1	The Aeromonas salmonicida plasmidome:
2	a model of modular evolution and genetic diversity
3	
4	Antony T. Vincent ¹ , Nava Hosseini ^{2,3,4} and Steve J. Charette ^{2,3,4*}
5	
6	1. Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation,
7	Université Laval, 2425, rue de l'Agriculture, Quebec City, QC, Canada G1V 0A6
8	2. Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université
9	Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada, G1V 0A6
10	3. Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec
11	(Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada, G1V 4G5
12	4. Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de
13	génie, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6
14	
15	* Correspondence to: Steve J. Charette, Département de biochimie, de microbiologie et de bio-
16	informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, Canada,
17	G1V 0A6, telephone: 418-656-2131, ext. 406914, email: steve.charette@bcm.ulaval.ca
18	
19	Running Head: Aeromonas salmonicida plasmidome
20	
21	Keywords: Aeromonas salmonicida; plasmid; antibiotic resistance; virulence, plasmidome
22	

23 ABSTRACT

24 High-throughput genomic sequencing has helped to reveal the plasmidome of Aeromonas 25 salmonicida. This literature review provides an overview of the A. salmonicida's rich 26 plasmidome by presenting all the plasmids identified so far, addressing their biological 27 importance and the functional links between them. The plasmids of A. salmonicida, especially 28 those bearing antibiotic resistance genes, can provide clues about interactions of this species with 29 other pathogens (animals and humans) as it is the case for pRAS3-3432 with Chlamydia suis or 30 pSN254b with Salmonella enterica. In addition to antibiotic resistance, plasmids play an 31 important role in the virulence of A. salmonicida, and more particularly for the subspecies 32 salmonicida with the plasmid pAsa5 carrying the genes of the type three secretion system, a 33 virulence factor essential for the bacterium. The A. salmonicida plasmidome also has many 34 cryptic plasmids with no known biological function, but which can be used for the acquisition of 35 new genetic elements. Striking examples are pAsa7 and pAsaXII that provide respectively 36 resistance to chloramphenicol and formaldehyde and that are derivatives of cryptic pAsa2.

38 MAIN TEXT

39 Where are we in the study of plasmids?

40 With the advance of Next-Generation Sequencing (NGS), we are now able to unravel bacterial genomes at an unprecedented pace.¹⁻³ Commonly, bacterial genomes harbor a single circular 41 42 chromosome and may contain plasmids, which are defined as extra-chromosomal and autonomously replicating genetic elements.⁴ The chromosome contains the major essential genes 43 44 while the plasmids are usually non-essential and considered to be part of the accessory genome. 45 Even though the vast majority of plasmids are nonessential, many of them convey a clear 46 advantage to the bacteria that bear them, compared to cells without plasmids. The biological 47 functions of plasmids are extremely diverse and may help to enhance cells by conferring 48 metabolic capabilities, pathogeny, resistance against antimicrobial agents, and other host/environmental adaptation factors.⁵ 49 50

In 2019, Brooks et al. published an impressive curated plasmid sequence database including
 10,892 complete plasmid sequences extracted from bacterial genomes sequenced with NGS.⁶
 Some of the bacteria have highly diverse plasmidomes containing various members. For

54	example, analysis using NGS and the tool PLACNET ⁷ of the well-known bacterial model
55	Escherichia coli revealed around 255 plasmids in a total of 61 genomes. ⁸ However, plasmidome
56	diversity is not exclusive to model bacteria and non-model bacterial species can also harbor an
57	impressive plasmid repertoire.
58	
59	The non-model bacterium Aeromonas salmonicida
60	One of the current challenges is the study of plasmidome diversity for non-model bacteria like
61	A. salmonicida. Bacterial strains from this species have a surprisingly diverse plasmidome. This
62	species, which belongs to the Gammaproteobacteria class, contains five official subspecies:
63	pectinolytica, ⁹ masoucida, ^{10,11} achromogenes, ¹² smithia, ¹³ and salmonicida, ¹⁴ and potentially
64	many others. ^{15–19}
65	
66	A. salmonicida is of clinical importance since many members belonging to various subspecies are
67	known to infect fish, ²⁰ thus causing important economic losses worldwide. ²¹ The most studied
68	subspecies of this bacterium is <i>salmonicida</i> , which is sometimes qualified as "typical," and which

69 is well known to cause furunculosis, a worldwide fish disease that mainly affects salmonids. The

70	other subspecies are qualified as "atypical" and infect a wide range of hosts. ²¹ Contrary to
71	psychrophilic subspecies (masoucida, achromogenes, smithia and salmonicida), which grow at
72	temperatures around 18°C, A. salmonicida subsp. pectinolytica, which is the official mesophilic
73	subspecies for this species, can grow up to 37°C and even higher. ^{9,15,19} There have also been
74	several reports describing mesophilic isolates attributed to A. salmonicida over the past
75	decades. ^{15,16,18,19}
76	
77	Compared to the A. salmonicida psychrophilic subspecies which have long been characterized,
78	the study of the mesophilic strains was more recent and no putative host was known until 2008,
79	where there have been reports of the isolation of putative mesophilic A. salmonicida strains from
80	humans. ^{22–26} The phylogenomic analysis of the JF2480 strain that grow both at 18°C and 40°C
81	temperatures, isolated from a dead infected Recurvirostra avosetta migratory bird, revealed an
82	even wider host range for A. salmonicida. ¹⁹ Based on the proven virulence of mesophilic
83	A. salmonicida strains in a mammal model, it is a potential human emerging pathogen and it has
84	been recommended to include this bacterium in diagnostic microbiology tests. ¹⁸ However,
85	recovering A. salmonicida from human samples seems to remain a rare event.

87	In addition to the A. salmonicida subsp. salmonicida reference isolate A449, which was
88	completely sequenced and assembled in 2008, ²⁷ 64 other <i>A. salmonicida</i> isolates have their
89	genome sequenced and deposited in the public database GenBank (April 2020), with
90	approximately half of them belonging to the salmonicida subspecies. This increase in sequenced
91	genomes has permitted accurate study of A. salmonicida's genomic content, including the
92	mobilome, which contains the plasmid repertoire.
93	
94	In this paper, considering the essential role of plasmids in virulence, antibiotic resistance and
95	adaptability potential for A. salmonicida, we will review all aspects of the plasmidome of this
96	species.
97	
98	The first plasmid descriptions in A. salmonicida
99	Furunculosis was first described in a German journal in 1890, ²⁸ but it was 81 years before a paper
100	discussed plasmids in A. salmonicida, described as R factors. ²⁹ The word "plasmid" was first
101	used in a scientific publication by Lederberg in 1952. ³⁰ Three decades of studies followed Aoki's

102 1971 publication, mainly using classical molecular biology techniques to characterize the 103 plasmidome of A. salmonicida (Table 1). Some of the studies were about the plasmids causing antibiotic resistance,^{29,31-40} while just a few verified the importance of plasmids in the virulence 104 of A. salmonicida, without any clear success.^{41,42} 105 106 107 The typing of bacterial strains is fundamental in microbiology since this action makes it possible 108 to make links between genetic and phenotypic diversity and other characteristics, for example 109 epidemiological. Given the importance of this field of study, many microbiological and molecular methods have been developed.^{43,44} Relatively early in the history of *A. salmonicida* 110 111 research, studies evaluated the potential of plasmids as epidemiological markers for this 112 bacterium. Many of these studies stated that the plasmidome of typical A. salmonicida was too 113 conserved and without enough variations to be used as a marker in an epidemiological context.^{45–} ⁴⁷ Nielsen *et al.* did a large-scale study and also reported a uniform plasmidome among the 114 115 isolates, but some variations were identified due to their large strains sampling (124 strains were 116 tested).⁴⁸ Consistent with this observation, it was reasonable to believe that the use of 117 A. salmonicida plasmids in an epidemiological context was still possible. On the other hand,

atypical *A. salmonicida* bacteria were found to have a variable plasmid repertoire.^{45,46,49} Even if it
was possible to have an approximation of the plasmid repertoire no complete plasmid sequence
was reported.

121

132

122	The year 1977 was a turning point in modern science when the complete genome of the
123	bacteriophage Φ X174 was sequenced by Frederick Sanger. ⁵⁰ Two years later, the well-known
124	<i>E. coli</i> cloning vector plasmid pBR322 was sequenced. ⁵¹ The first plasmids of <i>A. salmonicida</i> to
125	be fully sequenced were pRAS3.1 and pRAS3.2; two variants conferring tetracycline resistance. ³²
126	Since this milestone, numerous <i>A. salmonicida</i> plasmids have been sequenced, and the
127 128	plasmidome of this species is presented in Table 2 and Table S1.
129	General features of the sequenced plasmids
130	Biology has entered a sequencing era with the advent of high-throughput sequencing. ^{1,2} Thanks
131	to this technological advance, 61 A. salmonicida plasmids have been completely sequenced

(Table 2 and Table S1), almost the same number as found by Nielsen in 1993 by using low-

133	resolution approach. ⁴⁸ The known plasmidome of <i>A. salmonicida</i> contains plasmids of various
134	lengths, ranging from 5.2 to >180 kb (Table 2).
135	
136	All plasmids of <i>A. salmonicida</i> known so far can be roughly categorized within three phenotypic
137	groups, which either (1) confer drug resistance, (2) confer virulence, or (3) are cryptic, meaning
138	that no known function was attributed to those plasmids. In the next sections, we will review
139	plasmids from these three categories, and will review specific plasmid features, such as genome
140	stability, classification of the IncA/C plasmids, and the geographical distribution of the small
141	plasmids.
141 142	plasmids.
	plasmids. Drug resistance
142	
142 143	Drug resistance
142 143 144	Drug resistance The R-plasmids, which confer antimicrobial resistance, were the first of the <i>A. salmonicida</i>
142 143 144 145	Drug resistance The R-plasmids, which confer antimicrobial resistance, were the first of the <i>A. salmonicida</i> plasmids to be studied. ^{29,31} The reason is simple: they display an important and easy-to-see

149	explained that Aeromonas, which is a waterborne bacterium, might play an important role in the
150	spreading of resistance genes since they can acquire resistance plasmids from allochthonous
151	bacteria and in turn, behave as reservoirs of resistance genes for other susceptible bacteria.55
152	
153	In A. salmonicida alone, six non-sequenced and 13 completely sequenced plasmids are known to
154	confer resistance to one or many antibiotics. In the following section we will discuss these
155	plasmids.
156	
157	The non-sequenced R-plasmids
157 158	The non-sequenced R-plasmids The first R-plasmid was reported in 1971 in <i>A. salmonicida</i> strain Ar-32, which was resistant to
158	The first R-plasmid was reported in 1971 in <i>A. salmonicida</i> strain Ar-32, which was resistant to
158 159	The first R-plasmid was reported in 1971 in <i>A. salmonicida</i> strain Ar-32, which was resistant to various drugs: sulfathiazole, chloramphenicol and streptomycin. ²⁹ In 1986 Aoki et al. followed
158 159 160	The first R-plasmid was reported in 1971 in <i>A. salmonicida</i> strain Ar-32, which was resistant to various drugs: sulfathiazole, chloramphenicol and streptomycin. ²⁹ In 1986 Aoki et al. followed up with a more extensive characterization of this plasmid, named pAr-32. ³⁴ This plasmid was
158 159 160 161	The first R-plasmid was reported in 1971 in <i>A. salmonicida</i> strain Ar-32, which was resistant to various drugs: sulfathiazole, chloramphenicol and streptomycin. ²⁹ In 1986 Aoki et al. followed up with a more extensive characterization of this plasmid, named pAr-32. ³⁴ This plasmid was estimated to have a length around 47 kb, to be in the incompatibility group U (IncU), and to bear

165	A. hydrophila. Later, pAr-32 was found to have a class 1 integron and to share some common
166	DNA with pRAS1 and the pASOTs (see below). Finally, further characterization revealed that
167	pAr-32 has an In6-like integron similar to that of pSa, a plasmid found in Shigella. ⁵⁷
168	
169	Another non-sequenced R-plasmid is the conjugable pRAS1, approximately 45 kb, also related to
170	the IncU group.58 This plasmid has a complete class 1 integron (In4-like) and a fragmented
171	transposon Tn1721. The combination of both elements confers drug resistance genes: dfrA16,
172	$qacE\Delta I$, sull and finally tetA and tetR. ⁵⁹ Interestingly, pRAS1 was found in atypical and typical
173	A. salmonicida. ⁵⁹ Another not-yet sequenced R-plasmid is pRAS2 (~48 kb). This plasmid was
174	found in A. salmonicida subsp. salmonicida strain 1682/92 and bears transposon Tn5393c, which
175	confers resistance to streptomycin, sulfonamide and tetracycline. ⁴⁰
176	
177	Three other plasmids, related to the incompatibility group IncU and causing resistance to
178	oxytetracycline, were reported: pASOT (~47kb), pASOT2 (~47kb) and pASOT3 (~39 kb). ³⁹
179	Plasmidic profiles showed that pASOT and pASOT2 have a significant homology with pRAS1,

while pASOT3 is more distant. These plasmids bear a class 1 integron, which may differ in the
 cassettes region.⁶⁰

182

183 The sequenced R-plasmids

184 The smallest known sequenced antibiotic-resistance-bearing plasmid is the ColE1-like pAsa7 185 (Table 2), which has only been found in the A. salmonicida subsp. salmonicida Swiss isolate 186 JF3791. This plasmid confers chloramphenicol (CHL) resistance due to the presence of a cat gene, encoding a chloramphenicol acetyltransferase.⁶¹ This small, 5276 bp, plasmid has a similar 187 188 backbone to pAsa2, a cryptic plasmid usually found in A. salmonicida subsp. salmonicida (see below the section concerning the cryptic plasmids).⁶² However, as stated in the article describing 189 this plasmid, it is unclear if one is derived from the other.⁶³ This is mainly because it is 190 191 impossible to explain the evolutionary scenario between these plasmids. As other ColE1-type 192 replicon plasmids, pAsa7 is in a high copy numbers, estimated between 27 to 34 copies per cell. 193 194 Since this plasmid bearing a *cat* gene is in high copy numbers, it was reasonable to think that the

195 resistance to CHL would have been high as well. Surprisingly, an analysis of a representative

196	panel of strains resistant to CHL revealed that the minimum inhibitory concentration (MIC) of
197	CHL of the large single-copy plasmid pAsa4, which also bears a cat gene, was much higher than
198	pAsa7.61 Analysis of the expression of both genes demonstrated that the one on pAsa4 was
199	transcribed 50 times higher than the one on pAsa7, which compensated for the low copy number
200	of pAsa4.
201	
202	The high expression level of the <i>cat</i> gene of pAsa4 was first observed in 1989. ⁴⁶ They found that
203	CAT-pAsa4 was a predominant protein in whole-cell lysates of <i>E. coli</i> that bore a part of the
204	pAsa4 plasmid containing <i>cat</i> -pAsa4 gene and that the recipient cells were also highly resistant to
205	CHL. ⁴⁶
206	
207	The complete sequence of pAsa4 was published 19 years later. ²⁷ This large plasmid of \sim 166 kb
208	harbors a transposon Tn21 with an In2 integron, encoding resistance to
209	streptomycin/spectinomycin (aadA), sulfonamide (sul1) and chloramphenicol (cat). In addition to
210	this resistance encoded by Tn21, pAsa4 also has genes related to tetracycline resistance: tetA(E)
211	and $tetR(E)$.

213	Although pAsa4 is not a common plasmid, two variants named pAsa4b and pAsa4c were found,
214	sequenced and characterized. ⁶⁴ The three pAsa4 variants exhibited a high identity at the
215	nucleotide level (94 to 99%), however they had quite varied architecture. The pAsa4s plasmid
216	contains a high proportion of insertion sequences (ISs), which promote large-scale
217	rearrangements. The genome instability confered by the ISs was also previously reported for
218	other plasmids in A. salmonicida subsp. salmonicida (see the section regarding virulence, more
219	precisely on pAsa5). The structural variations affect the repertoire of antibiotic resistance genes,
220	with the original pAsa4 bearing most of the antibiotic resistance genes (Table 2). The variant
221	pAsa4c lacks only the gene causing resistance to tetracycline, $tetA(E)$, while pAsa4b does not
222	bear the genes <i>aadA</i> and <i>cat</i> , which, respectively, confer resistance to
223	streptomycin/spectinomycin and chloramphenicol.
224	
225	The incompatibility group of pAsa4 is still unknown. Studies reported pAsa4 as an IncA/C-
226	related plasmid,65 however, some authors classify pAsa4 as a real IncA/C.66 In 2008, an IncA/C
227	plasmid was reported in Canadian A. salmonicida subsp. salmonicida isolates. ³⁹ This conjugative

228	plasmid was shown to have multiple drug resistance cassettes organized similarly to those in
229	pSN254,67 which is an IncA/C plasmid found in Salmonella enterica.65 The complete sequence of
230	this plasmid, named pSN254b, was further characterized in 2014.68 This study revealed the
231	presence of a Tn21 transposon, similar to those found in the plasmids pAsa4, pAsa4b and
232	pAsa4c. ^{27,64} It is interesting to mention that this transposon, in addition to possessing genes for
233	resistance to antibiotics, also has genes for resistance to mercury. Although resistance to heavy
234	metals is less frequently found than resistance to antibiotics in strains of A. salmonicida subsp.
235	salmonicida, the presence of mercury resistance genes suggests that this transposon may allow
236	adaptation to environments polluted by various components. A large-scale study of 100 A.
237	salmonicida subsp. salmonicida strains, mainly from Quebec (Canada), showed by PCR-
238	genotyping that this plasmid is the most prevalent within Canadian isolates. ⁶⁹
239	
240	The phylogenetic position of pSN254 among other IncA/C was inferred in 2009.70,71 The pAsa4
241	plasmid found in reference strain A449 was added to Fricke et al.'s analysis, ⁷¹ allowing them to
242	locate its basal position. However, the pSN254b plasmid and variants of pAsa4 (see above) were
243	sequenced after the publication of this article. Consequently, to shed light on the positions of

244	these plasmids within the IncA/C group, we found the pan-genome of 14 IncA/C plasmids in
245	addition to pAsa4 and its variants. Interestingly, as shown in Figure 1, a hierarchical clustering
246	confirmed our observation that IncA/C plasmids are grouped depending on if they are lacking or
247	possessing a region containing bla_{CMY-2} , blc , $sugE$ and $dsbC$. ⁷² Moreover, as previously
248	observed, ⁷¹ the pAsa4s clearly clustered at a basal position, meaning that their relation to the
249	IncA/C group is questionable.
250	
251	The paper reporting pSN254b also characterized two other plasmids: pAB5S9b and pRAS3.3.68
252	pAB5S9b is a variant of pAB5S9, reported in Aeromonas bestiarum.55 The plasmid in
253	A. bestiarum was shown to bear multiple antibiotic-resistance genes, many of which were in two
254	regions similar with a segment of the conjugative integrative SXT element of <i>Vibrio cholerae</i> . ⁷³
255	However, this segment is truncated in pAB5S9 by two genes: $tetR$ and $tet(Y)$. Interestingly,
256	pAB5S9b is very closely related to pAB5S9, but the SXT segment is not truncated as it is for
257	pAB5S9. ⁶⁸
258	

259	pRAS3.3 is another plasmid variant, ⁶⁸ which is close to IncQ plasmids pRAS3.1 and pRAS3.2. ³²
260	Interestingly, restriction enzymatic digestion and hybridization indicated that pRAS3.2 and
261	pJA8102-2 published in 1986 were identical. ^{32,34} The three pRAS3 plasmids harbor the genes
262	tetA and tetR, which confer resistance to tetracycline. The backbones of these plasmids only
263	differ by short repetitions in two regions: (1) in the promoter region of the mobB-mobA/repB
264	genes and (2) near <i>oriV</i> . The number of repetitions can vary the plasmid copy number. ⁷⁴ A study
265	made on <i>E. coli</i> revealed that the pRAS3s with a lower copy number placed a lower metabolic
266	burden on cells, and can consequently increase the population's fitness. ⁷⁵ The study revealing the
267	
267	existence of pRAS3.3 also revealed pRAS3.4, which is an additional variant having a different
267	number of repetitions. ⁶⁸
268	
268 269	number of repetitions. ⁶⁸
268 269 270	number of repetitions. ⁶⁸ The fifth pRAS3 variant, named pRAS3-3432, was obtained from the SHY16-3432 strain. ⁷⁶ It is
268 269 270 271	number of repetitions. ⁶⁸ The fifth pRAS3 variant, named pRAS3-3432, was obtained from the SHY16-3432 strain. ⁷⁶ It is distinct from the previous ones due to the presence of a unique insertion element that has been

275	differences, the $tetC$ island and pRAS3-3432 variant share high nucleotide identity. So, the
276	existence of IScs605 in this pRAS3 variant suggests horizontal gene transfer between
277	A. salmonicida subsp. salmonicida and C. suis. Various scenarios are possible, including 1) both
278	bacteria were confronted during fish-based food digestion, or 2) water containing A. salmonicida
279	subsp. salmonicida passed through a pig's gastrointestinal tract.
280	
281	Another large R-plasmid found in <i>A. salmonicida</i> subsp. salmonicida is pAsa8. ⁶⁹ This plasmid
282	has been listed in only two Canadian isolates (M16474-11 and M15448-11) and bears a large
283	panel of antibiotic resistance genes (Table 2). The architecture of pAsa8 is composed of multiple
284	mobile genetic elements (MGE) nested inside each other. ⁶⁹ The antibiotic resistance genes of this
285	plasmid are located on both a Tn1721 transposon and in a complex class 1 integron (In104-like
286	showing similarity with In4), which exhibits an important likelihood with the one of the
287	Salmonella genomic island 1 (SGI) (well reviewed in ⁷⁸) found in Salmonella enterica and
288	Proteus mirabilis. ^{79,80} This plasmid is another confirmation that A. salmonicida subsp.
289	salmonicida could be an important reservoir for MGEs and antibiotic resistance genes.
290	Interestingly, this situation is near to the one found in pRAS1, where a Tn1721 and an In4-like

provide antibiotic resistance genes.⁵⁹ However, since pRAS1 is not sequenced, it is hazardous to
postulate any evolutionary links between these two plasmids.

293

294	The transfer of MGEs carrying significant resistance genes by plasmid recombination can lead to
295	the production of new plasmid variants. Long-read sequencing (PacBio SMRT technology) has
296	helped to fully assemble pAsa5-3432 from SHY16-3432 strain, which was a new variant of the
297	classical pAsa5 plasmid. ⁷⁶ This plasmid is essential in the virulence of <i>A. salmonicida</i> subsp.
298	salmonicida, and is described later in this paper. The main noticeable difference among pAsa5-
299	3432 and the original plasmid is the existence of an additional multiple antibiotic resistance gene
300	regions in the variant. Interestingly, the region containing Tn1721, In104-like and IS5 in pAsa8
301	was also found in pAsa5-3432.69 The similarity and high-level of homology among the two
302	regions, with only subtle differences, have led to the conclusion that maybe the origin of this
303	unusual region in the pAsa5 variant is from pAsa8. ⁷⁶
304	
305	Tn1721 contains significant antibiotic resistance genes and is able to integrate with other mobile

306 genetic elements. The acquisition of plasmids containing Tn1721 seems to help A. salmonicida

307	subsp. salmonicida strains to be equipped for environmental pressures. Plasmid variants include
308	this transposon in their genomes, either completely or partially. pAsa8 is the example for
309	complete acquisition of Tn1721 transposon, while pAsa10 bears a partial part of the
310	transposon. ^{81,82}
311	
312	The discovery of pAsa10 goes back to the observation of incompatibility between the tetracycline
313	resistance profile and PCR assay results of the SHY15-2743 strain. ⁸² The result of sequencing the
314	genome of this strain was the discovery of a 10-kb plasmid known as pAsa10. The tetracycline
315	resistance provided by pAsa10 comes from the <i>tet</i> region found in a partial Tn1721. The reason
316	that the partial acquisition of Tn1721 took place in this plasmid may lie in the existence of a
317	peculiar reverse orientation of inverted repeats (IRs) in this plasmid sequence.
318	
319	The plasmids implicated in virulence
320	The concept underlying virulence is much more complex than for antibiotic resistance. In
321	general, genes causing resistance to drugs are well known and defined. For example, the gene cat
322	encoding a chloramphenicol acetyltransferase, as found on pAsa7, confers resistance to

323	chloramphenicol. ⁶¹ Roughly, one gene equals resistance to an antibiotic family. What about
324	virulence factors? The database VFDB is specialized for virulence, ⁸³ and gives the following
325	definition: "Virulence factors refer to the properties (i.e., gene products) that enable a
326	microorganism to establish itself on or within a host of a particular species and enhance its
327	potential to cause disease." (http://www.mgc.ac.cn/VFs/main.htm).
328	
329	Every gene that encodes a product which enhances the pathogenic potential of a bacterium might
330	fall under the virulence factor category. Virulence factors can be classified into five
331	subcategories ⁸⁴ : (1) membrane proteins, (2) capsule, (3) secretory proteins, (4) cell wall and outer
332	membrane components and finally (5) others, which include biofilm, iron acquisition factors, and
333	the PhoP/PhoQ two-component system. Whereas in antibiotic resistance, normally one gene
334	confers resistance, some virulence factors such as secretion systems require many proteins to
335	assemble into a complex biological machinery. ⁸⁵
336	

337	Here, we will explore the plasmids known to be implied in the pathogenicity of <i>A. salmonicida</i> .
338	We redirect the readers to other reviews for a more complete vision of the main pathogenic
339	factors found in the genus Aeromonas.86,87
340	
341	As is well reviewed elsewhere, one of the major virulence factors in <i>A. salmonicida</i> subsp.
342	salmonicida is the type-three secretion system (TTSS). ⁸⁸ As with other secretion systems, the
343	TTSS exports effectors from the bacterial cytoplasm to the extracellular area or even into a target
344	cell using complex protein machinery. ⁸⁵ The TTSS of A. salmonicida subsp. salmonicida was
345	found to be located on a large plasmid (~140 kb), named pASvirA. ⁸⁹ This plasmid also encodes
346	three known effectors and their chaperones (AopH/SycH, Ati2/Ati1 and AopO/SycO) and a
347	putative one, AopX, for which the gene is truncated due to 20-bp duplication. ^{88,90} Other effectors,
348	AexT and AopP, are coded on the chromosome and the small plasmid pAsal1, respectively. ^{91,92}
349	There is also another putative chromosome-located gene encoding TTSS effector, AopS, which is
350	truncated in A. salmonicida subsp. salmonicida, but intact in A. salmonicida subsp.
351	achromogenes. ⁸⁸

353	Plasmid pASvirA, also named pAsa5, is essential for the virulence of <i>A. salmonicida</i> subsp.
354	salmonicida. More specifically, it was shown that the inactivation of one structural gene in the
355	TTSS locus on this plasmid is enough to totally abrogate the virulence of the bacterium. This was
356	nicely illustrated by the work of Dacanay and colleagues in 2007 using an Atlantic salmon
357	model. ⁹³ In this study, it was shown that inactivating effectors $aopO$, $aopH$ or $aexT$ was not
358	sufficient to completely inhibit bacterial virulence compared to inactivation of the ascC gene
359	resulting in an avirulent mutant not able to provoke clinical symptoms by both intraperitoneal
360	injection and immersion.
361	
361 362	It is also important to note that pAsa5 was reported to be thermolabile: the plasmid is lost when
	It is also important to note that pAsa5 was reported to be thermolabile: the plasmid is lost when the bacterium bearing it is grown at temperature of 25°C or above, resulting in a loss of the
362	
362 363	the bacterium bearing it is grown at temperature of 25°C or above, resulting in a loss of the
362 363 364	the bacterium bearing it is grown at temperature of 25°C or above, resulting in a loss of the virulence. ⁸⁹ Further investigations based on PCR genotyping of 20 <i>A. salmonicida</i> subsp.
362 363 364 365	the bacterium bearing it is grown at temperature of 25°C or above, resulting in a loss of the virulence. ⁸⁹ Further investigations based on PCR genotyping of 20 <i>A. salmonicida</i> subsp. <i>salmonicida</i> strains showed that only the TTSS locus was systematically lost after growth in

369 giving the possibility of two different recombination events. Since then, other cases have been reported by the sequencing of pAsa5 using NGS.^{15,96} In fact, pAsa5 is known to harbor various 370 ISs,^{27,97} as well as the chromosome.²⁷ 371 372 373 With the objective of resolving the inconsistencies described in 2012 concerning certain rearrangements of the plasmid pAsa5 of the strain 01-B526,95 Tanaka et al. used long-read 374 sequencing to close the sequence of the plasmid pAsa5 from this strain.⁹⁸ This revealed the 375 376 existence of an additional ISAS5 in plasmid pAsa5 of 01-B526 compared to the one in strain 377 A449. This additional ISAS5 appeared to be responsible for rearrangements that occured with 378 another ISAS5 also present on pAsa5 which explained the previously unresolved TTSS loss seen 379 for this strain. 380 381 Long-read sequencing also helped to reveal that 01-B526 bears a second large plasmid, named 382 pAsa9, which shares 40 kbp of highly similar sequences with pAsa5, but that are not related to 383 the TTSS region. The pAsa9 plasmid contains replication-associated genes, conjugation genes, 384 ORFs coding for hypothetical proteins, and transposase genes. This plasmid was always found in

386	based on the presence or absence of ISs, pAsa9 also shares this characteristic. Indeed, the
387	SHY16-3432 strain bears a pAsa9 variant (pAsa9b) with one fewer ISAS5.76
388	
389	As mentioned elsewhere, the pAsa5 plasmid is typically part of the classical plasmid set in
390	A. salmonicida subsp. salmonicida strains, and it is interesting to find traces of this plasmid in
391	other subspecies of A. salmonicida. ^{27,46,100} In fact, some strains of A. salmonicida subsp.
392	masoucida contain highly similar smaller plasmids (Ps68-2, pS121-3, pS44-3 RFAS1 unnamed
393	2), and in which TTSS genes can be found (Table S1). On the other hand, the same
394	A. salmonicida subsp. masoucida strains also harbor similar small plasmids (pS68-1, pS44-2,
395	pS121-2, RFAS1 unnamed 1) with tra genes (Table S1), that are necessary for plasmid transfer
396	through conjugation and these genes are pretty identical to the tra genes found in pAsa5.98 It is
397	interesting to find traces of derivatives of pAsa5 in A. salmonicida subsp. salmonicida strains in
398	other subspecies of A. salmonicida. In fact, the two plasmids found in the four A. salmonicida
399	subsp. masoucida strains are likely the result of the split of a former pAsa5 variant or possibly
400	primitive versions which merged to give pAsa5 as known in A. salmonicida subsp. salmonicida.

isolates with another element, the genomic island AsaGEI1a.98,99 As for pAsa5 that has variants

401 Other pAsa5 variants of various sizes have also been sequenced from *A. salmonicida* subsp.

salmonicida strains isolated in Canada, Chile and Poland (Table S1).

404	Another story about putative rearrangements of pAsa5 was published in 2009. ¹⁰¹ This paper
405	showed the presence of a new 18 kb plasmid, named pAsa6, in the A. salmonicida subsp.
406	salmonicida RSP74.1 strain isolated from a turbot (Psetta maxima) in Portugal in 2002. ¹⁰² Even
407	if pAsa6 is very similar to pAsa5; it is still unclear if pAsa6 is a direct derivative of pAsa5 by a
408	process of gene reduction, or if it is a chimeric fusion between pAsa5 and a pAsa6-like
409	plasmid. ¹⁰¹ The profile of small plasmids of the strain RSP74.1 was much different than expected
410	for a member of the subspecies <i>salmonicida</i> , ^{62,102} meaning that either (1) the strain is in fact not a
411	subspecies of <i>salmonicida</i> and thus evolved under different mutational pressures or (2) the strain
412	is indeed of the subspecies salmonicida but experienced an unusual selection, for example to
413	adapt to turbot, which is an atypical host for this bacterial subspecies. All these pAsa5 variants
414	suggest that pAsa5 plays a central role in the plasmidome of A. salmonicida subsp. salmonicida.
415	

416	As discussed above, pAsa5 harbors the genes to encode a functional TTSS, including three
417	effectors: AopH, Ati2 and AopO. However, another plasmid, pAsal1, also bears a TTSS effector:
418	AopP. ⁹² The plasmid pAsal1 is a ColE2-type replicon of 6 371 bp with high structural similarity
419	with other plasmids that have the same replicon in A. salmonicida subsp. salmonicida, such as
420	pAsa1 and pAsa3 (see below). ⁶² However, compared to other known ColE1-type replicon
421	plasmids in this bacterium, pAsal1 bears the insertion sequence ISAS11, the same IS-type which
422	promotes the loss of the TTSS due to the rearrangements in pAsa5.95 The same study suggested
423	that the ISAS11 of pAsal1 might also be activated under stressful conditions such as growth at or
424	above 25°C, resulting in the loss of the plasmid.95 This hypothesis was reinforced by another
425	study, which found non-systematic correlation between the loss of the TTSS and pAsal1.62
426	
427	Three other variants of pAsal1 were presented in detail: pAsal1B, ¹⁰³ pAsal1C, ⁶² and pAsal1D, ⁶²
428	all of them encoding likely functional AopP. They all have an additional ISAS5, in common. The
429	ISAS5 was inserted in mobA for pAsal1B while it was inserted in the ISAS11 for pAsal1C and
430	pAsal1D. Interestingly, other pAsal1 variants from China, named pS44-5, pS68-4 and pS121-5,

431 have been added to the databases recently. They are almost identical to pAsal1 but without the432 ISAS11 (Table S1).

434	Several of the variants of pAsa5, pAsa9 and pAsa11 exist by the simple presence or absence of an
435	ISAS5. This suggests that this IS has an important role in the evolution of the genome of
436	A. salmonicida subsp. salmonicida. ^{76,98,103,104} In addition, ISAS5 has a major role in its heat
437	instability.98 It is interesting to note that ISAS5 is larger than the other ISs found in
438	<i>A. salmonicida</i> subsp. <i>salmonicida</i> . ²⁷ This probably makes it a better substrate for recombinases.
439	It has even been suggested that ISs in general had a role in the dichotomy observed between the
440	psychrophilic and mesophilic strains of A. salmonicida. ¹⁵
441	
442	All the plasmids discussed above were found in A. salmonicida subsp. salmonicida, commonly
443	known as "typical salmonicida". Little is actually known about virulence-causing plasmids of the
444	other subspecies (atypical A. salmonicida). The complete sequencing of the JF4097 strain of

446 for the ColE2-like pAsal1, bears an ISAS11 and has a gene encoding for a putative TTSS

447 effector, ExoY-like in the case of pJF4097.

448

449 The cryptic plasmids and their variants

Many plasmids in A. salmonicida are known to provide antibiotic resistance, and some plasmids 450 451 confer virulence factors. However, there are also plasmids with no biological function, which are consequently known as "cryptic" plasmids. These plasmids were investigated during the pre-452 453 sequencing era (Table 1). Typically, A. salmonicida subsp. salmonicida strains have three small cryptic plasmids ranging from 5.2 to 5.6 kbp which bear either a ColE1- or a ColE2-type 454 455 replicon: pAsa1(ColE2), pAsa2(ColE1) and pAsa3(ColE2). With pAsa11 and pAsa5, these 456 plasmids constitute the core plasmidome typically carried by A. salmonicida subsp. salmonicida 457 strains (Figure 2). Plasmids carrying antibiotic resistance are usually found in one strain or a few 458 isolates. The main exception to this rule is the plasmid pSN254b which was found in approximately 25% of the tested isolates from Canada in the study by Trudel et al.⁶⁹ In addition, 459 460 it has been shown that it is very rare to find two different antibiotic resistance plasmids in the

462	identified in two strains out of 36 tested as resistant to antibiotics. ⁶⁹
463	
464	Even if the presence of cryptic plasmids in <i>A. salmonicida</i> subsp. <i>salmonicida</i> isolates has been
465	known since 1983, ¹⁰⁵ it was in 1989 that they were named, ⁴⁶ and their sequences were completely
466	sequenced in 2003. ¹⁰⁰ Many studies have investigated these plasmids' presence or absence in
467	A. salmonicida strains, and have concluded that their repertoire was highly conserved and
468	consequently without any or limited potential to be used as an epidemiologic marker. ^{45–48} A
469	recent large-scale study based on 153 A. salmonicida subsp. salmonicida isolates revealed that
470	those from Europe do not bear pAsa3 or pAsa11 more frequently than the Canadian isolates. ⁶²
471	However, these variations in plasmid content revealed in this systematic study are still not
472	sufficiently constant or systematic to be adequate epidemiological markers. The AsaGEIs, a
473	group of genomic islands, represent much more promising geographic markers than plasmids for
474	<i>A. salmonicida</i> subsp. <i>salmonicida</i> isolates. ^{96,99,106}
475	

same strain. The most frequent case is the co-occurrence of pRAS3 and pAB5S9b, which was

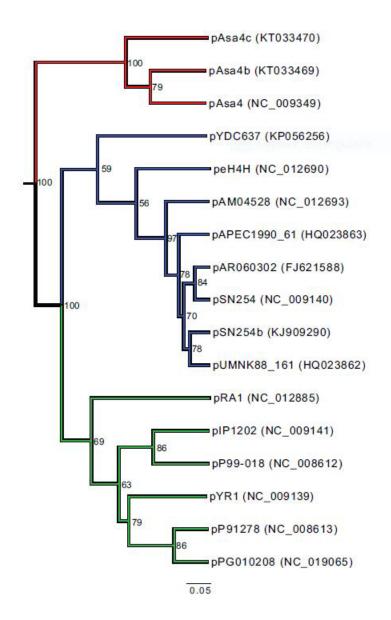
476	It was showed that DNA sequences of pAsa3 evolve more rapidly than the DNA of other small
477	plasmids. ⁶² In fact, cryptic plasmids have demonstrated their role in the appearance of plasmid
478	variants possessing new characteristics useful for the bacterium. The small plasmids pAsaXI and
479	pAsaXII found in A. salmonicida subsp. salmonicida isolates are derivatives of the cryptic
480	plasmids pAsa3 and pAsa2, respectively. The discovery of modified cryptic plasmids with a
481	variety of mobile genetic elements demonstrates the fact that these plasmid derivatives actually
482	can confer benefits to this species, including potentially increasing the virulence, and at the same
483	time, making it more adaptable to a greater variety of environments. ⁸²
484	
484 485	pAsaXI bears a Tn3-family like transposon. This transposon is significant because there is a high
	pAsaXI bears a Tn3-family like transposon. This transposon is significant because there is a high homology among one of its genes and a virulent gene found in other bacteria, like <i>Vibrio</i>
485	
485 486	homology among one of its genes and a virulent gene found in other bacteria, like Vibrio
485 486 487	homology among one of its genes and a virulent gene found in other bacteria, like <i>Vibrio</i> <i>cholerae</i> and <i>Aeromonas hydrophila</i> . Also, according to BLAST analysis, the presence of the
485 486 487 488	homology among one of its genes and a virulent gene found in other bacteria, like <i>Vibrio</i> <i>cholerae</i> and <i>Aeromonas hydrophila</i> . Also, according to BLAST analysis, the presence of the complete transposon in plasmids of the other aquatic species like <i>Shewanella baltica</i> and

493	Production of a new derivative may be a fruitful procedure for <i>A. salmonicida</i> subsp. <i>salmonicida</i>
494	strains to prevent cell death caused by the rush of the toxin counterpart of the toxin-antitoxin
495	(TA) system. At the same time, this new derivative may provide a region to acquire new
496	resistance genes without interfering with the main functions of the plasmid, like replication or
497	mobilization. This is the case for pAsaXI, in which the gene <i>relE</i> that codes the toxin counterpart
498	of a TA system is being lost due to transposon interruption. ⁸² The interruption of the toxin gene
499	of the TA system is not limited to the pAsaXI plasmid. A similar event happened for the
500	derivative of pAsa2 cryptic plasmid, pAsaXII, since the gene for the toxin ParE from the <i>parED</i>
501	TA system is interrupted by MIC, which is a putative mobile insertion system. ⁸²
502	
503	pAsaXII also increases the potential of A. salmonicida subsp. salmonicida strains to receive
504	mobile genetic elements, since the same plasmid as pAsaXII can be found in the mesophilic
505	bacterium Aeromonas bivalvium. The fmrAB gene is present and provides a formaldehyde
506	detoxification system in the pAsaXII plasmid in the HER1084 strain. It can be inferred that the

adaptation of *A. salmonicida* subsp. *salmonicida* to its environment goes beyond receiving
antibiotic resistance genes.⁸²

509

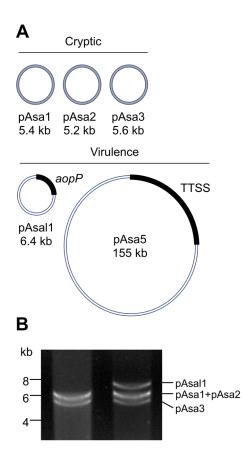
510	The small cryptic plasmids found in A. salmonicida subsp. salmonicida are well studied, but,
511	again, little is known about the other subspecies, though they are suspected to contain a highly
512	diverse plasmidome. ⁴⁹ Only three small cryptic plasmids were identified in the mesophilic
513	A. salmonicida Y47 : pY47-1 (12 495 bp), pY47-2 (6 042 bp) and pY47-3 (5 104 bp). ¹⁵ The
514	pY47-2 and pY47-3 plasmids have a ColE2-like replicon. Of the three plasmids, only pY47-3
515	was also found in another isolate, Y577, which is also a mesophilic Indian A. salmonicida. ¹⁵
516	Interestingly, pY47-3 shows a structural similarity with the ColE2-type replicon R-plasmids
517	pAQ2-1 and pAQ2-2, found in Aeromonas sobria and Aeromonas hydrophila, respectively. ¹⁰⁷
518	However, unlike these plasmids, pY47-3 does not bear the qnrS2 quinolone resistance gene.
519	
520	Conclusion
521	In this review we explored the plasmidome of A. salmonicida. Knowledge has accumulated about


522 this diverse plasmidome, which can be separated into three categories (R-plasmids, virulence

523	plasmids and cryptic plasmids). The advance of DNA sequencing technology has played an
524	important role in the elucidation of complete sequences, giving us greater clarity to study the
525	roles and importance of plasmids in A. salmonicida. However, there is a clear bias in the
526	sequencing effort towards the subspecies salmonicida, while at least four other subspecies exist
527	(and maybe more). Though new plasmids certainly remain to be discovered in the subspecies
528	salmonicida, especially with the high rate of horizontal gene transfers, it is important to shed
529	light on the plasmidome of the other A. salmonicida subspecies as well.
530	
531	In addition to providing important phenotypic characteristics, such as virulence or resistance to
531 532	In addition to providing important phenotypic characteristics, such as virulence or resistance to antibiotics, the plasmids in <i>A. salmonicida</i> tell us more about its ecology, its microbial network,
532	antibiotics, the plasmids in <i>A. salmonicida</i> tell us more about its ecology, its microbial network,
532 533	antibiotics, the plasmids in <i>A. salmonicida</i> tell us more about its ecology, its microbial network, and its adaptability. We have seen that several important plasmids, such as pSN254b and
532 533 534	antibiotics, the plasmids in <i>A. salmonicida</i> tell us more about its ecology, its microbial network, and its adaptability. We have seen that several important plasmids, such as pSN254b and pAB5S9b, can originate from other bacteria, such as <i>S. enterica</i> and <i>A. bestiarum</i> .
532533534535	antibiotics, the plasmids in <i>A. salmonicida</i> tell us more about its ecology, its microbial network, and its adaptability. We have seen that several important plasmids, such as pSN254b and pAB5S9b, can originate from other bacteria, such as <i>S. enterica</i> and <i>A. bestiarum</i> . Evolution is a slow phenomenon, which usually requires many generations. Plasmids, by

539	disease), have evolved in such a way that the plasmids can represent up to 40% of the total
540	genome. ^{108,109} This example illustrates the importance that plasmids can have on the evolutionary
541	trajectory of bacteria, and suggests that the study of plasmids is essential in order to see the
542	panorama of bacterial adaptive mechanisms.
543	

544 Acknowledgements


- 545 We would like to thank A. Schneider for her assistance. S.J.C. is a research scholar from the
- 546 Fonds de Recherche du Québec en Santé.

548

Figure 1. Clustering of 14 IncA/C plasmids in addition to 3 pAsa4s. The accession number of each plasmid is indicated between brackets. The pAsa4s are in red, and the plasmids that have or lack the bla_{CMY-2} region are in blue and green, respectively.⁷² Homologous genes between plasmids were found using GET_HOMOLOGUES.¹¹³ The resulting matrix was binary encoded and the distance was evaluated with the "binary" model in R.¹¹⁴ Finally, hierarchical clustering

554 was performed using Pvclust with 10 000 bootstrap replicates.¹¹⁵

555

Figure 2. Core plasmidome of *A. salmonicida* subsp. salmonicida strains. A. Usually, pAsa1, pAsa2, pAsa3, pAsa11 and pAsa5 are found in the bacterium. This is a schematic representation where the dimensions are not to scale. B. It is possible to easily observe the small plasmids (pAsa1, pAsa2, pAsa3, pAsa11) on an electrophoresis agarose gel. On this picture, electrophoretic separation of small plasmid DNA extraction of two strains are shown with one strain bearing the small plasmids of the classical core plasmidome and another without pAsa11.

563	Table 1. Timeline of the literature concerning the plasmidome of A. salmonicida in the pre-NGS
564	era.

Years	Content	Reference
1890	Furunculosis reported	28
1952	"Plasmid" was first mentioned	30
1971	R factors found in A. salmonicida	29
1972	R factors found in A. salmonicida	31
1981	A high growth temperature attenuates the virulence of <i>A. salmonicida</i> . Plasmids did not seem to be involved in virulence.	41
1983	Transferable R plasmids found in A. salmonicida.	33
1983	A. salmonicida bears multiple small plasmids.	105
1984	<i>A. salmonicida</i> usually has four small plasmids and may also contain larger ones. Impossible to clearly verify if plasmids are involved in virulence.	42
1986	Characterization of two R-plasmids: pAr32 and pJA8102-1.	34
1988	Many isolates have 4 small plasmids and one large (which seems to change in length). However, even if stable, the repertoire may change. The plasmidome changes between subspecies.	45
1989	The small plasmid pAsa1, 2 and 3 were named. In addition, the large R-plasmid pAsa4 was also named. Plasmids of atypical <i>A. salmonicida</i> may be used as epidemiological markers.	46
1991	The repertoire in plasmids is stable, even from isolate of diverse geographical origins.	47
1993	The plasmidome of 40 oxytetracycline-resistant <i>A. salmonicida</i> was analysed. They found that 11 of the 40 isolates had transferable R plasmids. Moreover, they tested the co-occurrence of drug resistance.	35
1993	The plasmid profile of 124 <i>A. salmonicida</i> subsp. <i>salmonicida</i> isolates was assessed. A large panel of plasmids of diverse sizes exists. No correlation between the plasmid repertoire and the host or the years of the isolation. However, some trends were shown between plasmid profiles and the geographical area.	48
1994	Description of the conjugal transfer of pRAS1 from <i>A. salmonicida</i> to bacteria in marine sediments.	36
1995	Analysis of Finnish <i>A. salmonicida</i> subsp. <i>salmonicida</i> isolates revealed that many of them usually have small plasmids and one or two large plasmids. Other uncommon plasmids were also reported.	110
1995	The plasmidome of the <i>A. salmonicida</i> isolates from the Pacific coast (variable) were found to vary somewhat from those of the Atlantic coast (constant).	111
1996	The R-plasmid pRAS1 was demonstrated to have a broad host range.	37
1996	Differences were found between the plasmidome of "atypical" and "typical" <i>salmonicida</i> . The plasmidome of the "atypical" isolate is usually diverse and sometimes correlated with the fish host.	49
1997	First time that pulsed field gel electrophoresis (PFGE) was used to characterize the plasmidome of <i>A. salmonicida</i> . Found no correlation between drug resistance and plasmid profiles, which suggests the resistance is not associated with either one plasmid or a particular profile.	112
1998	Four R-plasmids were found in Norwegian isolates.	38
1998	The pASOT plasmid-group mediated oxytetracycline resistance in <i>A. salmonicida</i> .	39
2000	A transposon, Tn5393c, was found in the R-plasmid pRAS2.	40
2000	Complete sequencing achieved for the R-plasmids pRAS3.1 and pRAS3.2.	32

Table 2. A. salmonicida sequenced plasmids. This table presents only the plasmids that have been described and characterized in a 566 peer review article before February 2020. The other plasmids for which the sequence is available in GenBank but not described in a 567 publication are presented in Table S1. 568

Plasmid	Length (bp)	GC%	CDS ^a	CDS/kb	Average CDS length	Toxin-antitoxin system	Virulence	Antibiotic resistance gene	Reference
pY47-3	5104	54.68	9	1.763	568	CcdA/CcdB	N/A ^b	N/A	15
pAsa2	5247	52.20	7	1.334	588	N/A	N/A	N/A	100
pAsa7	5276	53.39	6	1.137	578	N/A	N/A	cat	61
pAsal	5424	57.02	10	1.843	542	Re1B/Re1E	N/A	N/A	100
pAsa3	5616	54.52	9	1.602	615	Re1B/Re1E	N/A	N/A	100
pY47-2	6042	57.91	9	1.489	537	RelB/RelE	N/A	N/A	15
pJF4097	6231	57.05	8	1.283	685	N/A	ExoY	N/A	15
pAsal1	6371	55.03	6	0.941	688	N/A	AopP	N/A	92
pAsaXII	7700	54.61	13	1.688	485	ParE/ParD, phd antitoxin	N/A	N/A	82
pAsal1B	8989	55.63	8	0.889	830	N/A	AopP	N/A	103
pAsal1C	8989	55.87	7	0.778	746	N/A	AopP	N/A	62
pAsa11D	9138	55.72	8	0.875	804	N/A	AopP	N/A	62
pAsa10	9995	60.68	8	0.800	677	N/A	N/A	tetA, tetC	82
pRAS3.2	11 823	59.01	14	1.184	711	PemI/PemK	VirB4	tetA	32
pRAS3.3	11 845	58.89	14	1.181	712	PemI/PemK	VirB4	tetA	68
pRAS3.1	11 851	58.91	14	1.181	711	PemI/PemK	VirB4	tetA	32

pY47-1	12 495	53.39	19	1.520	462	ParD/ParE	N/A	N/A	15
pAsaXI	12 536	54.62	11	0.877	1033	RelB/StbD replicon stabilization protein)	N/A	N/A	82
pRAS3-3432	13 912	57.06	18	1.293	703	PemK/MazF	N/A	tetC	76
pAsa6	18 536	53.85	16	0.863	853	N/A	АорН	N/A	101
pAB5S9b	25 540	52.27	28	1.096	798	N/A	VirD2	tetH, floR, sul2, strA, strB	68
pAsa9-like	74 314	52.63	71	0.955	803	N/A	N/A	H-NS	76
pAsa9	76 724	52.76	86	1.12	736	N/A	N/A	H-NS	98
pAsa8	110 577	54.87	132	1.193	709	N/A	N/A	tetA, tetR, floR, tetG, sul1, blaPSE-1, aadA	69
pSN254b	152 216	52.47	180	1.182	762	RelB/RelE?	N/A	tetA, floR, sul1, sul2, blaCMY, aadA, strA, strB	68
pAsa5	155 098	54.33	157	1.012	747	N/A	TTSS	N/A	27
pAsa5 variant (one additional ISAS5)	157 744	54.38	177	1.09	729	N/A	TTSS (ascV, pscS, ascC, pscR, yscR, yscN), aopH, VPA0450	H-NS	98
pAsa4c	163 022	53.42	155	0.95	851	HipA/HipB	N/A	sull, aadA, cat	64
pAsa4	166 749	52.80	164	0.983	779	HipA/HipB	N/A	<i>tetA</i> (E), <i>sul1</i> , <i>aadA</i> , <i>cat</i>	27
pAsa5-3432	180 043	55.29	172	0.96	771	N/A	aopH, VPA0450, ascC, pscR,, ascV, yscN, yscR, pscS,	sul1, tetG, tetC, tetA, H-NS, aadA3, CARB/PSE family, qacE, CARB-3, tetG, floR, FloR family	76
pAsa4b	181 933	52.48	174	0.956	840	HipA/HipB	N/A	tetA(E), sull	64

a: CDS means coding sequences b: N/A means not applicable

571 **REFERENCES**

- Land M., L. Hauser, S.-R. Jun, *et al.* 2015. Insights from 20 years of bacterial genome
 sequencing. *Funct. Integr. Genomics* 15: 141–161.
- Vincent A.T., N. Derome, B. Boyle, *et al.* 2017. Next-generation sequencing (NGS) in the
 microbiological world: How to make the most of your money. *J. Microbiol. Methods* 138:

576 60–71.

- 577 3. Douglas G.M. & M.G.I. Langille. 2019. Current and promising approaches to identify
- 578 horizontal gene transfer events in metagenomes. *Genome Biol. Evol.* **11**: 2750–2766.
- 579 4. Actis L.A., M.E. Tolmasky & J.H. Crosa. 1999. Bacterial plasmids: replication of
- 580 extrachromosomal genetic elements encoding resistance to antimicrobial compounds.

581 *Front. Biosci.* **4**: D43–D62.

- 582 5. Srivastava S. 2013. Plasmids: Their Biology and Functions. In *Genetics of Bacteria* 125–
 151. India: Springer India.
- Brooks L., M. Kaze & M. Sistrom. 2019. A curated, comprehensive database of plasmid
 sequences. *Microbiol. Resour. Announc.* 8: e01325-18.
- 586 7. Lanza V.F., M. de Toro, M.P. Garcillán-Barcia, et al. 2014. Plasmid flux in Escherichia
- *coli* ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new
 method for plasmid reconstruction from whole genome sequences. *PLoS Genet* 10:
- 589 e1004766.
- Toro M.D.E., M.P. Garcillán-barcia & F.D.E.L. a Cruz. 2014. Plasmid diversity and
 adaptation analyzed by massive sequencing of *Escherichia coli* plasmids. *Microbiol. Spectr.* 2: 1–16.
- 593 9. Pavan M.E., S.L. Abbott, J. Zorzópulos, et al. 2000. Aeromonas salmonicida subsp.

- *pectinolytica* subsp. nov., a new pectinase- positive subspecies isolated from a heavily
 polluted river. *Int. J. Syst. Evol. Microbiol.* **50**: 1119–1124.
- 596 10. Kimura T. 1969. A new subspecies of *Aeromonas salmonicida* as an etiological agent of
- 597 furunculosis on "sakuramasu" (*Oncorhynchus masou*) and pink salmon (*O. gorbuscha*)
- rearing for maturity. *Fish Pathol.* **3**: 34–44.
- Kimura T. 1969. A new subspecies of *Aeromonas salmonicida* as an etiological agent of
 furunculosis on "sakuramasu" (*Oncorhynchus masou*) and pink salmon(*O. gorbuscha*)
 rearing for maturity. *Fish Pathol.* **3**: 45–52.
- Smith I.W. 1963. The classification of "*Bacterium salmonicida*." *J. Gen. Microbiol.* 33:
 263–274.
- Austin D.A., D. McIntosh & B. Austin. 1989. Taxonomy of fish associated *Aeromonas*spp., with the description of *Aeromonas salmonicida* subsp. *smithia* subsp. nov. *Syst. Appl. Microbiol.* 11: 277–290.
- 607 14. Griffin P.J., S.F. Snieszko & S.B. Friddle. 1953. Pigment formation by *Bacterium* 608 *salmonicida*. J. Bacteriol. 65: 652 LP 659.
- 609 15. Vincent A.T., M.V Trudel, L. Freschi, et al. 2016. Increasing genomic diversity and

evidence of constrained lifestyle evolution due to insertion sequences in *Aeromonas salmonicida*. *BMC Genomics* 17: 44.

- 612 16. Vincent A.T., F.D. Rouleau, S. Moineau, et al. 2017. Study of mesophilic Aeromonas
- 613 *salmonicida* A527 strain sheds light on the species' lifestyles and taxonomic dilemma.
- 614 *FEMS Microbiol. Lett.* **364**: fnx239.
- 615 17. Rouleau F.D., A.T. Vincent & S.J. Charette. 2018. Genomic and phenotypic
- 616 characterization of an atypical *Aeromonas salmonicida* strain isolated from a lumpfish and
- 617 producing unusual granular structures. J. Fish Dis. **41**: 673–681.

618	18.	Vincent A.T., A. Fernández-Bravo, M. Sanchis, et al. 2019. Investigation of the virulence
619		and genomics of Aeromonas salmonicida strains isolated from human patients. Infect.
620		<i>Genet. Evol.</i> 68 : 1–9.

- 621 19. Vincent A.T., A. Bernatchez, J. Frey, et al. 2019. A mesophilic Aeromonas salmonicida
- strain isolated from an unsuspected host, the migratory bird pied avocet. *Microorganisms*7: 592.
- Burr S.E. & J. Frey. 2007. Analysis of type III effector genes in typical and atypical *Aeromonas salmonicida. J. Fish Dis.* 30: 711–714.
- 626 21. Dallaire-Dufresne S., K.H. Tanaka, M.V Trudel, et al. 2014. Virulence, genomic features,
- and plasticity of *Aeromonas salmonicida* subsp. *salmonicida*, the causative agent of fish
 furunculosis. *Vet. Microbiol.* 169: 1–7.
- 629 22. Kamble R. 2015. Aeromonas salmonicida furunculosis in an adult male.
- 630 Int.J.Curr.Microbiol.App.Sci. 4: 59–63.
- 631 23. Ruppé E., A. Cherkaoui, N. Wagner, et al. 2017. In vivo selection of a multidrug-resistant
- *Aeromonas salmonicida* during medicinal leech therapy. *New Microbes New Infect.* 21:
 23–27.
- 634 24. Tewari R., M. Dudeja, S. Nandy, *et al.* 2014. Isolation of *Aeromonas salmonicida* from
 635 human blood sample: A case report. *J. Clin. Diagnostic Res.* 8: 139–140.
- 636 25. Varshney A., M. Das, P. Chaudhary, *et al.* 2017. *Aeromonas salmonicida* as a causative
- 637 agent for postoperative endophthalmitis. *Middle East Afr. J. Ophthalmol.* 24: 213–215.
- 638 26. Yang X., Q.Q. Yang, Q.Y. Guo, *et al.* 2008. *Aeromonas salmonicida* peritonitis after
 639 eating fish in a patient undergoing CAPD. *Perit. Dial. Int.* 28: 316–317.
- 640 27. Reith M.E., R.K. Singh, B. Curtis, et al. 2008. The genome of Aeromonas salmonicida
- 641 subsp. *salmonicida* A449: insights into the evolution of a fish pathogen. *BMC Genomics* **9**:

642 427.

- 643 28. Emmerich R. & E. Weibel. 1890. Über eine durch Bakterien verursachte
- 644 Infektionskrankheit der Forellen. *Allg. Fischerei-Zeitung* **15**: 73-77;85-92.
- Aoki T., S. Egusa, T. Kimura, *et al.* 1971. Detection of R factors in naturally occurring *Aeromonas salmonicida* strains. *Appl. Microbiol.* 22: 716–7.
- 647 30. Lederberg J. 1952. Cell genetics and hereditary symbiosis. *Physiol. Rev.* **32**: 403–430.
- Aoki T., S. Egusa, C. Yada, *et al.* 1972. Studies of drug resistance and R factors in bacteria
 from pond-cultured salmonids. *Jpn. J. Microbiol.* 16: 233–238.
- 650 32. L'Abée-Lund T.M. & H. Sørum. 2002. A global non-conjugative Tet C plasmid, pRAS3,
 651 from *Aeromonas salmonicida*. *Plasmid* 47: 172–181.
- Aoki T., T. Kitao, N. Iemura, *et al.* 1983. The susceptibility of *Aeromonas salmonicida*strains isolated in cultured and wild salmonids to various chemotherapeutics. *Bull. Japan. Soc. Sci. Fish* 49: 17–22.
- Aoki T., Y. Mitoma & J.H. Crosa. 1986. The characterization of a conjugative R-plasmid
 isolated from *Aeromonas salmonicida*. *Plasmid* 16: 213–218.
- Inglis V., E. Yimer, E.J. Bacon, *et al.* 1993. Plasmid-mediated antibiotic resistance in
 Aeromonas salmonicida isolated from Atlantic salmon, *Salmo salar* L., in Scotland. J.
- 659 *Fish Dis.* **16**: 593–599.
- Sandaa R.A. & O. Enger. 1994. Transfer in marine sediments of the naturally occurring
 plasmid pRAS1 encoding multiple antibiotic resistance. *Appl. Environ. Microbiol.* 60:
 4234–4238.
- 37. Sandaa R.A. & Ø. Enger. 1996. High frequency transfer of a broad host range plasmid
 present in an atypical strain of the fish pathogen *Aeromonas salmonicida*. *Dis. Aquat.*
- 665 *Organ.* **24**: 71–75.

666	38.	Sorum H. 1998. Mobile drug resistance genes among fish bacteria. APMIS 106: 74–76.
667	39.	Adams C., B. Austin, P. Meaden, et al. 1998. Molecular characterization of plasmid-
668		mediated oxytetracycline resistance in Aeromonas salmonicida. Appl. Environ. Microbiol.
669		64 : 4194–201.
670	40.	L'Abée-Lund T.M. & H. Sørum. 2000. Functional Tn5393-like transposon in the R

- plasmid pRAS2 from the fish pathogen *Aeromonas salmonicida* subspecies *salmonicida*isolated in Norway. *Appl. Environ. Microbiol.* 66: 5533–5535.
- 41. Ishiguro E.E., W.W. Kay, T. Ainsworth, *et al.* 1981. Loss of virulence during culture of *Aeromonas salmonicida* at high temperature. *J. Bacteriol.* 148: 333–340.
- 42. Hackett J.L., W.H. Lynch, W.D. Paterson, *et al.* 1984. Extracellular protease, extracellular
 haemolysin, and virulence in *Aeromonas salmonicida*. *Can. J. Fish. Aquat. Sci.* 41: 1354–
 1360.
- 43. Li W., D. Raoult & P.-E. Fournier. 2009. Bacterial strain typing in the genomic era. *FEMS Microbiol. Rev.* 33: 892–916.
- 680 44. Ochoa-Díaz M.M., S. Daza-Giovannetty & D. Gómez-Camargo. 2018. Bacterial
- 681 Genotyping Methods: From the Basics to Modern. In *Host-Pathogen Interactions:*
- 682 *Methods and Protocols* Medina C. & López-Baena F.J., Eds. 13–20. New York, NY:
- 683 Springer New York.
- 45. Bast L., J.G. Daly, S.A. Degrandis, *et al.* 1988. Evaluation of profiles of *Aeromonas salmonicida* as epidemiological markers of furunculosis infections in fish. *J. Fish Dis.* 11:
 133–145.
- 687 46. Belland R.J. & T.J. Trust. 1989. *Aeromonas salmonicida* plasmids: Plasmid-directed
 688 synthesis of proteins in vitro and in *Escherichia coli* minicells. *Microbiology* 135: 513–
- 689 524.

690	47.	Toranzo A.E., Y. Santos, S. Nunez, et al. 1991. Biochemical and serological
691		characteristics, drug resistance and plasmid profiles of spanish isolates of Aeromonas
692		salmonicida. Fish Pathol. 26: 55–60.
693	48.	Nielsen B., J. Olsen & J.L. Larsen. 1993. Plasmid profiling as an epidemiological marker
694		within Aeromonas salmonicida. Dis. Aquat. Organ. 15: 129–135.

- 49. Pedersen K., I. Dalsgaard & J.L. Larsen. 1996. Characterization of atypical *Aeromonas salmonicida* isolates by ribotyping and plasmid profiling. J. Appl. Bacteriol. 80: 37–44.
- 50. Sanger F., G.M. Air, B.G. Barrell, *et al.* 1977. Nucleotide sequence of bacteriophage phi
 X174 DNA. *Nature* 265: 687–695.
- 51. Sutcliffe J.G. 1979. Complete nucleotide sequence of the *Escherichia coli* plasmid
 pBR322. *Cold Spring Harb. Symp. Quant. Biol.* 43: 77–90.
- 701 52. Reardon S. 2014. Antibiotic resistance sweeping developing world. *Nat. News* 509: 141–
 702 142.
- Morin R. 2010. L'utilisation des antibiotiques pour combattre la furonculose chez l'omble
 de fontaine génère de l'antibiorésistance chez *Aeromonas salmonicida*. *L'aquicole* 15: 1.

705 54. Cabello F.C. 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing

problem for human and animal health and for the environment. *Environ. Microbiol.* 8:

707 1137–1144.

- 55. Gordon L., A. Cloeckaert, B. Doublet, *et al.* 2008. Complete sequence of the *floR*-carrying
 multiresistance plasmid pAB5S9 from freshwater *Aeromonas bestiarum*. *J. Antimicrob*.
- 710 *Chemother.* **62**: 65–71.
- 56. Bradley D.E., T. Aoki, T. Kitao, *et al.* 1982. Specification of characteristics for the
 classification of plasmids in incompatibility group U. *Plasmid* 8: 89–93.
- 713 57. Watanabe T., C. Furuse & S. Sakaizumi. 1968. Transduction of various R factors by phage

- P1 in *Escherichia coli* and by phage P22 in *Salmonella typhimurium*. J. Bacteriol. 96:
 1791–1795.
- 58. Sandaa R.A. & O. Enger. 1994. Transfer in marine sediments of the naturally occurring
 plasmid pRAS1 encoding multiple antibiotic resistance. *Appl. Environ. Microbiol.* 60:
 4234–4238.
- 719 59. Sørum H., T.M. L'Abée-Lund, A. Solberg, et al. 2003. Integron-containing IncU R
- plasmids pRAS1 and pAr-32 from the fish pathogen *Aeromonas salmonicida*. *Antimicrob*. *Agents Chemother*. 47: 1285–1290.
- 60. L'Abée-Lund T.M. & H. Sørum. 2001. Class 1 integrons mediate antibiotic resistance in
 the fish pathogen *Aeromonas salmonicida* worldwide. *Microb. Drug Resist.* 7: 263–72.
- Vincent A.T., J.-G. Emond-Rheault, X. Barbeau, *et al.* 2016. Antibiotic resistance due to
 an unusual ColE1- type replicon plasmid in *Aeromonas salmonicida*. *Microbiology* 162:
 942–53.
- Attéré S.A., A.T. Vincent, M.V Trudel, *et al.* 2015. Diversity and homogeneity among
 small plasmids of *Aeromonas salmonicida* subsp. *salmonicida* linked with geographical
 origin. *Front. Microbiol.* 6: 1274.
- Vincent A.T., J.-G. Emond-Rheault, M. Frenette, *et al.* 2016. Antibiotic resistance due to
 an unusual ColE1-type replicon plasmid in *Aeromonas salmonicida*. *Microbiology* 162:
 942–53.
- 733 64. Tanaka K.H., A.T. Vincent, M.V Trudel, et al. 2016. The mosaic architecture of
- 734 *Aeromonas salmonicida* subsp. *salmonicida* pAsa4 plasmid and its consequences on
- 735 antibiotic resistance. *PeerJ* **4**: e2595.
- 65. Welch T.J., W.F. Fricke, P.F. McDermott, *et al.* 2007. Multiple antimicrobial resistance in
 plague: An emerging public health risk. *PLoS One* 2: e309.

- Johnson T.J. & K.S. Lang. 2012. IncA/C plasmids: An emerging threat to human and
 animal health? *Mob. Genet. Elements* 2: 55–58.
- 740 67. McIntosh D., M. Cunningham, B. Ji, et al. 2008. Transferable, multiple antibiotic and
- 741 mercury resistance in Atlantic Canadian isolates of *Aeromonas salmonicida* subsp.
- *salmonicida* is associated with carriage of an IncA/C plasmid similar to the *Salmonella*
- 743 *enterica* plasmid pSN254. *J. Antimicrob. Chemother.* **61**: 1221–8.
- 68. Vincent A.T., M.V Trudel, V.E. Paquet, et al. 2014. Detection of variants of the pRAS3,
- pAB5S9, and pSN254 plasmids in Aeromonas salmonicida subsp. salmonicida: multidrug-
- resistance, interspecies exchanges, and plasmid reshaping. *Antimicrob. Agents Chemother*.
- **58**: 7367–7374.
- 748 69. Trudel M.V., A.T. Vincent, S.A. Attéré, *et al.* 2016. Diversity of antibiotic-resistance
 749 genes in Canadian isolates of *Aeromonas salmonicida* subsp. *salmonicida*: dominance of
 750 pSN254b and discovery of pAsa8. *Sci. Rep.* 6: 35617.
- 751 70. Call D.R., R.S. Singer, D. Meng, *et al.* 2010. blaCMY-2-positive IncA/C plasmids from
 752 *Escherichia coli* and *Salmonella enterica* are a distinct component of a larger lineage of
- 753 plasmids. Antimicrob. Agents Chemother. 54: 590–596.
- 754 71. Fricke W.F., T.J. Welch, P.F. McDermott, *et al.* 2009. Comparative genomics of the
 755 IncA/C multidrug resistance plasmid family. *J. Bacteriol.* 191: 4750–4757.
- 756 72. Fernández-Alarcón C., R.S. Singer & T.J. Johnson. 2011. Comparative genomics of
- 757 multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic
- *Escherichia coli* from multiple animal sources. *PLoS One* **6**: e23415.
- 759 73. Beaber J.W., B. Hochhut & M.K. Waldor. 2002. Genomic and functional analyses of SXT,
- an integrating antibiotic resistance gene transfer element derived from *Vibrio cholerae*. J.
- 761 *Bacteriol.* **184**: 4259–4269.

762	74.	Loftie-Eaton W. & D.E. Rawlings. 2009. Comparative biology of two natural variants of
763		the IncQ-2 family plasmids, pRAS3.1 and pRAS3.2. J. Bacteriol. 191: 6436-6446.
764	75.	Loftie-Eaton W. & D.E. Rawlings. 2010. Evolutionary competitiveness of two natural
765		variants of the IncQ-like plasmids, pRAS3.1 and pRAS3.2. J. Bacteriol. 192: 6182-6190.
766	76.	Massicotte M.A., A.T. Vincent, A. Schneider, et al. 2019. One Aeromonas salmonicida
767		subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3
768		variant making a link with a swine pathogen. Sci. Total Environ. 690: 313-320.
769	77.	De Puysseleyr L., K. De Puysseleyr, L. Braeckman, et al. 2017. Assessment of Chlamydia
770		suis infection in pig farmers. Transbound. Emerg. Dis. 64: 826-833.
771	78.	Mulvey M.R., D.A. Boyd, A.B. Olson, et al. 2006. The genetics of Salmonella genomic
772		island 1. Microbes Infect. 8: 1915–1922.
773	79.	Boyd D.A., G.A. Peters, L.K. Ng, et al. 2000. Partial characterization of a genomic island
774		associated with the multidrug resistance region of Salmonella enterica Typhymurium
775		DT104. FEMS Microbiol. Lett. 189: 285–291.
776	80.	Ahmed A.M., A.I.A. Hussein & T. Shimamoto. 2007. Proteus mirabilis clinical isolate
777		harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic
778		resistance region. J. Antimicrob. Chemother. 59: 184–190.
779	81.	Schmitt R., E. Bernhard & R. Mattes. 1979. Characterisation of Tn1721, a new transposon
780		containing tetracycline resistance genes capable of amplification. MGG Mol. Gen. Genet.
781		172 : 53–65.
782	82.	Attéré S.A., A.T. Vincent, M. Paccaud, et al. 2017. The role for the small cryptic plasmids
783		as moldable vectors for genetic innovation in Aeromonas salmonicida subsp. salmonicida.
784		Front. Genet. 8: 211.

785 83. Chen L., D. Zheng, B. Liu, et al. 2016. VFDB 2016: hierarchical and refined dataset for

- big data analysis-10 years on. *Nucleic Acids Res.* **44**: D694-7.
- Wu H.J., A.H.J. Wang & M.P. Jennings. 2008. Discovery of virulence factors of
 pathogenic bacteria. *Curr. Opin. Chem. Biol.* 12: 93–101.
- 789 85. Costa T.R.D., C. Felisberto-Rodrigues, A. Meir, et al. 2015. Secretion systems in Gram-
- negative bacteria: structural and mechanistic insights. *Nat. Rev. Microbiol.* **13**: 343–359.
- 791 86. Tomás J.M. 2012. The main *Aeromonas* pathogenic factors. *ISRN Microbiol.* 2012: 1–22.
- 792 87. Fernández-Bravo A. & M.J. Figueras. 2020. An update on the genus Aeromonas:
- Taxonomy, epidemiology, and pathogenicity. *Microorganisms* 8: 129.
- 794 88. Vanden Bergh P. & J. Frey. 2014. Aeromonas salmonicida subsp. salmonicida in the light
- 795 of its type-three secretion system. *Microb. Biotechnol.* 7: 381–400.
- 89. Stuber K., S.E. Burr, M. Braun, *et al.* 2003. Type III secretion genes in *Aeromonas salmonicida* subsp. *salmonicida* are located on a large thermolabile virulence plasmid. *J.*
- 798 *Clin. Microbiol.* **41**: 3854–3856.
- 90. Dallaire-Dufresne S., X. Barbeau, D. Sarty, *et al.* 2013. *Aeromonas salmonicida* Ati2 is an
 effector protein of the type three secretion system. *Microbiology* 159: 1937–1945.
- 801 91. Burr S.E., K. Stuber & J. Frey. 2003. The ADP-ribosylating toxin, AexT, from *Aeromonas*802 salmonicida subsp. salmonicida is translocated via a type III secretion pathway. J.
- 803 *Bacteriol.* **185**: 6583–6591.
- 804 92. Fehr D., C. Casanova, A. Liverman, *et al.* 2006. AopP, a type III effector protein of
 805 *Aeromonas salmonicida*, inhibits the NF-kappaB signalling pathway. *Microbiology* 152:
 806 2809–2818.
- 93. Dacanay A., L. Knickle, K.S. Solanky, *et al.* 2006. Contribution of the type III secretion
 system (TTSS) to virulence of *Aeromonas salmonicida* subsp. *salmonicida*. *Microbiology*152: 1847–1856.

- 810 94. Daher R.K., G. Filion, S.G.E. Tan, et al. 2011. Alteration of virulence factors and
- 811 rearrangement of pAsa5 plasmid caused by the growth of *Aeromonas salmonicida* in
 812 stressful conditions. *Vet. Microbiol.* 152: 353–60.
- 813 95. Tanaka K.H., S. Dallaire-Dufresne, R.K. Daher, et al. 2012. An insertion sequence-
- dependent plasmid rearrangement in *Aeromonas salmonicida* causes the loss of the type
 three secretion system. *PLoS One* 7: e33725.
- 816 96. Emond-Rheault J.-G., A.T. Vincent, M.V Trudel, et al. 2015. AsaGEI2b: a new variant of
- 817 a genomic island identified in the *Aeromonas salmonicida* subsp. *salmonicida* JF3224
- 818 strain isolated from a wild fish in Switzerland. *FEMS Microbiol. Lett.* **362**: fnv093.
- 819 97. Vincent A.T., K.H. Tanaka, M.V Trudel, *et al.* 2015. Draft genome sequences of two *Aeromonas salmonicida* subsp. *salmonicida* isolates harboring plasmids conferring
 821 antibiotic resistance. *FEMS Microbiol. Lett.* 362: fnv002.
- 822 98. Tanaka K.H., A.T. Vincent, J.-G. Emond-Rheault, *et al.* 2017. Plasmid composition in
 823 Aeromonas salmonicida subsp. salmonicida 01-B526 unravels unsuspected type three
- secretion system loss patterns. *BMC Genomics* **18**: 528.
- 825 99. Emond-Rheault J.-G., A.T. Vincent, M.V Trudel, *et al.* 2015. Variants of a genomic island
 826 in *Aeromonas salmonicida* subsp. *salmonicida* link isolates with their geographical origins.
- 827 *Vet. Microbiol.* **175**: 68–76.
- 828 100. Boyd J., J. Williams, B. Curtis, *et al.* 2003. Three small, cryptic plasmids from *Aeromonas*829 *salmonicida* subsp. *salmonicida* A449. *Plasmid* 50: 131–144.
- 830 101. Najimi M., M. Balado, M.L. Lemos, et al. 2009. Genetic characterization of pAsa6, a new
- 831 plasmid from *Aeromonas salmonicida* subsp. *salmonicida* that encodes a type III effector
- protein AopH homolog. *Plasmid* **61**: 176–181.
- 833 102. Najimi M., M.L. Lemos & C.R. Osorio. 2008. Distribution of small plasmids in

834		Aeromonas salmonicida subsp. salmonicida strains isolated from NW Spain and Portugal:
835		evidence of clonality in strains isolated from turbot, Psetta maxima (L.). J. Fish Dis. 31:
836		469–472.
837	103.	Trudel M.V, K.H. Tanaka, G. Filion, et al. 2013. Insertion sequence AS5 (ISAS5) is
838		involved in the genomic plasticity of Aeromonas salmonicida. Mob. Genet. Elements 5: 1-
839		7.
840	104.	Attéré S.A., A.T. Vincent, M.V. Trudel, et al. 2015. Diversity and homogeneity among
841		small plasmids of Aeromonas salmonicida subsp. salmonicida linked with geographical
842		origin. Front. Microbiol. 6:1274.
843	105.	Toranzo A.E., J.L. Barja, R.R. Colwell, et al. 1983. Characterization of plasmids in
844		bacterial fish pathogens. Infect. Immun. 39: 184-192.
845	106.	Long M., T.K. Nielsen, J.J. Leisner, et al. 2016. Aeromonas salmonicida subsp.
846		salmonicida strains isolated from Chinese freshwater fish contain a novel genomic island
847		and possible regional-specific mobile genetic elements profiles. FEMS Microbiol. Lett.
848		363 : fnw190.
849	107.	Han J.E., J.H. Kim, J.H. Choresca, et al. 2012. First description of ColE-type plasmid in
850		Aeromonas spp. carrying quinolone resistance (qnrS2) gene. Lett. Appl. Microbiol. 55:
851		290–294.
852	108.	Casjens S.R., E.F. Mongodin, W.G. Qiu, et al. 2012. Genome stability of lyme disease
853		spirochetes: Comparative genomics of borrelia burgdorferi plasmids. PLoS One 7:
854		e33280.
855	109.	Casjens S.R., E.B. Gilcrease, M. Vujadinovic, et al. 2017. Plasmid diversity and
856		phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics
857		18 : 165.

- 858 110. Hänninen M.L., J. Ridell & V. Hirvelä-Koski. 1995. Phenotypic and molecular
- characteristics of *Aeromonas salmonicida* subsp. *salmonicida* isolated in southern and
 northern Finland. *J. Appl. Bacteriol.* **79**: 12–21.
- 861 111. Giles J.S., H. Hariharan & S.B. Heaney. 1995. The plasmid profiles of fish pathogenic
- 862 isolates of *Aeromonas salmonicida*, *Vibrio anguillarum*, and *Vibrio ordalii* from the
- Atlantic and Pacific coasts of Canada. *Can. J. Microbiol.* **41**: 209–216.
- Livesley M.A., S.N. Smith, R.A. Armstrong, *et al.* 1997. Analysis of plasmid profiles of *Aeromonas salmonicida* isolates by pulsed field gel electrophoresis. *FEMS Microbiol*. *Lett.* 146: 297–301.
- 113. Contreras-Moreira B. & P. Vinuesa. 2013. GET_HOMOLOGUES, a versatile software
 package for scalable and robust microbial pangenome analysis. *Appl. Environ. Microbiol.*79: 7696–7701.
- 870 114. Team R.C. 2013. R: A Language and Environment for Statistical Computing. *R Found*.
 871 *Stat. Comput. Vienna, Austria.*
- 872 115. Suzuki R. & H. Shimodaira. 2006. Pvclust: An R package for assessing the uncertainty in
 873 hierarchical clustering. *Bioinformatics* 22: 1540–1542.

874