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Résumé

Savoir lire est une compétence qui va de la capacité à décoder des caractères à la compréhension
profonde du sens de textes. Avec l’émergence de l’intelligence artificielle, deux questions se
posent : Comment peut-on apprendre à une intelligence artificielle à lire ? Qu’est-ce que cela
implique ? En essayant de répondre à ces questions, une première évidence nous est rappelée :
savoir lire ne peut pas se réduire à savoir répondre à des questions sur des textes.

Étant donné que les modèles d’apprentissage machine apprennent avec des examples d’essai-
erreur, ils vont apprendre à lire en apprenant à répondre correctement à des questions sur des
textes. Cependant, il ne faut pas perdre de vue que savoir lire, c’est comprendre différents types
de textes et c’est cette compréhension qui permet de répondre à des questions sur un texte. En
d’autres termes, répondre à des questions sur des textes est un des moyens d’évaluation de la
compétence de lecture plus qu’une fin en soi.

Aujourd’hui, il existe différents types de jeux de données qui sont utilisées pour apprendre à
des intelligences artificielles à apprendre à lire. Celles ci proposent des textes avec des questions
associées qui requièrent différents types de raisonnement : associations lexicales, déductions
à partir d’indices discéminés dans le texte, paraphrase, etc. Le problème est que lorsqu’une
intelligence artificelle apprend à partir d’un seul de ces jeux de données, elle n’apprend pas à
lire mais est plutot formée à répondre à un type de question, sur un certain type de texte et
avec un certain style d’écriture.

Outre la problématique de la généralisation des compétences de lecture, les modèles d’intelligence
artificielle qui apprennent à lire en apprenant à répondre à des questions retournent des réponses
sans systématiquement indiquer sur quelles phrases du texte sources ils se basent. Cela pose un
problème d’explicabilité et peut entrainer une mécompréhension des capacités de ces modèles.

Dans ce mémoire, nous proposons de résoudre le problème de généralisation de l’apprentissage
en proposant une méthodologie générale adaptée à n’importe quel jeu de données. Ainsi, en
ayant une méthodologie commune à tous les types de jeux de données pour apprendre à
répondre à tout type de question, sur tout type de texte, nous pourrions apprendre aux modèles
d’intelligence artificielle à se concentrer sur les compétences générales de lecture plutôt que sur
la capacité spécifique à répondre aux questions. Afin de résoudre également le problème de
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l’explicabilité, la métholodogie que nous proposons impose à tout modèle de compréhension de
lecture automatique de renvoyer les extraits du texte source sur lequel ces réponses sont basées.
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Abstract

Reading is a skill that ranges from the ability to decode characters to a deep understanding of
the meaning of a text. With the emergence of artificial intelligence, two questions arise: How
can an artificial intelligence be taught to read? What does this imply? In trying to answer
these questions, we are reminded of the obvious: knowing how to read cannot be reduced to
knowing how to answer questions about texts.

Since machine learning models learn with trial-and-error examples, they will learn to read by
learning to answer correctly questions about the text they read. However, one should not forget
the fact that knowing how to read means understanding different types of texts sufficiently
well, and it is this that enables answering questions about a text. In other words, answering
questions about texts is one of the means of assessing reading skills rather than an end in itself.

Today, there are different types of datasets that are used to teach artificial intelligences to
learn to read. These provide texts with associated questions that require different types of
reasoning: lexical associations, deductions from discrete clues in the text, paraphrasing, etc.
The problem is that when an artificial intelligence learns from only one of these datasets, it
does not learn to read but is instead trained to answer a certain type of question, on a certain
type of text and with a certain writing style.

In addition to the problem of generalizing reading skills, artificial intelligence models that learn
to read by learning to answer questions return answers without systematically indicating which
sentences in the source text they are based on. This poses a problem of explicability and can
lead to a misunderstanding of the capabilities of these models.

In this thesis, we propose to solve the generalization issue of learning from one dataset by
proposing a general methodology suiting to any machine reading comprehension dataset. Thus,
by having a methodology common to all types of datasets to learn how to answer any type of
question, on any type of text, we could teach artificial intelligence models to focus on general
reading skills rather than on the specific ability to answer questions. In order to also solve the
issue of explanability, the methodology we propose impose any machine reading comprehension
model to return the span of the source text its answers are based on.
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Glossary

For sake of readibility, along the thesis, acronyms are used. Each acronym which have been
used is listed here with its complete name in alphabetical order. Also, words and concepts
which could be used with a specific meaning in this thesis or which could have an ambiguous
meaning or which are used as synonyms are also listed here with a short definition.

Acronyms

• CNN : Convolutional neural network

• DL : Deep learning

• E-MRC : extractive machine reading comprehension

• EM : Exact-match

• FCNN ; Fully-connected neural network

• G-MRC: generative machine reading comprehension

• GRU : Gated recurrent unit

• HRC : Human reading comprehension

• IR : information retrieval

• LM : Language model

• LSTM : Long-short term memory

• MC-MRC: multi-choice machine reading comprehension

• ML : Machine learning

• MLM : Masked language model

• MR : Machine reading

viii



• MRC : Machine reading comprehension

• NLP : Natural language processing

• NN : Neural network

• NR : Naive retrieval

• NSP : next sentence prediciton

• OOV : out of vocabulary

• OR : Oracle retrieval

• RC : Reading Comprehension

• RNN : Recurrent neural network

• SOTA : State-of-the-art

• ZSL : zero-shot learning

Definitions and synonyms

• Workers are human worker which label data. In this thesis, the workers mainly refer to
the human who have been hired in order to retrieve, chose or write the answers to the
questions in order to constitute the MRC datasets.

• Words and token are, in this thesis, used as synonyms. For sake of readability, in this
thesis, those two terms also refer to punctuation signs, number and special characters.

• A pipeline is a succession of independent, reusable, modular phases that can then be
pipelined together to create a combination of models which solve a task end-to-end.

• An architecture refers, in this thesis, to a nerual network architecture. A neural network
solution is composed of artificial neurons which are organised in architecture. An
architecture is then the general structure of the neural network (amount of layers, number
of neuron per layer, kind of activation function used, etc).

• A model is the instance of the architecture trained on data; it is composed of the
architecture with the weights which have been learned. and model

• Seq2Seq and encoder-decoder are used as synonym. They are an architecture desgigned
for text generation with an first sub-architecture which encodes a sequence and another
sub-architecture which decode another sequence. More details are given in Section 2.2.2.
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• dataset, task and challenge are used as synonyms in this thesis. Indeed, an MRC dataset
propose texts and questions about this text to be answered, so it is a task and a challenge
as well.

• Step and phase are used in this thesis as synonyms.

• A cloze test is a task where some words in a text are masked and have to be retrieved.
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Apprendre à lire, c’est allumer du
feu ; toute syllabe épelée étincelle.

Victor Hugo - Les Misérables
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Introduction

The ability to read refers to the ability to decode the content of a written text, while reading
comprehension (RC) ability is the ability to understand its meaning. This goes from extracting
its explicit content given a question to interpreting its underlying meanings using also the
context of the story, such as the year it has been written or the country where the author
comes from. RC is thus influenced by three interrelated factors: the reader, the text and the
context (Wixson and Lipson (1991)).

In the educational path, novice readers learn first to understand the global meaning of a text
and then move towards more and more detailed analysis (Grellet (1986)). This evolution is
the consequence of several factors including (1) reading experience, which leads to reading
fluency, (2) RC supervision, which is usually performed by a teacher, and (3) prior general
knowledge acquisition (Kozminsky and Kozminsky (2001)). Given the depth and influence of
each of these factors, RC can mean different things to different people.

In the area of computer science and artificial intelligence, RC skills are a focus of the natural
language processing (NLP) community, and one of their main challenges is retrieving information
through question-answering (QA) tasks. The basic machine reading comprehension (MRC)
dataset templates provide texts with question/answer pairs about their explicit content. Some
datasets with paragraph-sized texts and factual questions that can be mostly answered by
returning spans or paraphrases (extractive MRC) are most of the time already well-handled.
For instance, state-of-the-art results using SQUAD ((Rajpurkar et al. (2016a)) reach a F1-score
of 93% and TriviaQA (Joshi et al. (2017a)) 83% . 1 However, there are also MRC challenges
that require the selection of their answer among several candidates (multi-choice MRC) or the
generation of free-form answers (generative MRC). Multi-choice MRC datasets are usually
oriented on deep reasoning skills (Lai et al. (2017a), Trischler et al. (2016b)), while generative
MRC datasets include also writing skills.

Until recently, each MRC dataset or at least each category of MRC tasks (i.e extractive,
generative, and selective) would have specific architectures associated in order to learn to
answer the questions. But since 2019, models such as the one proposed in Raffel et al. (2019)

1Based on leaderboards of the datasets at the date of March 2022
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have been showing the efficiency of common learning over different kind of NLP tasks. With
this current master’s work, we aim also for more generalisation but by proposing a unique
solution for any existing MRC tasks.

In this thesis, we thus propose a general methodology to tackle the main existing MRC tasks
based on hytpohesis. This methodology consists of designing a general pipeline composed of
several stages with the hypothesis that any MRC tasks, including those requiring reasoning
over underlying narrative elements, will benefit from a systematic span extraction to locate
where the answer elements are in the provided passages. The context on which the models
would base themselves to answer the questions could then be reduced to the extracted spans.
In addition to the hypothesis that the presence of this extractive stage would improve the
results, compared to when the same models would use the original complete passage, user’s
understanding would be improved by the clear quotation, showing what information the models
based themselves on to provide an answer. In the same way that a pupil is asked to justify
their answers in order to enable the teacher to evaluate their comprehension, the MRC skills
could be assessed from this information. This gives the model explainability and makes it
possible to track where and why it succeeds or fails.

Many ways to implement practically solutions which follow this methodology are possible. And
of course not any solution could verify our three hypothesis. Some research and trials have
to be done to chose the relevant architectures and training them with appropriate datasets.
This thesis is laying the foundation stone by proposing a first combination of architectures
trained on various dataset. Our work can then be used as a baseline to orientate the future
implementation which would validate our three hypothesis.

This thesis is composed of four chapters. Chapter 1 is a refresher on the fundamental works in
the field of language representation, which is necessary to understand what machine reading
(MR) skills are and trace their evolution through the years. Chapter 2 details the current
state of the field of MRC by providing the different challenges it covers and explaining how
those different challenges have been tackled. Based on the knowledge gained in the previous
two chapters, the description, application, and evaluation of our methodology in handling any
existing MRC challenge is given in Chapter 3 using one concrete solution proposition tested on
several datasets. The analysis of those experiments is given Chapter 4.
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Chapter 1

Language representation as machine
reading skill

The first step of reading comprehension is reading, or the ability to translate written words or
symbols into meaningful representations. For a machine, those meaningful representations are
commonly vectors that enable computations between them, and which are helpful to perform
well on a wide variety of NLP tasks.

Language modeling (LM) tasks are associated with the MR skills since they work on language
deciphering and enable downstream NLP tasks. LM tasks aim at predicting a word following a
sequence of words. When the word to predict has to be predicted using preceding and following
words, this is a cloze-test task. 1. So, LM tasks are included into cloze-test ones. Therefore,
LM models are taught to assign scores or probabilities to target units of text based on the
context in which they use to appear. For instance, in the sentence "My dog hates children, he
[PLACEHOLDER] as soon as he sees one", a word replacing the placeholder must be returned
based on the beginning of the sentence. The most common LM models are token-based LM 2 ,
which have tokens as target units, and they thus return the probability that a token occurs,
knowing its context. The predictive models are usually trained using preceding and succeeding
elements of the target word as context (cloze-test) but the goal of a LM is to be able to
predict, after training, using only preceding elements. Other units of texts can be used for LM
instead of tokens, such as characters (Zhang and LeCun (2015)) or sentences (Pichotta and
Mooney (2016)). In this thesis, we will use the token-level LM as a pre-training step to get
representations.

The probabilities that a word occurs in a given context are computed based on the distributional
hypothesis (Joos (1950); Harris (1954)), which assumes that words appearing in a similar
context share a similar meaning. Words are represented in a vector space and are geometrically

1The definition of cloze-test task is given in the part
2Throughout this thesis, the expression "word" and "token" are used as synonyms.
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near words with a similar distribution. In other words, words with similar meanings will be
represented by vectors with low euclidean distance while words which are not related will
have high euclidean distance (Mikolov et al. (2013)). The resulting vectors are called semantic
vectors, or word embeddings for word-based LM. For example, one would expect that a good
model creates word embeddings which are close for related words such as "bark" and "meow"
while being more distant to unrelated words, such as "bark" and "tractor".

The transcription of a text into semantic vectors is the first step for any NLP task which
uses neural networks (NN), for the simple reason that textual entities must be numerically
translated while preserving as much meaning as possible. With a dictionary of tokens belonging
to a language and each token associated a static ID number, a NN would take a text composed
of n words as input represented by a list of n ID numbers. The input is transformed in a
word embedding thanks to the embedding layers. The output of the embedding layers is a n
d-dimensional word embedding is represented by n× d neurons.

The word embeddings are trained from a high quantity of texts and are self-supervised. Indeed,
the training data collection consists of extracting complete sentences and randomly removing
some words from it (Mikolov et al. (2013)). Since such models do not require manual data
annotation, the amount of data available, thanks to internet resources, is abundant (at least in
English). This high quantity enables the models to learn from a wide variety of examples and
results in high-quality representations. Such models would then learn from a given training set
to estimate the function to translate correctly a word into its numerical representation.

In this chapter, we present the main steps in the evolution of methods to compute word
embeddings: Section 1.1 presents static high-dimension token representation techniques, Section
1.2 static low-dimensional token representation ones, and Section 1.3 dynamic low-dimensional
token representation ones. Each method relies on the distributional hypothesis. The threshold
to distinguish between high and low dimension is defined here as follows: if a word is represented
by a vector which has as many dimensions as the size of the vocabulary it learned from, it is a
high-dimensional vector. Otherwise, it is a low-dimensional vector.

Both static and dynamic vectors learn how to use the surrounding context (i.e the surrounding
words) of a target word in order to predict the masked target word. The difference lays on the
fact that static word embeddings model form then a static dictionary with one vector per token
of the dictionary based on the training while dynamic word embeddings provide an adapted
representation of it in each new context it appears.

1.1 Static high-dimensional token representation

Based on the distributional hypothesis, one can look the window of words which surround a
target word (its context) and represent the target word with the list of words which compose
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the context. In order to illustrate better how high-dimensional token representations are
computed, an example composed of the 4 following sentences is proposed:

1. My dog hates children, he barks as soon as he sees one

2. The tree in my garden is losing its bark, is it serious?

3. My dog barks in his sleep

4. My dog can’t stand our absence. He barks all day when we leave for work

The complete vocabulary in this example, is composed of the 33 lemmas which are listed in
Table 1.1. With the target word "bark" and the context defined as a window of two words
before and two words after the target word, the "context occurrence" column is built. For the
remaining part of this section, the text is processed so each word is lowered and only its lemma
is kept. However, for the sake of readability, we keep using "word" or "token" to refer their
post-processed forms. Usually numerical values, special characters, as well as punctuation,
could be considered as tokens. For this example, commas and points are not considered as
words. Therefore, "he" appears in the context of "bark" two times within the four sentences.
"he" also appears two times in total within the four sentences.

One possible way to represent a target word numerically is to create co-occurrence vectors with
one value per word of the vocabulary and to give the occurrence of the word in the context
(n surrounding words) as value. . With our example, this would be a 33 dimensional vector
with the entries of the column "context occurrence" of Table 1.1 as values. Representing a
word with such vector, when they are trained on big corpus of texts, offers the possibility to
capture semantics and syntactic elements of a vocabulary. Indeed, words with the same part
of speech and close context apparition, such as "cat" and "dog" can be easily matched (i.e
by using cosine similarity between vectors). Each dimension is understandable by a human
because each of them is associated with a word. Theoretically, the bigger the corpus and the
vocabulary is, the better the representation. In practice, knowing that the number of words in
English is estimated to be 1,022,000 (Michel et al. (2011)), it results in very large and sparse
vectors. This is problematic computationally: co-occurrence matrices take a lot of memory
space, and this space is mainly filled with 0, which makes the computation inefficient. Solutions
are presented in Section 1.2 in order to reduce the dimensionality and the sparsity of those
vectors.

1.2 Static dense word embedding

Since 2014, several methods which solve the sparse, dimensional, and sequence issues by
learning to represent words of a vocabulary with dense low-dimensional vector (dense) have
been published.
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Vocabulary total occurrence context occurrence
my 4 1
dog 3 1
hate 1 0
child 1 1
he 2 2
bark 4 0
as 2 1

soon 1 1
see 1 0
one 1 0
the 1 0
tree 1 0
in 2 1

garden 1 0
is 2 1
lose 1 1
its 1 1
it 1 1

serious 1 0
his 1 1
sleep 1 1
can 1 0
not 1 0
stand 1 0
our 1 0

absence 1 1
all 1 1
day 1 1
when 1 0
we 1 0

leave 1 0
for 1 0
work 1 0

Table 1.1: Occurrence of each entry of the vocabulary within a corpus of 4 sentences. The last
column gives the occurrence of each entry in a window of 2 tokens around the token "bark".
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One solution is to compute a co-occurrence matrix, as described in Section 1.1 and to reduce
the dimensionality via singular value decomposition. Pennington et al. (2014) also propose to
use the co-occurrence matrix in a way that it generates significantly better results than SVD
methods. They propose the global vector (GloVe) method. Vectors are created thanks to a
machine learning model which learns to predict occurrence probability. The probabilities are
computed using the co-occurrence matrix. The probability that the word i occurs knowing
that the word k is in the sliding window is defined as being equal to the co-occurrence amount
of i and k divided by the total amount of occurrence of i in the corpus(P(i | k) = Xi,j

Xi
). For

example, the probability that the word "dog" appears when we know that "bark" is in the
context would be P(i = dog | k = bark) = 1

3 . Similarly, P(i = absence | k = bark) = 1 The
authors want to learn word embedding by learning to predict P(i|k)

P(j|k) for each triple i, j, k. Indeed,
two words appearing in the same context or not appearing in the same context would have
P(i|k)
P(j|k) close to one, while two words which appear in different contexts will have values which
get either close to 0 or to ∞. The recommendations of the authors for semantically efficient
representation is to use context of 10 words (5 before and 5 after the target word).

While the GloVe vector’s computation is based on global context observation (a word vector
is designed based on a co-occurrence matrix which is computed on a large corpus), Mikolov
et al. (2013) propose word2vec, which are vector representations based NN models which learn
from the local context of the words. In other words, a pre-representation of a target word
in its overall context is not computed in word2vec but its representation is rather based on
probabilities computed example by example, as it is the case for any other ML models based
on NN.

word2vec is a predictive model that can either predict the word based on the context (Continuous
Bag of Words —CBoW) or predict the context based on a word (Skip-Grams —SG). The
usual context is a four-word context window (two before and two after). The SG (CBoW)
configuration first transforms a word (a context) into an n-dimensional vector through the
representation layer, then using the output vector from the representation layer, computes
the probability for each word to be found in the context (to be the expected word) via the
prediction layer. The model learns in a self-supervised way to maximize the probability to
retrieve the actual context by adjusting the vector output by the representation layer. The
representation layers consist of a two-layer fully connected neural network architecture (FCNN).
For the CBOW model, each word of the context gets a d-dimensional representation thanks to
the representation layer. The representations among the context words are averaged. After the
training phase the weights are frozen, the prediction layer is disregarded, and the word vector
is given by the output of the representation layer.

Despite their different philosophies, Levy and Goldberg (2014) prove that word2vec implicitly
factorizes a word-context matrix, which brings the two models closer together since both are
based on the co-occurrence counts between words. In terms of performance, GloVe usually
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performs better on similarity tasks while word2vec is stronger for analogy tasks (Levy and
Goldberg (2014)).

Other techniques have been proposed to represent words with static dense vectors but GloVe
and word2vec remain the most popular. For instance, context2vec (Melamud et al. (2016)) is a
variation of word2vec’s CBOW. context2vec applies one BiRNN layer (RNN are explained in
Section 1.3), which gives two vectors, followed by a FCNN as representation layer. One of its
main advantages is that the context is not limited to a fixed window of k-words but is rather
sentential. Only one d-dimensional vector is computed to represent the context instead of
k-vectors which need to be averaged. With a sentence composed by N tokens, the BiRNN layer
computes a contextualized representation of the token t at the position i, with 1 ≤ i ≤ N , which
is the concatenation of the representation of the words appearing on the left of the target word
with those on the right. The left representation is computed by applying the RNN from the first
token to the i− 1th; the resulting i− 1th vector is returned. The right representation operates
from the N th to the i+1th one and returns the i+1th representation. The concatenated vector
is sent to a FCNN which helps to represent non-trivial dependencies between the two sides of
the context and returns the contextualized d-dimensional representation for the token i.

Being able to turn an arbitrary word into a meaningful and computable vector representation
has created a revolution in NLP because their semantic and computational structures resulted
in significant capacity improvement in many downstream tasks, such as MRC. However, issues
remain, such as the difficulty to represent polysemous words, and, in a more general way, the
fact such modeling systems attribute one vector per token while its meaning can vary highly
depending on the context in which it appears. Also, handling out of vocabulary (OOV) words,
i.e words that are not present in the texts used for learning the pre-trained embeddings, is
problematic.

1.3 Contextualized word embeddings

Static word embeddings use the context in which each word appear to infer its meaning,
but this context is only used during the training phase. After the training phase, one static
representation per word is given as a dictionary (the word i is represented by wi ∈ Rd).
Contextualized word embeddings (CWE) aim at representing the meaning of words in their
context both during the inference time and during the training time, rather than just during the
training time. The representations of tokens are then dynamic from one occurrence to another,
compared to the previous word representations that we have seen until now, which were static.
Before describing how contextualized representations can be computed, the difference between
the static word embeddings and the contextualized one is illustrated with an example.
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Illustration of the difference between static and dynamic representation

Let’s reuse the toy example given in Section 1.1. The token "bark" would always be represented
with the same vector in static word embedding applications, regardless of whether it refers to
the peel of the tree or the sound of the dog. Contextualized word embedding representation
would vary in each sentence. The BERT-base model of the transformers library 3 4 has a
dictionary of word pieces 5 which associate each word piece to an ID number. "bark" is then
represented with the unique token ID 12001 but varying representations from one context
to another. In the following sentences, we compare the cosine similarity of the BERT token
representation "bark" between the first sentence and the three next ones.

1. My dog hates children, he barks as soon as he sees one (baseline sentence)

2. The tree in my garden is losing its bark, is it serious? (similarity : 0.4490)

3. My dog barks in his sleep (similarity : 0.5292)

4. My dog can’t stand our absence. He barks all day when we leave for work (similarity :
0.5982)

In the second sentence, where "bark" refers to the tree instead of the dog’s sound, the distance
with the similarity with the first sentence is lower in comparison with the sentences 3 and
4. Also sentences 1 and 4 have more similarity in their syntax and semantics, which leads to
higher similarity score, compared with the two other sentences.

Model architectures

Word representation have benefited from the progress made in the field of deep learning archi-
tectures. Two families of deep learning architectures are used for learning word representation
: recurrent neural networks (RNN) and transformers.

RNNs’ general architecture for LM tasks is depicted in Figure 1.1. LSTM (Hochreiter and
Schmidhuber (1997)) and GRU (Cho et al. (2014)) architectures belong to this family. In
those architectures, texts are encoded word by word, following the temporal order of language.
Passing through the encoder, the information accumulates along the processing of the sentence
and can give meaning to the sequence while remembering important parts and forgetting the
unimportant ones (relatively to a given task and corresponding annotations). At each new
word seen composing a sequence, the new information is encoded and computed with the
previous information.

3https://pypi.org/project/transformers/
4BERT is a contextualized word embedding model which is going to be detailed in the next pages, within

the same section.
5the difference with tokens are explained below in the same section; but for the example of "bark" the word

piece and token are the same.
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Some RNN use a BiRNN, which uses also the sequence backward : it takes as input the
sequence from its last word until the target word. The target word is predicted concatenating
the forward and backward representation of the target word as depicted in Figure 1.2. By
using BiRNN, as context2vec described in Section 1.2, the context on the left and on the
right of a pivot word can be captured. ELMo (Peters et al. (2018)) apply L BiRNN layers as
representation layers. ELMo has then 1 + 2L representation layers (rectangles concatenated
by row in Figure 1.2), the first one being a static word embedding representation and 2 per
BiRNN layer. Although context2vec and ELMo have close architectures, context2vec saves
the word embedding statically after training and its pre-trained embedding can be used as
input of a downstream architecture, while ELMo freezes the weights of the model, removes the
softmax layer and connects the architecture to another architecture designed for a downstream
task to be performed. So for each new entry, 1 + 2L context representations will be generated.
Depending on the task which has to be accomplished, ELMo learns during the training phase
which linear combination between the 1+2L representation is the most helpful for the task. For
instance, for tasks which are oriented on syntax comprehension, such as name entity recognition,
models are shown to emphasize more the lower layers while tasks which require reasoning skills,
such as MRC, would put more weights on higher layers. From this observation, the authors
interpret that the lower levels of the representation layers encode more syntactical information
and by getting deeper, semantics is more and more encoded. For each NLP architecture which
would intend to use static word embeddings as input to accomplish a task, pre-trained ELMo
can be used instead. The training cost of the specific models would not be too much higher
than using static word embedding regarding the fact that the weights of the representation
layers are frozen and that only the weights of the linear combination (1 + L parameters) must
be learned.

Even though ELMo demonstrates a high increase in capacities compared with static word
embedding methods, its capacities are limited because of the RNN architecture: as the input
texts get longer, information gets lost because of the vanishing gradient effect (Hochreiter
(1998)). Later models preferred using an attention mechanism to fix this issue.

Attention is a mechanism which provides insight through distributional weights about the
words in a text which are relevant to a target word. The meaning of "relevant" depends on the
context. In the case of machine translation, an attention mechanism will put high attention
weights on the direct translation of the word in an input language to translate it in the target
language. While this example computes attention across two different texts (i.e text A and
text B), self-attention consists in computing the weights for words of one text (text A). With
the example "My dog hates children, he barks as soon as he sees one", a self-attention layer
would result in a 12-dimensional vector for each word, with each value of the vectors being the
self-attention score with the target word. For instance, one can imagine that the word "he"
would attribute a high self-attention score to "dog" to which it refers.
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Figure 1.1: RNN general architecture (better with color) with one layer (light orange).

Figure 1.2: BiRNN general architecture (better with color) with one bi-directional layer
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There are several ways to compute attention weights, some of which are described in Section
2.2.1. Attention weights can be used to create contextualized representations since they can
weigh the importance of the context to define a target word. The weights can be learned
and applied within an architecture, like after RNN layers, in order to overcome vanishing
gradient issues or they can be used as the central architectural component, as in the transformer
architecture (Vaswani et al. (2017)).

Tranformers are also deep learning architecture widely used for learning contextualized language
representation. They contrast with the RNN with their main feature: they are attention-
based. This means that their architectures are only composed of attention blocks, which is
the reason why authors have called their paper presenting transformers "Attention is All You
Need" (Vaswani et al. (2017)). Tranformers are encoder-decoder models which can be used
for language generation. For language representation, only the transformer encoder can be
trained, and it results in BERT Devlin et al. (2018), depicted in Figure 1.3.

Compared with the FCNN or the RNN, the transformers do not get the input sequentially,
thus it has a lack of information regarding the position of the tokens one to another. This is
why positional encoding has been proposed thanks to word pieces. The positional encoding
is an unsupervised text tokenizer, which produces word pieces: known tokens and also out-
of-vocabulary sub-word tokens. Using WordPiece (Socher et al. (2013)) has the advantage
of reducing the vocabulary size and collecting more examples for each instance. A first
representation per word piece is then given as input to the transformer encoder (light yellow in
Figure 1.3).

The output of the pre-trained model is a transformed representation of the input accordingly
to a task. For language representation, BERT is trained on masked LM and on next sentence
prediction tasks.

Masked LM Task. Traditional language models predict a target word in a sentence
by using its predecessors in the sentence. Compared to ELMo, which can be described as
"shallowly bidirectional" because it predicts a target word using its predecessors and successors
separately before concatenating the representation, BERT is "deeply bidirectional". Indeed, it
trains one deep model using both sides simultaneously thanks to its masked language model
task (MLM), which consists in masking with random words or placeholders the words to
be predicted instead of stopping the model before seeing the target word. This difference
allows BERT to look at the representations from both sides simultaneously, which increases its
analytical power.

Next Sentence Prediction. BERT trains on a next sentence prediction in addition to
MLM, which is particularly useful for question answering (QA) tasks. Given two sentences, the
model predicts whether the second sentence is a logical continuation of the first or not. This is
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Figure 1.3: BERT general architecture (better with color).

a binary classification task, predicting if yes/no the second sentence is the direct succeeding
sentence of the first one. This task helps in understanding the relationship between two
sentences, which is particularly useful in the context of QA, where the first sentence is then
the question and the second is a paragraph.

The transformer’s encoder is composed of several attention blocks (light orange in Figure 1.3),
which are composed of the multi-head attention layer and the FCNN layer. A multi-head
attention layer is composed of several attention heads which are concatenated and reduced
with linear projections. This combination of multi-head attention layer and FCNN repeats N
times, where N is a hyper-parameter to be set during training. At the N + 1th iteration, the
final representation is used to return the final output (target word for LM, classification for
next sentence prediction, answer for MRC, etc.).

BERT is far deeper than its predecessor with its 12 layers for BERT-base and 24 for BERT-
large. As a comparison, ELMO had 5 layers. As explained above, the first layers of a deep
learning model tend to represent simple structures while deeper layers will be able to encode
more complex concepts. This hierarchy is well shown in Peters et al. (2018) where named
entity extraction tasks, which has to focus more on character-representation to fulfill the
task, would mostly use the first layers while sentiment analysis tasks, which require deep
semantic understanding of a text, use deeper layers. Having a deep architecture is then a
feature which enables having a complex function represent an input and which can lead, with
a good architecture, to semantically precise representation.

BERT have been adopted and demonstrate better performance than other models to embed
words according to given NLP tasks, including MRC. Thanks to the evolution of word
representation techniques, reading skills have greatly evolved over the last few years and
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so did the performances of downstream tasks.

In addition to the kind of architecture, two learning approaches can be distinguished when it
comes to CWE: the feature-based approach and the fine-tuning approach. In the feature-based
approach, an LM is first trained and then integrated to a downstream model, but its weights are
frozen (Koehn et al. (2003)). In ELMo, during the training phase of the downstream task, the
pre-trained weights of the embedding models are frozen, but it is possible to combine the output
of the respective layers. Indeed, the final vector representing a token is a linear combination
of these several layers where weights are learned depending on the downstream task during
training. The inclusion of lower-level information and the adapted combination depending on
the downstream task is a major feature that is beneficial to word representations. By contrast,
the fine-tuning approach also pre-trains LM but their weights are not frozen, which means that
a few task-specific parameters must be added during the specialization learning phase (Dai
and Le (2015)). For instance, in the case of binary sentence pair classification as a downstream
task, only one additional classification layer is required. Therefore, the computational cost of
the fine-tuning approach is higher and the LM architecture has to be adapted for downstream
tasks with only a few additional layers, which can be complex to design.

For both techniques, it has been noticed that the highest levels of the network tend to represent
better semantic information and the lowest levels highlight syntactic specificities (Peters et al.
(2018); Devlin et al. (2018); Peters et al. (2019)).
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Chapter 2

Machine Reading Comprehension

The research area of MRC focuses on the ability of AI to understand written text documents.
There are several levels of comprehension of a text, ranging from direct understanding of the
explicit content to the interpretation of the underlying narrative elements. Many different
datasets and challenges have been proposed to train and evaluate MRC systems, emphasizing
on various aspects of text comprehension. We expose the existing variety of challenges in
Section 2.1 and, in Section 2.2, the proposed solutions which have been designed to tackle
them.

2.1 Machine Reading Comprehension challenges

Machine reading skills of MRC models are conventionally tested through question-answer
(QA) challenges: agents are asked to answer questions about specific texts. Answering those
questions require different types of reasoning, initially presented in Chen et al. (2016) as:

1. Word Matching This is the simplest level of reasoning, where the agent retrieves a
span which contains the exact same words as the question.

2. Paraphrasing This is a form of reasoning that allows the agent to retrieve an answer
span which uses a different wording from the question.

3. Inference This is when the agent can retrieve an answer span that does not explicitly
contain the elements asked in the question at all. The agent thus needs to reason to
connect the question to a textually unrelated answer.

4. Synthesis/Multi-Hop Reasoning This is when the agent needs to piece together an
answer from information found in several different spans of text.

5. Detecting unanswerable questions This is the level of reasoning needed for an agent
to realize that the information in a text is too ambiguous or insufficient to answer the
question.
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Reasoning type Example
Word matching Q : When were the findings published ?

A : Both sets of research findings were published Thursday
Paraphrasing Q: Who is the struggle between in Rwanda?

A: The struggle pits ethnic Tutsis, supported by Rwanda, against
ethnic Hutus, backed by Congo.

Inference Q: Who drew inspiration from presidents?
A: Rudy Ruiz says the lives of US presidents can make them
positive role models for students.

Synthesis/
MH Reasoning

Q : Where is Brittanee Drexel from?
A : The mother of a 17-year-old Rochester, New York high school
student ... says she did not give her daughter permission to go on
the trip. Brittanee Marie Drexel’s mom says...

Table 2.1: Illustration of each reasoning type with an example, extracted from Trischler et al.
(2016a)

Table 2.1 gives an example from the NewsQA dataset (Trischler et al. (2016a)) of a question-
answer pair for the each type of reasoning (since unsanswerable questions have no answer, no
example is proposed for that case). MRC datasets usually contain question-answer pairs that
cover several of those categories but most of them tend to specialize in a specific type of reasoning.
For instance, Ostermann et al. (2018) encourage both inference and disambiguation skills by
proposing questions about short daily life situation scripts which necessitate commonsense
knowledge to be answered; Welbl et al. (2017) force the development of synthesis by ensuring
that pieces of answers are spread in different documents; Rajpurkar et al. (2016b) and Trischler
et al. (2016a) include unanswerable questions to teach machines to detect ambiguity and
insufficiency; and both Kočiskỳ et al. (2018) and Trischler et al. (2016a) try to avoid the
over-exposure to word matching by creating questions about passages from their summaries.

In addition to the reasoning skills mentioned above, QA challenges 1 that test MRC often
include other complementary skills, such as conversational skills (Reddy et al. (2018); Choi et al.
(2018)), text generation (NLG) (Nguyen et al. (2016); Kočiskỳ et al. (2018)) or information
retrieval (IR) (Nguyen et al. (2016); Kočiskỳ et al. (2018)). This thesis does not address
the conversational skills but challenges with NLG and IR are included in our study, and are
respectively detailed in Section 3.1.3 and 3.1.4.

The skills that the challenges aim to address can, in some cases, be inferred from some of
their features. The most remarkable feature is answer type: spans and cloze-style lead to
word matching, while multi-choice and human-written answers are likely to address either
paraphrasing, inference, or synthesis. Although multi-choice and human-writen answers can
tackle both the same reasoning skills, human-writen answers include the necessity to develop

1Within this thesis, the words tasks, challenges and datasets are interchangeable and are all three used for
the sake of readability.
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NLG skills to fulfil correctly the tasks. Concerning IR skills, datasets which have several
passages per question may need them.

The existing datasets and their features are listed in Table 2.2 in order to get an overview of
the evolution and state of MRC, and to understand the needs behind the architectures which
have been designed to learn MRC skills, as it is depicted in Section 2.2.

In each row, a dataset is depicted through a short description of its main characteristics:

• The column Dataset gives the name of the dataset and the reference of the article in
which it has been published.

• The column Passages displays information, when available, about the amount of passages
in the dataset, their sources (i.e childrens stories, newspapers, ...) and their size (i.e
number of tokens, sentences, ...).

• The column Questions displays the number of questions and the way they have been
collected (i.e written by humans, extracted from the passage, ...)

• The column Answers displays the type of answers which are requested (i.e multiple-choice,
extracted from the passage, abstractly generated, ...). This feature, as it is explained in
Section 2.2.2, determines the last processing phase of the model and its output.

• The column Psg:Qst displays the amount of passage per question. 1:N means that the
answer to a question is contained in one given passage and that there are several questions
asked per passage. N:N means that the answer of a question can necessitate to explore
several passages (the datasets with N:N Psg:QA usually imply that the models which
tackle them develop IR skills in addition to the MRC ones). 1L:N is similar to 1:N
but the passage given with the question is long, which means that it cannot be entirely
processed by models as is (one solution would be to shorten it). For instance, the passage
may be an entire book. The reference for saying if a passage is long or not is the maximal
capacity of BERT, which is 512 tokens.

In the following section, it is shown that the answer type of a challenge has a high influence
on the architecture that is used to solve it. We propose to separate the MRC datasets in
three groups in order to ease the MRC architectures’ description understanding. Those three
groups are described briefly below in order to offer better reading of the Table 2.2 and will be
extensively described, with their influence on the architecture design, in Section 2.2.2.

• Extractive MRC (E-MRC) datasets answer a question using a span in the passage, which
is why those datasets are also called "span-based question answering".
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• Multiple-choice MRC (MC-MRC) datasets usually consist of a text passage, a question,
and a set of candidate answers, with one of them being the target answer.

• Generative MRC (G-MRC) datasets answer a question with generated text. There are
two different kind of G-MRC tasks : the extractive generation (EG), which only use the
words which are already in the passage (such as Vinyals et al. (2015)), and the abstractive
generation (AG), which pick words in the entire vocabulary (such as See et al. (2017);
Devlin et al. (2018)).

Cloze tests are a specific kind of MRC task which consist in retrieving a word passage masked
in a text by a placeholder. If we consider each word from a vocabulary to replace a masked
one as an answer candidate, then this task can be seen as a MC-MRC task; otherwise, if there
are several consecutive masked tokens, the task can be seen as a G-MRC task.

18



Dataset Passages Questions Answers Psg:Qst
MC Test
Richardson et al.
(2013a)

660 fictional stories for chil-
dren,
150/300 tokens

2640, written by human multiple choice 1:N

CNN/Daily Mail
Hermann et al. (2015)

313K anonymised news arti-
cles
avg. 750 tokens,
max 2k

386k, sentence extract from
abstractive summary

anonymized entity,
cloze-style

1:N

CBT
Hill et al. (2015)

687K snippet from 108 chil-
dren’s book
20 sentences per snippet

687k, 21st sentence entities or common
nouns, cloze-form with
multiple choice

1:1

MSMarco
Nguyen et al. (2016)

top-10 ranked passages for
each queries (1M passages)
from 200k+ documents

100k search queries human generated N:N

NewsQA
Trischler et al. (2016a)

13K CNN news articles
avg. 750 tokens,
max 2k

120k, human
inspired on headline and
summary point

span 1:N

SQuAD 2.0
Rajpurkar et al. (2018)

23k paragraphs from 536
Wikipedia articles,
< 500 characters

140k, human
54k unanswerable

span 1:N

NarrativeQA over sum-
maries

1,572 summaries of book or
movie scripts
avg. 650 tokens, max 1,2k

46k, human, based on sum-
maries

human (abstractive),
based on summaries

1:N

NarrativeQA over sto-
ries
Kočiskỳ et al. (2018)

1,572 books or movie script
avg. 62k tokens, max 430k

same as summary same as summary 1L:N
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RACE
Lai et al. (2017b)

28k variable types (news, sto-
ries, ads, biography, philoso-
phy, etc. )
avg. 321.9 tokens

98k sentences from tests, hu-
man

multiple choice cloze-
style

1:N

CLOTH
Xie et al. (2017)

7k narratives
avg. 313 tokens

99k sentences directly from
the passages

multiple choice cloze-
style

1:N

TriviaQA
Joshi et al. (2017a)

662k passages
avg. 6 passages retrieved
from questions, multiple
sources
avg. 2.9k tokens

95k, human from trivia and
quiz-leagues websites

span

WikiHop
Welbl et al. (2017)

avg. 13 documents per ques-
tions, 1st wikipedia article
paragraph
100 tokens

51k triples giving an entity
and a relation

the last entity of the
triple, require multi-hop
over several documents,
multiple-choices

N:N

CoQA
Reddy et al. (2018)

8.4 diverse passages
avg. 271 tokens

127k, human, multi-turn
avg. 15.2 turn/passage

human generated and
span

1:N

QuAC
Choi et al. (2018)

8.8k wikipedia passages
avg. 401 tokens

98k, human, multi-turn
avg. 7.2 turn/passage

human generated 1:N

MCScripts Ostermann
et al. (2018)

2.1k human-written texts
from 110 script scenarios
196 tokens

27k, human, half are unan-
swerable

multiple choice (2),
27% require common-
sense inferences

1:N
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ROPES Lin et al.
(2019)

1915 background informa-
tion from science textbooks
and Wikipedia; with situ-
ations related to the back-
ground which are written by
humans
Backgrounds have in avg.
120 tokens and 60 tokens for
the situation

14,322 human; 12 avg. to-
kens

1.4 avg. spans from ei-
ther the situation or the
question, based on rea-
soning

1:N

BookQA Angelidis et al.
(2019)

614 books from NarrativeQA 3.4k Who-questions human-generated (gen-
erally entity)

1L:N

Table 2.2: Overiew of existing MRC datasets.
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2.2 Machine Reading Comprehension models and
architectures

In this section, we describe the architectures and the models which have been designed to
tackle MRC challenges. In the previous chapters, explanations remained shallow with the goal
to give an overview of the context in which MRC tasks take place. From this chapter, we enter
in detail in the design of the MRC architectures and provide mathematical explanations how
they work. A short reminder of the definition of a neural network architecture and a neural
network model is given in the Glossary.

While some NN architectures are designed for one specific challenge, more general architectures
that can be applied to any challenges of the same answer type have been proposed over the years.
There are also solutions that aim at addressing any MRC, NLU or even any NLP tasks with
one unique architecture. In this section, the different types of architectures, specific or general,
that have been used solve MRC are analyzed. During our research, we identified three common
phases across them which lead from a passage and a question till an answer. This result in a
MRC pipeline which is depicted in Figure 2.1. Instead of presenting sequentially each existing
architecture, we detail and compare the sub-architectures associated with each phase in the
following sub-sections. Doing so, identifying the common phases among existing architecture
is made easier and allow a deeper comprehension. The phases which imply knowledge which
have not been described previously in this thesis have a dedicated subsection.

The first phase is the machine reading phase, which can also be called contextualized embedding
phase. This is the first reading of a passage and of a question independently of each other.
The contextualisation, as we could see in Section 1.3, means that the representation of the
tokens within a passage are not independent but are influenced by their surrounding tokens.
The natural language texts are transformed into dense representations using techniques such
as the ones described in Chapter 1. If, during this phase, the embedding method used is part
of the contextualized word embedding methods (see in Section 1.3), it completely fulfills the
machine reading phase. Otherwise, if the embedding method does not include contextualization
(such a static word embedding models described in Section 1.1 and 1.2), a contextualization
phase follows the embedding phase and both would be part of the machine reading phase. The
contextualization techniques which can be used for the contextualisation phase are similar as
the ones found in the biased machine reading phase (described in Section 2.2.1).

The second phase is the question-aware passage representation phase, in which a representation
of the passage contextualized to its associated question is computed. As a result, the question-
aware representation (also called contextualized representation) of one passage, is different for
each question. The question-aware passage representation phase is composed of two sub-phases
which are the alignment phase and the biased machine reading phase. The two sub-phases and
the associated techniques to compute those representations are described in Section 2.2.1.
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Figure 2.1: Typical algorithm to solve MRC tasks. The data states are represented by rectangle
while the processing phases are represented by hexagons. The dotted-line arrow indicate phases
or representations which are not systematic but specific to some tasks.

The third and last phase is the answer finding phase, in which the answer may be extracted,
selected or generated, depending on the challenge (respectively E-MRC, MC-MRC and G-MRC,
described in Section 2.1). The three ways of finding an answer have generated fundamentally
different kind of architectures, which are each explained in Section 2.2.2.

2.2.1 Question-aware passage representation phase

As input data, an MRC task receives a passage and an associated question. The first phase
consists of transforming both the passage and the question independently into a meaningful
representation. This is done during the machine reading phase, which is extensively described
along the Chapter 1. The output of this machine reading phase is the contextualized represen-
tations of the question and the passage. Those contextual representations are composed of
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one d-dimensional vector per token. So, with a passage containing N tokens and a question
containing M tokens, we would have respectively the passage representation P ∈ RN×d and a
question representation Q ∈ RM×d.

The next phase, the one described in this section, consists of building a question-aware
representation of the passage from the contextualized representation of the passage and of
the question. The question-aware representation of the passage is done by integrating the
information of the questions into the passage in order to highlight the elements of the passages
which are related to the question.

Two sub-phases exist in the literature to build the question-aware passage representations,
and are commonly applied sequentially in MRC-specific models: the alignment phase and the
biased machine reading phase.

The alignment phase is presented in Section 2.2.1. It links and fuses the information between
the passage’s words and the question’s ones with the purpose to highlight the words in the
passage which could help answering the question. To do so, it aligns the representation of the
passage, the question, and optionally additional external information, such as knowledge bases.

The biased machine reading phase is presented in Section 2.2.1 and consists of updating the
passage representation by integrating the results of the alignment phase. We name it "biased"
because the MR phase is no longer based only on the language skills and general knowledge
but is influenced by what has been asked.

The transformer-based architectures, such as BERT and its variations, which have been
described in Section 1.3, also generated a query-aware representation of the context but in
a more abstract way. Indeed, for MRC tasks, the models would receive the passage and the
question as input, which would be separated by a separation mark. In comparison with the
previous systems described in this Section, BERT’s encoder computes only one contextualized
representation for both the passage and the question instead of computing it separately and
then getting a question-aware representation of the passage. Therefore, BERT’s architecture
gathers the machine reading phase, the alignment and the biased machine reading phase within
its encoder. This encoder would be represented by several attention blocks in its architecture
which would generalize more and more the information as we go further in the architecture.

Alignment phase

The alignment phase can be found in most MRC architectures and systematically uses attention
mechanisms to update the representation of the passage based on the question. The shared
idea among existing techniques is to encode how related the question is to each passages word.
However, there are variations in their way of computing the relation between the two. We detail
below a few existing variations. As already mentioned a few paragraphs above, each alignment
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phase takes as input the output of the machine reading phase: a passage representation
P ∈ RN×d and a question representation Q ∈ RM×d. The output of the alignment phase is a
context-query aligned representation stored in G ∈ RN×k, with k varying depending on the
method used.

Kadlec et al. (2016) use a RNN (more precisely, a bidirectional GRU network) to encode the
question with a unique d-dimensional vector q ∈ Rd. Then, it aligns the question with the
context by applying a dot product between them:

C2Qi = Pi · q (2.1)

Here, G = C2Q ∈ RN×d A softmax layer can be directly applied to C2Q ∈ RN in order to
rate the importance of each passage’s word i.

Chen et al. (2017) chose another way of computing C2Q which avoids losing information from
the question’s words by encoding them in a unique vector. Instead, each word from the passage
is represented by the sum of each contextual representation of question words weighted by ai,j :

C2Qi =
∑
j

ai,j ·Qj (2.2)

where
ai,j = softmax(α(Pi) · α(Qj)) (2.3)

In this example, the softmax is computed among each question word j and its result is stored
in ai,: ∈ RM , which gathers all the attention scores over the question for the passage word i.
α is learned with a feed forward neural network. Its learned weights wT are shared for both
passage and question α computation.

α(Vk) = ReLU(wT (Vk) (2.4)

Vk represents the vector either from a passage’s word or a question’s word. Chen et al.
(2017) enhance the aligned representation of the context with the query C2Q ∈ RN×d with a
303-dimensional vector so G ∈ RN×(d+303). This vector is composed of (1) the 300-dimensional
representation of this passage’s word computed during the MR phase (word embedding), (2) a
scalar indicating if the word i can be exactly found in the question and (3) a 3-dimensional
vector which is composed of part-of-speech numerically represented, a binary scalar indicating
if it is recognized as being a name entity, and a normalized term-frequency value among the
passage and question.

Wang and Jiang (2016) also compute C2Q to get an aligned question/passage representation
thanks to Equation 2.2, but in their case the attention score ai,j results from an RNN
computation instead of a feed-forward neural network:

ai,j = softmax(α(Pi,Qj); (2.5)
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α(Pi,Qj) = w · tanh(WpPi +WqQj +Waha
j−1) (2.6)

where · is the dot-product between two vectors; the vector w ∈ Rd; and all matrices W∗ ∈ Rd×d

contain weights to be learned. ha
k1 is the hidden state of the previous question word.

Seo et al. (2016) propose the bi-directional attention flow (BiDAF) architecture, which is
probably the most widely-used as alignment phase for MRC tasks but also the more complex.
In this paper, the alignment phase is called "attention flow layer". To get an aligned ques-
tion/passage representation, the authors first compute a similarity matrix S by measuring
each passage-question word pairs using a trainable scalar function α that encodes similarity
between two vectors. The similarity matrix S is depicted in Figure 2.2. In addition to compute
a context-to-query (C2Q) representation, a query-to-context (Q2C) representation is proposed.
2 As we have already defined, C2Q representation encodes which question words are most
relevant to each context word. Concerning Q2C, it identified which passage’s words are critical
for answering the question.

C2Q is also computed with Equation 2.2, but the attention score which link a passage’s word i
to a question word j is given with

ai,j = softmax(Si,j);

= softmax(α(Pi,Qj))
(2.7)

where
α(Pi,Qj) = wT [Pi;Qj ;Pi ◦Qj ] (2.8)

where [; ] is a vector concatenation across row operation and ◦ is the elementwise multiplication
operator. The softmax is computed among each question word j and stored in ai,: ∈ RM , which
gathers all the attention scores α(Pi,Q:) over the question for the passage word i. w ∈ R3d is
a vector containing learned weights.

Q2C vectors emphasise the most important words in the passage with respect to the question:
it computes b: = softmax(max(Si,:)) ∈ RN , which first retrieves the highest similarity scores
across passage words for each question word j and, in a second time, performs a softmax across
those maximum values. The final Q2C vector is a sum of each word from the passage weighted
by bi;

Q2Ci =
∑
i

bi ·Pi. (2.9)

The C2Q, Q2C and passage representation P of each word from the passage i are used to
compute the aligned representation:

Gi = β(C2Qi,Q2Ci,Pi) (2.10)
2For sake of readability, we will continue using "passage" instead of "context" to avoid confusion with the

contextualized embedding. The word "question" is used instead of "query".
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Figure 2.2: Similarity Matrix S computed in Seo et al. (2016)

Although beta can represent a neural network that fuses the vectors given as parameters, it
can also be a simple concatenation. That is what is proposed in the original paper Seo et al.
(2016).

β(C2Qi,Q2Ci,Pi) = [C2Qi;Q2Ci;C2Qi ◦Q2Ci;C2Qi ◦Pi (2.11)

which result to G ∈ RN×4d.

MRC task instances can also be augmented by extending the passage with general knowledge.
In some case, such as Mihaylov and Frank (2018), entity-relation-entity triplets related to the
passage are retrieved from knowledge bases by selecting facts that contain lemmas from the
passage or question and adding them at the end of the passage before any machine reading
phase. Another option proposed by Bauer et al. (2018) is to incorporate the knowledge right
after the passage/question alignment phase. A second alignment occurs, this time to align the
retrieved triplets and G, thanks to a classic attention layer.

In case of multi-hop reasoning MRC tasks, a popular strategy is to repeat the alignment phase
k times, using as input the representation of the machine reading phase as and the output of
the k − 1 alignment phase (Dhingra et al. (2017); Bauer et al. (2018); Feldman and El-Yaniv
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(2019)).

This sample of alignment architectures gives an overview of the first steps to represent the
passage regarding a question. The output is a matrix G ∈ RN×k, which is minimally composed
of a context-to-query C2Q ∈ RN×d matrix and by the concatenation with other elements,
such as, as in the case we exposed here: feature vectors, static word embedding, contextualized
word embedding, external knowledge from knowledge bases or query-to-context vectors. G can
already provide a question-aware representation of the context, but several research suggest to
enhance it thanks to a biased reading phase.

Biased machine reading phase

Following the alignment phase, critical parts of the passage to answer the question have been
highlighted. By integrating a new reading of the passage, the model builds a new overview
of a passage, which is now aware of the query. The core idea of this phase is to get a new
contextual representation of the passage which integrates the newly generated information.
The techniques are thus similar to the ones used for contextual word embedding described in
Section 1.3 and are thus less extensively described.

The two architectures that are usually used for this phase are RNN layers and self-attention
blocks. For instance, Seo et al. (2016) call the biased machine reading phase the modeling layer
and is composed of two BiLSTM layers. Clark and Gardner (2017) enhanced it with a residual
static self-attention mechanism: a bi-GRU layer (Cho et al. (2014)) is applied over the aligned
question/passage representation before passing it sequentially through a self-attention layer
and a fully-connected layer.

The biased machine reading phase is not systematic but present in many MRC architectures.
However, it cannot occur without having before an alignment phase: it would then not be a
biased reading phase since there would not be any awareness of the question. The output is a
matrix H ∈ RN×k′ , with k′ being dependant on the architecture chosen.

Once the question-aware representation of the passage phase is computed, its output represen-
tation can be directly used in order to find the answer.

2.2.2 Answer finding phase

As reported in Table 2.2, MRC tasks can differ by the type of answer which is expected. We
identify three types, as described in Section 2.1 : E-MRC, MC-MRC and G-MRC. Each type
of answer requires a different architecture and is described in the following subsections. In
the last subsection called Transfer learning, we present a shared architecture among the three
types of tasks.
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Span extraction for E-MRC tasks

E-MRC tasks take as input a passage concatenated with a question and return the probabilities
for each token of the passage to be the start or the end of the answer span (Seo et al. (2016);
Chen et al. (2017)).

For challenges which are known to contain only one token in their answer (Hermann et al.
(2015); Hill et al. (2015)), a popular technique, called Attention Sum Reader (ASR) (Kadlec
et al. (2016)), consists of multiplying each question-aware token representation of the passage
with the question representation from the machine reading phase and passing the output
through a softmax layer. ASR can be adapted for tasks which return answers with more
than one token by learning two probability distributions: the output of the model is then
composed by two vectors : A1 and A2 ∈ RN . They represent the probability distribution for
each token-to-be, respectively, the start of the answer span and the end of the answer span. In
order to increase the span likelihood, Chen et al. (2017) constrained the system by limiting the
distance between the start and the end to 15 tokens and by adding to the objective function
the constraint to maximize the multiplication between both probabilities whereas Tay et al.
(2018) add the constraint to minimize the sum of negative log probabilities between the start
and end indices.

Since the publication of the transformers (see Section 1.3), the most common way to learn
those vectors is to fine-tune pre-trained transformers with question-answering tasks, as it is
done in Devlin et al. (2018) with BERT for Question-Answering, as depicted in Figure 2.3.
To do this, the authors propose to use the pre-trained original architecture, as described in
Section 1.3 and to add one or two independent FCNN, depending if the span must be followed
by a softmax which would return respectively A1 and A2. During the fine-tuning, only the
two output vectors are learned while the other weights of the model are frozen.

In the case where the token corresponding to the answer is present several times in the given
passage (multi-mentioning), Min et al. (2019) make the hypothesis that only one mention (that
we will call from now on answer mention) is really answering the question, the other mentions
are distractors (mentions). An example of this situation is depicted in Figure 2.4 with an
example extracted from TriviaQA, where the first mention of the answer in the passage is the
ground truth answer mention and the other, according to the hypothesis of Min et al. (2019),
is considered as a distracting mention. Unfortunately, except for the E-MRC datasets which
provide the exact place of the spans through index, MRC datasets do not provide the ground
truth answer mention. It has then to be guessed or weakly retrieved. In classical models
(Joshi et al. (2017b); Tay et al. (2018); Talmor and Berant (2019)), the answer mention is also
unique but chosen either by selecting the first mention or at random. As an alternative, Min
et al. (2019) propose a weak supervision, which, first, computes the likelihood of each answer
candidate given the question and the passage with a learned function, and second, selects
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Figure 2.3: BERT for Question Answering (better with color) with an example of passage/ques-
tion extracted from Trivia QA. The blue rectangles represent each word representation while the
dark pink rectangles represent A1 and the lila ones represent A2: the probability distribition
for each word to be the beginning or the end of the answer span. The ground truth answer to
the question is "Elton John".

the answer with the highest likelihood as being the answer mention. The likelihood can be
computed with any model which gives the probability to have an answer based on a passage
and a question. For instance, one can use the output of ASM or BERT for Question Answering
and only check the probability for the answer and distractors mentions. Whichever weak
supervision method is used to select the answer mention (i.e first answer, random answer or
most likely answer), Min et al. (2019) propose a HARD-EM loss which maximize the likelihood
to retrieve the answer mention and minimize the weakly retrieved distractors.

Multi-choice answers

Depending on the challenge, the candidate answers can be directly extracted from the passage
(Richardson et al. (2013b); Hermann et al. (2015); Hill et al. (2015)) or not (Lai et al. (2017a)).
In any case, the most common methodology consists of training a system to score each candidate
answer for the same passage/question and picking the highest scoring one.

When the MC-MRC tasks can be accomplished by extracting its answer candidates from the
passage, the same architecture can be used as for E-MRC tasks to compute the probability of
each answer candidate. Such as for E-MRC, in case of multi-mentioning, each occurrence’s
probability can be summed, averaged, or only one can be selected. In the field of MC-MRC,
the most common technique is to sum it, as it is proposed in Kadlec et al. (2016) with their
pointer sum attention mechanism (Dhingra et al. (2016); Cui et al. (2016)).
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Question Who is the most successful UK solo artist in the USA?
Answer Elton John
Passage The top 20 artists, in order, are The Beatles, Michael Jackson, Madonna, Led

Zeppelin, Elton John, Pink Floyd, Mariah Carey, Celine Dion, AC/DC, Whitney
Houston, The Rolling Stones, Queen, ABBA, The Eagles, U2, Billy Joel, Phil
Collins, Aerosmith, Frank Sinatra, and Barbra Streisand. The list is perfectly
split between 10 solo artists and 10 groups. Eight of the 10 solo artists are
from North America, while eight of the 10 bands are from outside America, the
majority being British. Remarkably, the country that invented rock and roll has
not produced any of the top seven rock bands. America’s strongest contender, in
at No. 8, is often-derided soft-rock stalwarts The Eagles. ( ... ) It’s hard to avoid
wondering whether political/social mores play a role in the dichotomy. America,
after all, likes to think of itself as a land of individualists. Elvis, Jackson, and
Madonna all came from humble beginnings, surrounded by poverty and family
tragedy. They epitomized the American dream, and so you might argue that
the more left-leaning Europeans are happier to celebrate the collectivism of a
band. If we look to what’s thought to be the most ideologically "right" genre,
this theory holds true: Of the 25 greatest selling country-music stars of all time,
all are solo artists. The UK’s two bestselling solo stars, meanwhile, do not fit the
rags-to-riches mold of the American singers, but are rather privileged virtuosos
who were in stage school from a very young age (Phil Collins, Elton John.)

Figure 2.4: Example of multi-mentioning extracted from TriviaQA.

In Trischler et al. (2016b), a parallel architecture called a "reasoner" is added to the extractive
one. In this module, each candidate answer is concatenated with its associated question to
form a set of hypotheses. With the example given in Figure 2.4, one can imagine to have two
answer candidates to the question "who is the most successful UK solo artist in the USA ?"
: Phil Collins and Elton John. In that case, the first hypothesis would be "who is the most
successful UK solo artist in the USA ? Phil Collins" and the second one "who is the most
successful UK solo artist in the USA ? Elton John". In that case, the authors propose an
adaptation of textual entailment tasks (TE). TE tasks consist of recognizing when a first text
precedes a second one. Such as LM, TE training does not require manual annotation, and
so the amount of data available to train TE models is large. It can be adapted to MC-MRC
challenges by replacing the first text by the passage and the question, and the second text by
a candidate answer. The score for each candidate answer is compared to the other and thanks
to a a softmax layer over the batch of candidates.

The final score for each the candidate answer is computed by multiplying the probability of
each candidate answer gotten through the extractive architecture with the entailment score for
each candidate gotten from the reasoner (Trischler et al. (2016b)). The final choice returned is
the candidate the highest score.

An alternative to teaching a model to select the best answer from a set is to present each
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<passage, question, candidate answer> independently for each candidate answer and to
attribute a good score for sets containing right answers and a low score for those that do not
(Jiang et al. (2020)). In this case, a model sees several times one passage and its questions,
sometimes with the right answer, sometimes with a distractor (untrue candidate answer). This
task requires evaluating each candidate individually and not just emphasize finding the right
candidate from a batch. After rating all the candidates for a question/passage pair, during
the test phase the candidates are ranked based on their score and the best one is returned.
One advantage of this architecture is that it can be applied to MC-MRC problems that have
several valid answers among their candidates. In that case, the best k ranked candidates are
returned. The score is attributed right after the question/answer-aware representation phase
by using a fully connected layer.

Based on the hypothesis that, for all MC-MRC models (1) the valid answer refers to a specific
passage’s span and that (2) this specific passage is a unique sentence, Jiang et al. (2020) propose
an alternative architecture which is trained to select, in a first step, for each candidate answer,
the span in the passage which is the most likely to contain it and, in a second step, trained to
identify the right <span, question, candidate answer> triplet. The advantage of filtering the
relevant spans by answer is to reduce the amount of text (and noise) that the model receives
as input, which, in addition to simplifying the task, makes this task close enough to a textual
entailment one for using some as pre-trained models before fine-tuning with multiple-choice
tasks.

Generative answers

Cloze tests are a specific kind of MRC task which consist of retrieving a word passage masked
in a text by a placeholder. It is important to emphasize that, for cloze tests, there are no
questions. If we consider each word from a vocabulary as candidate to replace a masked one as
an answer candidate, then this task can be solved with MC-MRC models (Lai et al. (2017b);
Xie et al. (2017)). However, if there are several consecutive masked tokens, the task is a
generative one.

In any case, the inputs of cloze test models are a passage with placeholders, and its outputs
are the probability distributions for each placeholder over candidate answers, words from a
passage, or the complete language vocabulary.

Generative MRC (G-MRC) is similar to cloze tests on many points except that the answer
answers a question instead of replacing a placeholder. In G-MRC, the input is a passage
followed by a question and the output remains the same as for cloze tests.

The usual architecture used for G-MRC are Seq2Seq (also called encoder-decoder) architectures.
In Section 1.3 and Section 2.2.2, we explored the encoders. Generative tasks require adding a
decoder. The original transformers (Vaswani et al. (2017)) such as GPT (Radford et al. (2018))
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Figure 2.5: Transformers general architecture (better with color) with an example extracted
from TriviaQA

or BART (Lewis et al. (2019)) are Seq2Seq. Their architecture is sketched in Figure 2.5

In parallel to input processing in the encoder, the elements of the output text which have
already been generated (i.e the first words of an answer for MRC) pass by a masked multi-head
attention layer. Afterwards, the newly computed representation of the encoder and the masked
multi-head attention feed conjointly in the decoder in a new multi-head attention layer. Then,
a FCNN layer is applied. The combination of those three layers repeats N times, where N is
the same hyperparameter as for the encoder. At the N + 1 times, the computed representation
is sent to a softmax layer, which will give the most likely word to be picked as continuing the
answer. In the case represented in Figure 2.5, the expected word replacing the "?" placeholder
is "artist".

There are two types of generative tasks. The extractive generation (EG), which only use the
words which are already in the passage (such as Vinyals et al. (2015)), and the abstractive
generation (AG), which pick words in the entire vocabulary (such as See et al. (2017); Devlin
et al. (2018)).

G-MRC can also be seen as a kind of text summarization task: an input text must be
summarized but with a specific focus, namely the question. For this challenge, the answers
generated are usually sequences of words that must be linguistically coherent in addition to
returning the relevant information to answer the question correctly.

Summarization tasks can also be tackled with either the EG approaches or the AG ones.
The advantages and disadvantages of EG approaches versus AG ones are the same for both
summarization and for G-MRC tasks: EG are easier because they do not require generating
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grammatically coherent sequences but are limited regarding paraphrasing, generalization, or
the incorporation of real-world knowledge.

An EG problem can be seen as a multiple-choice MRC task with

1. a choice to repeat over each word to generate

2. as many candidate answers, for each word, as the amount of unique token in the passage
and question.

PtrNET (Vinyals et al. (2015)) is an EG model which generates each word of the answer
thanks to a Seq2Seq model, and which uses an attention mechanism as a pointer to the
passage/questions words to use as answer.

An AG problem can also be seen as a multiple-choice MRC but with more answer candidates
than EG: the whole language vocabulary. However, even if each single word of the answer is
not coming from the passage and the question, the information to answer the question must be
contained into the passage, otherwise, answering a question using uniquely general knowledge,
no MRC skills are engaged. That is why AG should still be encouraged to use words from
the passage and question. Picking words in the language vocabulary helps building better
sentences linguistically and offer more freedom to paraphrase and summarize the collected
information.

PGNet (See et al. (2017)) is a system which combines PtrNet and a generator for text
summarization. Its architecture is also a Seq2Seq network. Each new answer token generated
through the decoder of the Seq2Seq model uses the pointer mechanism to weight each passage
token. The distribution of the importance of the passage words is then used to chose which
one of the words from the complete vocabulary should be used. To the best of our knowledge,
although there are PGNet variations, its principles are re-used in each current well-performing
G-MRC solution (Nishida et al. (2019); Indurthi et al. (2018); Bauer et al. (2018)). The
biggest competitor of PGNet is GPT-2 Radford et al. (2019), which is transformer-based and
is adaptable to generative tasks while limiting the possibility of repetition. However, it is still
far from performing as well as the PGNet-based models.

G-MRC tasks may require concise answers which do not repeat the context of the question
or elaborated answers. For the question "Who is the most successful UK solo artist in the
USA ?", a concise answer would be "Elton John" while an elaborate one would be "The most
successful solo artist in the USA is Elton John". In order to be trained and to perform on
various G-MRC tasks with different answer styles, Masque (Nishida et al. (2019)) indicates
which answer style is desired as input and uses this information to adapt the answer.
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Transfer learning

Because each task and dataset has their particularities, models are usually trained from scratch
for each task (Trischler et al. (2016b); Chen et al. (2016)). GPT (Radford et al. (2018)) and
BART (Lewis et al. (2019)) are transformer-based Seq2Seq architectures, which can solve
both solve EG and AG tasks. BART is pre-trained by corrupting documents (token masking,
token deletion, sentence permutation, document rotation, text infilling) and thus extending
its generalisation capacities. Thanks to the fact that such pre-trained models have their
parameters publicly available, groups with low computational resources now have access to a
trained high-performing model they can fine-tune to their specific purposes. Indeed, learning
from scratch to solve a problem is computationally expensive, so sharing pre-trained parameters
makes deep network learning quicker and more accessible. However, the number of parameters
to fine-tune remains large and fine-tuning still requires high computational resources.

The development of NLP capacities thanks to the emergence of fine-tuned models has generally
increased the interest in transfer-learning models. The idea that a real understanding machine
should handle correctly a task even if it has not specifically been trained for it (zero-shot
learning, ZSL) has become popular with GPT-2 (Radford et al. (2019)), and, since then,
generalisation of models is often evaluated through ZSL. One advantage of models that perform
well on ZSL evaluation set-ups is that those models have high generalisation capacities. Another
one is that it decreases the dependency on the data. However, ZSL over a wide variety of NLP
tasks is too general and does not perform as well as task-specific models.

As is shown in Section 2.1, each dataset, by capturing a special aspect of MRC, has its own
particularities. Also, depending on the way the data has been collected, the style of the text,
etc., the models cannot adapt well to new types of data. Multi-task models using uniquely
MRC models have proven to be efficient at generalizing: Talmor and Berant (2019) report that
training a model on several different datasets provides better results than on one target alone.
They also found that using examples from different datasets converges quicker: they reach the
performance of a task-specific model using one-third the number of examples. Furthermore,
they showed that with good multi-task pre-trained models, the fine-tuning step may be skipped
entirely. By finely pre-training one single BERT-large model with 10 MRC datasets, Talmor
and Berant (2019) obtain close to or better than state-of-the-art performance on each of those
datasets, without fine-tuning to the targeted ones. Thus, in addition to generalizing well, such
models require neither large datasets nor large computational resources to train for specific
tasks.

T5 (Raffel et al. (2019)) is another example of a multi-task model which does not focus only on
one general task as MRC but on all text-based language problems. This system converts each
problem into a text-to-text format, in contrast to BERT which can take also any text-based
language problem as input but has to adapt the output format to the downstream task. It is a
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transformer-based architecture which differs from BERT by the fact that, instead of masking
isolated words in the MLM task, it masks sequences. Doing so allows the model to handle a
wide variety of tasks, including NLG tasks such as summarization, question-answering, and
machine translation. The model knows which information to return (answer to a question,
translation of a passage, class to pick up, etc.) thanks to a text prefix added to the original
input sequence. However, although a multi-task pre-trained model has many advantages, the
results of T5 under-perform the standard pre-training plus fine-tuning setup (Raffel et al.
(2020)). One hypothesis is that multi-task pre-training on a too wide variety of tasks prohibits
the model from getting very good at any one task as it would hinder performance on other
tasks.

UnifiedQA (Khashabi et al. (2020)) proposes a multi-task pre-training based on T5 but limited
to QA tasks. The authors propose a format-agnostic question-answering system, arguing that
the ability to comprehend a text is not supposed to be governed by the answer format. The
model takes as input the question followed optionally by additional information associated
with each answer type (i.e candidates answers for MC-MRC) and learns how to use the given
additional information to return an appropriate answer. Unlike the original T5, UnifiedQA is
pre-trained only with MRC tasks. It uses 8 seed datasets for the pre-training of 4 different
formats (E-MRC, M-MRC, G-MRC and a yes/no-MRC, which we have not discussed in this
thesis). UnifiedQA performs almost as good or better than individual T5 models targeted to
each dataset, and no example of failure has been reported.

Basing natural language learning on a variety of tasks requires the AI to acquire general NLP
knowledge. However, having too general NLP skills without emphasizing one specific task via
fine-tuning may prevent the AI from excelling on any of them but simply perform correctly, as
it is shown in Raffel et al. (2019). The diversity of tasks to use for training a model without
requiring fine-tuning must be then neither too broad nor too narrow. In this section, we have
seen that sharing a same architecture but also the same model models for all the MRC datasets
is very promising.
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Chapter 3

A pipeline architecture for
generalisation in MRC skills

The overarching goal of MRC is to enable machines to read and comprehend a text rather
than learning to answer specific kinds of questions on specific kind of texts. In Chapter 2, the
general methodology to treat MRC tasks from the existing architectures has been studied and
depicted in Figure 2.1. It has to be noted that the stages that compose it are recurring steps
in the literature rather than explicit systematic ones: not all architectures follow those steps.
By identifying which steps are recurrent, we have systematized the MRC learning process.
Hypotheses regarding which sub-tasks could share one architecture and eventually, also, one
common training can now be posed.

We propose a new pipeline in Figure 3.1 based on the following hypothesis:

First hypothesis. Using a shared MRC pipeline composed of models trained with challenge-
specific data can perform at least as good on any given challenge as the task-specific architecture
baseline proposed by the research groups which have released the datasets.

Second hypothesis. Sharing the training weights (i.e model) in addition to the architecture
among several MRC datasets could improve the performance on new datasets (seen for the
first time during test time) compared to the results obtained by having unique architecture
among datasets but separate training. For instance, a model which is trained just with SQuAD
and RACE examples would perform systematically better on the NarrativeQA dataset than a
model trained just with SQuAD examples.

Third hypothesis. The performance of generative MRC tasks can increase thanks to
the addition of an extractive phase (span extraction phase in Figure 3.1). Indeed, since the
complex tasks of retrieving the information and of generating the answer text are split in two
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Figure 3.1: Our Pipeline. The optional phases (changing from a dataset or from one model to
another) are represented with dashed lines while the mandatory ones are depicted with plain
ones. The red rectangle emphases the phases which are specific to our pipeline.

different steps, the system would just have to generate from a few well-selected spans instead
of complete passages.

In addition to an improvement in the performance of the models, having a performing extraction
phase which reduces the context to a few spans makes the MRC systems more explainable
by returning which part of the passage the answer is based on. In case of failure, such as in
the HRC tests, we can distinguish whether the model understood the text but is unable to
generate a correct answer or if it managed to answer correctly from false clues.

The drawback of this method is that if a step does not perform well, all following steps would
be negatively impacted. However, our modular architecture makes it easier to determine which
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component failed and to replace it with an improved version.

In this chapter, we propose an updated version of the pipeline described in Chapter 2 which
includes a mandatory extracting phase for each MRC challenge. A first example of a combination
of architectures which compose the pipeline trained with various dataset is proposed in section
3.1. Section 3.2 propose several experiments in order to evaluate this baseline. Section 3.3
gives the datasets used for our experiments and how to adapt them. Finally we showcase the
results of the experiments in Section 3.4.

3.1 Methodology

The pipelines extracted (Figure 2.1) and proposed (Figure 3.1) are abstract procedures which
both generalize a procedure to perform in a MRC task. In practice, a combination of pre-trained
models are going to follow this procedure, with the possibility that one model achieves several
steps. An architecture is here defined as the organisation of a neural network (i.e., the amount
of layers, the size of each layer, how they are connected one to another, etc.) in order to
accomplish a task. A model is the architecture with the weights trained. As it is shown with
the extracted pipeline in Chapter 2, many different combination of architectures can follow a
unique pipeline despite their difference. Also, one architecture can include several steps of the
pipeline.

This is the case, for instance, in BERT Devlin et al. (2018): the model gets as input a
question and a passage and returns their question-aware representation of the passage and
their passage-aware representation of the question. When a BERT is intended to perform a
question-answering task, two additional layers are added to the original BERT architecture in
order to return the span in the passage that is likely to contain the answer to the question, as
it is explained in Section 2.2.2. In the case of BERT then, a unique architecture performs the
machine reading phase, the alignment phase, the biased machine reading phase and the span
extraction.

In this section, we propose a combination of architectures which follows the pipeline depicted
in Figure 3.1. The different architectures which compose it and the steps of the pipeline they
are associated to are summarized in Table 3.1 and detailed in the following subsections.

Since each dataset has its specificities, extra phases can still be added before, in-between, or
after the pipeline. For instance, some MRC challenges require handling several passages or
very long ones (Kočiskỳ et al. (2018)). In such cases, we can simply add an additional initial
information retrieval phase over the set of passages (or the long passages) and form a shortened
passage composed of the retrieved information.
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Pipeline phase Architecture selected
Machine reading phase BERT-base for

Question Answering,
english (Devlin et al.
(2018)), enhanced with
HARD-EM loss (Min
et al. (2019))

Alignment phase
Biased machine reading phase

Span extraction phase

Choice Selection (MC-MRC) / UnifiedQA (Khashabi
et al. (2020)

)
Answer generation (G-MRC)

Table 3.1: Phases of the pipeline associated with the models used to accomplish them.

3.1.1 Span retrieval

The particularity of our pipeline is the mandatory span extraction phase. The challenge here
is to teach models to retrieve spans for tasks, such as MC-MRC and G-MRC, which do not
provide the spans on which their ground truth answers are based on. That is why we have to
use weak supervision techniques to retrieve those spans in the passages. The weak supervision
consists in retrieving automatically the spans in the passage which are close to the ground
truth answers. Using the ROUGE score and BLEU score can help retrieving linguistically close
spans (Kočiskỳ et al. (2018); Mou et al. (2020)). Techniques which are based on the semantics
should also be used to retrieve semantically close spans. One solution could be to average the
word embedding of the ground truth answers obtained with techniques described in Chapter 1
and to retrieve spans which are close in the vectorial space. However, in our experimentation,
only lexical-based weak supervision has been explored due to time constraints.

The Rouge score used is the Rouge-L score (Kočiskỳ et al. (2018); Mou et al. (2020); Min et al.
(2019)). Thus, the spans in the passages which have a Rouge-L score superior or equal to θr
compared to the ground truth answers are extracted. Kočiskỳ et al. (2018), Mou et al. (2020)
and Min et al. (2019) use 0.5 as a threshold θr, but we found that using 0.6 instead avoids the
situation where a two-token answer span which includes a weak word is picked.

To the best of our knowledge, we have not found any reference using BLEU score as weak
supervision technique for span retrieval. However, since BLEU-score is usually associated with
Rouge score to assess the proximity between two texts, this metric has been used as well as
weak supervision for span retrieval. The BLEU score can be computed by comparing unigrams
(BLEU-1), bigrams (BLEU-2), trigrams (BLEU-3), etc. Based on our observations, when using
n-grams with n > 2, the vocabulary size turns out to be too big and therefore the scores less
meaningful.

We only compute BLEU-1 and BLEU-2. After applying a grid search on the coefficient of
each of the two BLEU scores and looking at the amount of span retrieved, we have decided to
compute the BLEU-score by with a linear combination between BLEU-1 (B1 in the following
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equation) and BLEU-2 (B2) so that B = B1 ∗ 0.8 +B2 ∗ 0.2). So the spans in the passages
which have a BLEU score B ≥ θb compared to the ground truth answers are extracted. θb
has been set to 0.5 after manually testing the quality of the retrieved spans on 100 random
samples of our model using the values 0.4, 0.5, 0.6 and 0.7.

The statistics regarding the amount of spans retrieved per question are given in Table 3.3

3.1.2 From machine reading to span extraction with BERT

The machine reading phase, the alignment phase, the biased machine reading phase, and the
span extraction phase are all taken care of by a BERT for question answering described by
Devlin et al. (2018) but adapted with the HARD-EM loss of Min et al. (2019), which suits the
cases of multi-mentioning, as already described in Section 2.2.2. By following Min et al. (2019),
we consider that only one span (or none when there is no span retrieved) can be the correct
the answer. Although we may get more spans which could answer the question correctly or
contribute to the answer, this simplification helps to identify noisy answers and lower their
influence.

3.1.3 Choice selection and answer generation with UnifiedQA

The choice selection for MC-MRC as well as the answer generation for G-MRC is operated by
UnifiedQA, described in Section 2.2.2. This model has been chosen because it does not require
to be re-trained for specific MRC datasets to perform on any QA tasks (Khashabi et al. (2020)).
It is also possible to use UnifiedQA to perform each step of the baseline pipeline depicted in
Figure 2.1. With such application, UnifiedQA takes as input the question, the passage, and
the answer candidates for MC-MRC. It returns the predicted answer on the form of free text.

When it is used after the span extraction phase (our pipeline, Figure 3.1), the paragraphs
are replaced by the span of the passage likely to contain the answer to the question. The
question-and-answer candidates, and ground truth remain the same as for the baseline pipeline.
For our experiments, we use the pre-trained model referred to as UnifiedQA-BART in Khashabi
et al. (2020). We use the cased version of the model, even though it is suggested to use the
uncased model by the authors and our data are pre-processed to be lower-cased. The reason is
simply that we noticed a high amount of "No answer" with the lower-case model which are
well-handled by the cased model.

3.1.4 Information Retrieval Phase

This phase is operated when the number of paragraph is too large to be processed by the
models, such as the datasets in 2.2 which contain "x:1L" or "x:N" in the "Psg:Qst", with "x"
which can be any value. Datasets with paragraph-size passages (i.e with "x:1" in the column
"Psg:Qst") do not require this IR phase.
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In the case of NarrativeQA over stories, the text on which the machine has to retrieve the
answer to the question is the complete book, which is too long to be handled either by generative
or extractive architecture. Indeed, models like BERT-base cannot handle more than 512 tokens
as input (i.e the question plus the passage) (Devlin et al. (2018)). In this situation, a common
approach is to process in two steps: reduce the book to a few paragraphs relevant to the
question and then answer the questions based on this reduced context (Chen et al. (2017); Lin
et al. (2018)).

Since NarrativeQA is the only dataset that we are going to use for training that is affected by
this issue and because our approach differs slightly from the existing studies which work on
this challenge (QA over stories) (Kociský et al. (2017); Tay et al. (2019); Mou et al. (2020)),
we describe the IR phase applied to this dataset.

Chunk creation. Existing methods to split a too-long document into smaller chunks use
the number of tokens as a marker. Indeed, Kočiskỳ et al. (2018) and Mou et al. (2020) consider
chunks of 200 tokens and Tay et al. (2019) considers different sizes of chunks (from 50 to 500)
and determined during training which value improves the validation score the most. This
technique leads to information loss due to the tendency to split paragraphs and sentences in
the middle. That is why we adjust the chunk size to the size of the paragraph so we can keep
together elements meant to be read together. In the case of very short paragraphs (i.e with less
than 25 tokens), we group them together so that their size exceeds 100 tokens. This makes it
possible to keep the number of chunks reasonable, for example in the case of scripts composed
of lines of dialogue. For paragraphs exceeding 500 tokens, we split them approximately in the
middle but take care to keep sentences complete.

Chunk Ranking. Once a story is split into chunks, we score the similarity of each of them
to a query and rank them. This is a common challenge in the IR field and several methods
exist to compute the similarity score. The query can be either either a question (this setup
is called naive ranking (NR) setup along the thesis) or a question with its possible answers
(oracle ranking (OR) setup). The OR setup performs usually better since it has access to the
possible answers and cannot be used at test time. In our case, the OR results aim at defining
the best score a perfect chunk ranking could reach based on the given information.

Regarding the similarity metrics which are used, we compute both the cosine similarity between
the TF-IDF representation of the chunk and the query, such as Kociský et al. (2017) and Tay et al.
(2019), but we also use ranking techniques which have not yet been applied to NarrativeQA over
stories such as BM25 (Yang et al. (2018)) and a version of BERT trained for ranking (Nogueira
and Cho (2019)). We combine the three methods and get the top-N chunks for each metric. 1.

1We use the cosine similarity on the TFIDF vectors from scikit-learn, the BM25 Okapi toolkit (Trotman
et al. (2014)) and the pre-trained version on MSMarco Dataset (Nguyen et al. (2016)), with the checkpoint of
the model available at https://github.com/nyu-dl/dl4marco-bert
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So we have [BERTTop1,BERTTop2, ...BERTTopN ], [BM25Top1,BM25Top2, ...,BM25TopN ]

and [TFIDFTop1,TFIDFTop2, ...,TFIDFN ] lists that we concatenate so to obtain [BERTTop1,
BM25Top1, TFIDFTop1, BERTTop2, BM25Top2, TFIDFTop2, ..., BERTTopN , BM25TopN ,
TFIDFTopN ]. In case of duplicate chunks, only the first occurrence will be kept. Consequently,
the size of the list can vary from N to 3N.

Context creation. For the training phase, we use the union of the three top-ranked chunks
of each of the three ranking methods and the OR setup, which produce a context with three to
nine paragraphs. At test time, we use the five top-ranked chunks of BPRR and BM25 with
the NR setup.

3.2 Experiments

Each of the three hypotheses that we have made at the beginning of this chapter are tested
through three experiments which are described below.

3.2.1 First hypothesis: one pipeline can perform well on any task

As a reminder, the first hypothesis is that using a shared MRC pipeline composed of models
trained with challenge-specific data can perform at least as good on any given task as the
task-specific architecture baseline proposed by the research groups which have released the
datasets. To test this hypothesis, we train one model per dataset with the same architecture
from the machine reading phase to the span extraction phase of our pipeline; we have then one
E-MRC architecture but task-specific models. The architecture which performs this training is
BERT-base for Question Answering enhanced with HARD-EM loss, as has been described in
Section 3.1.2. The datasets which are used to test this hypothesis are listed in Section 3.3. For
E-MRC tasks, the output is the predictions of the span extraction phase For MC-MRC and
G-MRC tasks, the output is the predictions of the choice selection/answer generation through
UnifiedQA, which has already been trained on many QA datasets, as detailed in Section 3.3.3.
We compare the predictions from the n models to each of the n datasets’ baseline. The baseline
is the result that is found in the original paper of each dataset. The hypothesis would be
validated if the results are better for each of the datasets tested.

3.2.2 Second hypothesis: a common training gets better generalisation
skills than specialized training

Our second hypothesis is that sharing one model in addition to the architecture among n
MRC datasets improves the performance on new datasets (datasets seen for the first time at
testing time) compared to the results obtained by sharing a unique architecture but using
task-specific models. To test this, we compare the predictions of the n models obtained in first
hypothesis on m new datasets and we compare it with the predictions when we train a new
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model but with the same architecture which include the shuffled data of the n datasets (i.e
common training). The n datasets which are use for the training and the m ones used for
the test are described in 3.3. The hypothesis would be validated if the results of the common
training are better for each of the m datasets than any of the n specialised training.

3.2.3 Third hypothesis: G-MRC performance increases with a span
prediction add-on phase

Finally, we hypothesise that the performance of generative MRC tasks increases thanks to
the addition of an extractive phase. To test this, if the second hypothesis is validated for
the G-MRC datasets, we compare the results of the common training (described in Section
3.2.2) on the G-MRC datasets to the results computed with a model which does not explicitly
include a span retrieval phase, i.e following the extracted pipeline (as in Figure 3). To have
comparable results, we have chosen to use UnifiedQA as the unique model of our architecture.
The hypothesis would be validated if the results of the training with extraction phase gets
better results on each G-MRC datasets, regardless of whether they have been seen during the
training or not.

3.3 Implementation details

We ran the experiments proposed in the Section 3.2 on several datasets in order to verify our
hypothesis. The datasets which are used to train our models are given in Section 3.3.1 and
the ones used uniquely for testing purposes are given in Section 3.3.2. Since we use a similar
pipeline for each MRC dataset, we need to adapt each datasets’ format, so they all fit the
unique architecture. This data conversion is described for each MRC dataset in Section 3.3.3.
Other implementation details are given in Section 3.3.4.

3.3.1 Datasets for training

In order to test our three hypotheses, we have selected six different datasets among the list
given in Table 2.2 that we use for both training and testing. The datasets have been chosen
based on their amount of data (to have as much as data as possible for training) and on their
diversity (to train robust models). Since there are three different kinds of MRC datasets,
namely E-MRC, MC-MRC and G-MRC, we have selected datasets from these three categories.
We have SQuAD and COQA as E-MRC. COQA provides the span answer as well as an answer
written by a worker based on the answer span; it could thus also be seen as a G-MRC dataset.
We have decided to classify it here as a E-MRC because we can use the provided official spans
as ground truth answers without having to use any of the weak supervision techniques (listed
in Section 3.3). However, we compare the final results with the humanly generated answer as
it is more meaningful to judge the quality of the system. RACE and WikiHop are the two
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Question Who is more likely to get an injury during the race?
Passage <Wikipedia> Sometimes muscles and tendons get injured when a person starts doing

an activity before they have warmedup properly. A warmup is a slow increase in the
intensity of a physical activity that prepares muscles for an activity. Warming up
increases the blood flow to the muscles and increases the heart rate. Warmed-up
muscles and tendons are less likely to get injured. For example, before running or
playing soccer, a person might jog slowly to warm muscles and increase their heart
rate. Even elite athletes need to warm up ( Figure below ). <Situation> Greg and
Carl and about to do a marathon. Greg sees Carl doing some warmups and laughs to
himself and thinks it is silly. They both want to get a good time, and are both avid
runners.

Answer Greg

Table 3.2: Example extracted from ROPES development set

datasets chosen for MC-MRC tasks. The difficulty of RACE lies on the reasoning skills that it
requires to gather several pieces of evidence from a text to answer a general question : the
answer cannot be lexically retrieved in the given passage. By contrast, WikiHop is designed to
find which entity, among those in a given passage, correctly completes a triplet. Thus, WikiHop
has E-MRC features in addition to MC-MRC ones. Finally the G-MRC task we train on is
NarrativeQA, which has two different kind of setups. With the same question and answer,
one is given the summary of a book (the challenge over summaries) and the other is given the
complete book (the challenge over stories). Since the humans who have written the questions
and answers only had access to the summaries and that the summaries are much shorter than
the complete books, the task over summaries is easier and close to an E-MRC task. Not many
studies tackled the task over stories, which require IR skills as well as generative skills.

3.3.2 Datasets for testing

We use additional datasets uniquely for testing so we can test the generalisation skills of our
models for the second and third hypotheses. Those datasets are ROPES and NaturalQuestion.
ROPES (Lin et al. (2018)) is a G-MRC dataset which has many questions asked in a MC-MRC.
Indeed, two options are usually offered within the question, such as in the example : "Would
location A have faster or slower clicks than location B?". The original paper does not provide
the number of dual-choice questions. In this dataset, there are two texts as input: a passage
extracted from a webpage defined as "background", such as a Wikipedia article, and a situation
written by a worker based on this passage. The question is asked based on those two texts and
answering it requires collecting information from both texts and to apply multi-hop reasoning.
An example is displayed in Table 3.2 in order to illustrate the nature of the background and of
the situation. Often, several questions refer to a same passage and situation, but with only one
word changing from a question to another. For instance, one could find the question ""Would
location A have more or less clicks than location B?".
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NaturalQuestions (Kwiatkowski et al. (2019)) is originally not a MRC task but an open-domain
QA task; that is why it has not been listed into Table 2.2. However, by finding articles thanks
to IR and using them as passages, this task can be seen as a G-MRC one. This IR task is
already operated by Khashabi et al. (2020), where the authors also only select the questions
with short answers (up to 5 tokens).

3.3.3 Data formatting

The experiments that we lead following the pipeline displayed in Figure 3 use UnifiedQA’s
architecture to complete each step of the pipeline. In that case, the data only needs to be
formatted once at the entrance of the architecture, as explained in Khashabi et al. (2020). The
experiments that we lead following our pipeline use the architectures listed in Table 3.1 The
first step consists of passing through BERT-base architecture with the modifications proposed
by Min et al. (2019) in order to get the span which is predicted as being related to the answers.
Since the format is different from the original format from BERT, the architecture is named
from here "QA-Hard-EM" for sake of readability, but it refers to the adaptation of BERT as
implemented in Min et al. (2019). The MRC datasets listed in Section 3.3 first have to be
formatted to fit with the code of the authors. The way to convert each of the selected datasets
is explained in the next subsection. The outputs of those models have then to be converted in
order to feed UnifiedQA’s original code and accomplish the choice selection/answer generation
phase. The method to convert the original datasets and replace the original passage by the
extracted spans is detailed in the last subsection named From QA-Hard-EM to UnifiedQA

Data formatting for QA-Hard-EM

Since we use the model from Min et al. (2019), as explained in Section 3.1.2, we use the same
data format as in that paper for the input dataset. Each sample consists of a question, one or
several passages, the weakly-supervised answers extracted from each passage, and the final
answer. The dataset is stored in a json file containing all samples. An example of a sample
taken from COQA with the QA-Hard-EM format is given in Listing 3.1.

Listing 3.1: Formatted example with a unique context passage from COQA dataset

1 {
2 " id " : "3dr23u6we5 exc l en 4 th8uq9rb42 tel_6" ,
3 " ques t i on " : "Was Cotton happy that she looked d i f f e r e n t than the r e s t

o f her fami ly ?" ,
4 " context " : [
5 [ " once" , "upon" , "a" , " time" , " , " , " in " , "a" , "barn" , " near " , "a"

, " farm" , "house" , " , " , " the re " , " l i v e d " , "a" , " l i t t l e " , "
white " , " k i t t en " , "named" , " cotton " , " . " , " cotton " , " l i v e d " , "
high " , "up" , " in " , "a" , " n i c e " , "warm" , " p lace " , "above" , " the
" , "barn" , "where" , " a l l " , " o f " , " the " , " farmer " , " ’" , " s " , "
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hor s e s " , " s l e p t " , " . " , "but" , " cotton " , "wasn" , " ’" , " t " , "
a lone " , " in " , " her " , " l i t t l e " , "home" , "above" , " the " , "barn" ,
" , " , "oh" , "no" , " . " , " she " , " shared " , " her " , "hay" , "bed" , "

with" , " her " , "mommy" , "and" , "5" , " other " , " s i s t e r s " , " . " , "
a l l " , " o f " , " her " , " s i s t e r s " , "were" , " cute " , "and" , " f l u f f y " ,
" , " , " l i k e " , " cotton " , " . " , "but" , " she " , "was" , " the " , " only

" , "white " , "one" , " in " , " the " , "bunch" , " . " , " the " , " r e s t " , "
o f " , " her " , " s i s t e r s " , "were" , " a l l " , " orange " , "with" , "
b e au t i f u l " , "white " , " t i g e r " , " s t r i p e s " , " l i k e " , " cotton " , " ’"
, " s " , "mommy" , " ." , " being " , " d i f f e r e n t " , "made" , " cotton " , "
qu i t e " , " sad" , " . " , " she " , " o f t en " , "wished" , " she " , " looked " ,
" l i k e " , " the " , " r e s t " , " o f " , " her " , " fami ly " , " . " , " so " , "one

" , "day" , " , " , "when" , " cotton " , " found" , "a" , "can" , " o f " , "
the " , " o ld " , " farmer " , " ’" , " s " , " orange " , " pa int " , " , " , " she "
, "used" , " i t " , " to " , " pa int " , " h e r s e l f " , " l i k e " , "them" , " ." ,
"when" , " her " , "mommy" , "and" , " s i s t e r s " , " found" , " her " , "

they" , " s t a r t ed " , " laughing " , " . " , "\"" , "what" , " are " , "you" ,
" doing " , " , " , " cotton " , "?" , " ! " , "\"" , "\"" , " i " , " only " , "

wanted" , " to " , "be" , "more" , " l i k e " , "you" , "\"" , " . " , " cotton
" , " ’" , " s " , "mommy" , "rubbed" , " her " , " f a c e " , "on" , " cotton " ,
" ’" , " s " , "and" , " sa id " , "\"" , "oh" , " cotton " , " , " , "but" , "

your" , " fu r " , " i s " , " so " , " pre t ty " , "and" , " s p e c i a l " , " , " , "
l i k e " , "you" , " . " , "we" , "would" , " never " , "want" , "you" , " to "
, "be" , "any" , " other " , "way" , "\"" , " . " , "and" , "with" , " that
" , " , " , " cotton " , " ’" , " s " , "mommy" , " picked " , " her " , "up" , "
and" , "dropped" , " her " , " in to " , "a" , " big " , "bucket " , " o f " , "
water " , " . " , "when" , " cotton " , "came" , "out" , " she " , "was" , "
h e r s e l f " , " again " , " . " , " her " , " s i s t e r s " , " l i c k e d " , " her " , "
f a c e " , " un t i l " , " cotton " , " ’" , " s " , " fu r " , "was" , " a l l " , " a l l "
, "dry" , " . " , "\"" , "don" , " ’" , " t " , " ever " , "do" , " that " , "
again " , " , " , " cotton " , " ! " , "\"" , " they" , " a l l " , " c r i e d " , " . " ,
"\"" , "next " , " time" , "you" , "might" , "mess" , "up" , " that " , "

pre t ty " , "white " , " fu r " , " o f " , " yours " , "and" , "we" , "wouldn" ,
" ’" , " t " , "want" , " that " , " ! " , "\"" , " then" , " cotton " , "

thought" , " , " , "\"" , " i " , " change" , "my" , "mind" , " . " , " i " , "
l i k e " , " being " , " s p e c i a l " , "\"" , " . " , " ; " , "what" , " c o l o r " , "
was" , " cotton " , "?" , " ; " , "white " , " ; " , "where" , " did " , " she
" , " l i v e " , "?" , " ; " , " in " , "a" , "barn" , " ; " , " did " , " she " , "
l i v e " , " a lone " , "?" , " ; " , "no" , " ; " , "who" , " did " , " she " , "
l i v e " , "with" , "?" , " ; " , "with" , " her " , "mommy" , "and" , "5" ,
" s i s t e r s " , " ; " , "what" , " c o l o r " , "were" , " her " , " s i s t e r s " ,
"?" , " ; " , " orange " , "and" , "white " ]

6 ] ,
7 " answers " : [
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8 [ {
9 " text " : " being d i f f e r e n t made cotton qu i t e sad" ,

10 "word_start " : 116 ,
11 "word_end" : 122
12 } ]
13 ] ,
14 " f ina l_answers " : [ "no" ]
15 }

For each dataset, the ID of the sample is the same as in the original dataset. The question is
taken from the original dataset and lower-cased.

The passages are listed under the label "context". Each passage is lower-cased and tokenized.
2 COQA’s passages are composed of a unique paragraph, but other datasets such as Wikihop
or NarrativeQA over stories have passages composed of multiple paragraphs. Since COQA
is a multi-turn QA dataset, we include the previous questions and answers at the end of the
passage. In the example given in Listing 3.1, there are five questions/answers which precede
the current question. SQuAD associates one paragraph of an article to each question. Since
QA-Hard-EM learns to retrieve the right answer span among several mentions and several
paragraphs, it has been decided to include all the paragraphs of the article as context to the
model for the training set in order to enable it to perform better negative sampling. Regarding
NarrativeQA over stories, which requires an information retrieval phase, we use the context
created by our context creation phase described in Section 3.1.4.

Final answer. The final answer consists of the text of the ground truth answer, if one is
provided (i.e if this is an answerable question). It can be different from the extracted span, as
in the case of COQA, where the answer span is given in addition to a human-written answer
based on the span but syntactically and grammatically adapted in order to answer the question.
For instance, to the question "Was Cotton happy that she looked different than the rest of her
family?", the answer span is "being different made cotton quite sad" while the human-written
answer is "No". By contrast, SQuAD only provides the span, so the final answer is the span
provided. For RACE and Wikihop, the final answer is the right option from the multiple
choices. The NarrativeQA dataset provides two human-written answers which both compose
the final answer set. Finally, MSMARCO provides "answers" and "well-formed answers". The
"answers" are the answers written by humans, and the "well-formed answers" are those same
answers reformulated when :

• the answer does not have proper grammar
2The tokenizer used is the BasicTokenizer, which can be found at https://github.com/shmsw25/qa-hard-

em/blob/master/tokenization.py
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Dataset avg # par. min # par. max # par. avg # ans. min # ans. max # ans. % No ans.
SQuAD 54.06 10 149 1.0 1 1 0%
CoQA 1.0 1 1 1.0 1 1 0%
RACE 1.0 1 1 0.35 0 20 78.91%

WikiHop 13.67 3 63 4.35 0 109 1.09%
NarQA sum. 2.0 2 2 1.85 0 42 18.75%
NarQA stor. 13.01 2 18 5.4 0 115 32.78%

Table 3.3: The table provide respectively the average (avg.) number (#) of paragraphs (par.),
the minimum (min.) number (#) of paragraphs (par.), the maximum (max.) number (#) of
paragraphs (par.), the average (avg.) , the average (avg.) number (#) of answer spans (ans.),
the minimum (min.) number (#) of answer spans (ans.), the maximum (max.) number (#) of
answer spans (ans.) per question and finally the percentage of questions for which no span has
been retrieved (% No ans).

• there is a high overlap in the answer and one of the provided passages (because it may
indicate that the human did not write the answer but simply pasted a passage from the
passage)

• the answer returns an entity without sentence to give context. With the example given
in Listing 3.1, "No" would not be accepted as being a well-formed answer but rather
"Cotton was not happy that she looked different than the rest of her family."

We take the well-formulated answer when it is provided, otherwise the normal answer.

Answers. The elements in the section "answers" are spans extracted from the section
"context". The information it contains is the non-tokenized text of the span as well as the
token indices from the "context" section where it starts and ends. For E-MRC, the span is
already provided. Sometimes the indices provided in the original datasets are character indices
instead of token indices. In that case, we need to recompute the indices. For MC-MRC and
G-MRC, the spans are retrieved with the weak supervision described in Section 3.1.1. There
are as many lists of answers as there are paragraphs in the context. In the case where there is
no possible answer, the lists remain empty. So, if there is no answer possible for any paragraph,
the answer will be a list of several empty lists.

Table 3.3 displays statistics about the number of paragraphs composing the context for each
question as well as the number of spans retrieved per question (through the entire context).

As a reminder, COQA and Squad, which are E-MRC tasks, already provide spans with their
positions, so we do not search for the possible answers but directly use the provided spans;
that is why we have a unique answer per sample in those datasets. RACE, especially the
high school version, formulates high-level questions and we can see that our weakly-supervised
span retrieval techniques, which do not consider the semantics of the words, fail to retrieve a
relevant answer span for one-third of the questions. For cases like WikiHop, which has entities
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as answers, most of the spans are retrieved. While having a rather high number of paragraphs
per context, NarrativeQA over stories also collects many span answers.

From QA-Hard-EM to UnifiedQA

UnifiedQA takes as input examples with the text format

<question> \n <candidate answers> \n <passage> \t < gt_answer>

The candidate answers are optional and only used in case of MC-MRC tasks.

The output of QA-Hard-EM model is a json file containing the id of each example (referring to
the ID met in Listing 3.1) with one predicted span per sample. The predicted span is used as
passage.

The question, the candidate answers for the MC-MRC tasks and the ground truth answers
that we provide as input to UnifiedQA are retrieved from the input file described in Section
3.3.3. Since it is only possible to provide one answer as ground truth answer to UnifiedQA, so
we give as answer the first element of the "final_answers".

3.3.4 Implementation details

In addition to the data formatting, we trained seven models on QA-Hard-EM: one per training
datsaset (individual models) and one common with all the datasets together. We keep the
exact same parameters as those proposed in Min et al. (2019). For the testing phase, it is
possible to choose how many paragraphs in the "context" to use. For the six individual models,
we use the maximum number of paragraphs per question of the concerned dataset, given in
Table 3.3. For the common model, we use the maximum number of paragraphs in a context
among the six training datasets; which is thus the maximum for SQuAD, equal to 149.

We do not train UnifiedQA further but simply use the trained models described in Khashabi
et al. (2020).

3.4 Results

In this section, the results of the experiments are displayed with a first shallow analysis. A
deeper and more general analysis held in the Chapter 4. The results are grouped by category:
E-MRC, MC-MRC and G-MRC. Within each category, we adapt the evaluation of each dataset
depending on whether or not they have been used not for training the span extractive phase
(i.e., if they follow our pipeline or not). For each dataset, we present the results after the span
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extraction phase and after the choice picking/answer generation phase (see Section 3.1 to be
reminded the phases and their associated models) 3.

Each table provides the SOTA’s scores at the time of writing 4 as well as the baseline’s score.
5 For each dataset also used for training (Section 3.3.1), we show the results when models are
trained with their own training set and when models are trained with the common training.
For the datasets used uniquely for testing (Section 3.3.2), we show the results when models are
trained with the six individual models and when models are trained with the common model.
In order to know the performance of the weak supervision and thus the limit of the training,
we provide also the score of the weak labels: the span retrieved using weak supervision (see
Section 3.1.1). This score is the top score achievable with this weak supervision technique for
the span extraction phase. However, for the answer generation phase, the "weak label" score
indicates that we directly used the weak label retrieved as passage instead of the span output
by the span extraction model. We evaluate the answers returned by the answer generation
phase when the weakly retrieved answer span is used as passage in order to provide the top
score achievable by the answer generation model by using the weakly supervised span. This is
thus a way to assess the quality of the span retrieval weak supervision. Finally, we provide for
the answer generation phase the score using the complete passage; so without the extraction
phase applied on it, as described in 3.2.3. This score is then the score obtained by applying
the pipeline depicted in Figure 3.

Regarding the evaluation measures, we provide five common evaluation measures for all kinds
of MRC datasets, namely the F1 score, the exact match (EM), Rouge-L, Bleu-1 and Bleu-4.
We run the evaluation on the span extracted and on the final generated answer. In both cases,
we compare the results to the ground truth answer.

3.4.1 E-MRC

For both E-MRC tasks, since the answer span are already given, we do not have to apply our
span retrieval algorithm (as already explained in Section 3.1.1). For E-MRC tasks which only
provide answer spans as ground truth and no human-written answer, such as SQuAD, we use
the answer span provided as the ground truth answer for both the span extraction phase and
the answer generation phase. However, for E-MRC tasks which provide a human-generated
answer in addition to the answer span, as COQA, we use the human-generated answer as
the ground truth answer for evaluating both phases. For training the span extraction phase,
COQA’s ground truth answer span is obviously used. The evaluation of the answer span, since

3From now on, for sake of readability, we will use "answer generation phase" instead of "choice picking/answer
generation phase". The meaning stays the same because the model that we use, UnifiedQA, takes each MRC
task as a G-MRC one.

4The SOTA values have been taken from the official leaderboard when it exists or from paperwithcode as
of 27/08/2021. We select the best performing results which are linked to a scientific article.

5The baseline’s scores are the ones given in the original publication presenting the dataset.
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SQuAD F1 EM Rouge-L Bleu-1 Bleu-4
Baseline Rajpurkar et al. (2018) 66.3 63.4 - - -

SOTA Zhang et al. (2020) 92.97 90.57 - - -
Span ext.
Individual 73.61 59.56 73.76 70.01 29.55
Common 57.91 40.51 58.03 54.04 25.05

Answer span 100 100 100 100 58.48
Answer gen.
No span pred. 82.31 67.05 82.43 78.78 36.97
Individual 59.33 47.04 59.47 56.04 23.80
Common 48.91 34.26 49.02 45.47 21.01

Answer span 65.91 52.31 66.06 62.26 26.25

Table 3.4: SQuAD evaluation.

it is not retrieved through weak supervision, is named here "ground truth" instead of "weak
label". For the answer generation phase, the ground truth answer span of COQA is used as
passage for the "answer span" evaluation.

SQuAD

SQuAD tasks expect spans as answers and it would be non-representative to judge the quality
of the pipeline by using its evaluation on the generated answer created during the answer
generation phase. But for curiosity reasons, the results are still computed and given after this
phase.

Since the answer span for SQuAD is also the ground truth answer, the weak label score has to
reach 100% for F1, EM, Roue-L and Bleu-1. The reason why the Bleu-4 only gets 58.48% is
because many spans have less than 4 tokens.

The performances are significantly better for the spans extracted than for the generated answers
based on the spans extracted: for the individual model, the spans extracted are better of 14.28%
on F1 score, 11.0% better for the common model and 34.09% when the answer generated are
based on the ground truth answer span. This decrease in performance is mainly since the
evaluation is based on extracted spans and not on generated answers: the results of the span
extracted have then to be better than the generated answer. However, this does not mean that
the generated answers are bad, we simply miss ground truth data to assess the quality of the
extracted spans.

We can observe that the better the span extracted, the stronger the negative impact of applying
an answer generation model over it. Also, we can see that the best score over all trained
set-ups is achieved with the answer generation when no span is extracted beforehand. In other
words, using the ground truth spans as context and generating an answer from it provides
worse results than generating an answer using the entire passage. This counter intuitive result
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COQA F1 EM Rouge-L Bleu-1 Bleu-4
Baseline Reddy et al. (2018) 65.1 - - - - -

SOTA Ju et al. (2019) 90.7 - - - - -
Span ext.
Individual 28.40 11.11 28.56 23.84 10.25
Common 33.79 15.50 33.87 30.43 12.51

Answer span 42.28 19.19 42.73 35.95 17.22
Answer gen.
No span pred. 42.96 28.94 43.78 39.84 15.38
Individual 37.64 26.54 37.80 34.74 11.51
Common 37.87 27.92 37.98 35.30 12.01

Answer span 85.97 82.32 86.04 84.79 35.50

Table 3.5: COQA evaluation.

is discussed in Chapter 4.

If we now compare the individual model and the common model, we can notice that the
common model achieves results 15.7% lower than the individual model on the span extracted
and 10.42% lower on the generated answers.

COQA

COQA provides a ground truth answer span and a ground truth human-written answer, based
on the answer span. The lexical closeness of the ground truth answer span with the ground
truth human-written answer is given in the "answer span" row of the span extraction phase.
The answers generated with UnifiedQA using the ground truth answer span as context is given
in the row "answer span" of the answer generation phase.

For this dataset, generating answers based using the extracted spans as passage gives better
results than only using the extracted spans: the individual model gains 9.24%, the common one
gains 4.07%. The answer generated based on the ground truth spans provides results at least
two times better for each evaluation metric than comparing the ground truth span answers
with the ground truth human-written spans.

As explained in Section 3.3.3, we include the previous questions and answers to the passage for
the span extraction phase. However, we did the same for the answer generation phase and
noticed that the results were worse in terms of performance than if we do not include them.
Indeed, the F1-scores of the answer generated were respectively for the no span prediction, the
individual model, the common model and the answer span setups: 39.83%, 26.75%, 21.92%
and 25.76%. The previous questions and answers have thus been excluded from the passage
when generating answer with UnifiedQA.

The common model gets better results than the individual one for the span extraction phase;
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RACE F1 EM Rouge-L Bleu-1 Bleu-4
Baseline Lai et al. (2017b) 44.1 - - - -
SOTA Jiang et al. (2020) 91.4 - - - -

Span ext.
Individual 13.21 0.93 13.08 9.07 3.17
Common 13.58 1.43 13.45 9.41 3.49
Weak label 22.31 7.57 22.16 19.07 9.55

Answer gen.
No span pred. 23.13 19.27 23.01 22.43 17.20
Individual 17.64 12.59 17.46 16.80 11.77
Common 17.25 12.45 17.07 16.46 11.86
Weak label 24.12 21.02 24.04 23.39 18.37

Table 3.6: RACE evaluation. For the SOTA and the baseline, the only measure available is
the accuracy

but this advantage vanishes on the generated answer. Indeed, for this phase, both models
perform similarly. Regarding the performance of UnifiedQA using only the ground truth answer
span as context, the performance of both models is disappointing and stays well below the
baseline.

Finally, it has to be noted that using only the ground truth answer span as context for the
answer generation provides results which are below the SOTA. For E-MRC models, we notice
that the span extraction model, however it is trained, does not perform better than using the
complete original context and generating the answer from it.

3.4.2 MC-MRC

RACE

The RACE dataset is a challenge based on questions asked to pupils of two different levels:
middle-school group and high-school group. The answers to the questions can be answered
using word marching 29.4% of the time for the middle-school group and 11.3% of the time for
the high-school group. The other questions require paraphrasing and single and multi-sentence
reasoning in order to be answered (Lai et al. (2017a)).

Since our weakly supervised technique to retrieve spans is based on word matching (i.e lexical-
based weak supervision), it makes sense to notice that the performance on that dataset was
very low and lower than the baseline scores, for both stages. Still, we can notice that the
weakly supervised answer spans are more accurate than the spans retrieved with the models:
around 9% better in average for the span extraction phase and 6.3% for the answer generation
phase on the F1-score. For each challenge, but especially for this one, it would be relevant to
choose a semantic-based weakly supervised technique.
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WikiHop F1 EM Rouge-L Bleu-1 Bleu-4
Baseline Welbl et al. (2017) 54.5 - - - -
SOTA Beltagy et al. (2020) 81.9 - - - -

Span ext.
Individual 59.58 51.29 59.56 57.35 18.12
Common 44.15 33.12 44.04 41.73 13.75
Weak label 98.80 98.42 98.80 98.66 30.23

Answer gen.
No span pred. 4.04 1.18 4.04 3.20 0.88
Individual 33.28 28.15 33.26 31.87 10.32
Common 26.03 18.85 25.98 24.37 8.09
Weak label 55.49 53.30 55.50 54.73 17.16

Table 3.7: WikiHop evaluation.

We cannot see significant differences in the results between the common model and the
individual one, although the common model includes training data with ground truth answer
spans. We can conclude from this observation that the common model is not appropriate to
retrieve answer spans requiring deep reasoning skills. This is also due to the poor quality of the
extracted spans. Answers generated using the complete passage perform better than answers
generated based on irrelevant spans.

WikiHop

As already mentioned in Section 3.3.1, WikiHop is close to the E-MRC because the answer
candidates are each extracted from the given passage. Although we know that the answer
cannot be found for each example (Welbl et al. (2017)) due to inconsistency between Wikipedia
and Wikidata or because the information is contradictory between the two sources, we always
find at least one mention of a candidate answer among the set of passages (see Table 3.3). And
as we can see in Table 3.7, the weak supervision allows the system to retrieve the exact answer
in 98.42% of the cases.

Consequently, we can observe that the span extraction model performs better than the answer
generation phase. However, it does not mean necessarily that the quality of the generated
answers is bad. Similarly, as for SQUAD’s results, we miss data and qualitative evaluation
metrics to judge the quality of those generated answers.

Because of the relevance of a Hard-EM approach to tackle this multi-mentioning task (see
Section 2.2.2), the spans extracted with the individual model perform significantly better than
those obtained with the common model (+15.43% on the F1-score). Still, the performance is
only 5.48% better for the individual model compared to the baseline.

As a final point, we can note that the answer generation phase completely fails (Rouge-L score
of 4.04%) when the complete passage is used as context. Reducing the context to one possible
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Nar.QA sum. F1 EM Rouge-L Bleu-1 Bleu-4
Baseline Kociský et al. (2017) - - 36.30 33.72 15.53
SOTA Nishida et al. (2019) - - 59.87 54.11 30.43

Span ext.
Individual 54.98 32.67 54.84 49.09 19.41
Common 53.54 30.54 53.29 48.01 19.99
Weak label 73.71 53.08 73.30 70.71 31.84

Answer gen.
No span pred. 46.15 21.38 45.71 40.47 15.28
Individual 48.28 27.24 48.16 42.78 16.63
Common 46.74 25.59 46.55 41.71 16.92
Weak label 63.85 40.42 63.98 59.58 24.91

Table 3.8: NarrativeQA over summaries evaluation.

answer span reduces the chances of error drastically in this experiment.

3.4.3 G-MRC

NarrativeQA over summaries

As already mentioned, NarrativeQA over summaries is a G-MRC challenge which is close to an
E-MRC challenge since the workers writing and answering the questions rely on the summary
provided, without any creativity constraints. This proximity to E-MRC is assessed by the
scores of the weak labels: at least 53.08% of the human-written ground truth answers can be
retrieved exactly (EM) in the summaries.

The scores of both the answer span predicted and the answer generated using the span predicted
as context outperform the baseline, with generated answers getting better results than the
spans extracted. The span extracted performance is under the SOTA from only 5.03% (Rouge-L
score) for the individual model and 6.58% for the common model.

The format of this task is the one fitting the most with COQA to our architecture combination
(see Table 3.1) since the evidence for the answer to the question can be found in one specific
place in the text (so one span can be retrieved containing the answer), and the answer required
is not a span but a sentence written by a human referring to the question using the retrieved
answer span. Therefore, for this challenge, the results of the generated answer using the
extracted span is better than using the complete summary(+2.45%).

We can also notice that the individual model is slightly better, though by less than 2%, for
both span extraction phase and the answer generation phase.
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Nar.QA sto. F1 EM Rouge-L Bleu-1 Bleu-4
Baseline Kociský et al. (2017) - - 14.03 19.09 1.81

SOTA Mou et al. (2020) 22.10 7.34 24.28 26.62 5.03
Span ext.
Individual 17.94 5.63 17.97 11.49 2.98
Common 19.55 6.73 19.45 15.60 4.41

Individual IR weak label 27.50 15.89 27.51 21.45 5.51
Weak label 52.30 30.81 52.03 46.30 13.68

Answer gen.
No span pred. 11.83 2.60 11.51 9.61 2.34
Individual 13.10 5.00 13.05 10.17 2.65
Common 13.48 4.54 13.44 11.02 3.05
Weak label 39.74 15.38 41.70 34.14 9.80

Table 3.9: NarrativeQA over stories evaluation.

NarrativeQA over stories

NarrativeQA over stories has been tackled only a few times in the literature (Tay et al. (2019),
Mou et al. (2020)) because of the size of its text passages: complete books or complete film
scripts. So as a first step, a few paragraphs which are likely to contain the answer to the
question are selected because (1) no computer available can handle such a big number of text
memory-wise and (2) the complete passage would provide too much misleading information.
In Table 3.9, the individual model uses the NR setup explained in Section 3.1.4 to execute the
IR phase before giving the top-10 paragraphs to the individual model.

The "individual IR weak label" works the same way, but the ground truth answer is used in
addition to the question to retrieve interesting paragraphs with the OR setup. The weak labels,
in the span extraction section of Table 3.9, are retrieved from the paragraphs obtained with
the OR setup.

This task is complex due to its multiple challenging aspects, and it is difficult to know exactly
how to improve the scores. Still, we know this task is doable and offers a great challenge in
terms of MRC since we know that many answers can be retrieved with lexical clues in the text;
the weak labels correspond exactly to the ground truth answer in 30% of the cases and the
average Rouge-L reaches 52%. In comparison, COQA has 19.19% of EM, RACE 7.57%, and
NarrativeQA over summaries 53.08%.

Despite the potential of the weak supervision, the models do not perform: the weak labels are
more than three times closer to the ground truth answers than the outputs of the common
model on the span extraction phase. With an additional IR phase, we can make the hypothesis
that the pipeline structure has the drawback of accumulating errors with each change of
architecture. Moreover, errors that are made in an early phase make it impossible for the later
stages to return a good answer. Despite those drawbacks, the individual and common models
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ROPES F1 EM Rouge-L Bleu-1 Bleu-4
Baseline Lin et al. (2019) 61.6 55.5 - - -

SOTA Khashabi et al. (2020) 80.25 74.80 - - -
Span ext.
SQuAD 36.42 25.47 36.47 35.45 8.66
COQA 16.34 2.36 16.45 12.53 3.68

NarQA sum. 11.85 3.14 11.87 10.87 3.17
RACE 0.99 0.18 1.02 0.72 0.20

WikiHop 5.45 2.55 5.45 5.12 1.20
NarQAStory 7.41 3.14 7.42 6.18 1.57
Common 15.26 5.09 15.30 14.24 3.85

Answer gen.
No span pred. 34.50 28.61 34.51 34.12 8.64

SQuAD 49.33 38.33 49.42 48.38 11.22
COQA 35.87 25.59 35.95 33.87 8.11

NarQA sum. 44.80 31.75 45.04 43.57 10.12
RACE 40.54 28.38 40.91 39.36 8.93

WikiHop 46.91 33.95 47.31 45.60 10.27
NarQAStory 44.50 31.40 44.70 43.26 9.88
Common 32.28 20.32 32.47 31.31 7.64

Table 3.10: ROPES evaluation.

achieve better results after the span extraction phase than the baseline on the ROUGE-L
scores and the Bleu-4 scores.

For this task, the common model provides better predictions than the individual model,
especially for the generated answer. Although the generated answers are less good than the
predicted spans, one can notice that they still perform better when they are based on the
predicted spans than when they are based on the complete context.

ROPES

ROPES has not been used during any model training but has been used exclusively for testing
the generability skills of our models, architecture and pipeline (as explained in Section 3.3.2).

The first thing that one can notice is that the difference in performance between the span
extracted and the answer generated is very high and variable from a dataset to another. For
instance, the individual COQA and the common model are respectively the second and third
best models after the span extraction phase and the two worst ones after the answer generation
phase. Also, the RACE model got a ROUGE-L score of 1.02 for it extracted spans but 40.91
for its generated answers. A reason for this discrepancy is that the answer generation phase
can pick tokens from the questions as well as the passage to generate the answers. As detailed
in Section 3.3.2, the questions of this dataset often include the answer to the question by
offering several answer candidates, and that is why we classified it as being close to a MC-MRC
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challenge. It appears that, for this challenge, the questions are therefore more helpful than
either the extracted spans or complete passages. This could be the reason why the results
of the generated answers based on the complete passage would be lower than any test using
extracted span as context : this configuration gives more text from which to pick tokens for
the answer, so the model would have less chance to simply pick words from the passage. The
results of the span extraction are very low : the F1-score is under 4% for the individual models
trained with RACE, WikiHop and NarrativeQA over stories. The EM is below 6% for each
model of those models. The results of span extracted with the individual models trained with
NarrativeQA over summary and stories, RACE, WikiHop are so low, and the answer generated
out of those non-performing span are, in comparison, so high (over 40%), that we can infer
that the answer generation model picks the elements of the question randomly to generate
its answer. The scores would then reflect the behavior of a model answering randomly to a
MC-MRC with two answer candidates.

Comparing the individual model of COQA and the common model, we can see that the span
extracted can be relevant to answer the questions in 16.34% and 15.26% of cases respectively.
However, those relevant spans may confuse the answer generation phase, which would perform
better by picking one of the answer candidates given in the question than the extracted span.
This could explain the fact those two spans extracted used as context for the answer generation
lead to worse result compared with the other models.

The individual model trained with SQuAD distinguished itself with a F1-score equal to 36.42%
and an EM equal to 25.47%. It also provides the best answer generation score but with less
distance between the scores than the span extracted. We can understand that this is the only
model which does not answer randomly between the options offered in the question. Its results
are nevertheless far under the baseline.

NaturalQuestion - Short Answers

With NaturalQuestion, the best score among our models is reached by the span extraction
model trained individually on SQuAD, as it was for ROPES. The second and third best models
after SQuAD are the common model and individual COQA model.

Contrary to ROPES, in this case, keeping the complete context (which is a paragraph from a
Wikipedia page retrieved with the DPR engine, as explained in Section 3.3.2) and giving it
completely to the answer generation model leads to better results (+8.94%) than SQuAD on
span extraction. Similarly, to the Wikihop evaluation, which requires short answers and does
not contain answer elements within the question, the performance drops from the extracted
span to generated answers. This decrease of performance appears to be due to the training of
UnifiedQA, which may be more helpful by creating complete sentences.

In order to understand better the drop of performance between the extracted span and the
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Nat.QA F1 EM Rouge-L Bleu-1 Bleu-4
Baseline Kwiatkowski et al. (2019) 31.5 - - - -

SOTA Wang et al. (2020) 63.4 - - - -
Span ext.
SQuAD 23.36 14.71 23.52 21.17 7.17
COQA 13.71 5.68 13.76 11.43 3.92

NarQA sum. 17.98 9.74 18.03 16.00 5.51
RACE 5.77 1.67 5.79 4.45 1.32

WikiHop 4.30 2.23 4.30 3.66 1.20
NarQAStory 11.94 6.36 11.97 10.20 3.26
Common 18.47 10.30 18.52 16.52 5.75

Answer gen.
No span pred. 26.30 16.85 26.37 23.62 8.23

SQuAD 13.50 8.78 13.50 12.20 3.92
COQA 9.28 5.09 9.30 8.09 2.63

NarQA sum. 10.81 6.28 10.81 9.63 3.18
RACE 3.22 1.23 3.24 2.65 0.80

WikiHop 2.51 1.46 2.51 2.18 0.67
NarQAStory 7.32 4.27 7.33 6.39 1.97
Common 10.90 6.38 10.91 9.72 3.23

Table 3.11: Natural Question evaluation on short answers.

answer generated on which it is based, we have extracted a sample of span extracted by the
common model on both NarrativeQA over stories and NaturalQuestion. NarrativeQA over
stories has been chosen for its similar Rouge-L score on their extracted spans with the common
model (19.45 for NarrativeQA over stories and 18.52 for NaturalQuestions). We passed through
the first 100 questions/span predicted/ground truth answer triples to try to get a clue of the
possible issue. The two models seem to provide spans which are related to the question in many
cases. For instance, if a character, a date or a place is required, the model returns respectively
a character, a date or a place. Often the character/date/place is wrong but from the right
type. But when we look at the generated answer, a big difference occurs: the answer generated
for NaturalQuestions are irrelevant answers which have nothing to do with the span proposed
while NarrativeQA use the elements of the spans provided. The most noticeable mistake is the
abundance of "yes" and "no" answer (41.28% of the predictions) in the answer predictions of
NaturalQuestion although no questions are of the yes/no form. In comparison, NarrativeQA
over stories only gets 12.09% of yes and no together for no yes/no answers. UnifiedQA seems
then to be particularly not adapted to NaturalQuestion format.
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Chapter 4

Discussion

This master’s thesis aims at proposing a general methodology to solve any MRC task which
would consist of a pipeline (i.e., on a succession of phases) operated by one or a combination
of architecture. In addition, the hypotheses have been made that even one combination of
pre-trained models could perform well on any MRC task. The goal would then not be to
outperform each SOTA with such general model but rather to acquire general MRC skills.

Experiments have been proposed with architectures which could follow the proposed pipeline as
baseline. Since there is no solutions existing yet which follow this methodology, the propositions
of architectures and models tested have a baseline status. Our goal is to provide a baseline
which would identify the challenges in order to design performing solutions in future works.
First insights regarding our hypothesis are then given in Section 4.1. A broader analysis of the
results accompanied by some propositions and propositions given in Section 4.2.

4.1 Report on the hypothesis

It has to be noted that the hypothesis which have been made would be validated in case
of success of our experiments. However, if the results of our experiments would not verify
the hypothesis, this would not invalidate it but rather mean that new experiments with new
propositions or architecture combination and newly trained model would must be proposed.

4.1.1 First hypothesis: one pipeline can perform well on any task

As a reminder from Section 3.2.1, the first hypothesis is that using a shared MRC pipeline
composed of models trained with challenge-specific data can perform at least as good on any
given task as the task-specific architecture baseline proposed by the research groups which
have released the datasets. We have thus proposed to use two architectures following the
pipeline: one which operates from the machine reading phase to the span extraction phase and
one for the answer generation phase. To verify this hypothesis, we look at the results for each
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challenge listed in Section 3.3.1 after passing through the pipeline. As a reminder, the first
architecture is fine-tuned on each dataset. The second one is already pre-trained and has not
been fine-tuned for each dataset (see Section 3.2), which means that in addition to use the
same architecture the models share the same weights.

As we can notice in Section 3.4, apart from NarrativeQA over summaries, which gets a better
Rouge-L and Bleu-4 score than the baseline (but a worst Bleu-1), the other challenges generate
answers with our pipeline which reach a lower score than the baselines. Therefore, we cannot
validate our hypothesis with the current results. However, this does not mean that the
hypothesis could not be validated with other architecture combination and models following
our pipeline. Other combination or architecture with different models must be proposed.

We can notice that the span extracted with 4 different individual models out of 6 get a better
score than the associated baselines (i.e., SQUaD, WikiHop, NarrativeQA over stories and
over summaries). The new combination of architecture to build has then, in a firsthand, to
extract at least as good spans for the 4 succeeding challenge and to enhance its capacities by
retrieving spans which are less close lexically but as close semantically. Indeed, for both COQA
and ROPES, the weakly supervised answer spans reach themselves less good scores than the
baselines. Techniques to enhance the weak supervision in Section 4.2.1.

Also, in future work, in order to have a combination of architecture which validate the hypothesis,
the answer generation phase should not generate worse results than the ones obtained with the
answer span they are based on. In our experiments, we have used a model pre-trained with
UnifiedQA architecture and using paragraph-size passages to answer questions. However, we
use this pre-trained model by giving sentence-size passages to answer questions. Fine-tuning
an individual model for each dataset which would take weakly retrieved answer span as context
would must be tested. Other suggestions regarding the answer generation phase are given in
Section 4.2.2.

4.1.2 Second hypothesis: a common training leads to better
generalization abilities than specialized training

As a reminder from Section 3.2.2, the second hypothesis is that sharing one model in addition
to the architecture among n MRC datasets improves the performence on new datasets (datasets
seen for the first time at testing time) compared to the results obtained by sharing a unique
architecture but using task-specific models. We have thus trained one span extraction model
with the concatenated data from the 6 training datasets listed in Section 3.3.1 (i.e., common
model) and re-used UnifiedQA pre-trained using a variety of MRC datasets (Khashabi et al.
(2020)). Compared with the pipeline tested for the first hypothesis, only the span extraction
models are different. To test this hypothesis, we compare the results of the span extracted using
the common model as well as the answers generated based on those with the same outputs
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using the 6 individual models described for the first hypothesis, in Section 3.2.1. In order to
test the generalization capacities of the common model, we test the outputs on datasets which
have not seen during the training. Those 2 datasets are ROPES and NaturalQuestions, which
are described in Section 3.3.2.

Merging the dataset to train a model on it, as it is done with the common model leads to
better result than the average of the models. Indeed, knowing from each dataset’s original
paper the number of question-answer pairs in that dataset gives us their distribution in the
common training set. In the common training set:

• 2
10 of the data come from SQUAD

• 3
10 of the data come from COQA

• 1
10 of the data come from NarrativeQA, for both over summary and stories (so 2

10 for
both datasets)

• 2
10 of the data come from RACE

• 1
10 of the data come from WikiHop

Based on these values, we can compute the average performance of each of the 6 models. For
RACE, this average is equal to 15.64 for the F1 score, which is slightly superior to the result
of the common model (15.26) (see Section 3.6). For Natural Questions, this average is equal to
13.36 for the F1 score while the common model gets a score of 18.47 (see 3.11). It appears
then that the common model increases the generalization skills for NaturalQuestions but not
for RACE.

Although our second hypothesis cannot be validated with one positive result on two, a common
model trained differently could validate it in future works. In this first experiment, we used
the 6 datasets in the common training set regardless of their size or their performance on their
own test set. In Section 4.2.3, we give further analysis and suggestions for better composition
of the common training set.

4.1.3 Third hypothesis: G-MRC performance increases with a span
prediction add-on phase

As a reminder from Section 3.2.3, the third hypothesis is that the performance of generative
MRC tasks increases thanks to the addition of an extractive phase. To test this, we compare
the answers generated from the common and individual training of the second hypothesis
on the G-MRC datasets with the answers generated computed with a model which does not
explicitly include a span retrieval phase, so following the extracted pipeline (as in Figure 2.1).
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In order to have comparable results, we have chosen to use UnifiedQA as the unique model for
the extracted pipeline. All the results which are discussed here are presented in Section 3.4.3.

Although the performance of the answer generated using the span extracted as context are
lower than the results of the span extracted themselves for both NarrativeQA over summaries
and over stories and for both individual models and the common model, they remain higher
than the ones using the complete passage as context. Also, the span extracted with both
individual and common model get better results than the baseline on each score except for
NarrativeQA over summary which gets a lower Bleu-1 score than the baseline. The extraction
phase appears thus to be helpful for those datasets.

Regarding ROPES, the best-performing model is the individual one trained with SQUAD.
The spans it provides lead to far better answers than when the complete passage is used as
context. When the models are trained on other datasets, drawing conclusion is harder because,
as already mentioned in Section 3.4.3, the quality of the spans extracted is low and one can
interpret that the model uses mainly the question to generate an answer. In that case, this is
more helpful than using the complete context in terms of performance but we cannot qualify
this score to result of MRC skills.

NaturalQuestions is the only G-MRC challenge for which neither the answer spans nor the
generated answers using the answer span as context gets better results than the answers
generated using the complete passage as context. However, the results of the span extracted
using SQUAD model (i.e., . 23.36% F1-score) is close to the performance of the answer
generated using the complete passage (i.e., 26.30% F1-score )as context compared with the
other performances with other set-ups (which are all below 19%). For this dataset, the answer
generation phase is deteriorating the transformation of the span extracted. For instance, the
span extracted with SQUAD have a F1-score of 23.36% while the answers generated using it
have a F1-score if 13.50%. Although we proposed a first shallow qualitative observation in
Section 3.4.3 in order to try to understand where does the model fails, the reason of this failure
remains unknown. Further investigation is required in future work.

The results on NaturalQuestions does not allow us to assess this third hypothesis. The
hypothesis is thus neither validated nor rejected. Therefore, extended tests and analysis
must be led in future works. The efforts for future works should be focused on the weak
supervision and the evaluation metrics. Indeed, both weak supervision and evaluation metrics
are lexical-based and not at all semantic-based. This is especially problematic in the case of the
G-MRC challenges where paraphrasing skills are required. Further analysis and propositions
for future work are given in Sections 4.2.1 and 4.2.4 for respectively answer span retrieval weak
supervision techniques and evaluation metrics. As already suggested for the first hypothesis,
the answer generation phase should be either fine-tuned to handle better sentence-size context
or another architecture should be used. The suggestions to improve the answer generation
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phase are given in Section 4.2.2.

The results of our experiments do not give us enough clue to either validate nor reject the three
hypothesis. Our experiments have then more a baseline status which aim at being improved
to be able to validate the hypothesis. They give a first overview of how the pipeline can be
designed and give the directions how to improve it. In Section 4.2, propositions of future work
based on the results of our experiments are given to enable the design of a pipeline able to
solve lean general MRC skills.

4.2 Analysis and future works

We have proposed a pipeline to solve any MRC task in Chapter 3 and a first implementation
following this pipeline. This implementation is composed of several parts and the choice made
for it are described in Section 3.2. This first implementation is used as a baseline and the
results of the experiments are thus used as basis to design further combination of architecture
and model which could learn general MRC skills. Since the baseline does not allow us to
validate or reject our hypothesis, new solutions must be implemented. This section aims at
analyzing each implementation decision which have been made to create our baseline and
propose accordingly propositions for the design of future solutions.

Section 4.2.1 proposes modification for the weak supervision, Section 4.2.2 for the architectures
which are used, Section 4.2.3 for the datasets to use for further fine-tuning and Section 4.2.4
for the evaluation metrics to judge of the quality of the results.

4.2.1 Weak supervision for span retrieval

The technique used to retrieve answer span is described in Section 3.1.1. Briefly, the chosen way
to retrieve spans, based on the literature, is to find the spans on the passages which are close to
the ground truth answers by using lexical-based metrics such as Rouge-L and Bleu-1 and Bleu-2
scores. Semantic-based metric using the cosine similarity between the word representations to
retrieve spans have not been used because they showed limited performance in Kočiskỳ et al.
(2018). Other semantic-based metrics have not been tested in this work by lack of reference
found on the subject and because a first overview of the capacities of lexical-based metrics
were wished to build a baseline.

We could see in Table 3.3 the statistics for the number of answer spans retrieved thanks to the
weak supervision (right side on the table), and in each table of Section 3.4, for the datasets
belonging to the training datasets, the performance of those answer spans ("weak label" row of
the span extraction tables). For sake of readability, Table 4.1 gathers the relevant the results.

For some datasets, such as WikiHop, which requires to return an entity based on several
articles, the weak supervision technique is efficient to return in average 4.35 answer spans which
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Dataset avg # ans. min # ans. max # ans. % >0 ans. F1-score EM
SQuAD 1.0 1 1 100% 100% 100%
CoQA 1.0 1 1 100% 42.48% 19.19%
RACE 0.35 0 20 22.09% 22.31% 7.57%

WikiHop 4.35 0 109 98.91% 98.80% 98.42%
NarQA sum. 1.85 0 42 81.25% 73.71% 53.08%
NarQA stor. 5.4 0 115 67.22% 52.30% 30.81%

Table 4.1: The table provides on the left part the average (avg.) number (#) of answer spans
(ans.), the minimum (min.) number (#) of answer spans (ans.), the maximum (max.) number
(#) of answer spans (ans.) per question, the percentage of questions for which at least one
span has been retrieved (% >0 ans). The right part displays the F1-score and exact match
(EM) scores of the answer spans retrieved compared with the ground truth answers

correspond exactly to the ground truth answer for 98.42% of the question. In comparison,
for RACE’s challenge, which require multi-hop, paraphrasing and inference skills , the weak
supervision returns spans for 21.08% of the questions and 0.35 answers in average per question.
The spans retrieved obtain a rouge-L score of 22.16% when compared with the gold answer of
the test set.

NarrativeQA over summaries does not require high reasoning skills and the gold answers are
expected to be lexically and semantically close to the given passage while being a G-MRC
challenge. In that case, our weak supervision retrieves answers for 81.25% of the questions
(i.e., the reverse case of retrieving no answer span at all) based on two propositions of ground
truth answers. The F1-score that the weakly retrieves answer span reach, compared with the
ground truth answer, is equal to 73.30%. Indeed, each span retrieve is cannot and do not aim
at matching perfectly the ground truth answer since the answers are humanly written. Still,
this score is at least 14% better than any of the three oral IR models of the original paper
(Kočiskỳ et al. (2018)), which shows the relevance of our weak supervision to retrieve spans
lexically. However, knowing the little number of reasoning skills that it requires to retrieve
answer spans while being a G-MRC task, a future weak supervision model should include
semantics skills and aim to get a score close to 100%.

Regarding the challenge over stories, we observe that at least one span answers are weakly
retrieved in 67.22% of the cases and that in general, far more than one span is retrieved per
question: on average, 5.4 answers are retrieved over an average of 13.01 paragraphs. Those
retrieved span a Rouge-L score of 52.03 and exact match of 30.81%. Compared with the oracle
IR Rouge-L given answer from Kociský et al. (2017), we retrieve 2.09% more spans.

From the results listed above, we can see that our weak supervision technique to retrieve the
answer span is efficient to retrieve spans which are lexically close to the ground truth. However,
when the questions require paraphrasing, inference or multi-hop reasoning, the metrics used
to retrieve the spans is not enough. Semantic-based metrics must be used to complete the
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current lexical-based one. Retrieval techniques borrowed from IR should be used and neural
networks-based weak supervision should be explored. In that case, COQA dataset could be
used as training dataset since it provides ground truth answer spans as well as ground truth
human-written spans. Moreover, the lexical distance between those two datasets (the answer
spans are exactly the same as the human-written answer for 19.19% of the dataset and reaches
a F1-score of 42.48%) would ease the learning of paraphrasing skills.

Designing a performing weak supervised model which retrieve answer spans based on the
ground truth answer is the biggest priority on which one should focus on future work since
this is the only way to retrieve the spans in the passage on which a machine should rely to
return an answer.

4.2.2 Architectures used for training

In this section, the quality of the architectures used for the span extraction phase and the
answer generation phase are discussed. Those architecture have been described in Sections 2.2.2,
2.2.2 and 3.1. As a reminder, Bert-base for Question Answering adapted for multi-mentioning
with an Hard-EM loss is used as architecture for the span extraction phase. For the answer
generation phase, Unified QA architecture is used. As the IR architecture just applies to
NarrativeQA over stories and that no data are provided by the original dataset to know the
quality of its retrieved passage, the IR phase is not discussed.

Span extraction: BERT-Base for Question Answering with Hard-EM loss

The best dataset that we must judge of the quality of this architecture is SQUAD. Indeed, this
is the only dataset for which the ground truth answer is also a span answer. Therefore, we can
compare fairly the spans extracted with the ground truth answers. With a F1-score of 66.6%
and 92.97% for respectively the baseline and the SOTA (Table 3.4), the architecture trained
uniquely with SQUAD (i.e., individual model) perform reasonably good with 73.61% but stays
far under the best model.

Wikihop, while being a MC-MRC dataset, has ground truth answers which can be extracted
from the spans thanks our weak supervision for 98.91% of the questions, as we can see in
Table 4.1. Since the weak supervision works well for this dataset, the performance of the span
extraction phase can be interpreted as being the only entirely responsible for the results. Such
as for SQUAD, with a F1-score of 54.4% and 81.9% for respectively the baseline and the SOTA
(Table 3.7), the individual model perform reasonably good with 59.58% but stays far under
the best model.

The other datasets have ground truth answers which are not span based. Evaluating the span
extraction architecture without being biased by the weakly retrieved spans it is based on is not
possible. Also, the evaluation of the extracted span is done by comparing it with the ground
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Dataset F1 EM Rouge-L Bleu-1 Bleu-4
SQuAD 73.61 59.56 73.76 70.01 50.53
COQA 66. 69 57.84 65.23 66.31 59.23
RACE 59.11 12.28 59.02 47.61 33.19

WikiHop 60.30 52.11 60.28 58.12 59.90
NarQA sum. 71.58 61.54 74.81 69.42 60.96
NarQAStory 34.30 18.27 34.53 24.81 21.78

Table 4.2: Scores of span extracted with each individual model normalized on the score of their
weakly retrieved spans.

truth answers which are not spans, which means that the best model could not possibly reach
maximum reachable score a 100% score. Scores of the extracted spans make sense then only
relatively to the scores of the weakly supervised spans. For that reason, we have divided each
span extraction score with the individual model for each dataset by the score of their weakly
supervised answer spans. In future work, we could measure the evolution of performance of
new span extraction models by comparing their normalized results by the ones we got for our
6 individual models, displayed in Table 4.2. The individual models seem to perform with a low
variance among the datasets except for NarrativeQA over stories. Indeed, each dataset except
NarrativeQA over stories has its F1-score included between 59.11% and 73.61%. NarrativeQA
gets lower results with only 34.30%. Further interpretation on the span extraction model based
on those results require to be compared with other span extraction models.

Either new architecture for the span extraction should be tested or the same architecture with
different training data. According to the second hypothesis, it has been proposed to train the
span extraction phase with data coming from different MRC datasets. That is what we refer as
our "common training" along the thesis. The analysis of results of this common training with
ideas for improvement are detailed in Section 4.2.3. Although the BERT-base architecture that
we have used has the advantage to adapt well to the variety of MRC datasets and to provide
acceptable spans, new architectures should be tested with the goal to improve the results.

The current span extraction architecture returns only one span. However, for future work, it
would be recommended to use or adapt an architecture which is able to return several spans.
Indeed, in case of challenges which require multi-hop reasoning, it would be necessary to have
an architecture able to return each relevant passages to answer a question.

Answer generation: UnifiedQA

In order to analyze the quality of UnifiedQA architecture, we compare first the results gotten
with UnifiedQA when it is used as an end-to-end architecture from the machine reading phase
to the answer generation (i.e., when the models take as input the complete passages as context).
In a second time, we also compare the results gotten using the answer spans predicted by the
individual models for the training dataset and the individual model trained on SQUAD for
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Complete passage extracted span
Dataset F1 EM R-L Bleu-1 Bleu-4 F1 EM R-L Bleu-1 Bleu-4
SQuAD 82.31 67.05 82.43 78.78 36.97 59.33 47.04 59.47 56.04 23.80
COQA 42.96 28.94 43.78 39.84 15.38 37.64 26.54 37.80 34.74 11.51
RACE 23.13 19.27 23.01 22.43 17.20 17.64 12.59 17.46 16.80 11.77

WikiHop 4.04 1.18 4.04 3.20 0.88 33.28 28.15 33.26 31.87 10.32
NarQA sum. 46.15 21.38 45.71 40.47 15.28 48.28 27.24 48.16 42.78 16.63
NarQAStory 11.83 2.60 11.51 9.61 2.34 13.10 5.00 13.05 10.17 2.65

ROPES 34.50 28.61 34.51 34.12 8.64 49.33 38.33 49.42 48.38 11.22
NatQA 26.30 16.85 26.37 23.62 8.23 13.50 8.78 13.50 12.20 3.92

Table 4.3: Scores of answers generated with UnifiedQA for each dataset using the complete
passage as context for the left section and the extracted span as context for the right section.

the two testing datasets (see Section 3.3). As a difference with the span extraction phase, the
models are not fine-tuned for each dataset but benefit from a common training with several
MRC datasets (Khashabi et al. (2020)). Therefore, the analysis reports also the generalization
skills of the model. The results spread along Section 3.4 are reminded in Table 4.3 for sake of
readability.

The results obtained by taking the complete passage as context has the advantage to show the
performance of the model alone, without being impacted by the performance of any previous
one. Compared with the performances of the span extraction phase, we can see that the
variation in the performance of the answer generates is high. Indeed, the F1-scores varies from
4.04% for WikiHop to 82.31% for SQUAD. Those scores outperform the dataset’s baseline only
for SQUAD and NarrativeQA over summaries. Indeed, the baseline’s F1-score scores is equal
to 66.6% for SQUAD and NarrativeQA over summary’s Rouge-L score is equal to 36.30%. 1

In our experiments, we have not fine-tuned the UnifiedQA model proposed in Khashabi et al.
(2020) for each dataset. Fine-tuning the model on each dataset has not been done yet because
it goes against the wish to train a unique model, according to the second hypothesis.

The main proposition to improve the answer generation is to reduce the context from the
complete passage, which consist on one or several paragraphs to the relevant answer spans.
That is what we have tried to do through our pipeline. With our weak supervision technique
and our span extraction models, we can see an improvement (Table 4.3) for 4 datasets on
8. However, the average difference between the F1-score on the answer generated using the
extracted span as context and the answer generated based on the complete context through
the 8 datasets is equal to −0.638. In other words, with the actual models, it does not help
in average to reduce the context from the complete passage to extracted spans. In order to
improve the performance of the answer generation using the extracted spans as context, the
span extraction has reach higher quality, with the propositions mentioned in Section 4.2.1

1The F1-score is not given in the original paper for NarrativeQA
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and 4.2.2. Moreover, UnifiedQA could be also fine-tuned to be more adapted to sentence-size
context rather than paragraph-size contexts. Datasets which could be used for fine-tuning such
a model are given in Section 4.2.3.

4.2.3 Datasets used for training

One of our hypothesis is that having one model trained on several MRC challenges would learn
general MRC skills better than models trained individually on different datasets (See Section
3). We also proposed a pipeline to solve any MRC challenge. The main innovation of this
pipeline is to impose an extraction phase. Therefore, we need at least two different models to
solve a MRC task, each being trained on several MRC datasets: a span extraction model and
an answer generation model based on the span extracted. Both have received a "common"
training, using several MRC datasets as training data.

The common span extraction model has been fine-tuned with the 6 datasets detailed in Section
3.3.1. However, in Section 4.2.2, it has been proposed to change the composition of the datasets
to use for training. SQUAD and COQA remain two necessary datasets to use for training since
they provide ground truth answer spans. Through the evaluation of the individual models on
the testing datasets (ROPES and NaturalQuestions, described in Section 3.3.2 and with their
results given in Sections 3.10 and 3.11), they are also the two individual models performing
the best. Other E-MRC datasets should be used to have a bigger variety of reasoning. As a
more efficient weak supervision will be implemented (see Section 4.2.1), MC-MRC and G-MRC
datasets with their weakly-supervised answer spans should also be used. Indeed, E-MRC
datasets may focus on lexical matching reasoning while other types of dataset would include
more easily deeper MRC skills, such as paraphrasing and multi-sentence reasoning.

The answer generation model is trained with 7 MRC datasets including E-MRC, MC-MRC and
G-MRC (Khashabi et al. (2020)). However, in Section 4.2.2, we have seen that a fine-tuning
with sentence-size passage instead of paragraph-size must be tested. Therefore, we need to
fine-tune UnifiedQA with datasets which have both answer spans and human-written answers.
Having a discrepency between the answer span and the human-written answer would also be
important so the system learn not just to copy a span but to generate grammatically complete
answers which answer the questions. Among the datasets that we have presented in this thesis
, only COQA would be a candidate dataset to fine-tune such a model. Indeed, it has both
ground truth answer spans and human-written passages. SQUAD and WikiHop’s span are also
the ground truth answer, so they are not good candidate. RACE, NarrativeQA over summaries
and stories, with a performing and reliable weakly supervised answer span retrieval, could be
integrated to the training data.
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4.2.4 Evaluation metrics

In section 4.2.1, we concluded that the weak supervision should be improved by using semantic-
sensitive metrics instead of lexical-semantic metrics, such as Bleu and Rouge scores. The same
remark can be done regarding the evaluation metrics since they use the same techniques. The
issue is that there is until now no other standard solution which is widely used to evaluate
NLG tasks. On the one hand, human evaluation would be the most reliable, but it is the
most expansive in addition to being difficult to reproduce (Celikyilmaz et al. (2020)), and
there exists no standard criteria for human evaluation methods Celikyilmaz et al. (2020). On
the other hand, any machine-learning-based evaluation methods has the risk of being biased
through over-fitting or gaming the metrics if they are trained on specific tasks. In future work,
we recommend then to use task-agnostic machine-learning-based evaluation metrics which
would be trained on many data and many tasks. For instance, MoverScore (Zhao et al. (2019))
compute the Euclidian distance between the contextualized representation of the predicted
answer and the ground truth. MoverScore captures both the number of shared data between
the predicted answer and the ground truth, but it also captures how much the one text has
derived from the other one. Each word of the ground truth is associated with one or more
word of the predicted answer and then, the distance is calculated.

Once performing weak supervision will be available, another proposition to improve the evaluate
MRC models would be to integrate the evaluation of the span extracted into the global answer
evaluation. The result prediction of an answer would be a linear combination between the
F1-score to the ground truth span and the newly implemented semantic-based evaluation score
to the ground truth answer.

71



Conclusion

In this thesis, we have proposed and reported the evaluation of a general methodology to tackle
the main existing MRC tasks. Our methodology is based on three hypotheses :

• One pipeline can perform well on any MRC task

• A common training gets better generalization skills than specialized training

• G-MRC performance increases with a span prediction add-on phase

We have proposed a first implementation composed of several model which follow this methodol-
ogy. This baseline is a pipeline which use BERT for question-answering trained with a Hard-EM
loss in order to extract spans in a passage which are likely to answer a question. In order to
test if one model trained with several MRC datasets would be able to generate good answers
on any MRC datasets, we have trained this model using 6 different MRC datasets: SQUAD,
COQA, RACE, WikiHop, NarrativeQA over stories and over summaries. 4 of those 6 datasets
do not provide ground truth answer spans. Therefore, we proposed a weakly-supervised weak
supervision to retrieve them. Then, an answer is generated from the question and the span
previously extracted thanks to UnifiedQA. However, the model we use is the one proposed by
the authors and this model is trained on the complete passages instead of only a few relevant
spans included in it.

Although the results on this baseline does not allow us to validate any of the hypothesis, it
provides enough insights to know how to adapt the models in future work in order to improve
the baseline and verify the hypothesis. The challenges regarding the weak supervision, the
architectures to use, the datasets on which to train each model and the evaluation metrics
have been clearly identified so that the hypothesis could be validated in future work.

The weak supervision to be adopted as well as the evaluation metrics must go beyond the
word matching but also consider the meaning of the words to be able to identify relevant
spans which require deep reasoning skills. Regarding the span extraction architecture, it has to
evolve compared to the baseline in order to be able to return several relevant spans and thus
allow reasoning over several sentences. Both training of the span extraction architecture and
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answer generation architecture must be adapted. The span extraction by using more reliable
data. In a first place, this could mean using uniquely datasets which provide ground truth
answer spans (i.e., E-MRC). As a reliable weak supervision technique and way to evaluate
it will be found, MC-MRC and G-MRC will must be used since they offer questions which
require deeper reasoning skills. The level of intelligence would then be improved by using such
datasets. Regarding the answer generation architecture, it should be fine-tune on data which
have sentence-size context instead of paragraph-size context. Indeed, since our experiments
show that using paragraph-size context for the training and testing with sentence-size context
does not provide satisfying results, an adapted training has to be implemented.

As a conclusion, this thesis proposes a general methodology how to solve MRC tasks, a baseline
which implement it and insights for future work based on this baseline to get a performing and
general MRC pipeline.
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