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Abstract

We consider the problem of approximate sampling from the finite volume Gibbs

measure with a general pair interaction. We exhibit a parallel dynamics (Probabilis-

tic Cellular Automaton) which efficiently implements the sampling. In this dynamics

the product measure that gives the new configuration in each site contains a term

that tends to favour the original value of each spin. This is the main ingredient that

allows one to prove that the stationary distribution of the PCA is close in total vari-

ation to the Gibbs measure. The presence of the parameter that drives the ”inertial”

term mentioned above gives the possibility to control the degree of parallelism of the

numerical implementation of the dynamics.
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1 Introduction

Probabilistic Cellular Automata (PCA) are (time-homogeneous) discrete-time Markov

Chains on a product space SV , whose transition probability P (dσ|σ′) is a product measure:

P (σ|σ′) =
∏
i∈V

pi(dσi|σ′),

where, for i ∈ V and σ′ ∈ SV , pi(dσi|σ′) is a probability on S. Compared with the more

familiar sequential dynamics, where the transition probabilities P (dσ|σ′) are supported on

configuration σ with σj = σ′j for all but one j ∈ V , PCA’s exhibit the following peculiar

features.

• The parallel updating rule allows one to exploit the efficiency of parallel computation

in the simulation of these dynamics, making them desirable Markov Chain Monte

Carlo algorithms.

• PCA’s give rise to well defined infinite volume dynamics (V infinite countable),

without passing to continuous time.
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The study of PCA’s in the context of Equilibrium Statistical Mechanics dates back to [7,

12], where various features of the infinite-volume limit have been investigated, in particular

its space-time Gibbsian nature. On the other hand, invariant measures for infinite-volume

PCA’s may be non-Gibbsian, as shown in [4].

In the context of Markov Chain Monte Carlo algorithms the following natural problem

arises: given a probability µ on SV , construct a PCA whose invariant measure is µ; in

particular, in the case µ is a Gibbs measure for a short range interaction, one expects that

the transition probabilities of the PCA can be chosen to be local, i.e. pi(dσi|σ′) depends

only on σ′j for j “close” to i. While Markov Chain with sequential dynamics having

these features can always be constructed, the existence of a PCA with the given invariant

measure µ is not guaranteed. Counterexamples are given in [3], while [10] provides explicit

conditions on µ for the existence of a PCA reversible with respect to µ.

A well understood example is that of the 2d Ising model. By the results in [10] it

follows that no PCA can be reversible with respect to the 2d Ising model. In [12] and [1]

a PCA is introduced whose invariant (reversible) measure π is related to the Ising model

as follows: the projection of π to the even sites, i.e. those (i, j) ∈ Z2 with i + j even,

coincides with the same projection of the Ising model, and the same holds for odd sites;

however, under π, spins at even sites are independent from spins at odd sites, unlike for

the Ising model.

When the nearest neighbor interaction of the Ising model is generalized to a general

pair interaction, this simple structure is lost. In this paper, following the ideas introduced

in [9], we present a simple way to modify and extend the PCA in [1], and use it to sample

approximately from a Gibbs measure. Given a spin configuration σ ∈ {−1, 1}V , where V

is a finite subset of Zd, we start with a Hamiltonian of the form

H(σ) := −
∑
i,j

Jijσiσj ,

corresponding to the Gibbs measure

πG(σ) ∝ exp[−H(σ)].
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This Hamiltonian can be lifted to a Hamiltonian on
(
{−1, 1}V

)2, setting

H(σ, σ′) := −
∑
i,j

Jijσiσ
′
j + q

∑
i

(1− σiσ′i).

The measure

µ2(σ, σ′) ∝ exp[−H(σ, σ′)]

is such that the conditional measure

µ2(σ′|σ) =
µ2(σ, σ′)∑
τ µ2(σ, τ)

is a product measure, and can therefore be taken as transition probability of a PCA, which

turns out to be reversible for a probability πPCA given by the marginal of µ2:

πPCA(σ) =
∑
τ

µ2(σ, τ).

The parameter q controls the average number of spin-flips in a single step of our dynamics.

This is the analogue of the self-interaction considered in [2] to study metastability in the

limit of zero temperature, but our regime and our goal are completely different. The

parameter q acts as the brake of the dynamics: for large values of q the dynamics is very

slow, flipping few spins at each time, tending to ”freeze” the system in its configuration,

while a dynamics with q = 0 is for instance the case of [1]. The mean density of flipped

spins is of order δ := e−2q. When δ is proportional to 1/|V | we expect that the PCA

behaves like the single spin flip dynamics; however we are able to prove a stronger result:

in Theorem 1.2 we show that when the volume goes to infinity, |V | → ∞, the total variation

distance between πPCA and πG goes to zero when lim|V |→∞ δ2|V | = 0. In Section 2 we

give the proof of this convergence for rather general two-body interactions. Given the

generality of the model, convergence is proved under Dobrushin uniqueness conditions,

which implies the minimal condition needed for our argument, namely a form of fast

decay of correlations. For special models, such as ferromagnets in pure states (see [14]),

we expect that this fast decay of correlations hold true also in the coexistence region,

where Dobrushin uniqueness fails.

In other words, the control parameter q introduced in the PCA discussed in this paper,

provides a ”tuning” of the parallel dynamics for sampling from the Gibbs measure. This
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tuning, on the one hand can be used to discuss the invariant measure of the PCA and may

open new insight in this difficult field. On the other hand, from an applicative point of

view, the possibility of sampling from a Gibbs measure with a parallel dynamics may be a

useful tool. In subsection 1.4 we give some more details about the possibility to parallelize

the algorithm in an efficient way. An application of this tool to the clique problem is

discussed for instance in [9] . A general comparison between the performances of tuned

PCA and single spin flip dynamics is an open problem. In the simple example of the

random walk on the hypercube, corresponding to Jij = 0, in [15] has been proved that the

cutoff occurs at a time τPCA smaller than the cutoff time τG of the corresponding single

spin flip dynamics. More precisely

τPCA

τG
∼ 1
δ|V |

.

In the last section of this paper we show that in the case of Curie-Weiss interaction the

mixing time τPCAmix is related the cutoff time of the single spin flip dynamics, and so to its

mixing time τGmix, by the analogue relation

τPCAmix

τGmix
∼ 1
δ|V |

.

1.1 Definitions

Given a finite volume V ⊂ Zd we consider the spin configurations σ ∈ {−1, 1}V and define

H(σ) = −
∑
i,j

Jijσiσj (1)

where (Jij)i,j∈Zd is a given infinite symmetric matrix satisfying

sup
i

∑
j

|Jij | = J <∞ (2)

For simplicity, the sum in (1) is supposed to range over i, j ∈ V ; in other words, boundary

conditions are free. More general boundary conditions could be treated with no difficulty.

The Hamiltonian will be written equivalently

H(σ) = −
∑
i∈V

hi(σ)σi (3)
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where

hi(σ) =
∑
j

Jijσj (4)

Then we can define the standard Gibbs measure as

πG(σ) =
e−H(σ)

ZG
≡ wG(σ)∑

σ w
G(σ)

(5)

where

ZG =
∑
σ

e−H(σ), wG(σ) = e−H(σ) (6)

A sampler from this Gibbs measure can be realized by defining a Markov chain defined on

the state space {−1, 1}V with invariant measure πG, following the usual ideas of Markov

Chain Monte Carlo methods. A standard algorithm is the Gibbs sampler which at each

integer time:

- a site i ∈ V is randomly chosen (with uniform distribution);

- the configuration outside i is left unchanged;

- the new spin at i is sampled from the conditional measure πG( · |σV \{i})

Thus the transition matrix for the Markov chain is

PGσ,τ =


1
|V |

e−hi(σ)σi

ehi(σ)σi+e−hi(σ)σi
if τ = σi

1−
∑

i∈V P
G
σ,σi

if σ = τ

0 otherwise

(7)

where, as usual, σi denotes the configuration obtained by σ with spin flip at site i. Different

single spin flip dynamics can also be defined, for instance with Metropolis rates.

On the other side we can define an alternative collective dynamics, that we will call

PCA dynamics, in the following way. Define

H(σ, σ′) =
∑
i∈V

[
− hi(σ)σ′i + q(1− σiσ′i)

]
(8)

where q > 0. The PCA dynamics is the Markov chain defined by the following transition

probabilities

PPCAσ,σ′ =
e−H(σ,σ′)

Zσ
(9)
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where

Zσ =
∑
τ

e−H(σ,τ) = wPCA(σ) (10)

It is a standard task to show that the chain is reversible with respect to the measure

πPCA(σ) =
∑

τ e
−H(σ,τ)∑

τ,τ ′ e
−H(τ,τ ′)

≡ wPCA(σ)∑
τ w

PCA(τ)
=
wPCA(σ)
ZPCA

(11)

Note that πPCA turns out to be the marginal of the Gibbs measure on the space of

pairs of configurations

µ2(σ, τ) =
e−H(σ,τ)

ZPCA
. (12)

Due to the definition (8) the transition probabilities of this Markov chain can be written

as a product of the transition probability of each component σ′i of the new configuration,

as usual for PCAs:

PPCAσ,σ′ =
∏
i∈V

P (σ′i|σ), (13)

where

P (σ′i|σ) =
exp[σ′i(hi(σ) + qσi)]
2 cosh(hi(σ) + qσi)

.

Our goal is to show that, for a suitable choice of “moderately” large q:

- the invariant measure of the PCA πPCA is “close” to πG;

- the PCA updates at each time step a large number of spins.

In order to state precisely the results we obtain, we recall the total variation distance,

or L1 distance, between πG and πPCA as

‖πPCA − πG‖TV =
1
2

∑
σ

|πPCA(σ)− πG(σ)| (14)

1.2 Results

Before stating our main result, we make some remarks on the relation between πG and

πPCA. Note first of all that

wPCA(σ) =
∑
τ

e
P
i∈V [hi(σ)τi−q(1−σiτi)] =

∑
I⊂V

e
P
i∈V hi(σ)σi−2

P
i∈I hi(σ)σi−2q|I| =
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= wG(σ)
∏
i∈V

(1 + δφi) (15)

where δ = e−2q and

φi = e−2
P
j Jijσiσj

We will call

f(σ) =
∏
i∈V

(1 + δφi). (16)

It easily follows that

πPCA(σ) = πG(σ)
f

πG(f)
(17)

We also define the probability π̃ by

π̃(σ) = πG(σ)
f2

πG(f2)
(18)

Theorem 1.1 For any q ≥ 0 let δ := e−2q. Suppose:

(a) δ = δ(|V |) is such that lim|V |→∞ δ2|V | = 0;

(b) there exists δ0 > 0 such that

sup
V

sup
δ∈[0,δ0]

1
|V |

V arπ

[∑
i∈V

φi
1 + δφi

]
<∞ (19)

for π = πPCA and π = π̃.

Then

lim
|V |→∞

‖πPCA − πG‖TV = 0. (20)

Condition( 20) follows by controlling the decay of correlations of the family of functions

{φi}. This control can be achieved by using the Dobrishin uniqueness condition. More

precisely, we obtain the following result.

Proposition 1.2 Assume

sup
i

∑
j

tanh(2 |Ji,j |) < 1. (21)

Then assumption (b) in Theorem 1.1 holds.
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1.3 Discussion and open problems

1- Low temperature

Hypothesis (21) is the Dobrushin condition for uniqueness of phase for the Gibbs

measure πG. It is needed due to the generality of the interaction we are considering.

Since the crucial ingredient in the proof of the Theorem is the correlation decay,

we expect that hypothesis (21) can be weakened if additional assumptions on the

interaction are considered. This will be discussed in a forthcoming paper.

In the last part of this paper we discuss in detail the Curie Weiss model. In the

uniqueness region we show that (20) holds with the condition lim|V |→∞ δ = 0, much

weaker than condition (a) in Theorem 1.1, while lim|V |→∞ δ2|V | = 0 suffices also

at low temperature for a modified dynamics which is forced to select configurations

with positive magnetization.

2- Convergence to equilibrium of PCA

Note that when δ = 1
|V | the PCA dynamics is essentially equivalent to sequential

Gibbs sampler, since the average number of spins that are updated in a time step

is of order δ|V |. A natural question is then to compare the speed of convergence to

equilibrium of the PCA dynamics for 1
|V | � δ � 1√

|V |
vs single spin flip dynamics.

This is of course a central problem in applications. A quantitative comparison of the

two dynamics is beyond the purposes of this paper. Our aim is rather to understand

to what extent sampling of Gibbs measures can be implemented by parallel dynamics.

3- Applications

The PCA dynamics discussed in this paper has been introduced in [9] in order to

study the clique problem on large graphs. In that case the general setup was more

complicated since the canonical ensemble was considered. The excellent numerical

results obtained for the clique problem, encouraged us to better undersatnd the PCA

dynamics. In [6] a phase transition in the case of random graphs was proved. In

general the extension of the result of this paper to the canonical ensemble is an

interesting problem, and is currently under investigation.
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1.4 Further remarks on the parallelization of the algorithm

The results discussed in this paper may be interesting in the context of parallel computing.

We give here some hints in this direction.

We first recall that the transition probability Pσ,σ′ of the PCA is a product measure,

whose marginals are given by

P (σ′i = σi|σ) =
1

1 + exp(−2
∑

j Jjiσiσj − 2q)

P (σ′i = −σi|σ) =
exp(−2

∑
j Jjiσiσj − 2q)

1 + exp(−2
∑

j Jjiσiσj − 2q)
.

The corresponding Markov Chain is realized by the following simple Monte Carlo algo-

rithm: for each site i sample independent random numbers ui from the uniform distribu-

tion on [0, 1] and flip the spin i if ui <
exp(−2

P
j Jjiσiσj−2q)

1+exp(−2
P
j Jjiσiσj−2q) . Although this algorithm

can be easily parallelized if several processors are available, it is not convenient in the

(realistic) case of a number K of processors available much smaller than the number of

sites |V |; indeed, to perform a single step of this MCMC it is necessary to sample |V | � K

independent random variables.

A more efficient version of the algorithm, compared to the standard single spin flip

algorithm, can be obtained in the regime covered by Theorem 1.2, in particular when q

is large. Note that whenever ui > p := e−2q+2J

1+e−2q+2J , the spin σi is left unchanged; thus, for

q large, the majority of the random extractions of ui are ineffective. This suggests the

following algorithm, that realizes the same transition probability of the PCA:

• sample a number k from a Binomial distribution of parameters |V |, p;

• sample a subset Ik ⊆ V with k elements, from the uniform distribution over these

subsets;

• for each i ∈ Ik, sample independent random numbers ui from the uniform distribu-

tion on [0, 1] and flip the spin i if ui < e−2(J+
P
j Jjiσiσj) 1+e2J−2q

1+e
−2

P
j Jjiσiσj−2q .

If q is chosen so that |V |p is of the order of K (the number of processors), this algorithm

can be efficiently parallelized, since the ui’s can be sampled by different processors.

To compare the performances of this parallel algorithm with a single spin flip dynamics

we fix some notations. Let F be the time needed to compute the quantity
∑

j Jjiσiσj ,
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which is needed for the spin update of both algorithms, and S the time needed to sample a

site of V from the uniform distribution. For the challenging case of long range interaction,

F is of order |V |, and it is much larger than S. We want to compare the two times TG

and TPCA needed to try to update at least once all the sites in V in the single spin flip

and in the PCA dynamics respectively. Note that TG is of order

(F + S)n log n.

For the PCA, the time needed to select a random subset Ik of cardinality k is of order Sk,

while the sampling of the random numbers ui, i ∈ Ik, takes only a time of order 1, since

it can be performed in parallel by the K ∼ |V |p processors. Thus TPCA is of order

(F + Sk)
n log n
k

∼ TG
K
,

since Sk � F . We therefore obtain a speedup of order 1/K.

In the short range case, S could be bigger than F , and, on the other hand, the single

spin flip dynamics could be parallelized by other tricks. The comparison in this case is

more delicate, and will be the subject of further investigations.

2 Proofs

2.1 Proof of Theorem 1.1

Using (15), (16) and (17), we have

‖πPCA − πG‖TV =
∑
σ

wG(σ)
ZG

∣∣∣∣πPCA(σ)
πG(σ)

− 1
∣∣∣∣ =

∑
σ

wG(σ)
ZG

∣∣∣∣wPCA(σ)
wG(σ)

ZG

ZPCA
− 1
∣∣∣∣

=
∑
σ

wG(σ)
ZG

∣∣∣∣ f(σ)
πG(f)

− 1
∣∣∣∣ = πG

(∣∣∣∣ f(σ)
πG(f)

− 1
∣∣∣∣) ≤ (varπG(f))1/2

πG(f)
(22)

Therefore we need an estimate on the dependence on δ of the quantity

∆(δ) =
πG(f2)

(πG(f))2
− 1 (23)
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More precisely, we want to show that

1
|V |

lnπG(f2)− 2
|V |

lnπG(f) = O(δ2) (24)

Note first that, writing

f(σ) = exp

[∑
i∈V

log(1 + δφi(σ))

]
(25)

we have
d

dδ
log πG[f ] = πPCA

[∑
i∈V

φi
1 + δφi

]
(26)

and
d2

d2δ
log πG[f ] = −πPCA

[∑
i∈V

(
φi

1 + δφi

)2
]

+ V arπPCA

[∑
i∈V

φi
1 + δφi

]
, (27)

where we have used (17). Analogously, using (18), we have

d

dδ
log πG[f2] = 2π̃

[∑
i∈V

φi
1 + δφi

]
(28)

and
d2

d2δ
log πG[f2] = −2π̃

[∑
i∈V

(
φi

1 + δφi

)2
]

+ 4V arπ̃

[∑
i∈V

φi
1 + δφi

]
. (29)

The idea is to exploit this explicit results in order to control up to the second order an

expansion of (24) around δ = 0. Clearly the first order computed in δ = 0 exhibit an

explicit cancellation, since for δ = 0 we have that πG = πPCA = π̃. In order to show (24),

therefore, it is enough to prove that

sup
V

sup
δ∈[0,δ0]

1
|V |

(∣∣∣∣ d2

d2δ
log πG[f ]

∣∣∣∣+
∣∣∣∣ d2

d2δ
log πG[f2]

∣∣∣∣) < +∞,

which, by (27) and (29), follows from (19).

�

2.2 Föllmer’s estimate

Let π be a probability of {−1, 1}Zd , and denote by π
(
σi|σ\i

)
its local specifications. Define,

for i 6= j, the Dobrushin coefficients:

γij = sup
σ

∣∣∣π (σi = 1|σ\i
)
− π

(
σi = 1|σj\i

)∣∣∣ .
12



Assume the so-called Dobrushin uniqueness condition:

γ := sup
i

∑
j

γij < 1. (30)

Denoting by Γ the matrix with elements γij , under (30) the matrix

D :=
+∞∑
n=0

Γn

is well defined. For a function f : −1, 1Zd → R, set

ρj(f) := sup
σ

∣∣f(σ)− f(σj)
∣∣ .

The following is the main result of the beautiful paper [5] by H. Föllmer (se also [11] for

related results).

Theorem 2.1

|Covπ(f, g)| ≤ 1
4

∑
i,j

Dijρi(f)ρj(g). (31)

2.3 Proof of Proposition 1.2

We begin by showing that, under (21), the Dobrushin Uniqueness condition hold for πPCA

and π̃, for δ sufficiently small.

Proposition 2.2 Let γi,j be the Dobrushin coefficients for πPCA (resp. π̃). Then

γi,j ≤ tanh(2 |Ji,j |) +
1
2
ρj(ψi,δ),

where ψi,δ is defined by

2ψi,δ(σ) = log
1 + δe−2hi(σ)

1 + δe2hi(σ)
+
∑
l 6=0

log
1 + δ exp[−2Ji,lσl − 2σlhi,l(σ)]
1 + δ exp[2Ji,lσl − 2σlhi,l(σ)]

with

hi,l(σ) =
∑
j 6=l

Ji,jσj .

Proof. The proof consists in a rather direct and straightforward computation. We

give the proof for π = πPCA. The proof for π̃ is similar. Set, for simplicity, i = 0. We
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write

Hi := log(1 + δφi),

so that

πPCA(σ) =
1

ZPCA
exp

∑
i,j

Ji,jσiσj +
∑
i

Hi(σ)

 .
Note that ∑

i,j

Ji,jσiσj = 2σ0h0(σ) + C1(σ\0),

where, with C1(σ\0) we denote all remaining terms which do not depend on σ0. Similarly

H0(σ) = log
(

1 + δe−2σ0h0(σ)
)

=
1
2
σ0 log

1 + δe−2h0(σ)

1 + δe2h0(σ)
+ C2(σ\0),

and, for l 6= 0,

Hl(σ) = log
(

1 + δe−2σl
P
j Jl,jσj

)
= log (1 + δ exp[−2J0,lσ0σl − 2σlh0,l(σ)])

=
1
2
σ0 log

(1 + δ exp[−2J0,lσl − 2σlh0,l(σ)])
(1 + δ exp[2J0,lσl − 2σlh0,l(σ)])

+ C3(σ\0).

It follows that

πPCA(σ0 = 1|σ\0) =
exp [2h0(σ) + ψ0,δ(σ)]

2 cosh(2h0(σ) + ψ0,δ(σ))
.

Now, writing ψδ for ψ0,δ, we have

2h0(σ) + ψδ(σ)−
(
2h0(σj) + ψδ(σj)

)
= 4J0,j + ψδ(σ)− ψδ(σj).

Setting x := −2h0(σ)− ψδ(σ) and y := 4J0,j + ψδ(σ)− ψδ(σj), we have

πPCA(σ0 = 1|σ\0)− πPCA(σ0 = 1|σj\0) =
e−x

2 cosh(x)
− e−x−y

2 cosh(x+ y)
=: gy(x).

Unless y = 0 (which gives gy ≡ 0), the derivative
(
g2
y

)′ vanishes only at x = −y/2, where

g2
y attains its absolute maximum tanh2(y/2). This yields

∣∣∣πPCA(σ0 = 1|σ\0)− πPCA(σ0 = 1|σj\0)
∣∣∣ ≤ tanh

(
2|J0,j |+

1
2

∣∣ψδ(σ)− ψδ(σj)
∣∣) .
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Since, for every a, b ≥ 0, tanh(a + b) ≤ tanh(a) + b, the conclusion of the lemma follows.

To complete the proof that the Dobrushin Uniqueness condition hold for πPCA and π̃,

for δ sufficiently small, it is enough to show the following result.

Lemma 2.3 We have

sup
i

∑
j

ρj(ψi,δ) = O(δ).

as δ → 0.

Proof. Set i = 0 and ψ0,δ = ψδ. The estimate for a generic i is similar. Ignoring an

irrelevant factor 2

ρj(ψδ) ≤ ρj

(
log

1 + δe−2h0(σ)

1 + δe2h0(σ)

)
+ ρj

(
log

1 + δ exp[−2J0,jσj − 2σjh0,j(σ)]
1 + δ exp[2J0,jσj − 2σjh0,j(σ)]

)

+
∑
l 6=0,j

ρj

(
log

1 + δ exp[−2J0,lσl − 2σlh0,l(σ)]
1 + δ exp[2J0,lσl − 2σlh0,l(σ)]

)
.

The main difficulty comes from the third term, and we only deal with it, i.e. we show that

∑
j

∑
l 6=0,j

ρj

(
log

1 + δ exp[−2J0,lσl − 2σlh0,l(σ)]
1 + δ exp[2J0,lσl − 2σlh0,l(σ)]

)
= o(δ).

Set

Cl(σ) := log
1 + δ exp[−2J0,lσl − 2σlh0,l(σ)]
1 + δ exp[2J0,lσl − 2σlh0,l(σ)]

= log
(

1− 2δ
sinh(2J0,lσl) exp[−2σlh0,l(σ)]
1 + δ exp[2J0,lσl − 2σlh0,l(σ)]

)
.

It is not restrictive to assume that δ is small so that

2δ
sinh(2 |J0,l|) exp[−2σlh0,l(σ)]
1 + δ exp[2J0,lσl − 2σlh0,l(σ)]

<
1
2
.

Since, on (−1/2, 1/2) the map x 7→ log(1− x) has Lipschitz constant 2, we have

∣∣Cl(σ)− Cl(σj)
∣∣ ≤ 4δ sinh(2|J0,l|)

∣∣∣∣∣ e−2σlh0,l(σ
j)

1 + δe2J0,lσl−2σlh0,l(σj)
− e−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)

∣∣∣∣∣
≤ 4δ sinh(2|J0,l|)

∣∣∣e−2σlh0,l(σ
j) − e−2σlh0,l(σ

)
∣∣∣

≤ 4δe2J sinh(2|J0,l|)
∣∣h0,l(σj)− h0,l(σ)

∣∣ ≤ 4δe4J |J0,l||Jj,l|,

15



where we have also used the facts that the map x 7→ x
1+ax has Lipschitz constant 1 for

x > 0 and a > 0, that |ex − ey| ≤ emax(|x|,|y||x − y| and that sinh(2|J0,l|) ≤ e2J |J0,l|. It

follows that

∑
j

∑
l 6=0,j

ρj

(
log

1 + δ exp[−2J0,lσl − 2σlh0,l(σ)]
1 + δ exp[2J0,lσl − 2σlh0,l(σ)]

)
≤ 4δe4JJ2 = O(δ).

Proof of Proposition 1.2. For π = πPCA or π = π̃ we have, by Theorem 2.1,

1
|V |

V arπ

[∑
i∈V

φi
1 + δφi

]
=

1
|V |

∑
i,j∈V

Covπ

(
φi

1 + δφi
,

φj
1 + δφj

)

≤ 1
|V |

∑
i,j∈V

∑
h,k

Dhkρh

(
φi

1 + δφi

)
ρk

(
φj

1 + δφj

)
.

Since the map x 7→ x
1+δx has Lipschitz constant 1 on [0,+∞), we have that

ρh

(
φi

1 + δφi

)
≤ ρh(φi).

Moreover, it is easily seen that

ρh(φi) ≤ e2J |Ji,h|.

Therefore, since

sup
i

∑
j

(Γn)ij ≤ γ
n

which implies

sup
h

∑
k

|Dhk| ≤
1

1− γ
,

we get
1
|V |

V arπ

[∑
i∈V

φi
1 + δφi

]
≤ e4J 1

|V |
∑
i,j∈V

∑
h,k∈V

Dhk|Ji,h||Jj,k|

≤ J2e4J 1
|V |

∑
h,k

Dhk ≤
1

1− γ
J2e4J ,

which completes the proof of Proposition 1.2
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Remark 2.4 The control of the total variation distance between πG and πPCA by

sup
δ∈[0,δ0]

1
|V |

V arπPCA

[∑
i∈V

φi
1 + δφi

]
, (32)

may be useful even if the above quantity diverges as |V | → +∞. For instance, for the one

dimensional model with

Ji,j :=
J1

|i− j|2
,

it is known the existence of an intermediate phase for which the spin-spin correlations

decay as |i− j|−2+ε, for some ε ∈ (0, 2] (see [8]). Assuming that a similar decay hold for

the correlations of the ϕi’s, the quantity in (32) is expected to behave as |V |ε as |V | ↑ +∞.

Thus, for Theorem 1.2 to hold, we need

lim
|V |↑+∞

δ2|V |1+ε = 0

that, for ε < 1, still allow δ|V | → +∞, i.e. a large number of spin updates per step.

3 The mean field Ising model

As an example we discuss the performances of the PCA dynamics for the mean-field Ising

model, or Curie-Weiss model. In this section some computations are given only at a

heuristic level. The rigorous treatment would be straightforward but rather lengthy.

3.1 Distance between πPCA and πG and comparison of phase diagrams

We consider now the following mean field hamiltonian on X := {−1,+1}{1,...,n}

HCW (σ) = − J

2n

∑
i,j

σiσj (33)

and the corrisponding pair hamiltonian

HCW (σ, σ′) = − J

2n

∑
i,j

σiσ
′
j + q

∑
i

(1− σiσ′i) (34)
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By using the definitions m = m(σ) = 1
n

∑
i σi, we can study the mean field model in the

standard way. Indeed we have immediately

HCW (σ) = −J
2
nm2

so that

πG(m) :=
∑

σ:m(σ)=m

πG(σ) =
enF (m)+o(n)

ZG

with

F (m) =
J

2
m2 + I(

1 +m

2
), I(x) := −x lnx− (1− x) ln(1− x).

The small remainder o(n) is such that o(n)
n → 0 uniformly for |m| < 1 − ε for any fixed

ε. The contribution of the magnetizations close to ±1 can be shown to be negligible.

Moreover

ZG = enF (m∗)+o(n)

where m∗ := arg maxF (m) satisfies the standard condition for the Curie-Weiss model:

Jm∗ =
1
2

ln
1 +m∗

1−m∗

obtaining m∗ = 0 for J < 1 while for J > 1 the solutions m∗+ = −m∗− can be obtained

graphically.

With an immediate computation we get for the function f defined in (16):

f(m) =
(

1 + δe−Jm
)nm+1

2
(

1 + δeJm
)n 1−m

2 =: eng(m,δ) (35)

with

g(m, δ) :=
a+ b

2
+m

a− b
2

with

a = a(m, δ) := ln(1 + δe−Jm), b = b(m, δ) := ln(1 + δeJm)

The function g(m) = g(m, δ) as a function of m, is a C∞ function with the following

properties:

g(0) = ln(1 + δ), g′(0) = 0, g′′(0) = −δJ(1− J)
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g′(m) = −δmJ cosh(Jm) + δ(J − 1) sinh(Jm) + o(δ) (36)

g(−m) = g(m).

By defining m̄ := arg maxF (m) + δg(m) we have that the measure πPCA is concen-

trated on the configurations with magnetization m̄.

In the case J < 1 it is immediate to verify that m̄ = m∗ = 0. Recalling that

F (m) = F (0)− 1− J
2

m2 + o(m2),

the probability measures πG and πPCA can be estimated by Gaussian distributions cen-

tered in 0 with variances [n(1−J)]−1 and [n(1−J − δJ(1−J))]−1 respectively. Therefore

we can compute explicitly

f(m)
πG(f)

= en(g(m)−g(0))(1 + on(1)),

yielding, for small δ and large n,

πG(f2)
(πG(f))2

− 1 =
∑
m

(
enF (m)

ZG
f(m)
πG(f)

)[
f(m)
πG(f)

− 1
]

=
∑
m

πPCA(m)
[
f(m)
πG(f)

− 1
]
'
∑
m

πPCA(m)
[
e−nδJ(1−J)m2/2 − 1

]

'
√
n(1− J − δJ(1− J))

2π

∫
dme−n(1−J−δJ(1−J))m2/2

[
e−nδJ(1−J)m2/2 − 1

]
' Jδ

2
.

Hence we obtain in this case a result stronger than Theorem 1.2 since we do not need

the hypothesis δ2n→ 0, being enough that δ → 0 as n→∞.

In the low temperature case J > 1 , for any finite J (temperature strictly positive),

again we obtain the convergence result when δ2n → 0, if the system is restricted to a

single phase. From the dynamical point of view the restriction to a single phase can be

obtained simply by a reflecting barrier, following for instance [13]. Consider the dynamics

on X+ := {σ : m(σ) ≥ 0} obtained by generating a candidate move σ′ ∈ X according to

(9) with the pair hamiltonian (34), and accepting it as a new state if σ′ ∈ X+ and adopting

−σ′ as new state if σ′ 6∈ X+, obtaining in this way for σ, σ′ ∈ X+ a transition probability

P+(σ, σ′) = PPCA(σ, σ′) + PPCA(σ,−σ′)
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This dynamics on X+ is reversible w.r.t. the invariant mesaure restricted to X+: for each

σ, σ′ ∈ X+

πPCA|X+(σ)P+(σ, σ′) =
πPCA(σ)
πPCA(X+)

[
PPCA(σ, σ′) + PPCA(σ,−σ′)

]

=
πPCA(σ′)
πPCA(X+)

[
PPCA(σ′, σ) + PPCA(−σ′, σ)

]
= πPCA|X+(σ′)P+(σ′, σ),

where we used the fact that πPCA(σ′) = πPCA(−σ′). Moreover with the same argument

used in the high temperature case, we obtain |m∗ − m̄| = O(δ) and

πG(f2)
(πG(f))2

− 1 =
∑
m

(
enF (m)

ZG
f(m)
πG(f)

)[
f(m)
πG(f)

− 1
]
'
∑
m

πPCA(m)
[
en(g(m)−g(m∗)) − 1

]

∼ en[g(m̄)−g(m∗)] − 1 ∼ eng′(m∗)(m̄−m∗) − 1 = O(δ2n),

where we used the fact that g′(m) = O(δ) (see (36)).

3.2 Convergence to equilibrium

We give an estimate of the mixing time of the PCA for high temperature (J < 1) using

a classical coupling argument. We first recall that the transition probabilities of the PCA

obey the following identity:

P (σ′i|σ) =
eσ
′
i(Jm(σ)+qσi)

2 cosh((Jm(σ) + qσi)
. (37)

Given two configurations σ+ and σ− we will write σ+ � σ− if σ+
i ≥ σ−i ∀ i ∈ V .

We will define a coupling of the transition probabilities P (σ
′+|σ+) and P (σ

′−|σ−) in the

following way: we extract for each site i ∈ V an independent random variable ui uniformly

distributed in [0, 1]. Then, using the same random variable for both realizations of our

PCA we say that σ′±i = −1 if ui ≤ P (σ′±i = −1|σ±) and σ′±i = +1 otherwise. It is

immediate to see that this updating rule gives a marginal distribution for both σ′+ and

σ′− which is the original distribution of our PCA chain, and that if σ+ � σ− then also

σ′+ � σ′−. If we now denote with ndiff = n
2 (m+ −m−) the number of sites i ∈ V such

that σ+
i > σ−i , and with n′diff the number of sites i ∈ V such that σ′+i > σ′−i , using (37)
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and the coupling rule we have that

E(n′diff |σ±) =
n

2
(m+ −m−)

(
1− e−Jm

+−2q

1 + e−Jm+−2q
− 1 +

1
1 + eJm−−2q

)

+
n

2
(1 +m−)

(
e−Jm

−−2q

1 + e−Jm−−2q
− e−Jm

+−2q

1 + eJm+−2q

)
(38)

+
n

2
(1−m+)

(
1

1 + eJm−−2q
− 1

1 + eJm+−2q

)
.

This can be written, up to the first order in e−2q = δ, as

E(n′diff |σ±) = ndiff − nδ(m+ cosh Jm+ −m− cosh Jm− − sinh Jm+ + sinh Jm−) +O(δ2)

(39)

Using now the fact that

sinh Jm± ≤ Jm± cosh Jm±

we have that

E(n′diff |σ±) ≤ ndiff − nδ
1− J
J

(Jm+ cosh Jm+ − sinh Jm−) +O(δ2) (40)

and by the inequality

Jm+ cosh Jm+ − sinh Jm− ≥ J(m+ −m−)

we obtain finally

E(n′diff |σ±) ≤ ndiff(1− 2δ(1− J) +O(δ2)) (41)

Consider now the coupling applied to two copies of the PCA starting with spins all +1

and −1 respectively. When J < 1, (41) shows that E(ndiff(t)) contracts exponentially in

t. Denoting by τc the coalescing time of the two chains, we have

P (τc > t) ≤ P (ndiff(t) 6= 0) ≤ E(ndiff(t)) ≤ 2n [1− 2δ(1− J)]t

By monotonicity, the total variation distance from equilibrium at time t of a PCA chain

starting from an arbitrary configuration is bounded above by P (τc > t). This implies that

the mixing time Tmix is of order logn
(1−J)δ .
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