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Abstract

Adipose-derived mesenchymal stem cells (ASCs) are promising therapeutic tools in regen-

erative medicine because they possess self-renewal, differentiation and immunomodulatory

capacities. After isolation, ASCs are passaged multiple times in vitro passages to obtain a

sufficient amount of cells for clinical applications. During this time-consuming procedure,

ASCs become senescent and less proliferative, compromising their clinical efficacy. Here,

we sought to investigate how in vitro passages impact ASC proliferation/senescence and

expression of immune regulatory proteins. MicroRNAs are pivotal regulators of ASC physiol-

ogy. Particularly, miR-200c is known to maintain pluripotency and targets the immune

checkpoint Programmed death-ligand 1 (PD-L1). We therefore investigated its involvement

in these critical characteristics of ASCs during in vitro passages. We found that when tran-

siently expressed, miR-200c-3p promotes proliferation, maintains stemness, and contrasts

senescence in late passaged ASCs. Additionally, this miRNA modulates PD-L1 and Indo-

leamine 2,3-Dioxygenase (IDO1) expression, thus most likely interfering with the immuno-

regulatory capacity of ASCs. Based on our results, we suggest that expression of miR-

200c-3p may prime ASC towards a self-renewing phenotype by improving their in vitro

expansion. Contrarily, its inhibition is associated with senescence, reduced proliferation and

induction of immune regulators. Our data underline the potential use of miR-200c-3p as a

switch for ASCs reprogramming and their clinical application.
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Introduction

Adipose-derived mesenchymal stem cells (ASCs) represent a population of self-renewing mul-

tipotent adult cells. They are isolated from the vascular stroma of adipose tissue.

The main biological properties of ASCs useful in cell-based therapy are: 1) the ability to pro-

liferate and to maintain their stemness. These are important characteristics for the maintenance

of a relatively stable clone of self-renewing cells within the target tissue, 2) the expression of

immunomodulatory proteins on the surface of ASCs or secreted enzymes, in the so-called secre-

tome, which enable them to escape immune recognition. ASCs are able to improve the micro-

environment for tissue healing through strong immunosuppressive functions by decreasing

inflammatory cytokine production. Thus, ASCs can be used in the clinical treatment of inflam-

matory and autoimmune pathologies, such as multiple sclerosis, inflammatory bowel disease,

graft-versus-host disease (GvHD), rheumatoid arthritis (RA) and other diseases [1–5].

One of the main caveats for ASCs clinical applications is that they often lose the stem cell

niche environmental protection and sustainment after their isolation and in vitro expansion.

Stemness is important to maintain ASCs pluripotency, but also their immunomodulatory

properties.

Freshly isolated human ASCs express the pluripotency markers Nanog, Oct4 and Sox2 dur-

ing in vitro culture but their expression gradually decreases. This leads to stemness loss and

senescence of ASCs, with limitations of proliferation/population doubling, this being a major

hindrance in ASC-based therapy [6]. The replicative senescence is regulated by the p53/p21

pathway, which can be differentially expressed during the in vitro passaging along with the

stemness markers [7]. Moreover, there is a plethora of epigenetic-sensitive paths involved in

ASC differentiation [8]. Even the immunosuppressive ability of ASCs is cell passage dependent

[9]. Critically, during serial passaging, ASCs start losing their immunosuppressive properties.

For instance, expression of Major Histocompatibility Complex, Class I, G (HLA-G), a non-

classical MHC-class I molecule, decreases in adult ASCs together with immunotolerance

through inhibition of NK, allogeneic T-cell responses and dendritic cells (DC) [10]. HLA-G is

also involved in epigenetic regulation of tolerance to cardiac ischemia as well as susceptibility

to infection after kidney transplantation [11–13]. A well-known immune checkpoint (IC) with

immunosuppressive functions is the Programmed death-ligand 1 (PD-L1) [14]. It binds to its

ligand PD-1 on T-cells and suppresses T cell immune response [15]. PD-L1 function has been

extensively studied on human mesenchymal stem cells from placenta, umbilical cord blood

and bone marrow, but little is known about its expression and function in ASCs [16]. ASCs

also secrete the catabolic enzyme IDO1, which inhibits immune response and tissue inflamma-

tion [17]. IDO1 catalyzes the cleavage of the essential amino acid tryptophan into “Kynure-

nines” which leads to important immunomodulation [17]. Over-expression of IDO1 induces

graft tolerance and attenuates acute rejection of tissue-engineered lung allografts in rats [18].

Thus, expression of co-inhibitory molecules, such as PD-L1, as well as anti-inflammatory

enzymes like IDO1, might contribute to immunomodulation of ASCs during in vitro expan-

sion [16, 19–21]. To date, the role of the ICs in ASC-mediated immunomodulation has not

been thoroughly investigated.

MicroRNAs (miRNAs) 18–25 nucleotides long, endogenous, noncoding RNAs that post-

transcriptionally regulate gene expression through complementary binding of the so called

seed sequence of miRNA to the microRNA response element (MRE) on 3’UTR of the target

mRNA [22]. It is now established that miRNAs play a critical role in the maintenance, differ-

entiation, and lineage commitment of stem cells in various cellular processes [23–25]. MiR-

200c, one of the five members belonging to miR-200 family, regulates the mesenchymal-to-

epithelial transition (MET) [26]. There is an inverse correlation between miR-200c and Nanog
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in cancer [27]. Contrarily, in induced pluripotent stem cells (iPSC), Oct4 and Sox2 directly

binds and activates the promoters regions of the miR-200 family members, promoting iPSC

regeneration [23]. In addition, the knockdown of miR-200c downregulates Nanog/c-Myc

expression and inhibits embryonic stem cells renewal, thus indicating to the ability of miR-

200c to maintain stem cells pluripotency and self-renewal properties [28].

Here, we investigated the role of miR-200c-3p in ASCs stemness, proliferation and senes-

cence during in vitro expansion. Furthermore, to better understand the role of PD-L1 in

immunomodulation, its expression was analyzed in serially passaged ASCs.

Materials and methods

Cell isolation and culture

ASCs were isolated from abdominal subcutaneous fat liposuction aspirates of five healthy

donors who underwent elective plastic surgery. Liposuction aspirates were transferred to the

laboratory and processed under sterile conditions within 24 h. Isolation and phenotypic charac-

terization of ASCs were performed as previously described [8]. Briefly, liposuction aspirates

were washed extensively with sterile phosphate-buffered saline (PBS) containing 2% penicillin/

streptomycin (PS) and subjected to enzymatic digestion with 0.075% collagenase type I for 30–

60 min at 37˚C and 5% CO2. The suspension was filtered through a 100-μm mesh filter to

remove debris and centrifuged for 5 min at 2000 rpm. The pellets of stromal vascular fraction

(SVF) containing ASCs were washed with PBS, resuspended in DMEM-Ham’s F-12 (v/v, 1:1)

(DMEM/F12; Gibco) supplemented with 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomy-

cin, and 2 mM l-glutamine and plated in a 75-cm2 tissue culture flask coated with collagen (type

IV; Sigma-Aldrich, Milan, Italy). ASCs were self-selected out of the SVF, since they were adher-

ent to the plastic tissue cultureware. ASCs were maintained in a 5% CO2 incubator at 37˚C in a

humidified atmosphere, with medium change twice a week. At 80–90% confluence, cells were

detached with 0.5 mM EDTA/0.05% trypsin (Gibco) for 5 min at 37˚C and replated. ASCs were

expanded and the cell viability was assessed using the trypan blue exclusion assay. Cell morphol-

ogy was evaluated by phase contrast microscopy. A homogeneous population of ASCs was sub-

sequently checked by analyzing the surface marker expression profile, as previously described

[29]. Experiments were conducted at passage numbers from 2 to 15, as indicated. The absence

of mycoplasma contamination was confirmed by PCR with specific primers.

Statement of research involving human subjects

The use of clinical samples of adipose tissue for ASCs isolation were complied with the Decla-

ration of Helsinki 1975, revised in 2008, and the study methodologies have been approved by

the Institutional Review Board of the Department of Experimental Medicine of the Sapienza

University of Rome. The experiments were undertaken with the understanding and written

fully informed consent of each subject.

MiR-200c-3p mimic and inhibitor transfections

One day before transfection, ASCs at P4 or P9 were seeded in 6 well-plate at a density of 0.3 ×
105 cells/well. Transfection was performed in triplicates with 40 nM of mimic miR-200c-3p or

mimic control for cells at P4 and with miR-200c-3p inhibitor or inhibitor control for cells at

P9 (MISSION1, Sigma-Aldrich). The compounds were delivered into the cells using Dhar-

maFect Duo transfection reagent (Dharmacon, Horizon a PerkinElmer company, Diatech,

Jesi, Italy) following the manufacturer’s instructions. After 72 h, cells were harvested for total

RNA and protein extraction.
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Protein extracts and Western blot

Total cell extracts from 0.8–1.0x105 ASCs and miR-200c-3p transfectants were prepared by

RIPA lysis. 15 μg of proteins were resolved on SDS-PAGE and transferred to PVDF

membranes.

The membranes were blocked with 5% non-fat dried milk for 1h and incubated overnight

at 4˚C and 1 h at room temperature with the appropriate primary antibody. Subsequently,

HRP-conjugated anti-rabbit (ADVANSTA, San Jose, CA, USA) [1:10000 dilution] and anti-

mouse (BETHYL) [1:40000 dilution] secondary antibodies were used. The chemiluminescent

signal was detected using WesternBright ECL HRP substrate kit (ADVANSTA). Blots were

probed with the following antibodies: PD-L1 E1L3N (Cell signaling Technology, Danvers,

MA, USA) [1:1000 dilution], cyclin D1 (DCS-6) (Santa Cruz Biotechnology, Inc., Heidelberg,

Germany) [1:500 dilution], p53 (DO-1) (Santa Cruz) [1:300 dilution], p21 (F-5) (Santa Cruz)

[1:100 dilution], p-ERK (E-4) (Santa Cruz) [1:600 dilution], ERK 2 (C-14) (Santa Cruz) [1:300

dilution], CD44 (156-3C11) (Invitrogen, Thermo Fisher Scientific) [1:2500 dilution] P-STAT3

(Tyr705) (D3A7) XP (Cell signaling) and STAT3 (clone 84) (BD Transduction Lab.). β-actin

(C4) (Santa Cruz) [1:5000 dilution] was used to ensure equal protein loading. Immunoblot-

tings were repeated at least three times for each experimental conditions.

Densitometry analysis was performed with ImageJ Software (v.10.2). The number of pixels

from each protein signal imprinted on a film was normalized to the number of pixels of the

housekeeping β-actin, calculated as a ratio.

RNA extraction

Total RNA from ASCs was extracted using 0.5 ml of TRIzol™ reagent (Invitrogen, Milan,

Italy), according to the manufacturer’s instructions. RNA samples obtained with phenol-chlo-

roform extraction were quantified using a MaestroNano micro-scale spectrophotometer

(MaestroGen Inc.) and stored at -80˚C, as described [30].

Quantitative Real Time PCR (qRT-PCR)

A quantity of 0.5 μg RNA extracted from ASCs were reverse transcribed in a BioRad MyCycler

Thermal Cycler machine, with miScript II RT Kit (QIAGEN S.r.l., Milan, Italy) according to

the manufacturer’s instructions, for the subsequent detection of miRNAs and mRNAs from

the same cDNA. Detection of PD-L1 and GAPDH mRNAs was performed with QIAGEN

QuantiTect Primer Assay predesigned primers (Hs_CD274_1_SG QuantiTect Primer Assay,

Hs_GAPDH_1_SG QuantiTect Primer Assay). Amplification of p53, p21, IDO1 and GAPDH

mRNA was done using predesigned KiCqStart SYBR1 Green primers (Sigma-Aldrich, Inc.),

while the primers sequences for Nanog, Oct4, Sox2 and CD44 amplification were previously

published [31].

Mature miR-200c-3p and U6 expression levels were detected using miScript Primer Assay

(QIAGEN; Hs_miR-200c-3p_1 miScript Primer Assay, Hs_RNU6-2_11). Quantitative PCRs

were performed using SYBR1Green PCR Kit (QIAGEN) in an Applied Biosystems/StepOne

Software v2.2.2 QPCR machine. The fold change was calculated by the 2-ΔΔCt formula and the

experiments were repeated at least three times and in three technical replicates.

Colony formation assay

ASCs transfected either with miR-200c-3p mimic or inhibitor and their respective controls

were seeded in triplicates, at 72 h post-transfection, in 6-well plates at a density of 2 × 103 cells/

well. The plates were incubated at 37˚C for 14–20 days, in order to allow colonies growth.
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Growth medium was changed every 3 days. Colony formation assays were performed as previ-

ously described [31, 32] and repeated at least three times. Briefly, colonies were stained with

0.1% crystal violet for 10 min at room temperature and photographed. Then, crystal violet was

solubilized in 30% acetic acid in water for 15 min at RT, and absorbance was measured using

the Biochrom Libra S22 UV/VIS spectrophotometer (Biochrom, Berlin, DE) at a wavelength

of 595 nm. 30% acetic acid in water was used as blank control. Colony formation capacity in

mimic/anti-miR transfected cells was calculated in comparison to control mimic/inhibitor

transfected samples, arbitrarily set to 1.

Senescence-associated β-Galactosidase assay

Senescence associated (SA)-β-Galactosidase staining was performed using the Senescence

β-Galactosidase Staining Kit (Cell Signaling Technology) following the manufacturer’s

instructions. Briefly, 72 h post-transfections, ASCs were washed with PBS and fixed in fixa-

tive solution for 15 minutes at room temperature. Cells were stained with the SA-β-Galacto-

sidase staining solution for 24 h, at 37˚C. Increased endogenous β-galactosidase activity at

pH 6.0, used to determine the state of senescence, was shown by the development of a blue

colour. The percentage of SA-β-galactosidase-positive cells was determined by counting

blue-stained cells and the total number of cells per field in at least 7–8 different areas and in

triplicates for each condition. Before staining, images of living cells were taken at 72 h post-

transfection with EVOS XL Core Imaging System (ThermoFisher Scientific) at 40x

magnification.

Statistical analysis

Statistical analyses were done using Prism 7 software. Statistical significance (p values) of the

results obtained by qRT-PCR and densitometry analyses of WBs were calculated using two-

tailed unpaired t tests, ordinary one-way Anova or Dunnett’s multiple comparisons test. Statis-

tical significance for colony formation and SA-β-Galactosidase staining was performed by

two-tailed unpaired t tests. Correlation analysis was performed using Pearson correlation coef-

ficients, such as, square of correlation coefficient, R2, p value was calculated as two-tailed and

the confidence internal was set at 95%. The level of statistical significance was set at p< 0.05,

for all experiments.

Results

MiR-200c-3p and stemness markers during in vitro passages of ASC

We sought to investigate the expression of miR-200c-3p in ASCs and its possible modulation

during in vitro passages. For the experiments we have selected ASCs from passage P2. These

cells expressed high levels of CD29, CD90, CD166, CD44 mesenchymal stemness markers, but

did not express hematopoietic markers, CD34 and CD45 (S1 Fig).

Fig 1A shows the expression of miR-200c-3p in ASCs at passages 2, 4, 6, 9 and 15. The data

suggest a variable expression trend, with a reduction at P4, an increase at P6, P9 and a return

to basal levels at P15 (Fig 1A). The difference of miR-200c-3p expression between P6 and P9

was not statistically significant, thus for further experiments we used ASCs at P9. Next, we

assessed the expression of stemness markers Nanog, Oct4 and Sox2 in relationship with miR-

200c-3p expression. A concomitant increase of Nanog, Oct4 and Sox2 at P6 and P9 was fol-

lowed by a return to basal levels at P15 (Fig 1B). These results suggest to indicate a positive cor-

relation between miR-200c-3p expression and stemness in ASCs.
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Proliferation and senescence markers are modulated in ASCs during in
vitro culture

The observation of increased stemness markers expression at P4 vs P9 (Fig 1B) seems inconsis-

tent with the assumption of a physiological decrease of ASCs proliferation and stemness and a

parallel increase of senescence during in vitro passages [33]. So, we sought to investigate these

two characteristics in ASCs, at P4 and P9 passages where the switch in miR-200c-3p expression

occurs (Fig 2A). We assessed the expression of phosphorylated Extracellular Signal-Regulated

Kinase (p-ERK) and Cyclin D1, which are important regulators of ASC proliferation [34].

Fig 1. MiR-200c-3p and stemness markers expression during in vitro passages in ASCs. A. MiR-200c-3p expression by qRT-PCR, during in vitro passages (P).

MiR-200c-3p expression was normalized to U6. SD± are the mean of three independent experiments. Dunnett’s multiple comparisons test was applied to compare P2

with each of the passages. �p<0.05, ��p<0.01, ���p<0.001. B. Stemness markers during the in vitro passages were normalized to GAPDH. SD± are the mean of three

independent experiments. Ordinary one-way Anova, Dunnett’s multiple comparisons test was performed for each stemness marker and p values were calculated

comparing P2 with the rest of the passages. �p<0.05, ��p<0.01, ����p<0.0001.

https://doi.org/10.1371/journal.pone.0257070.g001

Fig 2. Expression of proliferation/senescence markers at P4 and P9 passages in ASCs. A. Expression analysis of

miR-200c-3p at P4 versus P9 was performed by qRT-PCR and calculated as a fold change using 2-ΔΔCt. SD± is the

mean of three experiments and the p values were calculated with two-tailed unpaired t test, �p<0.05, ���p<0.001. B.

Western blot analysis of the proliferation-related markers p-ERK, ERK, cyclin D1, and the senescence-related markers

p53 and p21, at P4 and P9. β-Actin was used as loading control. WBs were repeated twice. Densitometric analysis was

performed with ImageJ Software (v.10.2) for each protein. Normalization was calculated as a ratio between the number

of pixels (n.p.) of p-ERK divided to the n.p. of ERK and the rest of the proteins normalized with β-actin. SD± is the

mean of two WBs and the p values were calculated with two-tailed unpaired t test, �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0257070.g002
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Since p53/p21 axis antagonizes self-renewal and pluripotency in human embryonic stem cells

and high expression of these markers is associated with cellular senescence [35], their expres-

sion was also analyzed in ASCs.

The expression of p-ERK increased at P9, while there was a reduction of p53 and p21. In

contrast, cyclin D1 was unaffected (Fig 2B). The corresponding densitometry analysis is

shown in Fig 2B (right panel).

Taken together, we suggest that miR-200c-3p might favor proliferation and stemness by

contrasting the p53/p21 axis.

MiR-200c-3p affects ASC stemness gene expression

To test the hypothesis that miR-200c-3p could regulate stemness of ASCs, we performed

mimic-miR-200c-3p transfections in ASCs at P4 when stemness markers expression is low

(Fig 1B). At 72 h post-transfection, miR-200c-3p expression was verified by qRT-PCR (Fig

3Ai). The increase in miR-200c-3p was accompanied by a significant increase of Nanog,

Oct4 and Sox2 mRNA transcripts (Fig 3Aii–3Aiv). Conversely, inhibition of miR-200c-3p in

ASCs, at P9 (Fig 3B), showed a significant reduction of Nanog expression, while Oct4 and

Sox2 expressions were not affected (Fig 3Bii–3Biv). These data suggest that miR-200c-3p most

likely acts specifically on Nanog. This is consistent with suggestions by other groups that

Nanog owns a hierarchical role in regulating pluripotency in ASCs [36]. In addition, strong

evidence suggests that CD44, a surface stemness marker, mediates the activation of Nanog

[37]. We therefore analyzed CD44 expression at both mRNA and protein levels in ASCs. We

observed that mimic miR-200c-3p increased CD44 expression but the inhibitor had the

Fig 3. MiR-200c-3p regulates the expression of stemness markers. A. qRT-PCR of miR-200c-3p (i), Nanog (ii), Oct4 (iii) and Sox2 (iv) in ASCs at P4

transfected with miR-200c-3p mimic. The fold change of miR-200c-3p was normalized to U6 and that of stemness markers to GAPDH. SD± is the mean of

three experiments and the p values were calculated with unpaired t test, �p<0.05, ���p<0.001. B. qRT-PCR of miR-200c-3p (i) in ASCs transfected with anti-

miR-200c-3p. Nanog (ii), Oct4 (iii) and Sox2 (iv) expressions were normalized to GAPDH. SD± is the mean of three experiments and the p values were

calculated with unpaired t test, ��p<0.01. C. CD44 mRNA was detected by qRT-PCR (i) and protein expression of CD44, p-STAT3 and STAT3 was detected by

WB (ii), in mimic-miR-200c-3p transfected ASCs. D. CD44 mRNA was detected by qRT-PCR (i) and protein expression of CD44, p-STAT3 and STAT3 was

detected by WB (ii), in anti-miR-200c-3p transfected ASCs. GAPDH was used as housekeeping for qRT-PCR and β-actin in WBs, as a loading control. SD± is

the mean of three experiments and the p values were calculated with unpaired t test, �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0257070.g003
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opposite effect. (Fig 3Ci, 3Cii, 3Di and 3Dii). Since Nanog and CD44 expression is often corre-

lated with high p-STAT3, we investigated if miR-200c-3p could influence the expression of

these two proteins via p-STAT3. Indeed, over-expression of miR-200c-3p had a positive effect

on p-STAT3 expression (Fig 3Ci and 3Cii), whereas inhibition of this miRNA had an opposite

effect (Fig 3Di and 3Dii).

MiR-200c-3p induces proliferation and contrasts senescence of ASCs

The effects of miR-200c-3p on ASCs proliferation were evaluated through various approaches.

First, we noticed an increased confluence in ASCs at P4, (low miR-200c-3p) transfected with

mimic miR-200c-3p, at 72 h (Fig 4Ai, upper panels). Conversely, anti-miR-200c-3p transfec-

tion at P9, (high miR-200c-3p) negatively affected cell proliferation (Fig 4Aii, lower panels).

We also evaluated the ability of ASCs to form colonies at low-density inoculation, which is an

index of the proliferation capacity. MiR-200c-3p over-expression increased the number of

cells, whereas its inhibition had an opposite effect (Fig 4Bi and 4Bii, respectively). Next, we

assessed the activation of ERK phosphorylation (p-ERK) and cyclin D1 expression by WB (Fig

4C). A slight increase of p-ERK expression was noticed when miR-200c-3p was over-

expressed, whereas anti-miR-200c-3p had a slight negative effect on p-ERK (Fig 4C, WB and

densitometry). Cyclin D1 remained unchanged in mimic/inhibitor-transfected cells. Since

proliferation and senescence are intimately connected [38] we investigated the role of miR-

200c-3p in ASCs senescence by SA-β-galactosidase staining. The percentage of β-galactosidase

positive cells transfected with mimic miR-200c-3p was less than those transfected with anti-

miR-200c-3p (Fig 4Di and 4Dii). Since, p53 and p21 expression were modulated during in
vitro passages of ASCs and both regulate cell senescence [37, 39], and the biological function of

p21 is to counteract cell cycle progression genes and to upregulate senescence-inducing genes

[40], we looked at the impact of miR-200c-3p on these proteins. In ASCs transfected with

mimic-miR-200c-3p at P4 or anti-miR-200c-3p at P9, the levels of p53, p21 transcripts were

assessed by qRT-PCR (Fig 4E). Over-expression or inhibition of this miRNA in ASCs had no

effect on p53 mRNA (Fig 4Ei and 4Eii upper graphs, respectively). This result is consistent

with only a marginal decrease or increase of p53 protein levels in ASCs transfected with either

mimics or inhibitors, respectively (Fig 4Ei and 4Eii WBs). P21 mRNA and protein levels were

significantly affected by miR-200c-3p over-expression or inhibition (Fig 4Ei and 4Eii,

respectively).

Overall, these results suggest a pro-proliferative and anti-senescence role of miR-200c-3p in

ASCs via p-ERK and interference with p21-driven cellular senescence.

MiR-200c-3p regulates PD-L1 and IDO1

As mentioned earlier, miR-200c-3p expression varies during in vitro passages with the highest

picks at P6-P9, accompanied by an increase of the stemness markers Nanog, Oct4 and Sox2

(Fig 1A and 1B). PD-L1 is a validated target of miR-200c-3p [41]. Since there is little informa-

tion on PD-L1 expression during in vitro passages of ASCs, we assessed its expression by WB

(Fig 5A). A consistent PD-L1 increase at P4 followed by its reduction at P6 and P9, was

observed. This pattern of expression is opposite to that of miR-200-3p (Fig 5A, WB and the

corresponding densitometry). PD-L1 mRNA data are consistent with the protein data (Fig

5Bi). Next, we confirmed the negative correlation between PD-L1 and miR-200c-3p expression

in ASCs at various passages by correlation analysis (Fig 5Bii). To confirm the inverse correla-

tion between PD-L1 and miR-200c-3p at P4 and P9, ASCs were transfected with mimics at P4

or inhibitors at P9 respectively (Fig 5C and 5D). At P4, over-expression of miR-200c-3p had a

negative effect on PD-L1 mRNA and protein (Fig 5Ci and 5Cii). In contrast, at P9, inhibition
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Fig 4. MiR-200c-3p affects proliferation and regulates senescence through p53, p21 expression in ASCs. A. Representative images of ASCs transfected with

mimic at P4, (low miR-200c-3p) (i) or inhibitor miR-200c-3p at P9, (high miR-200c-3p) (ii) and their corresponding controls. The images were taken at 72 h post-

transfection at 40x magnification. B. Clonogenic assays of ASCs transfected with miR-200c-3p mimics (i) and anti-miR-200c (ii) or their respective controls. Cells

were stained with crystal violet and subsequently photographed. Absorbance at 595 nm was measured to estimate the optical density in each condition. The black

arrows indicate colonies formation. SD± is the mean of optical density of each condition. The experiment was repeated twice and each condition in triplicates and p

values were calculated with unpaired t test, ���p<0.001. C. Expression of p-ERK, ERK, Cyclin D1 was studied by WB in ASCs transfected either with mimic at P4 or

with anti-miR-200c-3p at P9. On the right, densitometry analysis measures the levels of p-ERK normalized to ERK and Cyclin D1 normalized to β-actin. SD± is the
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mean of two WBs and the p values were calculated with unpaired t test, ��p<0.01. D. (i): The percentage of cells positive for SA-β-galactosidase in ASCs transfected

with miRNA mimics or (ii): inhibitors was calculated by counting blue cells in at least 7–8 different areas and in triplicates for each condition. The images

(magnification 20x) are representative of one out of three wells. The black arrows indicate β-gal positive cells. SD± is the mean of the % β-gal positive cells detected in

three wells for each condition and the p values were calculated with unpaired t test, �p<0.05, ��p<0.01. E. Detection of p53, p21 transcripts was performed by

qRT-PCR in ASCs transiently transfected at 72 h with (i): mimic-miR-200c-3p, at P4, and the corresponding WBs or (ii): anti-miR-200c-3p, at P9 and the

corresponding WBs. GAPDH was used for gene normalization in qRT-PCR and β-actin, loading control for proteins. SD± is the mean of three independent

experiments. P values were calculated with two tailed unpaired t test, �p<0.05, ���p<0.001.

https://doi.org/10.1371/journal.pone.0257070.g004

Fig 5. MiR-200c-3p inverse correlates with PD-L1 expression and modulates PD-L1 and IDO1 expression in

ASCs. A. PD-L1 expression at P2-P15 passages was assessed by WB. Densitometric analysis measures the fold change

of PD-L1 expression normalized to β-actin in each passage. One out of two WBs is shown. Dunnett’s multiple

comparisons test was applied to compare P2 with each of the passages. �p<0.05, ���p<0.001. B. (i): PD-L1 mRNA

detection by QRT-PCR, during in vitro passages (P). PD-L1 expression was normalized to GAPDH. SD± are the mean

of three independent experiments. Dunnett’s multiple comparisons test was applied to compare P2 with each of the

passages. �p<0.05, ��p<0.01, ���p<0.001. (ii): Correlation analysis between PD-L1 and miR-200c-3p expression was

performed in ASCs derived from 5 healthy donors at all passages from 2 to 15. The square of the correlation

coefficient, R2 <0.7 shows that the inverse correlation is significant with p<0.01. C. (i): PD-L1 transcript fold change

by qRT-PCR in ASCs transfected with miR-200c-3p mimics, at P4 and (ii): PD-L1 protein detection by WB. (iii):

IDO1 transcript fold change by qRT-PCR in ASCs transfected with miR-200c-3p mimics, at P4. D. (i): PD-L1

transcript by qRT-PCR in ASCs transfected with miR-200c-3p inhibitors, at P9 and (ii): PD-L1 protein detection by

WB. and (iii): IDO1 transcript fold change by qRT-PCR in ASCs transfected with miR-200c-3p inhibitor, at P9. SD± is

the mean of three experiments and the p values were calculated with two tailed unpaired t test. ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0257070.g005
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of miR-200c-3p induced PD-L1 expression both at the transcriptional and at the protein level

(Fig 5Di and 5Dii). Similar to PD-L1, IDO1, is known to exert immunosuppressive effects

[42]. So, we assessed the levels of IDO1 in ASCs transfected with miR-200c-3p mimics and

with miR-200c-3p inhibitors (Fig 5Ciii and 5Diii). The data show that miR-200c-3p inhibition

induced IDO1, while overexpression of miR-200c-3p had the opposite effect. These results

indicate an immunomodulatory role of miR-200c-3p in ASCs.

Discussion

ASCs represent a very important tool in regenerative medicine and tissue repair due to their

pluripotency. However, a major caveat for their application in the clinic is the loss of stemness

and senescence during in vitro passage. In this study, we have asked if miRNAs can be

employed to regulate these two characteristics in ASCs to broaden their clinical application.

Indeed, a few studies have demonstrated that miRNAs play a critical role in the control of

pluripotency-related genes. Among these miRNAs, miR-200c has been successfully used to

reprogram mouse or human induced pluripotent stem cells (iPSCs) and human embryonic

stem cells (hESC) [23, 43]. For instance, inhibition of miR-200c in hESCs inhibited Nanog

expression [28] and consequently self-renewal and promoted differentiation [44]. In contrast,

its over-expression induced Nanog expression and decreased apoptosis, resulting in mainte-

nance of self-renewal and proliferation of these cells [45]. Whilst this miRNA seems to play a

significant role in hESC self-renewal, its effect of miR-200c-3p in ASCs pluripotency has not

been fully explored. In this study, we demonstrated that over-expression of miR-200c-3p

favored stemness by inducing Nanog, Oct4 and Sox2 expression. Our results are also consis-

tent with data reported in embryonic stem cells studies in embryonic stem cells [46]. Particu-

larly, the Nanog expression is considered a bonafide stemness marker having a hierarchical

role in regulating the pluripotency and plasticity of ASCs [36]. In agreement with these data,

we also noted that the effect of miR-200c-3p was more pronounced on Nanog than on Oct4

and Sox2, at P6 and P9 passages [47]. In cancer cell lines context, CD44 facilitates translocation

of Nanog to the nucleus. The nuclear Nanog, in turn, forms a complex with STAT-3 and acti-

vates it. As a consequence, pluripotent stem cell regulators are activated [48]. Similar findings

have been reported also in ASCs [37]. Park et al., have shown that CD44/Nanog/p-STAT3

pathway was downregulated by miR-34a, a known anti-proliferative and pro-senescence

miRNA, by targeting Nanog [37]. The data presented here suggest that miR-200c-3p positively

regulated Nanog. We also found that over-expression of this miRNA induced expression of

CD44 and p-STAT3 in ASCs. The role of STAT3 in regulation of Nanog and hence in both

mouse ESC and iPSC has been previously demonstrated [49]. How does miR-200c-3p posi-

tively regulate these genes is a matter of open debate and future studies. However, it can be sur-

mised that a negative regulator of CD44/p-STAT3 axis could be downregulated by it. It is also

conceivable that this miRNA could negatively influence miR-34a, which is known to inhibit

the CD44/Nanog/STAT3 axis. Some miRNAs are known to localize in nucleus to negatively

regulate maturation of other miRNAs [50]. Most interestingly, it has been observed that miR-

200c can migrate to the nucleus [51]. Based on these and our observations, it is tempting to

speculate that miR-34a maturation could be affected by miR-200c. Overall, our data suggest

that the stimulation of CD44/p-STAT3 axis could account for miR-200c-3p-mediated induc-

tion of stemness markers.

MiR-200c-3p overexpression in ASCs increased their confluency and colony forming abil-

ity, most likely through activation of p-ERK and concomitant downregulation of p21. In epi-

thelial cancer cells, Carter et al, have shown that increased expression of miR-200 family,

induced KRAS expression via binding to the 3’UTR of Ras association domain family member
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2 (RASSF2), a negative regulator of KRAS. This led to activation of MAPK/ERK pathway and

specifically p-ERK via KRAS [52]. We speculate that akin to the observations by Carter et al,

miR-200c-3p might affect similar pathways to upregulate p-ERK.

P53 and p21 has been shown to be closely linked with senescence [35]. This senescence-

inducing effect is most likely due to proteasome-dependent degradation of Nanog [53]. We

investigated if over-expression of miR-200c-3p and up-regulation of Nanog could adversely

affect p53/p21 expression. Our data are consistent with the suggestion that the antisenescence

effect of miR-200c-3p is most likely through down-regulation of p21. It remains to be investi-

gated if the marginal reduction in p53 observed by us could be involved in the anti-senescence

effect of miR-200c-3p in ASCs.

As far as PD-L1 expression is concerned, little is known about how it is regulated during in
vitro passages and expansion of ASCs. Our results showed that PD-L1 and miR-200c-3p are

differentially expressed in early and late passages of ASCs. That miR-200c-3p inhibits PD-L1

expression was previously demonstrated in Acute Myeloid Leukemia (AML) and in ovarian

cancer (OC) [41, 54]. In addition, the pattern of the immunosuppressive enzyme IDO1 fol-

lowed that of PD-L1. How the regulation of these two proteins by miR-200c-3p affects immu-

nomodulatory properties of ASCs, needs further investigation. A study showed that PD-L1

expression was low in the early passages of ASCs and was induced when ASCs were placed in

contact with allogeneic activated T-cells, in a co-culture setting [16]. T-cells were not able to

attack and kill high PD-L1-expressing-ASCs, favoring allogeneic ASCs implementation for tis-

sue engineering and therapeutic applications. In our 2D cultures of ASCs, the decrease of

PD-L1 expression most likely was due to the increased miR-200c-3p expression. It would be

interesting to assess the endogenous levels of miR-200c-3p expression in ASCs when placed

with activated T cells in a co-culture setting to test whether there is a back-forward loop

between miR-200c-3p and PD-L1.

It cannot be excluded that PD-L1 expression might be higher in later passaged ASCs. In

such a scenario, over-expression of miR-200c-3p could be used to moderate PD-L1 expression

to fine-tune immunomodulation capacity and enhance self-renewal. It would be also interest-

ing to test different concentrations of miR-200c-3p mimics or inhibitors to modulate PD-L1

expression in early or late passaged ASCs and assess T-cell responses in allogenic co-cultures.

Assessment of immune responses might shed light into personalized therapeutic applications.

To our knowledge, this is the first study to provide evidence that miR-200c-3p favors stem-

ness, contrasts senescence and induces proliferation in ASCs. We further show that these char-

acteristics of ASCs are influenced through ERK and p21/p53 pathways as well as by activating

the CD44/p-STAT3/ Nanog axis. Our data could have important therapeutic implications in

which miR-200c-3p mimics can be used to switch on proliferation and inhibit senescence of

ASCs in order to enhance their expansion for use in cell-based clinical approaches. The fact

that miR-200c-3p also targets PD-L1 strengthens its candidature as a target for regulating

immunomodulation of ASCs and potentiate their therapeutic applications in the context of

inflammatory/autoimmune diseases.

Conclusions

This study provides evidence of miR-200c-3p involvement in self-renewal and immune modu-

lation of human ASCs.

The over-expression of this miRNA by mimic transfection stimulated cell proliferation

through increase of p-ERK levels and inhibited cell senescence through downregulation of

p53/p21 axis. MiR-200c-3p also increased expression of CD44 receptor and subsequent phos-

phorylation of STAT3, thus leading to transcriptional stimulation of stemness-related genes
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like Nanog, Oct4 and Sox2. Conversely, miR-200c-3p inhibition released the expression of

PD-L1, a direct target of this miRNA and of the IDO1 enzyme, thus affecting ASC-related

immunomodulatory effects (Fig 6). These findings provide new insights into the molecular

mechanisms how miR-200c-3p could restore the self-renewal potential of ASCs, thereby

potentiating their use in clinical applications.
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