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Abstract
Raman spectroscopy is a non-destructive and label-free molecular identification technique capable of producing highly specific
spectra with various bands correlated to molecular structure. Moreover, the enhanced detection sensitivity offered by surface-
enhanced Raman spectroscopy (SERS) allows analyzing mixtures of related chemical species in a relatively short measurement
time. Combining SERS with deep learning algorithms allows in some cases to increase detection and classification capabilities
even further. The present study evaluates the potential of applying deep learning algorithms to SERS spectroscopy to dif-
ferentiate and classify different species of bile acids, a large family of molecules with low Raman cross sections and molecular
structures that often differ by a single hydroxyl group. Moreover, the study of these molecules is of interest for the medical
community since they have distinct pathological roles and are currently viewed as potential markers of gut microbiome
imbalances. A convolutional neural network model was developed and used to classify SERS spectra from five bile acid species.
The model succeeded in identifying the five analytes despite very similar molecular structures and was found to be reliable even
at low analyte concentrations.
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Introduction

Surface enhanced Raman spectroscopy (SERS) is a powerful
vibrational analysis technique able to detect and identify
molecular species with high sensitivity. By exploiting the lo-
calized surface plasmon resonance offered by noble metal
nanoparticles, SERS can enhance the intrinsically low sensi-
tivity of Raman spectroscopy by up to nine orders of
magnitude,1–3 allowing the detection of molecules at lower
concentrations (or with lower laser power and shorter in-
tegration times) in various fields of research, including the
detection of various molecular species in biological samples.4,5

Despite the widespread use of SERS, a large number of
molecular targets, including biomarkers of interest to the
medical community, remain unexplored. Among these, bile
acids (BAs) are a large family of molecules that includes species
with closely related structures and distinct physiological
properties. They are synthesized exclusively in the liver from
cholesterol, stored in the gallbladder, and released into the gut
during meals. Cholesterol conversion leads to the formation

of the primary BAs synthesized in the human liver, namely,
cholic acid and chenodeoxycholic acid.6 These acids are then
conjugated to taurine (in rodents) or glycine (in humans) to
serve as natural detergents by facilitating the intestinal ab-
sorption of fatty acids and fat-soluble vitamins contained in
foods.6,7 Evaluating their intestinal metabolism is therefore
extremely relevant to estimate how several stimuli (such as
diets, for example) will affect such physiological functions. By
contrast, the secondary acid, lithocholic acid, is a potent
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activator of the intestinal vitamin D receptor and, by doing so,
acts as an important intestinal immunomodulator, while de-
oxycholic acid is a natural antibiotic that contributes to
maintain the intestinal microbiome diversity.6 In the same
vein, by mirroring the activity level of the bacterial bile salt
hydrolase, the measurement of taurochenodeoxycholic and
glycochenodeoxycholic acids in the intestine provides es-
sential information on microbiota health.8–11 Thus, intestinal
dysbiosis (i.e., alteration of microbiota homeostasis) often
leads to significant changes in BA concentration profiles,
which in turn contributes to the development of important
intestine pathologies such as intestinal bowel diseases (IBD)
and colorectal cancers.8

Most studies on bile acid profiling published to date have
used mass spectrometry combined with liquid chromatog-
raphy (LC-MS).12,13 Although LC-MS provides excellent
sensitivity and selectivity, it requires considerable expertise
and expensive instrumentation. Moreover, whereas these
approaches are usable only for fecal profiling, most of the BAs
secreted in the intestine are reabsorbed in the ileum and
returned to the liver through the portal circulation.6 Thus,
profiling bile acids in feces unavoidably provides inaccurate
estimations of their intestinal levels. Therefore, it is urgently
needed to implement novel BA measurement technologies
allowing for in situ profiling of intestinal bile acids. To this end,
SERS is an interesting candidate for BA profiling as it is rel-
atively fast and requires simpler and less expensive simple
instrumentation.

Classifying distinct spectral signatures from a mixture of
BAs is a difficult challenge as some species only differ by the
presence or absence of a single hydroxyl group and present
exceedingly similar Raman spectra (Fig. 4a). Various statistical
methods, for example, principal component analysis (PCA)
and partial least squares regression, can be used to assist
spectral analysis.14,15 Standard machine learning models can be
used as well, but an increasing number of studies are now
using deep neural networks since they outperform standard
machine learning models and previous statistical methods in
most cases.16–19 The application of SERS spectroscopy in
conjunction with a deep learning model for the difficult task of
identifying different bile acids is therefore an excellent op-
portunity to validate and develop the potential of this com-
bination of techniques.

In the work presented here, a convolutional neural net-
work (CNN) model was developed to classify bile acids from
their SERS spectra. This model was applied to the classification
of SERS spectra of five different bile acids, namely, cholic (CA),
glycochenodeoxycholic (GCDCA), taurochenodeoxycholic
(TCDCA), deoxycholic (DCA), and lithocholic (LCA) acids.
These compounds were selected as markers for unconjugated
(CA, DCA, and LCA), conjugated (GCDCA and TCDCA),
and primary (CA, GCDCA, and TCDCA) or secondary (DCA
and LCA) acids of human (CA, GCDCA, DCA, and LCA) or
murine (CA, TCDCA, DCA, and LCA) origin.6 The complete
development cycle, from the synthesis of metal nanoparticles

and the preparation of SERS substrates to the training of the
model, validation, and testing with BA mixtures at various
concentrations is presented.

Material and Methods

All reagents were purchased from Sigma Aldrich unless
specified otherwise. GCDCA and TCDCA came from
ArchPharm and Milipopo, respectively. Anhydrous ethanol
(99.9%) and Milli-Q water with a resistivity of 18.2 MV were
used for all experiments. Standard silica microscope cover-
slips (25 × 30 mm) were used as substrates for the immo-
bilization of gold nanostars (AuNSt).

Synthesis of Gold Nanostars

Gold nanostars (AuNSt) were synthesized following a slightly
modified one-pot seedless protocol,20,21 using gold (III)
chloride (HAuCl4, 99% purity), with silver nitrate (AgNO3,
99.9999% purity) as shaping agent, and ascorbic acid as re-
ducing agent. Briefly, 1.44 mL of 10 mM HAuCl4 aqueous
solution was added to a 50 mL polypropylene tube containing
40 mL of water and vortexed for 10 s .80 µL of 10 mM aqueous
AgNO3 was then mixed with the solution and vortexed for
another 10 s. Finally, 240 µL of 100 mM ascorbic acid was added
to the mixture followed by 20 s of vortex (the solution should
change from translucent yellow to greenish blue). The syn-
thesized AuNSt were centrifuged at 2500 RCF for 25 min,
resuspended in 40 mL of water, and stored at 4 °C. Optical
extinction spectra of the synthesized AuNSt were obtained
using a Cary-5000 ultraviolet–visible (UV–Vis) spectrometer.

Preparation of Surface-Enhanced Raman
Spectroscopy Substrates

The SERS substrates were fabricated using a silanization process
with (3-aminopropyl) triethoxysilane (APTES) to immobilize
AuNSt on commercial microscope coverslips.22,23 Coverslips
were pretreated in a piranha solution (3:1 H2SO4:H2O2) for
30 min to remove any organic impurities and then soaked for
15 min in a 1:1:1 H2O:NH4OH:H2O2 solution to increase the
number of hydroxyl groups on the surface. The coverslips were
rinsed thoroughly with water between these two steps and
with water and ethanol before the silanization process. Sila-
nization of the pretreated coverslip was carried out for 2 h in a
1% ethanolic APTES solution. Upon completion of the silani-
zation, the coverslips were rinsed thoroughly with ethanol and
dried for 1 h at 120 °C in an oven. A meniscus evaporation-
assisted deposition process adapted from literature was used to
improve AuNSt deposition.24 Briefly, a pair of glass coverslips
was assembled into a thin chamber using a parafilm gasket (Fig.
S1, Supplemental Material), the chamber was filled with con-
centrated AuNSt solution (1.5 mL of the initial AuNSt solution
centrifuged at 2000 RCF for 25 min and resuspended in 20 µL
of water) and dried under vacuum for 2 h. This process was
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repeated three times to obtain a dense, uniform, and repro-
ducible AuNSt-coated coverslip.

These SERS substrates were functionalized with an anti-
fouling and BA-selective layer composed of a mixture of two
thiol capping agents, that is, 1-octanethiol (OCT) and 2-(di-
methylamino)ethanethiol (DMAET). Inspired by naturally
occurring intestinal ion-exchange resins and bile acid se-
questrants,25 this mixture has high affinity for hydrophobic
and anionic BAs, as it presents both positive charges (DMAET,
protonated amines) and hydrophobic properties (OCT, long
carbon chains) (Fig. 4c). The substrates were immersed
overnight (18 h) in an ethanolic solution of OCT (0.05 mM)
and DMAET (0.05 mM). They were then rinsed three times
with ethanol, dried with a nitrogen stream and stored in a
desiccator in the dark. SEM images of the substrates were
measured on a Quanta-3D-FEG (FEI Inc.) and analyzed with
the ImageJ software.

Raman Instrumentation

A laboratory-made confocal Raman microscope was used for
SERS measurements and is presented in Fig. 1. The excitation
light source consisted of a 10 mW He–Ne laser (632.8 nm)
injected into a single-mode optical fiber. An Olympus
NiFluorite objective (M = 40 X, NA = 0.75) was used to excite
the sample with an incident power of (2.8 ± 0.3) mW
measured at the sample location. A galvanometer-based laser
scanning apparatus allowed the interrogation of large areas
more rapidly than a sample-scanning setup. A compact
spectrometer (Fergie, Princeton Instruments) featuring a
1180 lines/mm grating blazed at 750 nm (spectral resolution@
0.22 nm) and a near-infrared-enhanced charge-coupled device
(CCD) detector cooled at �55 °C was connected to the
microscope using a multimode fiber (OZ Optics) that also
served as the microscope pinhole (φ = 50 µm). CCD images
were acquired with a 5 s integration time and binned into 1 ×
1024 spectra. The spectral range covered by the spectrom-
eter in this configuration was 650–780 nm (416–3100 cm�1).

Surface-Enhanced Raman Spectroscopy
Measurements

The main database used to train the machine learning models
was built from SERS spectra measured from single BA species
(please refer to Fig. 4 for analyte structures and SERS spectra).
Two substrates per bile acid were immersed in a 100 µM
ethanolic solution for 3 h, and then gently dried with a stream of
nitrogen gas. Two more substrates immersed in pure ethanol
were used as blanks. Four sets of 100 spectra were recorded in
distinct areas (each with 10 × 10 spots covering a 40 × 40 µm
area) on each substrate using the laser scanning system. An
average spot-to-spot variation in SERS signal intensity of 5%was
determined for bile acid and blank substrates. A total of 4800
spectra weremeasured, that is, 800 spectra per bile acid species
and 800 spectra from blank substrates.

The performance of the model was tested using an addi-
tional dataset (in place of the initial test set) generated with
SERS substrates prepared by immersion in solutions contained
either TCDCA, DCA, or LCA in varying concentrations
(10 µM, 25 µM, 50 µM, and 100 µM) in ethanol. The im-
mersion time and the number of spectra recorded per sub-
strate were reduced to 1 h and 300 spectra, respectively, to
increase the analytical throughput. These measurements re-
quired several immersion and measurement sequences for
each substrate, with thorough rinsing with ethanol between
each solution.

Spectra Processing and Machine Learning

Note: The procedures presented in this section were per-
formed using a collection of tools (i.e., CNN, data en-
hancement, and spectra preprocessing) written in Python that
are freely available on the GitHub repository.26 The package
also includes a user guide, the CNN model, and the spectral
dataset used for model training.

Preparation of the Spectral Database. The measured SERS
spectra were stored in a single database, with spectra sorted by
line, and Raman shifts sorted by column. Labels were assigned in
this database to indicate which bile acid species corresponds
to which spectrum. These labels were one-hot encoded,
meaning that they were stored as a vector with several binary
fields associated with a given bile acid, with “1” indicating the
presence and “0” the absence of the corresponding species.
The database was randomly separated into three new sets
with distinct functions: a training set to train the model, a

Figure 1. Diagram of the laboratory-made confocal Raman
microscope used in this work.
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validation set to optimize hyperparameter selection (i.e., user-
defined model parameters) and validate the model architec-
ture, and a test set to evaluate the model’s performance. The
training set contains 70% of the original database spectra,
while the validation and test sets each contain 15%. Once
separated, these sets of spectra were kept apart for the rest of
the procedure to avoid introducing any form of bias.

Data Augmentation. Generally, the more data is used to train a
deep learning model, the better its performance, and espe-
cially its generalizability, when used on new data. Insufficient
data also increases the risk of overfitting and, hence, of
learning irrelevant features or patterns such as sampling er-
rors or noise. However, collecting a large number of SERS
spectra can be a tedious process given the experimental
conditions and substrates that change over time. To address
this, the size of the training set was increased using data
augmentation, a technique that generates new data by in-
troducing variations to existing data.27,28 Since it requires
only a few lines of programming, this procedure is simpler
and faster than collecting new spectra and is worth con-
sidering for any application combining SERS or other
spectroscopy with deep learning. The spectra were treated
numerically to produce a large and varied training set.
Noisier spectra were generated by randomly adding gaussian
noise. Spectra were subjected to randomly selected multi-
plicative factors, intensity offsets, linear slopes, and random
vertical shifts to introduce signal background variations.
Finally, the number of spectra was increased using a linear
combination method inspired by the so-called “Mixup”
method used in image classification to produces spectra that
not only feed the database, but also regularize and calibrate
the models in order to reach better predictions when dealing
with SERS spectra coming from multicomponent
mixtures.29,30 In short, this method creates new spectra by
summing two or three spectra belonging to the same or
different classes, each multiplied by a factor varying between
0 and 1 that summed together gives 1. These factors were
simultaneously applied to the labels, to regularize the model
predictions according to the spectrum mixture, resulting in
soft labels (e.g., [0.3, 0.1, and 0.6]) instead of the previous
hard, hot-coded labels (e.g., [0, 0, and 1]).

Spectrum Preprocessing. Although CNN models tend to per-
form well without data preprocessing, SERS spectra of bile
acids were preprocessed using methods widely used in vi-
brational spectroscopy chemometric analysis to improve their
interpretability and to facilitate the introspection of the CNN
model.31,32 First, a median filter with a size of three values was
used to remove spurious signals due to cosmic rays. The
spectra were smoothed using a Savitzky–Golay seven-point
filter with order 0 and degree 3. Following this smoothing
step, the background signals, which are mostly caused by the
coverslip glass and surface impurities, were subtracted using a
baseline correction method ALS.33 Finally, the spectra were

normalized using the Euclidean standard, which is calculated
for a spectrum as the square root of the sum of all its squared
pixel values.

CNN Model Architecture. The model, shown in Fig. 2, was
built using the Keras library with TensorFlow backend
support.34 From spectrum input to output prediction,
this model is mainly composed of two convolutional layers
of 12 and 24 kernel filters (filter size = 5 × 1) and two
fully connected layers of 1024 and 512 nodes. Each con-
volutional layer is followed by a maxpooling layer (filter
size = 2 × 1) that halves the principal dimension of the
output data. A flattened layer of 6144 units connects the
output of the maxpooling layers to the first fully connected
layer. With the exception of the output layer, a rectified
linear unit (ReLU) activation function is used for

Figure 2. Representation of the architecture of the convolutional
neural network (CNN) model. From top to bottom, the model
includes two convolutional layers, 12- and 24-kernel filters (filter
size = 5 × 1), each followed by a max-pooling layer, and two fully
connected layers of 1024 and 512 nodes.
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convolutional and fully connected layers. The Softmax activa-
tion function is used for multiclass classification at the model’s
output. To minimize overfitting and speed up convergence
during model training, batch normalization is applied before
each ReLU activation function and dropout (rate = 0.45) after
the two dense layers.35–37 Model training was performed on a
single Nvidia Quadro P600 GPU using an Adam optimizer
(learning rate = 0.001) with a batch size of 132 spectra and a
cross-entropy loss function.38 Training duration was restricted
to a maximum of 50 epochs with a programmed early stop to
interrupt the training when the model no longer improves. To
monitor the model’s performance during the learning process,
both loss and accuracy were evaluated after each epoch on the
training and validation sets to ensure that it generalized well to
the new spectra and did not overfit during the process (Fig. S3,
Supplemental Material, for examples of loss and accuracy
learning curves obtained during CNN training). For comparison
purposes, a PCA-LDA model based on 10 principal compo-
nents (∼95% of the cumulative covariance) was also developed
using the basic frameworks provided by the Python Scikit-Learn
library.

Result and Discussion

Gold Nanostars (AuNSt) and Surface-Enhanced
Raman Spectroscopy Substrate Characterization

As a plasmonic material, gold was preferred to silver as it is
more chemically stable for in vivo measurements.39 In addi-
tion, gold nanoparticles can be excited using red or near
infrared wavelengths that are less prone to cause cell

phototoxicity or auto-fluorescence.40 Star-shaped nano-
particles (Fig. 3) were chosen as plasmonic enhancers to take
advantage of the high electric field regions at the ends of the
tips and the substantial signal enhancement in SERS.41 Sizable
SERS enhancement is expected from these AuNSt since their
absorbance band (Fig. 3b) is centered at 706 nm and covers
both the excitation wavelength of 632.8 nm and the measured
Raman region from 650 to 780 nm.2 SEM images of the
substrates (Fig. 3c) show that the well-defined tips of the gold
nanostars (AuNSt) is conserved after immobilization on glass
coverslips previously functionalized with DMAET and OCT.
An average surface density of (470 ± 20) AuNSt/µm2 was
measured from three substrates and three distinct regions
used for each substrate (Fig. S2, Supplemental Material), a
value comparable or higher than values reported in the lit-
erature for this type of nanoparticles.42–44 An RSD of 4.3%
suggests a suitably uniform and repeatable surface coverage of
the SERS substrates. Rhodamine 6G (R6G) was used to
evaluate the Raman signal enhancement provided by the
substrates, as it is commonly used for this purpose.45,46 The
R6G SERS and Raman spectra presented in Fig. 3a) highlight
the enhancement provided by SERS. An average apparent
enhancement factor of 1:1 × 106 was determined using the
bands centered at 1335 and 1523 cm�1 (see the Supplemental
Material for details on calculating this value).

Features of the CNN Model

Given the weak SERS spectral signatures and the close sim-
ilarity between the molecular structures of bile acids, a high-
performance model able to capture slight spectral variations

Figure 3. (a) Comparison between surface-enhanced Raman spectroscopy and Raman spectrum of Rhodamine 6G at different
concentration, integration time = 5 s. (b) UV–Vis absorption spectrum of AuNSt SERS substrates. Dashed line and gray area correspond
respectively to the excitation wavelength of 632.8 nm and Raman’s band scattering region. (c) Scanning electron microscopy (SEM) images of
AuNSt SERS substrates; Scale bars = 1 µm (left), 200 nm (right).
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was required to identify and classify the SERS spectra of these
molecules. CNNs are powerful deep neural networks that are
widely used for various tasks such as image classification and
speech recognition47–51 and that are also seeing increasing use
for the analysis and classification of spectra. Indeed, previous
studies have reported that CNNmodels achieve better results
than other classification methods for classifying Raman,
Fourier transform infrared, and SERS vibrational spectra. For
instance, in SERS, a CNNmodel was recently used to measure
in vitro the gradients of eight metabolites near different cell
lines.52 In another study, a CNN model was applied to dis-
tinguish 20 commonly used pesticides.16 In the present
contribution, we are specifically targeting the development
and application of a CNN model to the classification of very
similar molecular structures, as well as proposing more
elaborate data augmentation and fine-tuning methods. Before
presenting the performance of our model, a brief overview of
the features and capabilities of neural networks and CNNs
pertaining to spectral classification is provided in this section.

Neural networks are made up of layers, the highest-level
building blocks in deep learning. Each layer is composed of
computing units (“neurons”) connected through one or more
weighted connections to the neurons of a previous or sub-
sequent layer. The basic framework of a neural network in-
cludes an input layer, one or more intermediate layers called
hidden layers, and an output layer. As data is propagated
through themodel, each neuron receives input data, transforms
it using an activation function, and transfers the resulting data to
the neurons of the subsequent layer that will perform the same
process. Training a model essentially consists of fitting the
weights applied to the connections between the neurons of
different layers, and the process can be summarized in two
steps repeated several times. In the forward propagation step,
the parameters of the input samples are propagated and
transformed through the network to reach the output layer and
give the predicted output values. In the backpropagation step,
an error is calculated by comparing the predicted values with
the expected values and propagated backwards through the
neural network to update the weights in the neural network.47

Convolution and pooling operations are two key elements
specific to CNN that preprocess incoming data prior to
classification and allow CNN models to outperform tradi-
tional neural networks in most cases. These two operations
improve the quality of the data before propagating it to the
neural network itself. The pooling layer divides the total range
of input data into several sub-regions of equal size, filters them
one by one, and returns a unique value for each of these sub-
regions, thereby reducing the spatial dimensions of the data.
The maxpooling layers used in our model return each sub-
region’s maximum value as output. The convolutional layers
apply convolution filters, also known as kernel filters, to the
incoming data. These filters are one-, two-, or three-
dimensional matrices that are widely used in image pro-
cessing for edge detection, sharpening, and other image
processing tasks. The values governing the filters of the

convolution layers are updated during model training and
unlike traditional dense layers where the updated weights
consider individual input values separately, convolutional
updated filters are instead applied to several adjacent input
values at the same time, allowing efficient capture and ex-
traction of the spatial components that are most relevant for a
desired task.With several distinct filters applied within a single
convolutional layer, this process also enriches the information
contained in the transferred data. Furthermore, since vibra-
tional spectra are vectors with spatially dependent units, the
use of convolutional layers is fully justified, and the trained
filters are expected to be able to detect band edges and reduce
noise or signal background.53,54 By combining convolutional
layers with pooling layers, the first part of the model is then
able to produce new data that are both reduced in size and
information-enriched before forwarding them to the second
part of the model for classification. This first part also gives a
considerable advantage to CNN models by integrating a large
part of the data preprocessing, which significantly reduces the
work required in data preprocessing.

CNN Model Testing on Surface-Enhanced Raman
Spectroscopy spectra of Bile Acids

To build the dataset for the CNN model, the five bile acids
were measured at concentrations of 100 µM (Fig. 4). This is
the first reported example of using SERS to detect members of
this family of closely related chemical structures. Based on
conventional Raman spectroscopy measurements performed
on pure BA samples, we were able to identify several bands in
the SERS spectra of the bile acids. The band around 1020–
1050 cm�1, slightly more intense for TCDCA, was assigned to
the symmetric S=O deformation of the sulfonate group. More
pronounced bands were observed for GCDCA, DCA, and
CA around 1300 cm�1 and were associated with the C–O
bending of carboxylate and carboxylic acid groups. The region
between 1400 and 1700 cm�1 presents several partially un-
resolved bands that may be associated with C=O stretching
modes (∼1400 and 1640 cm�1) as well as CNH and CH2/CH3

deformations (∼1540 cm�1 and ∼1445 cm�1, respectively).
Lastly, the region between 2860 and 2930 cm�1 associated
with OH and CH2/CH3 stretching bands presents some dif-
ferences between the various bile acids. Many of the remaining
bands in the SERS spectra could not be assigned, possibly due
to interference from the functionalization layer.

Bile acid spectra are significantly less intense than that of
R6Gmeasured using the same substrates, which was expected
given the low Raman cross-sections reported for similar
steroid-like molecules.55 Furthermore, since they share
several functional groups with Raman bands in the same lo-
cations, the challenge posed by the identification of one
species from another is an excellent opportunity to evaluate
the performance of the CNNmodel. In particular, the spectra
measured for bile acid species CA and GCDCA and the blank
substrate were exceedingly similar.
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A confusion matrix was used to evaluate the efficiency of
the CNN model for SERS measurements of the five bile acid
species considered in this work (Fig. 5). It summarizes and
sorts the model’s predictions according to the true expected
bile acid (sorted by columns), the bile acid predicted by the
model (sorted by rows), and reveals which bile acid species
the CNN model confounds with which other, and to what
degree. The results show that the model managed to identify
and differentiate the five bile acid species despite their close
similarity and the absence of distinct features in their SERS
spectra. The correct predictions made by the model are found
on the diagonal cells and account for a large majority of all
classifications, with a rather small proportion of the spectra
leading to erroneous predictions. Overall, the CNN model
classified the spectra with an accuracy of (98.1 ± 0.6) % over 9
independent runs (Table S1, Supplemental Material), while at
most 90.2% were correctly classified using the PCA-LDA
method (with 10 principal components) commonly used in
Raman spectroscopy, thus showing that the model repeatedly
succeeds in correctly classifying bile acids. These results
confirm the capabilities of the CNN model to discern small
variations in nearly identical spectra to differentiate and
classify species with very similar molecular structures. In-
terestingly, it can be postulated that the central, essentially
featureless region between 1750 and 2750 cm�1 is wasted on
the spectrometer, and that the model could perform as well

Figure 4. (a) Molecular structures of bile acids used in this work: Primary acid (cholic acid, CA), two secondary, unconjugated acids
(deoxycholic acid, DCA and lithocholic acid, LCA), and two conjugated forms (glycochenodeoxycholic acid, GCDCA, and
taurochenodeoxycholic acid, TCDCA). (b) Averaged surface-enhanced Raman spectroscopy spectra (n = 600) for each bile acid (standard
deviation indicated by light blue areas). Concentration was 100 μM with a 2.5 s integration time. (c) Averaged surface-enhanced Raman
spectroscopy spectrum from a blank substrate is also presented and shows Raman bands associated with ligands OCT and DMAET.
A baseline correction was performed on all spectra using the asymmetric least squares method.

Figure 5. Row-normalized confusion matrix computed using the
CNN model predictions on the test set comprising 720 surface-
enhanced Raman spectroscopy bile acid spectra. Prior to row
normalization, the values contained in the confusion matrix were
averaged over the predictions resulting from 10 independently
trained model versions.
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or better without it. To validate this hypothesis, we retrained
and tested the CNN on the same spectra used in the paper,
firstly bounded at 1750 cm�1 to the right to keep only the
fingerprint region, and again with the central part (1750–
2750 cm�1) removed, in effect stitching together the fin-
gerprint and OH–CH regions (Fig. S4, Supplemental Material
document for the confusion matrices). We found that nu-
merically removing the central region of the spectra does not,
as expected, impact the accuracy of the model (97.0 ± 0.8%
versus 98.1 ± 0.6%), while reducing the computation time
needed to train the CNN model. On the other hand, using
only the fingerprint region significantly reduces the accuracy
(90.0 ± 0.1%) and it becomes more difficult to separate the
bile acids. It can therefore be hypothesized that using a higher
spectral resolution, for example, by moving from a 1180 lines/
mm grating (spectral resolution @ 0.22 nm) to a 2400 lines/
mm grating (spectral resolution @ 0.11 nm) and stitching
together the fingerprint and OH–CH regions, might result in
improving further the accuracy of the CNN model.

The confusion matrix also shows that the two most
problematic bile acids are GCDCA and CA. For the GCDCA,
the CNN model correctly classified all its true spectra, but
erroneously assigned 4% and 3% that should have been as-
signed to CA and the blank substrate. These results suggest
that the predictions of the CNN model are less accurate for
GCDCA than for the other bile acids. For CA, the model
correctly classified 96% of its true spectra and erroneously
assigned 2% and 1% that should have been assigned to DCA
and the blank substrate. The CNNmodel predictions assigned
to CA are more accurate than those of the GCDCA, but the
model is less sensitive and fails to correctly detect all of the
true CA spectra.

Finally, the CNN model was also tested with solutions of
single species at lower concentration. Due to their higher
classification score (Fig. 5), TCDCA, LCA, and DCA bile acids
were used for SERS measurements at different concentra-
tions. It should be pointed out that whereas TCDCA is
structurally distinguishable by its amide and sulfonate groups,
the molecular structure of DCA and LCA is almost identical,

differing by a single hydroxyl group. To this end, the model was
fine-tuned to improve its predictive performance with respect
to experimental variations between the spectra from the
training set and the spectra from this experiment. This pro-
cedure consisted in re-training the pretrained CNNmodel with
an additional training set consisting of new spectra measured on
blank substrates and a random set of 30% of the spectra used
for the previous training. To preserve most of the CNNmodel
parameters optimized during the first training, the weights of
the first layers (convolutional and maxpooling layers) were
frozen during the fine-tuning process while the learning rate
and number of epochs were reduced to 0.0001 and 5 epochs,
respectively. As shown in Fig. 6, the CNNmodel was again able
to correctly classify spectra for the three bile acids at 100 µM
despite slightly different experimental conditions such as the
use of different SERS substrates. The model also succeeded to
detect TCDCA and LCA at 50 µM, but failed to detect DCA,
confusing it with GCDCA. This behavior occurred only for the
50 µM DCA solution, suggesting that the predictions are er-
roneous for this measurement since GCDCA is not detected
on the same substrate at lower or higher concentrations. The
confusion matrix (Fig. 5) revealed that a higher number of
spectra were misclassified into the GCDCA class during model
training. Therefore, several spectra that should have been at-
tributed to the blank substrate or DCA bile acid were likely
misclassified as GCDCA. Below 50 µM, the CNN model failed
to detect all three bile acids in solution. Importantly, the
specificity of the CNN model is demonstrated by the small
number of false predictions below 50 µm, with occurrences of
spectra attributed to bile acids absent from the solution not
exceeding 20%.

Conclusion

This study demonstrates for the first time the detection of bile
acids, a family of very similar molecular structures and spectral
signatures, using SERS spectroscopy and deep learning. The
CNNmodel developed herein was able to successfully classify
the five bile acids under study from their SERS spectra with a

Figure 6. Percentages detected for each bile acid following model predictions performed on surface-enhanced Raman spectroscopy
measurements of single-species solutions of TCDCA, LCA, and DCA at different concentrations (10, 25, 50, and 100 µM). A total of 300
spectra were measured for each concentration. The percentages are averages over the results obtained with 10 independent versions of the
trained model and the error bars correspond to the calculated standard deviation.
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high accuracy of (98.1 ± 0.6) percent. Moreover, the model
remained robust across different bile acid concentrations,
thus validating the potential of the tandem use of SERS
spectroscopy and deep learning models. While the concen-
trations used in this proof-of-concept study may appear su-
praphysiological, one may consider that intestinal elimination
is the main route for bile acid elimination. Indeed, total bile
acid levels greater than 2337 µmol/48 h are considered as
indicative of bile acid malabsorption56 and proposed as a
diagnostic marker for IBD by the Mayo clinic.57 While it is
extremely difficult to extrapolate concentrations from
aqueous standards to fecal levels measured over a specific
period, one may speculate that the 100 µM used here remains
relevant from a pathological point of view. As mentioned
above, 95% of bile acids secreted in the duodenum are re-
absorbed in the ileum.6 Thus, it can be envisioned that in the
small intestine, bile acids levels may be even more elevated.
And whereas resolving mixtures of bile acids undoubtedly
represents an equally important challenge, the model’s per-
formance may be improved further by, for example, increasing
the resolution of raw SERS spectra included in the training
database, as discussed above. Furthermore, by providing a
ready-to-use, freely available, and powerful CNNmodel,26 we
hope that this will promote the application of CNN models
and other deep learning tools to SERS spectroscopy.
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Laval, made possible, in part, by funding from theCanada First Research
Excellence Fund. Other sources of financial support include the Na-
tional Science and Engineering Research Council of Canada (NSERC),
le Fonds de recherche du Québec–Nature et technologies (FRQ-NT)
and Innovation Canada.

ORCID iD

Denis Boudreau  https://orcid.org/0000-0001-5152-2464

Supplemental Material

All supplemental material mentioned in the text is available in the
online version of the journal.

References

1. A.S. Moody, B. Sharma. “Multi-Metal, Multi-Wavelength Surface-
Enhanced Raman Spectroscopy Detection of Neurotransmit-
ters”. ACS Chem. Neurosci. 2018. 9(6): 1380-1387. doi:10.
1021/Acschemneuro.8b00020.

2. A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne.
“Wavelength-Scanned Surface-Enhanced Raman Excitation
Spectroscopy”. J. Phys. Chem. B. 2005. 109(22): 11279-11285.
doi:10.1021/Jp050508u.

3. C.L. Haynes, R.P. Van Duyne. “Plasmon-Sampled Surface-
Enhanced Raman Excitation Spectroscopy”. J. Phys. Chem. B.
2003. 107(30): 7426-7433. doi:10.1021/Jp027749b.

4. S. Laing, K. Gracie, K. Faulds. “Multiplex In Vitro Detection
Using SERS”. Chem. Soc. Rev. 2016. 45(7): 1901-1918. doi:10.
1039/C5CS00644A.

5. M. Knauer, N.P. Ivleva, X. Liu, R. Niessner, C. Haisch. “Surface-
Enhanced Raman Scattering-Based Label-Free Microarray
Readout for the Detection of Microorganisms”. Anal. Chem.
2010. 82(7): 2766-2772. doi:10.1021/Ac902696y.

6. J.Y.L. Chiang, J.M. Ferrell. “Bile Acids as Metabolic Regulators
and Nutrient Sensors”. Annu. Rev. Nutr. 2019. 39(1): 175-200.
doi:10.1146/Annurev-Nutr-082018-124344.

7. D. Stamp, G. Jenkins. “An Overview of Bile-Acid Synthesis,
Chemistry, and Function”. In: G.J. Jenkins, L. Hardie, editors.
Bile Acids: Toxicology and Bioactivity. Chap. 1, Pp. 1-13. doi:10.
1039/9781847558336-00001.
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