers the whole visible spectrum and 

includes fluorescence emission in addition to inherent optical properties of optically-significant substances 

present in seawater. More specifically, we couple GSMA (tuned version for the AO) with a fluorescence-based 

model. The development of this new algorithm and its validation were carried out using in situ optical data from 

various coastal waters in the AO and elsewhere. 
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3.4 Data 

3.4.1 Bio-optical in situ data sets 

Data sets used in this study are summarized in Table 3.1. The algorithm-developing data set consists of 8 Arctic 

cruises: MALINA, ICESCAPE2010, ICESCAPE2011, ARCTICNET2011, ARCTICNET2013, TARA, 

GREEN EDGE and AREX. Given the similarity in optical properties among coastal waters, the COASTlOOC 

data set was added into the algorithm-developing data set to compensate the lack of measurements in Arctic 

coastal areas. The validation data set contributed by SB Hooker covers both high and low latitude waters. 

 

Figure 3.1 Sample locations of various datasets. 

 

Table 3.1 Summary of in situ datasets. 

Data Stationa Year Month Region Source 

MALINA 37 2009 July-August Southern Beaufort Sea SeaBASS 
ICESCAPE2010 34 2010 June-July Chukchi and Beaufort Sea SeaBASS 
ICESCAPE2011 3 2011 June-July Chukchi and Beaufort Sea SeaBASS 
ARCTICNET2011 9 2011 August Baffin Bay Individual 
ARCTICNET2013 9 2013 August Baffin Bay Individual 
TARA 27 2013 May-November Polar circle SeaBASS 
GREEN EDGE 34 2016 June-July Baffin Bay Individual 
AREX 11 2017 July Greenland Sea Individual 
COASTlOOC 168 1997-1998 January-December Europe coastal areas Individual 
SB Hooker 300 2010, 2013-2017 March-December Global scale Individual 
aThe number of concurrent measurements of 𝑅𝑟𝑠(𝜆) and Chl. 

 

𝑅𝑟𝑠(𝜆) measurements 

Except the COASTlOOC data set, all 𝑅𝑟𝑠(𝜆) (sr-1) was determined using the Compact-Optical Profiling System 

(C-OPS, Hooker et al. (2013)). Briefly, in-water upwelling radiance 𝐿𝑢(𝜆, 𝑧), in-water downward irradiance 

𝐸𝑑(𝜆, 𝑧), above-water downward solar irradiance (𝐸𝑠(𝜆)), pressure/depth, and dual axes tilts were measured 

simultaneously. After normalization by 𝐸𝑠(𝜆) and 5° tilt filtering, 𝐿𝑢(𝜆, 𝑧) and 𝐸𝑑(𝜆, 𝑧) were extrapolated to 

subsurface 𝐿𝑢
0−(𝜆) and 𝐸𝑑

0−(𝜆) through progressively optimized depth interval within the surface layer. Finally, 
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𝑅𝑟𝑠(𝜆)  was calculated as: 𝑅𝑟𝑠(𝜆) = 0.54𝐿𝑢
0−(𝜆)/(𝐸𝑑

0−(𝜆)/0.97) . Details of the process protocols are 

documented in Antoine et al. (2013). 

As for the COASTlOOC data set, in-water upwelling irradiance 𝐸𝑢(𝜆, 𝑧) and downwelling irradiance just above 

the sea surface 𝐸𝑑
0+(𝜆) were measured with a Satlantic free-fall SPMR (SeaWiFS Profiling Multichannel 

Radiometer) and a SMSR (SeaWiFS Multichannel Surface Reference), respectively (Bélanger et al., 2008). 

𝐸𝑢
0−(𝜆) was obtained by extrapolating 𝐸𝑢(𝜆, 𝑧) to subsurface by fitting a certain exponential function. Then 

𝐿𝑢
0−(𝜆) was calculated as 𝐿𝑢

0−(𝜆) = 𝐸𝑢
0−(𝜆)/3.8 (Bélanger et al., 2008). Afterwards, 𝑅𝑟𝑠(𝜆) was calculated 

through the same equation described above. Note that, in the present study, only common wavebands 

(412,443,490,510,555,620,670,683,710 𝑛𝑚) were used. 

Chl measurements 

Chlorophyll 𝑎  concentrations were determined via High-Performance Liquid Chromatography (HPLC). 

Generally, 25 mm GF/F filters were used to collect phytoplankton from seawater samples. Filters were extracted 

in 100% methanol, disrupted by sonication and clarified by filtration (GF/F Whatman) before being analyzed 

by HPLC later in the laboratory to obtain separated pigments (Ras et al., 2008; Van Heukelem and Thomas, 

2001). Finally, total chlorophyll 𝑎  pigment concentration was defined as the sum of mono- and divinyl 

chlorophyll 𝑎 concentrations, chlorophyllide 𝑎 and the allomeric and epimeric forms of chlorophyll 𝑎 (Hooker 

and Zibordi, 2005; Reynolds et al., 2016). 

Absorption measurements 

Only the absorption measurements of the algorithm-developing data set were used in the present study. 

Absorption spectra of particulate 𝑎𝑝(𝜆) (m-1) and non-algal particles 𝑎𝑛𝑎𝑝(𝜆) (m-1) were determined using a 

Perkin-Elmer Lambda-19 spectrophotometer equipped with a 15 𝑐𝑚  integrating sphere following the 

methodology described in (Bricaud et al., 2010; Kishino et al., 1985; Stramski et al., 2015). Phytoplankton 

absorption spectra 𝑎𝑝ℎ(𝜆) were calculated by subtracting 𝑎𝑛𝑎𝑝(𝜆) from 𝑎𝑝(𝜆). 𝑎𝑐𝑑𝑜𝑚 (𝜆) was measured using 

a liquid core waveguide system, UltraPath following (Miller et al., 2002). Absorption spectra of colored detrital 

and dissolved material (CDM, 𝑎𝑐𝑑𝑚(𝜆), m-1) was calculated as the sum of 𝑎𝑐𝑑𝑜𝑚(𝜆) and 𝑎𝑛𝑎𝑝(𝜆). The number 

of concurrent 𝑎𝑐𝑑𝑚(443) along with 𝑅𝑟𝑠(𝜆) and Chl is 238. 

3.4.2 Satellite image 

A Sentinel 3B OLCI (Ocean and Land Colour Instrument) image (file name: 

S3B_OL_2_WFR____20200910T031808_20200910T032108_20200911T114327_0179_043_175_1620_MA

R_O_NT_002.SEN3) with full resolution (~300 m) around the Lena River Delta taken on 10 September 2020 

was downloaded from https://catalogue.onda-dias.eu for assessment purpose. 𝑅𝑟𝑠(𝜆)  was derived from 

reflectance products by dividing 𝜋, which was then used to generate Chl and 𝑎𝑐𝑑𝑚(443).  
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3.5 Methods 

3.5.1 FGSM algorithm 

A vertically-resolved fluorescence emission model (Huot et al., 2005) is incorporated into the GSMA model to 

infer the radiative signal observed both in the blue-green and red spectrum. Basically, GSMA is adopted to 

describe the elastic signal across the whole spectrum, besides, except that at the red wavelengths (670,683,710 

nm) where the inelastic signal due to fluorescence is modeled using the semi-analytical fluorescence model. 

Note that the water-leaving signal due to Raman scattering is neglected as its contribution does not exceed a 

few percent (Huot et al., 2007; Matsuoka et al., 2017). Briefly, modeled 𝑟𝑟𝑠(𝜆) is described using this coupled 

full-spectral semi-analytical algorithm FGSM. By minimizing the mean square difference between measured 

and modeled 𝑟𝑟𝑠(𝜆), we can retrieve the unknowns. 
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Table 3.2 Symbols, descriptions and units of variables used in this study. 

Model Symbol Description Unit 

Inputs 
𝑅𝑟𝑠(𝜆) above-surface remote-sensing reflectance sr-1 

𝜃𝑠 solar zenith angle radians 

Outputs 

Chl chlorophyll 𝑎 concentration mg m-3 

𝑎𝑐𝑑𝑚(443) absorption coefficient of colored dissolved and detrital material at 443 nm m-1 

𝑏𝑏𝑝(443) particlulate backscattering coefficient at 443 nm m-1 

𝜎 factor that adjusts the fluorescence emission spectrum unitless 

𝜙 quantum yield of fluorescence unitless 

Variables 

𝑎𝑤(𝜆) absorption coefficient of water at 𝜆 nm m-1 

𝑎𝑝ℎ(𝜆) absorption coefficient of phytoplankton at 𝜆 nm m-1 

𝑎𝑝ℎ
∗ (𝜆) chlorophyll-specific phytoplankton absorption coefficient at 𝜆 nm m2 mg Chl-1 

𝑎𝑠𝑜𝑙
∗ (𝜆) chlorophyll-specific absorption coefficient of chlorophyll in solution at 𝜆 nm m2 mg Chl-1 

𝑎𝑝ℎ
∗  irradiance-weighted chlorophyll-specific absorption coefficient m2 mg Chl-1 

𝑎𝑐𝑑𝑚(𝜆) absorption coefficient of colored dissolved and detrital material at 𝜆 nm m-1 

𝑎𝑓(𝜆) attenuation coefficient of upwelling fluorescence radiance at 𝜆 nm m-1 

𝑎(𝜆) total absorption coefficient at 𝜆 nm m-1 

𝑄𝑎
∗ (𝜆) portion of emitted fluorescence not reabsorbed within the cell at 𝜆 nm unitless 

𝑏𝑏𝑤(𝜆) backscattering coefficient of water at 𝜆 nm m-1 

𝑏𝑏𝑝(𝜆) particulate backscattering coefficient at 𝜆 nm m-1 

𝑏𝑏(𝜆) total backscattering coefficient at 𝜆 nm m-1 

𝑆 spectral decay constant of 𝑎𝑐𝑑𝑚(𝜆) in visible range nm-1 

𝜂 power-law exponent of 𝑏𝑏𝑝(𝜆) in visible range unitless 

𝐶𝑓(𝜆) 
a proportionality factor which converts fluorescence signal at 𝜆 nm to the 
whole fluorescence band 

nm 

𝐾𝑎𝑏𝑠(𝜆) attenuation coefficient of absorbed radiation at 𝜆 nm m-1 

𝐾𝑑(𝜆) attenuation coefficient of downwelling irradiance at 𝜆 nm m-1 

𝐿𝑤(𝜆) upwelling radiance at 𝜆 nm mol m-2s-1nm-1sr-1 

𝐿𝑤𝑁(𝜆) normalized upwelling radiance at 𝜆 nm mol m-2s-1nm-1sr-1 

𝐿𝑤𝑓(𝜆) upwelling fluoresced radiance at 𝜆 nm mol m-2s-1nm-1sr-1 

𝐸𝑑(𝜆) downwelling irradiance at 𝜆 nm  mol m-2s-1nm-1 

𝐹0(𝜆) solar irradiance at 𝜆 nm at top of atmosphere mol m-2s-1nm-1 

�̇�𝑃𝐴𝑅 irradiance in the photosynthetically available radiation waveband mol m-2s-1nm-1 

 𝐹𝐿𝐻 fluorescence line height mol m-2s-1nm-1sr-1 

 

Generally, 𝑟𝑟𝑠(𝜆) due to elastic scattering is described as: 

𝑟𝑟𝑠
𝐸 (𝜆) = 𝑔0

𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
+ 𝑔1(

𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
)2     (14) 

Where 𝑔0 = 0.089 and 𝑔1 = 0.1245 (Lee et al., 2002). Absorption and backscattering spectra can be expanded 

as: 

𝑎(𝜆) = 𝑎𝑤(𝜆) + Chl 𝑎𝑝ℎ
∗ (𝜆) + 𝑎𝑐𝑑𝑚(443)𝑒−𝑆(𝜆−443)     (15) 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(443)(𝜆/443)−𝜂     (16) 
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Seawater absorption spectra (𝑎𝑤(𝜆)) and backscattering spectra 𝑏𝑏𝑤(𝜆) are assumed to be known constants 

(Morel, 1974; Pope and Fry, 1997). 𝑎𝑝ℎ
∗ (𝜆) is the chlorophyll-specific absorption coefficient. Values at 412, 

443, 490, 510, 555, 620, and 670 were inherited from GSMA (Li et al., in preparation), while as for 

𝑎𝑝ℎ
∗ (683,710), measured median values 0.0188 and 0.0013 m2mg Chl-1 were adopted, respectively. 𝑎𝑐𝑑𝑚 is the 

absorption coefficient of colored detrital material (CDM), and 𝑏𝑏𝑝 is the particulate backscattering coefficient. 

𝑆 is the spectral decay constant for 𝑎𝑐𝑑𝑚(𝜆) (Bricaud et al., 1981; Green and Blough, 1994), and 𝜂 is the power-

law exponent for 𝑏𝑏𝑝(𝜆). They were both inherited from GSMA, and the values used were 0.0196 nm-1 and 

1.0316 for 𝑆 and 𝜂 separately. 

In the fluorescence emission wavelengths (670, 683, 710), 𝑟𝑟𝑠(𝜆𝑓𝑙𝑢𝑜) is expressed as the sum of the elastic 

signal (𝑟𝑟𝑠
𝐸 (𝜆𝑓𝑙𝑢𝑜)) and the inelastic signal (𝑟𝑟𝑠

𝐹 (𝜆𝑓𝑙𝑢𝑜)) due to fluorescence emission: 

𝑟𝑟𝑠(𝜆𝑓𝑙𝑢𝑜) = 𝑟𝑟𝑠
𝐸 (𝜆𝑓𝑙𝑢𝑜) + 𝑟𝑟𝑠

𝐹 (𝜆𝑓𝑙𝑢𝑜)     (17) 

Where 𝑟𝑟𝑠
𝐹 (𝜆𝑓𝑙𝑢𝑜) is approximated via the following fluorescence emission model (Huot et al., 2005): 

𝑟𝑟𝑠
𝐹 (𝜆𝑓𝑙𝑢𝑜) =

Chl 𝜙 𝑄𝑎
∗ (𝜆𝑓𝑙𝑢𝑜) 𝑎𝑝ℎ

∗  �̇�𝑃𝐴𝑅
−

4𝜋 𝐶𝑓(𝜆𝑓𝑙𝑢𝑜) [𝐾𝑎𝑏𝑠(𝜆𝑓𝑙𝑢𝑜)+𝑎𝑓(𝜆𝑓𝑙𝑢𝑜)] 𝐸𝑑
−(𝜆𝑓𝑙𝑢𝑜)

     (18) 

Where 𝜙  is the quantum yield of fluorescence, which is the 4th unknown besides Chl, 𝑎𝑐𝑑𝑚(443)  and 

𝑏𝑏𝑝(443). 𝑄𝑎
∗(𝜆𝑓𝑙𝑢𝑜) is the fraction of emitted fluorescence not reabsorbed within the cell, which can be 

expressed as below according to (Morel and Bricaud, 1981): 

𝑄𝑎
∗ (𝜆𝑓𝑙𝑢𝑜) = 𝑎𝑝ℎ

∗′
(𝜆𝑓𝑙𝑢𝑜)/𝑎𝑠𝑜𝑙

∗ (𝜆𝑓𝑙𝑢𝑜)     (19) 

Where 𝑎𝑠𝑜𝑙
∗ (𝜆𝑓𝑙𝑢𝑜) is the chlorophyll 𝑎 specific absorption coefficient in solution. 𝑎𝑠𝑜𝑙

∗ (𝜆𝑓𝑙𝑢𝑜) were taken as 

0.0207, 0.0120 and 0.0003 mg-1m2, at 670, 683, and 710 nm, respectively, because mostly chlorophyll 𝑎 absorbs 

at these wavelengths (Bidigare et al., 1990). It should be noticed that 𝑎𝑝ℎ
∗′

 used here was not a fixed constant as 

used in equation (15), thus the symbol 𝑎𝑝ℎ
∗′

 is used to differ from the constant one. Here, 𝑎𝑝ℎ
∗′

(𝜆) is expressed 

as: 

𝑎𝑝ℎ
∗′

(𝜆) = 𝑎𝑝ℎ(𝜆)/[Chl]     (20) 

Where 𝑎𝑝ℎ(𝜆) was modeled as a function of 𝑎𝑝ℎ(443) (see Figure 3.2 and Table 3.3) using the algorithm-

developing data sets (see section 3.4.1): 

𝑎𝑝ℎ(443) = 0.0532 [Chl]0.769     (21) 

To make this fluorescence algorithm routinely applicable to satellite data, we introduced 𝐾𝑑(490), a standard 

ocean color product, to derive 𝑄𝑎
∗ (𝜆𝑓𝑙𝑢𝑜) and 𝑎𝑝ℎ

∗  (see description below) like what has been done by Huot et 

al. (2005). To do so, the relationship between 𝐾𝑑(490) and [Chl] described in Morel and Maritorena (2001) 

was adopted:  
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𝐾𝑑(490) = 0.0166 + 0.07242 [Chl]0.68955     (22) 

Note that [Chl] (used in equations (20)-(22)) is a temporary intermediate variable aiming to describe 𝑄𝑎
∗ (𝜆𝑓𝑙𝑢𝑜) 

as a function of 𝐾𝑑(490). That is to say, in the process to determine 𝑄𝑎
∗ (𝜆𝑓𝑙𝑢𝑜), it is not necessary to know the 

value of [Chl]. Therefore, the symbol [Chl] is used to differ from the retrieval Chl. Finally, by solving equations 

(19)-(22), 𝑄𝑎
∗ (𝜆𝑓𝑙𝑢𝑜) is expressed as a function as 𝐾𝑑(490): 

𝑄𝑎
∗ (670) = 0.0136(𝐾𝑑(490) − 0.0166)−0.2174/0.0207     (23) 

𝑄𝑎
∗ (683) = 0.0117(𝐾𝑑(490) − 0.0166)−0.2008/0.0120     (24) 

𝑄𝑎
∗ (710) = 0.0011(𝐾𝑑(490) − 0.0166)−0.1088/0.0003     (25) 

Note that, due to residual absorption by accessory pigments or some technical errors, 𝑄𝑎
∗  might exceed 1 (Babin 

et al., 1996). Thus, a theoretical upper limit 1 is assigned to 𝑄𝑎
∗ . 

𝑎𝑝ℎ
∗  is the irradiance-weighted chlorophyll-specific absorption coefficient, which can be approximated as a 

function of 𝐾𝑑(490) as well (Huot et al., 2005): 

𝑎𝑝ℎ
∗ = 0.00663(𝐾𝑑(490) − 0.016)−0.3611     (26) 

�̇�𝑃𝐴𝑅
−  is the irradiance in the photosynthetically available radiation wavebands from 400 to 700 nm, and 𝐸𝑑

−(𝜆) 

is the downwelling irradiance just below sea surface at 𝜆 nm. In the present study, HydroLight is used to 

generate a comprehensive data set of �̇�𝑃𝐴𝑅
−  and 𝐸𝑑

−(𝜆) covering wide range of absorption and backscattering 

spectral following the procedure described at https://www.ioccg.org/groups/lee_data.pdf. The ratio of �̇�𝑃𝐴𝑅
−  to 

𝐸𝑑
−(𝜆𝑓𝑙𝑢𝑜) is then summarized in Table 3.4. It can be seen that the variances are quite small (< 2.3). Therefore, 

�̇�𝑃𝐴𝑅
− /𝐸𝑑

−(𝜆𝑓𝑙𝑢𝑜) was assumed as constant using the mean value listed in the table. 

𝐶𝑓(𝜆𝑓𝑙𝑢𝑜) is a proportionality factor which converts fluorescence signal at 𝜆𝑓𝑙𝑢𝑜  to the whole fluorescence 

emission spectrum: 

𝐶𝑓(𝜆𝑓𝑙𝑢𝑜) = ∫ 𝐹
∞

−∞
(𝜆)𝑑𝜆/𝐹(𝜆𝑓𝑙𝑢𝑜)     (27) 

Where 𝐹(𝜆)  is the fluorescence emission spectrum. In this study, the fluorescence emission spectrum of 

Thallassiosira pseudonana spp. expressed as the sum of two gaussian curves (Huot, 2004) with a factor 𝜎 

determining the magnitude of the main peak is adopted: 

𝐹(𝜆) = 67.5 𝜎 𝑒
−(𝜆−682.8)2

2𝜎2 + 98.55 𝑒
−(𝜆−721.5)2

233.32      (28) 

Thus, the fifth unknown 𝜎 is introduced. 

𝐾𝑎𝑏𝑠(𝜆𝑓𝑙𝑢𝑜) is the attenuation coefficient of absorbed irradiance, which is simply approximated by 𝐾𝑑(𝜆𝑓𝑙𝑢𝑜) 

which can be obtained according to Lee et al. (2013): 

𝐾𝑑(𝜆) = (1 + 0.005 𝜃𝑠) 𝑎(𝜆) + 4.259(1 − 0.265
𝑏𝑏𝑤(𝜆)

𝑏𝑏(𝜆)
)(1 − 0.52 𝑒−10.8 𝑎(𝜆))𝑏𝑏(𝜆)     (29) 
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Where 𝜃𝑠 is the solar zenith angle, 𝑎(𝜆) and 𝑏𝑏(𝜆) are generated through QAAv6, which are different from 

those used in equations (14)-(16). 

𝑎𝑓(𝜆𝑓𝑙𝑢𝑜) is the attenuation coefficient of upwelling fluorescence radiance, which is expressed as: 

𝑎𝑓(𝜆𝑓𝑙𝑢𝑜) = 𝑎(𝜆𝑓𝑙𝑢𝑜) + 𝑏𝑏(𝜆𝑓𝑙𝑢𝑜)     (30) 

Overall, remote-sensing reflectance can be modeled using the approach described above with five unknowns 

(Chl, 𝑎𝑐𝑑𝑚(443), 𝑏𝑏𝑝(443), 𝜙 and 𝜎). To differ from the measured remote-sensing reflectance 𝑀𝑟𝑟𝑠(𝜆), the 

estimated value is noted as 𝐸𝑟𝑟𝑠(𝜆)  hereafter. By matching 𝐸𝑟𝑟𝑠(𝜆)  with 𝑀𝑟𝑟𝑠(𝜆)  using the cost function 

described below we can estimate the five unknowns. 

CF = 𝑠𝑢𝑚(𝑀𝑟𝑟𝑠(𝜆) − 𝐸𝑟𝑟𝑠(𝜆))2     (31) 

However, given the small magnitude of fluorescence, for eutrophic waters, the signals observed in the red needs 

to be amplified to put more weights on the fluorescence signals. For this purpose, when 𝑅𝑟𝑠(𝜆𝑔𝑟𝑒𝑒𝑛) >

max{𝑅𝑟𝑠(𝜆𝑏𝑙𝑢𝑒), 𝑅𝑟𝑠(𝜆𝑛𝑖𝑟)} , water-leaving signals in the red were multiplied by am amplification factor 

described as AF = 𝑚𝑎𝑥{𝑅𝑟𝑠(𝜆𝑔𝑟𝑒𝑒𝑛)}/𝑅𝑟𝑠(683). The cost function is thus then: 

CF = 𝑠𝑢𝑚(𝑀𝑟𝑟𝑠(𝜆𝑣𝑖𝑠) − 𝐸𝑟𝑟𝑠(𝜆𝑣𝑖𝑠))2 + 𝑠𝑢𝑚(AF ∗ (𝑀𝑟𝑟𝑠(𝜆𝑓𝑙𝑢𝑜) − 𝐸𝑟𝑟𝑠(𝜆𝑓𝑙𝑢𝑜)))2     (32) 

For convenience, this GSMA and fluorescence coupled model is named as FGSM from hereafter. An illustrative 

flowchart is shown in Figure 3.4. 

 

Table 3.3 Coefficients of the nonlinear regression expressed as 𝑎𝑝ℎ(𝜆) = 𝐴(𝜆)[𝑎𝑝ℎ(443)]𝐵(𝜆), where 𝜆 is the 

wavelength, 𝑟2 is the determination coefficient of the regression. 

𝜆 (nm) 𝐴(𝜆) 𝐵(𝜆) 𝑟2 

412 1.011 1.032 0.978 
443 1.0 1.0 1.0 
490 0.581 0.983 0.990 
510 0.443 1.025 0.984 
555 0.267 1.134 0.949 
620 0.285 1.162 0.973 
670 0.620 1.106 0.972 
683 0.531 1.121 0.967 
710 0.051 1.203 0.853 
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Figure 3.2 Relationships between 𝑎𝑝ℎ(λ) at 412, 490, 510, 555, 620, 670, 683, 710 nm and 𝑎𝑝ℎ(443), 

respectively. 
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Figure 3.3 Relationship between 𝑎𝑝ℎ(443) and Chl. 

 

Table 3.4 Summary of the variation of EWF. 

Wavelength Min Max Mean Median Variance 

670 257.97 266.92 260.39 260.31 0.439 

683 267.49 279.20 271.59 271.74 1.233 

710 270.40 284.47 275.98 276.35 2.288 

 

 

Figure 3.4 Flowchart of FGSM algorithm. Briefly, GSMA was used to describe the elastic signal in the whole 

spectrum. While in the red region, except the elastic signal, the fluorescence emission model was adopted to 

express the fluorescence signal. In addition, for waters where blue signal is relative low, more weights were 

put on the fluorescence signal. Finally, the five unknows including Chl were obtained by spectral-fitting 

optimization. 
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3.5.2 FLH algorithm 

FLH algorithm makes use of the fluorescence emitted by phytoplankton in the red to retrieve chlorophyll 𝑎 

concentration. Generally, the sensor-observed fluorescence line height (FLH) is calculated as: 

FLH(683) = 𝐿𝑤𝑁(683) −
27

40
𝐿𝑤𝑁(670) −

13

40
𝐿𝑤𝑁(710)     (33) 

Where 𝐿𝑤𝑁 is normalized water-leaving radiance, which can be described as: 

𝐿𝑤𝑁(𝜆) = 𝐹0(𝜆)
𝐿𝑤(𝜆)

𝐸𝑑
+(𝜆)

= 𝐹0(𝜆)𝑅𝑟𝑠(𝜆)     (34) 

𝐹0(λ) is 1516.040, 1464.849, and 1401.801 mol m-2 s-1 nm-1 at 670, 683 and 710 nm, respectively. Then, 

upwelling fluoresced radiance just above sea surface is calculated as: 

𝐿𝑤𝑓
+ = FLH(683)𝐸𝑑

+(683)/𝐹0(683)     (35) 

Transmitting 𝐿𝑤𝑓
+  across the sea-air surface, we can obtain the upwelling fluoresced radiance just below sea 

surface: 

𝐿𝑤𝑓
− =

𝐹𝐿𝐻(683)𝐸𝑑
−(683)

0.54×0.97𝐹0(683)
     (36) 

By integrating fluorescence signal over depth with several simplification between attenuation coefficient and 

optical properties, we can approximate the total amount of fluorescence radiance at the surface (Huot et al., 

2005): 

𝐿𝑤𝑓
− =

𝐶ℎ𝑙 𝜙 𝑄𝑎
∗ (683) 𝑎𝑝ℎ

∗  �̇�𝑃𝐴𝑅
−

4𝜋 𝐶𝑓(683)[𝐾𝑎𝑏𝑠(683)+𝑎𝑓(683)]
     (37) 

Combining equation (36) and (37): 

𝐶ℎ𝑙 𝜙 𝑄𝑎
∗ (683) 𝑎𝑝ℎ

∗  �̇�𝑃𝐴𝑅
−

4𝜋 𝐶𝑓(683)[𝐾𝑎𝑏𝑠(683)+𝑎𝑓(683)]
=

FLH(683)𝐸𝑑
−(683)

0.54×0.97𝐹0(683)
     (38) 

𝐾𝑎𝑏𝑠(683), 𝑎𝑓(683), 𝑄𝑎
∗ (683), 𝑎𝑝ℎ

∗ , �̇�𝑃𝐴𝑅
− /𝐸𝑑

−(683) are used as the values described in section 3.5.1, 𝐶𝑓(685) 

is taken as 43.38 nm (Huot et al., 2005). Therefore, if we know Chl, we can get 𝜙, and vice versa. In order to 

obtain Chl, firstly, Chl estimated through empirical algorithm OC4v6 (𝐶ℎ𝑙𝑜𝑐4 , O’Reilly et al. (2000)) is 

substituted into equation (38) to derive 𝜙, then the mean 𝜙 (𝜙𝑚𝑒𝑎𝑛) is substituted back into equation (38) to get 

the final Chl estimates. 

3.5.3 Evaluation metrics 

Algorithm performance was assessed following the metrics described in Seegers et al. (2018), that is, the 

number of effective retrievals, bias and mean absolute error (MAE) and percent wins through pair-wise 

comparison. 

bias = 10mean(𝑙𝑜𝑔10(𝑋𝑀)−𝑙𝑜𝑔10(𝑋𝐸))     (39) 
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MAE = 10mean|𝑙𝑜𝑔10(𝑋𝑀)−𝑙𝑜𝑔10(𝑋𝐸)|     (40) 

Where X stands for Chl or 𝑎𝑐𝑑𝑚(443). Besides, slope and coefficient of determination (𝑟2) for log-transformed 

variable via type II reduced major axis (RMA) regression (Legendre, 1998) are also adopted as complementary 

metrics. 

3.5.4 Classification 

Based on measured median value of Chl (1.21 mg m-3), we split the in situ data set by half. For the part with 

Chl ≤  1.21 mg m-3, samples with 𝑎𝑐𝑑𝑚(443)  ≤  0.118 m-1 were classified as chl.acdm, the others with 

𝑎𝑐𝑑𝑚(443) > 0.118 m-1 were regarded as chl.ACDM. The same procedure was applied to the other part of the 

data set with Chl > 1.21 mg m-3, therefore we got CHL.acdm and CHL.ACDM. The illustration of the 

classification approach is summarized in Table 3.5. 

Table 3.5 Classification criteria. 

Water type Threshold Number 

chl.acdm Chl  1.21 mg m-3, 𝑎𝑐𝑑𝑚(443)  0.118 m-1 136 
CHL.acdm Chl > 1.21 mg m-3, 𝑎𝑐𝑑𝑚(443)  0.118 m-1 30 
chl.ACDM Chl  1.21 mg m-3, 𝑎𝑐𝑑𝑚(443) > 0.118 m-1 30 
CHL.ACDM Chl > 1.21 mg m-3, 𝑎𝑐𝑑𝑚(443) > 0.118 m-1 136 
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3.6 Results and discussions 

3.6.1 Performance of FGSM 

The FGSM model was applied to the 332 reflectance spectra with corresponding sun zenith angle from the 

Arctic and COASTlOOC data sets to retrieve Chl, 𝑎𝑐𝑑𝑚(443), 𝑏𝑏𝑝(443), 𝜙 and 𝜎. For comparison purposes, 

Chl estimates derived through the Arctic empirical algorithm AO.emp (Lewis and Arrigo, 2020), FLH 

algorithm, the Arctic semi-analytical algorithm GSMA (described in chapter 3) are also showed in Figure 3.5. 

Symbols representing FLH-derived Chls are the most scattered around the 1:1 regression line, while FGSM-

derived Chls are the most evenly distributed along the 1:1 regression line. AO.emp performed the best in water 

type CHL.acdm but worst in chl.ACDM. It seems that this empirical algorithm is not able to provide good 

performance for all waters with very different optical properties. For water types chl.acdm and CHL.acdm, 

except FLH, there is no significant difference between the performance of the other algorithms. In water type 

CHL.ACDM, AO.emp and GSMA showed obvious underestimation, FLH exhibited a notable trend of 

overestimation, and FGSM-derived Chls were the least biased. Different levels of overestimation occurred in 

chl.ACDM were the common problem of all algorithms. 

Given GSMA is currently the best semi-analytical algorithm for the Arctic Ocean, it was further compared with 

our new coupled algorithm FGSM pair by pair (see Figure 3.6(a)). For water type chl.acdm and CHL.acdm, 

there is no significant difference between GSMA- and FGSM-derived Chls. FGSM produced 2 and 11 more 

valid Chl estimates than GSMA in chl.ACDM and CHL.ACDM, respectively, although some of them were 

located far from the 1:1 regression line. In addition, diamonds and ‘x’ symbols representing Chl estimates in 

CHL.ACDM using FGSM, they were much more concentrated along the 1:1 regression than estimates derived 

from GSMA. This pair-wise comparison demonstrated that FGSM outperformed GSMA for waters with high 

levels of both Chl and CDM. 
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Figure 3.5 Comparison between measured and estimated Chl in 4 water types - chl.acdm, CHL.acdm, 

chl.ACDM, and CHL.ACDM (see context for definition) using (a) AO.emp, (b) FLH, (c) GSMA, and (d) 

FGSM algorithms. 
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Figure 3.6 Comparison of (a) Chl and (b) 𝑎𝑐𝑑𝑚(443) estimates, from GSMA and FGSM for 4 water types. 

“FGSM-GSMA” represents the Chl estimates derived using FGSM but failed using GSMA, while “GSMA-

FGSM” refers to the opposite.  

 

Performance metrics of each algorithm are listed in Table 3.6 and Table 3.7. Generally, AO.emp, FLH and 

FGSM overestimated Chl by 10%, 114% and 17%, respectively. While GSMA showed 14% underestimation. 

AO.emp had the lowest MAE but highest 𝑟2, and it was the only algorithm with no failure. As for decision 

metric wins (Table 3.6), AO.emp outperformed the other algorithms through pair-wise comparison, ranking the 

first among all algorithms tested. FLH had the highest MAE (2.77) and most failures accounting for 10.9% of 

the total samples. Its wins did not exceed 30% when compared to the other algorithm, indicating it was the 

worst chlorophyll 𝑎 algorithm tested. FGSM showed better results than GSMA in terms of MAE, failures, 𝑟2 

and slope. While their wins were quite close. To look closer, further analysis between GSMA and FGSM was 

carried out with respect to water type. For oligotrophic waters (in this study referred as Chl < 1.21 mg m-3), 

GSMA won 67.6% for chl.acdm and 83.3% for chl.ACDM. However, we noticed that, for water type chl.acdm, 

there was no significant difference between Chl estimates derived from GSMA and FGSM concerning bias, 

MAE, 𝑟2 and slope. For water type chl.ACDM, even though FGSM obtained larger bias and MAE, its overall 

MAE (1.95) was smaller than GSMA, indicating that the inferiority of FGSM in chl.ACDM was overcome by 

the winners in other water types. As for eutrophic waters, FGSM showed overwhelming superiority over GSMA 

as all the metrics listed in Table 3.7 suggested. 

𝑎𝑐𝑑𝑚(443) is another common retrieval of GSMA and FGSM models. Comparisons between measured and 

estimated 𝑎𝑐𝑑𝑚(443) using GSMA and FGSM were carried out as well. As seen from Figure 3.6(b), there is 

no obvious difference between GSMA- and FGSM-derived 𝑎𝑐𝑑𝑚(443). Metrics (i.e., bias, MAE, wins, 𝑟2 and 

𝑠𝑙𝑜𝑝𝑒) showed in Table 3.7 demonstrate that FGSM worked slightly better than GSMA. Combined with the 

improvement FGSM had made in the estimation of Chl especially for eutrophic waters, FGSM overtook GSMA 

as the best semi-analytical algorithm retrieving Chl and 𝑎𝑐𝑑𝑚(443) simultaneously for the Arctic Ocean. 
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Table 3.6 Chlorophyll 𝑎 algorithm performance assessed through pair-wise comparison. 

 Percent Wins 

Data Algorithm AO.emp FLH GSMA FGSM 

Arctic +  
COASTlOOC 

AO.emp - 29.2 43.1 48.8 
FLH 70.8 - 71.7 73.8 
GSMA 56.9 26.5 - 47.6 
FGSM 51.2 26.2 52.4 - 

Overall Wins 59.6 27.3 55.7 56.7 
Failure  33 (10.0%) 13 (3.9%) 1 (0.3%) 

SB Hooker 

AO.emp - 33.3 53.7 58 
FLH 65.3 - 62 70.7 
GSMA 44.7 30 - 51.3 
FGSM 42 29.3 48.3 - 

Overall Wins 50.7 30.9 54.7 60 
Failure 5 (1.7%) 72 (24.0%) 33 (11.0%) 3 (1.0%) 

 

Table 3.7 Metrics comparing algorithm performance. 

Data Algorithm n bias MAE 
Overall 

Wins (%) 
Failure r2 slope 

Arctic +  
COASTlOOC  
n = 332 

AO.emp 332 1.10 1.83 59.6  0.73 0.80 
FLH 299 2.14 2.77 27.3 33 (10.9%) 0.67 1.19 
GSMA 319 0.86 2.06 55.7 13 (4.3%) 0.61 0.78 
FGSM 331 1.17 1.95 56.7 1 (0.3%) 0.70 0.94 

chl.acdm, n = 136    
GSMA 136 1.22 1.72 67.6  0.42 0.87 
FGSM 136 1.29 1.73 32.4  0.46 0.90 
CHL.acdm, n = 30    
GSMA 30 0.57 1.89 40.0  0.36 1.89 
FGSM 30 0.63 1.79 60.0  0.38 1.86 
chl.ACDM, n = 30    
GSMA 28 1.86 2.53 83.3 2 (6.7%) 0.25 1.10 
FGSM 29 2.55 3.24 16.7 1 (3.3%) 0.44 1.26 
CHL.ACDM, n = 136    
GSMA 125 0.54 2.44 33.1 11 (8.1%) 0.00 8.84 
FGSM 136 1.02 2.00 66.9  0.05 1.37 

acdm(443), n = 238    
GSMA 232 1.31 1.53 42.7 6 (2.5%) 0.86 1.18 
FGSM 232 1.25 1.48 57.3 6 (2.5%) 0.86 1.15 

SB Hooker  
n = 300 

AO.emp 295 0.87 2.25 50.7 5 (1.7%) 0.70 1.04 
FLH 228 1.72 2.69 30.9 72 (24.0%) 0.58 1.34 
GSMA 267 0.90 2.03 54.7 33 (11.0%) 0.66 0.95 
FGSM 297 1.12 2.15 60.0 3 (1.0%) 0.66 1.02 

 

In addition, another independent global data set contributed by SB Hooker was adopted to validate FGSM with 

respect to robustness. For comparison, results generated from AO.emp, FLH and GSMA are also showed in 

Figure 3.7. AO.emp showed obvious overestimation when Chl < 0.2 mg m-3 and > 10.0 mg m-3. FLH-derived 

Chl estimates were the most scattered, distributed along the 1:1 regression line. Same as before, GSMA and 

FGSM were taken out for pair-wise comparison (see Figure 3.8). When Chl < 0.3 mg m-3, FGSM generated 

several large Chl estimates located far above the regression, while for Chl > 2.0 mg m-3, GSMA was more likely 

to produce lower Chl estimates distributed far below the regression line. Besides, FGSM derived 30 more valid 

Chl estimates as the diamonds showed in Figure 3.8, although some of them were distributed far from the 1:1 

regression line. As for statistic metrics, AO.emp generated 2 more failures than FGSM, but the 𝑟2 was the 

highest among all. Given FLH had 72 failures accounting for 24% of the total samples, it was excluded for 
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further comparisons. Bias of GSMA was the closest to 1, however, the failures of GSMA reached 11.0%, 

exhibiting instability in its application to global waters. Regarding FGSM, unlike at the Arctic scale, it surpassed 

AO.emp and GSMA by pair-wise comparisons, obtaining 60% overall wins, and thus became the best algorithm 

of all at a global scale. 

Overall, FLH performed the worst of all. AO.emp outperformed the other algorithms in the AO, however, its 

performance degraded when applied to global waters. FGSM improved the accuracy of Chl estimates by ~10% 

when compared with GSMA, while for eutrophic waters, the improvement reached up to ~44%. In addition, the 

failures of FGSM did not exceed 1%, which was even less than the empirical algorithm sometimes, indicating 

its robustness regardless of the complex optical properties in the water column. 

 

Figure 3.7 Comparison between measured and estimated Chl derived from (a) AO.emp, (b) FLH, (c) GSMA, 

and (d) FGSM using the dataset contributed by S.B. Hooker. 
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Figure 3.8 Comparison of Chl estimates between GSMA and FGSM. FGSM-GSMA represents the Chl 

estimates derived using FGSM but using via GSMA. 

3.6.2 Satellite application 

FGSM and GSMA were applied to the OLCI reflectance product around the Lena River Delta on 10 September 

2020 to produce Chl and 𝑎𝑐𝑑𝑚(443)  estimates (see Figure 3.9 and Figure 3.11). Standard Chl products 

generated through NN (neural network algorithm) and global algorithm OC4Me (Morel et al., 2007) are also 

showed for comparison purposes. Seen from Figure 3.9, as the black circle suggested, FGSM had more Chl 

retrievals along the shelf than GSMA, and the number of valid Chl estimates was compatible with the empirical 

algorithm OC4Me. Besides more pixels along the coast, FGSM-derived Chl estimates in area 1 and 2 were 

larger than that obtained from GSMA. NN got the most Chl retrievals, but showed significant differences in 

area 1, 3, and 4 when compared with the images produced by GSMA and FGSM. As for OC4Me, it generated 

relative lower Chl estimates in area 1, 2, and 3 than GSMA and FGSM. 

For further analysis, kernel density plots of individual algorithm derived Chl products were illustrated in Figure 

3.10. Generally, the density curve belonging to GSMA was nearly normally distributed with median value 2.09 

mg m-3. Unlike GSMA, the FGSM curve had two visible crests located around the GSMA crest. Because the 

righter crest lay further to the GSMA crest, the median value of FGSM-derived Chl estimates was slightly 

higher than that of GSMA. The OC4Me curve seems to be a shift of FGSM curve to the left, but more compactly 

distributed resulting in higher crests. NN curve also had two crests but located at the farthest ends. Since the 

left crest was much higher than the right one, NN obtained the smallest median value (0.65 mg m-3). In addition, 

numbers of Chl estimates were summed up for statistics in terms of Chl level (Table 3.8) according to the 

classification criteria described in section 3.5.4. NN obtained the most Chl estimates, followed by OC4Me. 

FGSM indeed had more Chl retrievals for eutrophic waters than GSMA, but the total number was less than that 

of GSMA. This was because that FGSM adopted reflectance at 710 nm which is more likely to be negative for 

oligotrophic waters due to the problems of atmospheric correction. 
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Figure 3.9 (a) GSMA, (b) FGSM, (c) NN and (d) OC4Me derived Chl estimates using the OLCI reflectance 

product taken by Sentinel 3B around the Lena River plume on 10 September 2020. 

1 

2 
3 
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Figure 3.10 Kernel density plot of Chl estimates from GSMA, FGSM and NN using the OLCI reflectance 

product taken by Sentinel 3B around the Lena River plume on 10 September 2020. 

 

Table 3.8 Statistical outputs of satellite-derived Chl and 𝑎𝑐𝑑𝑚(443) estimates. 

 Chl (mg m-3) 𝑎𝑐𝑑𝑚(443) (m-1) 

Algorithm N (≤ 1.21) N (> 1.21) Median N (≤ 0.118)  N (> 0.118) Median 

FGSM 2075178 4840813 2.16 4629815 2244335 0.058 

GSMA 2282003 4834015 2.09 4919912 2284771 0.058 

NN 4693371 2992636 0.65 4169165 3531814 0.097 

OC4Me 2914266 4384852 1.55 - - - 

 
 

As for 𝑎𝑐𝑑𝑚(443) products, because no empirical algorithm is available, only GSMA, FGSM and NN derived 

𝑎𝑐𝑑𝑚(443) products are showed in Figure 3.11. No matter from the images or the density plots, there was no 

significant difference between GSMA- and FGSM-derived values. While NN tended to generate less 

𝑎𝑐𝑑𝑚(443) retrievals at the range from 0.02 to 0.08 m-1 but more values larger than 0.3 m-1, leading to a higher 

median value than that of GSMA and FGSM. 
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Figure 3.11 (a) GSMA, (b) FGSM, and (c) NN derived 𝑎𝑐𝑑𝑚(443) estimates using the OLCI reflectance 

product taken by Sentinel 3B around the Lena River plume on 10 September 2020. (d) Corresponding kernel 

density plot of 𝑎𝑐𝑑𝑚(443) estimates by individual algorithm. 

 

3.6.3 Model limitations 

The basic principle of the FGSM model is to search for optimal solutions for designed retrievals by matching 

the modeled reflectance spectrum to the measured one. The addition of 2 more bands in the red region will help 

to shape the reflectance spectrum, which will in return lead to better results. However, due to the complexity of 

SICF driven by variables such as phytoplankton biomass, ambient light, phytoplankton physiological state, 2 

more unknowns are introduced to the FGSM model. Consequently, the problem to be solved becomes much 
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more complex and time-consuming. To obtain optimal results at minimal cost, for oligotrophic waters, it is not 

necessary to use FGSM as GSMA can produce better results quickly. Only eutrophic waters such as coastal 

waters are worth using FGSM. 

Since FGSM incorporates a series of simplified assumptions during the inversion process, we should keep in 

mind that the model itself has some limitations. Firstly, FGSM inherits the limitations from GSMA as it is 

deployed to describe the elastic signal. That is, 𝑎𝑝ℎ
∗ , 𝑆, and 𝜂 are held constant to describe the spectral shapes 

of IOP (Inherent Optical Properties), which actually vary in nature (Lee and others, 2006; Maritorena et al., 

2002). Besides, the limitations of the fluorescence model are also passed into the FGSM model: 1) In reality, 

𝑄𝑎
∗ (𝜆𝑛𝑖𝑟) variations depend on the intracellular pigment concentration and cell diameter (Morel et al., 2007; 

Roesler and Boss, 2008). Besides these factors, the variance of 𝑎𝑝ℎ
∗  also relies on pigment composition and 

environment factors such as light and nutrient (Babin et al., 2008, 1996). However, 𝑄𝑎
∗ (𝜆𝑛𝑖𝑟) and 𝑎𝑝ℎ

∗  are finally 

approximated via 𝐾𝑑(490) (equation (19)-(22)) using multiple intermediate variables (Huot et al., 2005). The 

uncertainty in OCRS-derived 𝐾𝑑  is 7~26% (Lee et al., 2013), but how it will bias 𝑄𝑎
∗ (𝜆𝑛𝑖𝑟) and 𝑎𝑝ℎ

∗  is not 

known yet. 2) Fluorescence emission spectral adopted in FGSM was simulated using 𝜎  controlling the 

magnitude by two gaussian curves with a main peak centered at 682.8 nm and a secondary shoulder at 721.5 

nm. In nature, the fluorescence peaks shift between various species. The secondary peak may even shift to the 

left of the main peak, such as Storeatula major (MacIntyre et al., 2010). 3) 𝐾𝑎𝑏𝑠, describing the fraction of 

fluorescence signal reabsorbed by phytoplankton, is related to cellular pigment composition and pigment 

packaging (Bidigare et al., 1990; Bricaud et al., 2004; Ciotti et al., 2002). However, it was simply approximately 

by 𝐾𝑑. In addition, 𝑎𝑓 describing the attenuation of fluorescence in the upwelling process was obtained through 

QAA-derived absorption and backscattering coefficients. Errors occurring in QAA will pass into 𝑎𝑓 as well. 4) 

The fluorescence emission model only accounts for fluorescence emitted by the most significant pigment 

chlorophyll 𝑎. Furthermore, except the uncertainties caused by the usage of model parameters, since it is solved 

by optimization, retrievals might interfere with each other. For instance, effects caused by 𝜙 and 𝜎 on the 

modeling of fluorescence signal probably cancel each other out. In other words, different combination of 𝜙 and 

𝜎 might give the same fluorescence signal, as a result, it is hard to distinguish from each other to obtain accurate 

retrievals. 

Although there are multiple limitations, FGSM indeed makes improvement in the estimation of Chl, especially 

for eutrophic waters. For oligotrophic waters, sensor-observed water-leaving reflectance in the red region are 

usually quite small, which is difficult to detected accurately. Under such circumstance, simulating the elastic 

and fluorescence signals separately in FGSM inevitably generated more uncertainties than GSMA which only 

accounts for elastic signal. This might be the reason why FGMS did not outperform GSMA for this type of 

water. For eutrophic waters, the fluorescence signal emitted at the red wavelengths is much more sensitive to 

the variance of Chl than that detected through maximum blue-to-green ratios at the short wavelengths, thus 

playing an important role in the observed reflectance. Therefore, the introduction of fluorescence to GSMA 

would help to improve the performance of Chl estimates. 
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3.6.4 Conclusion 

In the AO, due to the existence of high proportion of CDOM which will interfere the phytoplankton signal in 

short wavelengths, it is critical to include longer wavelengths to retrieve optical properties especially for 

CDOM-rich waters. Therefore, to obtain better results in the estimation of Chl, fluorescence model was 

introduced to describe the signal observed in the red region along with the GSMA model. By coupling GSMA 

with the fluorescence emission model, FGSM has made a range of improvements: 1) The model could work for 

waters from oligotrophic to very turbid; 2) bio-optical properties of phytoplankton in the whole spectrum were 

accounted; 3) background radiance at the red wavelengths was modeled using GSMA-related IOPs rather than 

assumed spectrally flat; 4) the role of 𝜎  was switched from parameters to retrieval as Chl, relieving the 

dependence on each other; 5) parameters (e.g., 𝑎𝑝ℎ
∗ , 𝑆, 𝜂) used in the fluorescence model has been optimized 

for the AO by GSMA; 6) The bio-optical model used to derive 𝑎𝑓 for case 1 waters in the fluorescence model 

have been adapted for case 2 waters; 7) Chl, common retrieval of both models, is more likely to invert accurately 

under the dual constrains from both models than using a single model; 8) the inversion scheme can derive 

information on phytoplankton physiological state (e.g., 𝜙). Although the uncertainty is unknown, to some extent, 

it will help for the better understanding of phytoplankton dynamics due to climate changes. 

No matter applied to the algorithm-developing or validation data set, in terms of the estimation of Chl, AO.emp 

showed obvious underestimations when Chl > 10.0 mg m-3, while FLH manifested a trend of overestimation 

when Chl > 1.0 mg m-3. As for GSMA and FGSM, FGSM generated more than 4% valid retrievals than GSMA, 

and the accuracy of FGSM-derived Chl estimates improved ~10% when compared with GSMA. Besides, 

FGSM showed obvious superiority over GSMA for eutrophic waters, the improvement reached up to 44%. 

With respect to the performance of 𝑎𝑐𝑑𝑚(443), FGSM outperformed GSMA, but with limited improvement 

within 5%. 

Satellite application based on OLCI reflectance in the Lena River Delta further confirmed that FGSM tends to 

generate much more valid Chl retrievals in coastal areas. However, in the open ocean, probably due to the 

impact of atmospheric correction, satellite-observed surface reflectance at 710 nm is more likely to be negative 

which will lead to more blank pixels by FGSM. Therefore, it is GSMA that is more efficient and robust for 

oceanic waters. Given the complexity and time-consuming nature of FGSM, we should keep in mind that only 

eutrophic coastal waterbodies are worth using it. In addition, NN-derived Chl and 𝑎𝑐𝑑𝑚(443) showed a quite 

different pattern when compared with FGSM. Thus, matchups are badly needed for validation purposes in the 

future. 
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Conclusion and perspectives 

The main purpose of this thesis was to improvement the accuracy of algorithm-derived Chl for the AO, 

especially for productive CDOM-rich and turbid coastal waters. We aimed to overcome the main interference 

on phytoplankton signal caused by the high proportion of CDM in the water column. To achieve this goal, we 

have thoroughly evaluated operational ocean color algorithms and typical Arctic algorithms from the 

perspective of the impact of CDM, tuned GSM for the Arctic Ocean, and developed a full-spectral algorithm 

accounting the phytoplankton fluorescence signal for dark absorbing waters. However, more can be done to 

further improve the performance, such as considering phytoplankton function type (PFT), developing machine 

learning or neural network approaches, etc. Moreover, there is still a number of problems that need to be 

addressed in terms of remote sensing of phytoplankton in the AO, such as the persistence of clouds, sea ice 

contamination, SCM (subsurface chlorophyll maximum), ice-edge and under-ice bloom. Hence, in this 

conclusion part, general recommendations about the use of chlorophyll 𝑎 algorithms in the AO are given. Then 

we propose directions for future research with regard to remote sensing of phytoplankton in the AO. 

General recommendations 

Given the advantages and disadvantages of the 3 types of ocean color algorithms (summarized in Table 0.4), 

here are several suggestions for application in the AO. 

• At regional scale, we can always believe empirical algorithms designed for waters under study, but the 

use of empirical algorithm for the entire AO should be avoided due to the heterogeneous optical 

properties in the AO. 

• It is recommended to use semi-analytical models which allow discrimination and quantification of the 

roles of non-phytoplankton constituents to the optical properties of seawater for the AO. For CDOM-

rich turbid coastal waters, FGSM should be the first choice, while for oceanic waters, GSMA seems 

to be a better choice for the reason that it performs similarly to FGSM but with much lower 

computational cost. Under the circumstance of rapidly and widely changing Arctic, the monitoring of 

marine ecosystems, especially phytoplankton dynamics, is a long-term activity which needs more 

attention and thus require more effort. 

• The C2RCC processor (operational neural network algorithm for OLCI) inverts satellite-observed top 

of atmosphere water-leaving reflectance spectrum directly to retrieve water constituents or its optical 

properties based on radiative transfer theory. Inside the processor, atmospheric correction and the 

retrieval of IOPs are trained by a series of neural nets. In the near future, an Arctic version of C2RCC 

is expected. To achieve this objective, neural nets accounting for the spectral characteristics (central 

wavelengths, bandwidth and spectral response function) of ocean color sensors (e.g., SeaWiFS, 

MODIS, VIIRS, MERIS, OLCI) can be directly adopted, while other neural nets need to be retrained 

by the Arctic boundary conditions (e.g., atmospheric conditions, sea state, sun and viewing geometries, 
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etc) and specific bio-optical properties (e.g., higher package effect, CDOM-dominated, etc) using 

HydroLight simulations. 

• In situ data is of significant importance as they do provide the most accurate data used for calibration 

and validation of airborne and satellite observations, development and improvement of algorithms, 

and acquire information not accessible from space. However, there is discrepancy between variables 

measured from different approaches, which might bias the predictions from algorithm and confound 

the parameterization/interpretation of these algorithms. For example, in the harsh Arctic, much of the 

older and historical data only consists fluoremetrically-derived Chl (notes as FChl hereafter), which 

showed significant discrepancy compared to HPLC-derived Chl. Mustapha et al. (2012) noted that in 

the southeastern Beaufort Sea, FChl were often about two times greater than Chl determined on the 

same sample. Such degree of discrepancy in the determination of pigment estimates might lead to non-

negligible uncertainties in ocean color algorithms (e.g., OC4L, AO.emp, AO.GSM) developed 

utilizing FChl, or combination of pigment estimates from both approaches. Therefore, it is 

recommended to use HPLC-derived Chl in terms of algorithm evaluation, tuning and development. 

This not only gives more accurate results, but also facilitates comparison with other relevant studies. 

• As sea ice continues to decrease in the AO, ice-edge and under-ice blooms are frequently observed 

(Ardyna et al., 2020; Perrette et al., 2010). As a result, the MIZ (marginal ice zones) becomes more 

and more important with regard to marine biology and primary production. To improve data coverage 

and data quality, new approaches need to be developed to address the problems arising from sea ice 

contamination. Besides, data gaps due to the prevalence of clouds in the AO also need to be filled by 

data fusion between multiple sensors and in situ autonomous systems to keep the continuity of satellite 

data, thus providing long-term monitoring the marine ecosystem in the AO. 

• The main purpose of developing ocean color algorithms is to use satellite data to obtain synoptic 

observations of the oceans. However, most evaluation of ocean color algorithms are currently based 

on in situ measurements. Hence, in situ and satellite observed matchups are urgently needed for 

validation purposes in terms of Chl and primary production estimates. 

Perspectives and challenges 

In addition to the achievable objectives mentioned above in a short term, there are still several challenges of 

phytoplankton remote sensing in the Arctic which requires long-term persistent exploration and research, such 

as the detection of SCM and under-ice bloom, and interpretation of PFT. 

Subsurface Chlorophyll Maximum 

In the AO, a SCM is frequently observed (Ardyna et al., 2013; Brown et al., 2015; Martin et al., 2010). The 

large export of freshwater due to river discharge, precipitation, and melt of sea ice and glaciers, produces a 

pronounced haline stratification within the surface layer. A SCM is often associated with this vertical 
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stratification in post-bloom conditions, and its vertical position is regarded as a compromise between nutrient 

limitation near the surface and light limitation at depth (Martin et al., 2010). That is, after spring bloom in the 

upper euphotic zone which depletes the low initial inventories of nitrate in the surface mixed layer, a transient 

SCM community replaces the fast-growing bloomers once nutrients are exhausted from the surface (Pommier 

et al., 2009), and the vertical position reported to be driven mainly by a shortage of inorganic nitrogen in the 

upper euphotic zone, usually locates below the pycnocline in close association with the nitracline (Martin et al., 

2010). 

Due to the intrinsic biogeochemical processes and complex optical properties in the AO, the statistical 

relationships between Chl(0−) and Chl(𝑧) (chlorophyll concentration at depth) developed for lower latitudes 

(Morel and Berthon, 1989) are problematic when applied to the AO (Martin et al., 2010). For instance, Chl 

might be overestimated by 2 to 3 folds at neritic stations due to the exclusion of turbid waters with limited 

euphotic depth in these regressions. For oceanic stratified waters with a pronounced SCM, Chl could be 

underestimated by a factor of 3 to 5 (Martin et al., 2010). 

Different from lower latitude waters, Arctic SCM are more pronounced and thrive higher in the euphotic zone 

(3 to 10% light level), and often corresponds to a maximum in particulate carbon, which will result a maximum 

in primary production (IOCCG, 2015; Martin et al., 2010). Therefore, as important contributors to water-

column productivity, the neglection of SCMs in the AO may lead to significant errors in the estimation of 

primary production (Ardyna et al., 2013; Hill et al., 2013; Pabi et al., 2008). Arrigo and van Dijken (2011) has 

reported that errors in pan‐Arctic NPP increase from 0.2% in January to 16% in July due to omission of the 

SCMs. Later, Ardyna et al. (2013) accounted for the vertical structure of Chl in PP estimations based on 

empirical statistic relationships. However, remote sensing detectable Chl(𝑧) is still expected. 

A solution might be the combination of active and passive remote sensors. Hill and Zimmerman (2010) has 

proven that active sensors such as LIDAR (Light Detection and Ranging), can, in combination with passive 

ocean color, dramatically improve our ability to estimate PP for the Arctic. When the vertical distribution of 

Chl was determined to a resolution of 1 m using modeled LIDAR retrievals of the beam attenuation coefficient, 

the accuracy of PP estimates improved within a factor of 2–3 compared with measured values. 

Ice-edge and under-ice bloom 

Receding ice-edges have long been recognized as high biological production sites (Arrigo et al., 2014; Mundy 

et al., 2009; Perrette et al., 2010). After winter mixing, sea ice retreats, breaking up and letting light into the 

dark reaches of the AO. This process triggers phytoplankton blooms that readily deplete nutrients in the upper 

mixed layer along the marginal ice zone (MIZ). Ice-edge bloom, referred as the peak in Chl immediately found 

after the sea-ice retreat, have been reported in many locations in the Arctic and sub-Arctic marine regions, such 

as the Bering Sea (Alexander and Niebauer, 1981; Niebauer et al., 1995), Chukchi and Beaufort Seas 

(Gradinger, 2009; Hill et al., 2005; Mundy et al., 2009), Canadian Archipelago (Tremblay et al., 2006), Baffin 

Bay (Burgers et al., 2020; Randelhoff et al., 2019), Hudson Bay (Barbedo et al., 2020), Barents Sea (Hegseth 
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and Sundfjord, 2008), and Laptev Sea (Janout et al., 2016). Ice-edge blooms are significant features of Arctic 

primary production (Perrette et al., 2010), and show substantial spatial and inter-annual variability (Barbedo et 

al., 2020). 

In addition, thinning sea ice (transition from multi-year ice type to first-year ice), reducing snow cover, and 

increasing melt ponds proportion and lead formation have dramatically increased the availability of 

photosynthetically active radiation (PAR, 400–700 nm) for primary production in the ice-covered upper ocean 

over recent decades (Katlein et al., 2019; Matthes et al., 2020). Multiple studies have suggested that even small 

leads, cracks, melt ponds or thin ice without snow can in fact let enough light pass to favor under-ice blooms 

(e.g., Mundy et al. (2009); Arrigo et al. (2014); Lowry et al. (2014); Assmy et al. (2017)). Even under the light- 

and nutrient-limited central Arctic sea ice, phytoplankton bloom can be noticed with maximum values reaching 

up to 1.48 mg m-3 (Boles et al., 2020). Due to the heterogeneity in PAR transmission caused by various sea ice 

features (Katlein et al., 2016, 2014; Matthes et al., 2019) and different environment settings, the Pacific inflow 

upwelling sector (Arrigo et al., 2014), the Atlantic inflow advective sector (Assmy et al., 2017), outflow shelves 

(Mundy et al., 2014) and the central Arctic (Boles et al., 2020) showed different patterns of under-ice blooms 

in terms of biomass, community composition and phytoplankton phenology (Ardyna et al., 2020). 

The detection of ice-edge blooms may be problematic due to sea ice contamination. And the near ubiquitous 

under-ice blooms cannot be observed through OCRS. Besides, the impact of under-ice blooms on pan-Arctic 

estimates of seasonal and annual primary production remains unknown. Furthermore, our understanding of 

under-ice blooms in the rapidly changing Arctic environment is based on limited observations at specific 

locations. Additional multi-scale and multi-perspective long-term monitorings are needed to study the ecology 

and environmental forcing of the under-ice blooms, as well as their regional peculiarities (e.g., occurrence, 

magnitude, and assemblages). For these purposes, multidisciplinary approaches, i.e., combining expeditions 

with modern autonomous technologies (e.g., AUVs (Autonomous Underwater Vehicles; Laney et al. (2017); 

Boles et al. (2020)), BGC-Argo floats (Mayot et al., 2018; Randelhoff et al., 2019), WARM (Warming and 

Irradiance Measurements; Hill et al. (2018)), ROVs (remotely operated vehicles; Bowen et al. (2014); 

McFarland et al. (2015))), satellite (e.g., active and passive sensors, aircraft), and modeling analyses, could be 

powerful tools to provide an overview of phytoplankton blooms under various conditions (i.e., pelagic, ice-

edge, under-ice blooms), and help figuring out how they may play an increasingly important role in future 

marine Arctic biogeochemical cycles (Ardyna et al., 2020). 

Peculiar phytoplankton photosynthetic parameters 

In the AO, photosynthetic parameters 𝑃𝐵
𝑚𝑎𝑥 (maximum rate of carbon fixation at saturating irradiance, mgC 

mgChl-1 h-1) and 𝐸𝑘 (light saturation parameter,  μmol photon m−2s−1) are generally lower than those from 

lower latitudes (Babin et al., 2015) mostly because of the low irradiance and low seawater temperatures in the 

Arctic. These associated bio-optical and photosynthetic parameters must be accounted for in PP models. But 

only a few authors (e.g., Arrigo et al. (2008); Bélanger et al. (2013b)) have tried to do so. Besides, the 

consideration of phytoplankton functional types (PFTs) which represent dominant taxonomic groups of the 
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phytoplankton community can help to improve the estimation of phytoplankton biomass, PP, and the transfer 

of carbon to upper trophic layers or the benthos (Sathyendranath and others, 2014). However, only a few local 

algorithms have been developed for the AO to detect PFTs from OCRS (e.g., Fujiwara et al. (2014)). Therefore, 

sensors with higher spectral range and resolution are expected in the future to discriminate the spectral shapes 

of individual seawater constituents, thus leading to better understanding of the bio-optical properties of the 

water column. In addition, the use of bio-optical sensors on a variety of autonomous in situ platforms (e.g., 

gliders, floats, ice-tethered moorings; see Figure 4.1) needs to be increased to enhance our observational 

capabilities and provide more detailed and comprehensive information for better understanding the unique 

Arctic marine ecosystem (IOCCG, 2015). 

All in all, the Arctic Ocean still has much to be studied over the long term to unravel its mysteries. 

 

Figure 4.1 Schematic illustration of various above-water and in-water observing systems in the Arctic Ocean. 

Slightly modified from (Ardyna et al., 2020). 
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