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Abstract
Epigenetic-sensitive mechanisms, mainly DNA methylation, mirror the relationship between environmental and genetic 
risk factors able to affect the sensitiveness to development of obesity and its comorbidities. Bariatric and metabolic surgery 
may reduce obesity-related cardiovascular risk through tissue-specific DNA methylation changes. Among the most robust 
results, differential promoter methylation of ACACA , CETP, CTGF, S100A8, and S100A9 genes correlated significantly with 
the levels of mRNA before and after gastric bypass surgery (RYGB) in obese women. Additionally, promoter hypermeth-
ylation of NFKB1 gene was significantly associated with reduced blood pressure in obese patients after RYGB suggesting 
useful non-invasive biomarkers. Of note, sperm-related DNA methylation signatures of genes regulating the central control 
of appetite, such as MC4R, BDNF, NPY, and CR1, and other genes including FTO, CHST8, and SH2B1 were different in 
obese patients as compared to non-obese subjects and patients who lost weight after RYGB surgery. Importantly, transgen-
erational studies provided relevant evidence of the potential effect of bariatric and metabolic surgery on DNA methylation. 
For example, peripheral blood biospecimens isolated from siblings born from obese mothers before bariatric surgery showed 
different methylation signatures in the insulin receptor and leptin signaling axis as compared to siblings born from post-
obese mothers who underwent surgery. This evidence suggests that bariatric and metabolic surgery of mothers may affect 
the epigenetic profiles of the offspring with potential implication for primary prevention of severe obesity. We update on 
tissue-specific epigenetic signatures as potential mechanisms underlying the restoration of metabolic health after surgery 
suggesting useful predictive biomarkers.
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Introduction

Despite the efforts in discovering novel potential non-
invasive biomarkers, we are unable to stratify the risk of 
recovering the weight lost and developing cardiovascular 
diseases (CVDs) in severely obese patients undergoing 
weight change [1, 2]. Obesity has globally reached epi-
demic proportions, increasing the risk for type 2 diabetes 
(T2D) and CVDs as major causes of morbidity and mortal-
ity worldwide [3]. Advanced epigenomic-based technolo-
gies are providing novel insight into the pathogenesis of 
obesity and CVDs [3–7]. Direct epigenetic marks consist 
in DNA methylation and histone modification changes 
occurring as a response to specific environmental expo-
sures, which can affect gene expression programs with-
out modifications in genetic background [8]. Epigenetic-
sensitive mechanisms can be acquired over the lifetime 
leading to chromatin remodeling and, therefore, alterations 
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of transcriptional programs underlying oxidative stress, 
inflammation, and metabolic unbalance which may pre-
dispose to obesity [4–8].

Bariatric and metabolic surgery is an effective therapy in 
the management of severe obesity and related cardiometa-
bolic risk [9–12], and, generally, is suggested to patients 
with a body mass index (BMI) ≥ 40 kg/m [2] who have failed 
traditional nonsurgical approaches [13–15]. Chronologically, 
we had Roux-en-Y gastric bypass (RYGB), biliopancreatic 
diversion (BPD), duodenal switch (DS), adjustable gastric 
banding (AGB), and sleeve gastrectomy (SG). RYGB, BPD, 
and DS dominated the scene as gold standards in the surgi-
cal treatment of patients with severe obesity from the 1960s 
to the 2000s and have been replaced by SG. The reason for 
this change resides in the lower rate of complications both 
in the short (anastomotic leaks, small bowel obstruction, 
staple-line leaks, hemorrhage) and long term (anastomotic 
strictures, marginal ulceration, gastric fistula, nutritional 
deficiencies, liver failure, and recurrent weight gain) and in 
the less complexity of the whole surgical procedure [13–15]. 
In the early 2000s, laparoscopic AGB started to have con-
siderable appeal both for surgeons and patients, given the 
simple technique and low short-term complication rate; how-
ever, the cluster of patients in which this type of procedure 
was indicated rapidly diminished owing to weight regain 
and long-term risk of band perforation/slippage [13–15]. SG 
has the advantage of not requiring any bowel manipulation 
or anastomosis, but there are no data in the long term and 
the rate of staple-line leaks in the fundus of the sleeve and 
gastroesophageal reflux are still high.

The abnormalities of epigenetic-sensitive pathways, 
mainly guided from DNA methylation, in obese patients 
undergoing bariatric and metabolic surgery make the epige-
netic information potentially useful for diagnostic and thera-
peutic strategies. Several longitudinal studies demonstrated 
that bariatric and metabolic surgery may reverse the obesity-
related epigenome, mainly through changes in DNA methy-
lome, suggesting that the epigenetic regulation may medi-
ate the surgery-induced beneficial effects [16–21]. Thus, 
bariatric and metabolic surgery may serve as “epigenetic 
shaping” able to restore the metabolic balance in patients 
affected by severe obesity. The goal of this scoping review is 
to highlight the relevance of clinical epigenetics as new tool 
to be employed for clarifying molecular basis of obesity as 
well as to provide novel biomarkers useful for personalized 
management of patients after surgical intervention.

Methods

We performed electronic searches in three different databases, 
including PubMed, Google Scholar, and Web of Science, to 
select only studies in patients evaluating the potential clinical 

role of DNA methylation changes in restoring metabolic 
health after surgical procedures. We searched for studies 
written in English with a priority for those published in the 
last 10 years. The search syntax consisted of terms related to 
“obese patients” and “metabolic and bariatric surgery” com-
bined with terms “DNA methylation”, “peripheral blood”, 
“tissue biopsy”, and “biomarkers”. Two expert researchers in 
the field screened independently all studies and categorized 
them according to the size of the study population and type of 
human biospecimen. The search yielded 12 original articles 
evaluating the modifications of DNA methylome in obese 
patients before and after metabolic and bariatric surgery. Con-
cerning the type of human biospecimen for DNA methylome 
mapping, five studies used whole blood, two studies used adi-
pose tissue biopsy, three studies used skeletal muscle biopsy, 
one study used liver biopsy, and one study used spermatozoa.

DNA methylation basic mechanisms

DNA methylation levels are modulated by environmental and 
lifestyle risk factors representing potential pathogenic mecha-
nisms underlying metabolic alterations in patients predisposed 
to or affected by cardiometabolic diseases [4–6, 22]. DNA 
methylation is the biochemical addition of a methyl group 
which mainly occurs in the CpG dinucleotides through the 
action of DNA methyltransferase enzymes (DNMTs) [8]. 
The genomic loci with a high density of CpG dinucleotides 
[known as “CpG islands”, (GCIs)] are mainly located in the 
gene promoter regions. Generally, CGI methylation status 
inversely correlates with the rates of transcription regula-
tion; in fact, promoter-related methylated CGIs are located 
upstream of silenced genes, whereas unmethylated CGIs are 
located upstream of transcriptionally active genes (Fig. 1) 
[8]. In contrast, methylation of intragenic regions including 
gene body untranslated regions (5’ and 3’ UTRs) seems to be 
related to increased gene expression [23]. Interestingly, base-
line DNA methylation patterns were indicated as possible non-
invasive biomarkers which could help to predict weight loss, 
but advance in this field is still limited to the bench of research 
laboratory [24].

Obesity‑related DNA methylation changes 
can be erased after metabolic and bariatric 
surgery

Beyond the weight loss, bariatric and metabolic surgery can 
induce several beneficial effects on metabolism including 
improvement of insulin sensitivity and cardiovascular func-
tion as well as resolving T2D [9, 25]. Specific molecular 
pathways, including chronic low-grade inflammation, release 
of incretin hormones, and lipid oxidation and mitochon-
drial function, seem to be improved after bariatric surgery. 
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[26–29] Even if the molecular routes are still unclear, bariat-
ric and metabolic surgery could restore the metabolic health 
by means of epigenetic regulation (Fig. 1). In particular, 
some studies have detected differences in DNA methylation 
levels upon specific types of bariatric surgery (Table 1). We 
summarize the most recent clinical evidence for which DNA 
methylation could mediate the beneficial effects of bariatric 
and metabolic surgery in specific patient-derived specimens.

Adipose tissue

The acceleration of visceral adipose tissue (VAT)-related 
epigenetic age was measured by hypermethylation of spe-
cific CpGs and seemed to have potential effects on the 
process of body weight loss after bariatric and metabolic 
surgery [30]. Adipose tissue and its DNA methylation pro-
files have a key role in obese patients [18]. Benton et al. 
[18] found a cluster of differentially methylated genes in 
the subcutaneous and omental adipose tissues isolated from 
obese women before and after an RYGB. These genes were 
functionally associated with obesity, epigenetic regulation, 
and development process and showed overlapping modifi-
cations in their transcriptional profiles, thus remarking the 
impact of DNA methylation across surgery procedures [18]. 

Besides, Dahlman et al. [31] demonstrated that a specific 
panel of genes involved in adipogenesis was differentially 
methylated in their regulatory regions in abdominal subcuta-
neous fat cells isolated from post-obese women with respect 
to healthy controls. However, modifications in the related 
transcriptional profiles were not found [31].

Skeletal muscle

To date, there is no evidence for the potential effects of 
RYGB surgery on the global DNA methylation in human 
tissues, such as muscle biopsy specimens [20, 32]. The 
methylation levels of the long interspersed nuclear element 
1 (LINE-1), considered as a marker of global DNA methyla-
tion, did not show changes after RYGB-induced weight loss 
[33, 34]. Otherwise, RYGB surgery was significantly associ-
ated with targeted modifications in DNA methylation levels 
of some genes, such as the peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC1A) and pyruvate 
dehydrogenase lipoamide kinase isozyme 4 (PDK4), which 
are involved in the regulation of lipid metabolism in skeletal 
muscle [20]. After a period of 6 months, modifications in 
DNA methylation levels were also associated with varia-
tions in mRNA levels of these genes, suggesting a potential 

Fig. 1  DNA methylation as potential mediator of bariatric and meta-
bolic surgery effects in patients with severe obesity. DNA methylation 
changes in targeted genes may mirror the beneficial effects of surgery 

procedures on the weight lost. If mechanistically validated, these 
molecular signatures may represent useful non-invasive biomarkers to 
stratify the risk of weight recovery and cardiovascular complications
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role in restoring metabolic health after surgery [20]. The 
RYGB-induced weight loss restored to normal levels both 
the sorbin and SH3 domain containing 3 (SORBS3) pro-
moter methylation levels and gene expression in the muscle 
specimens of obese female [17]. In addition, post-surgery (at 
3 months) changes in the SORBS3 mRNA levels correlated 
with obesity-related parameters and fasting insulin levels, 
suggesting molecular routes which were potentially involved 
in the restoration of metabolic health after surgery proce-
dures [17]. Recently, an integrated omic-based approach 
has demonstrated that significant changes in DNA methyla-
tion mostly occurred both in inter- and intragenic regions at 
52 weeks (not early) from the RYGB procedure, affecting 
the expression profiles of genes involved in mitochondrial, 
lipidic and calcium-related signaling axes [16].

Liver and spermatozoa

A case–control study showed an alteration in DNA methyla-
tion/transcriptional profiles in liver biopsies isolated from 
patients with obesity and complicated by different grades of 
non-alcoholic fatty liver disease (NAFLD) as compared to 
patients undergoing bariatric surgery [35]. In particular, nine 
genes encoding for the main enzymes regulating the inter-
mediate metabolism seem to mediate dynamic remodeling, 
which is induced after the massive weight loss after bariatric 
surgery [35]. For the first time, sperm biospecimens were 
collected at three time points from men grouped in three 
classes: (1) healthy (BMI 20–25), (2) obesity (BMI > 29), 
and severe obesity (BMI > 40) to study whether and how 
dynamic changes of DNA methylation may have a mecha-
nistic role in obesity [36]. Sperm-related DNA methylation 
changes mirrored a potential direct involvement of genes 
regulating the central control of appetite and metabolic pro-
cesses in obese men as compared to men who lost weight 
after RYGB suggesting potential biomarkers to longitudi-
nally trace the effect of surgery procedures. [36].

Targeted DNA methylation signatures were detected in 
blood leukocytes and showed no substantial changes in 
patients with obesity as compared to healthy controls [37]. 
Interestingly, Kirchner et al. [38] found that 12 months after 
RYGB surgery, specific promoter regions annotated to the 
interleukin (IL)-6,IL-1B, tumor necrosis factor α (TNF-α), 
and pyruvate dehydrogenase kinase 4 (PKD4) genes were 
hypermethylated suggesting a putative mechanistic link 
between methylation profiles and beneficial effect of bariat-
ric surgery. Interestingly, promoter hypermethylation of the 
nuclear factor kappa b subunit 1 (NFKB1) gene was signifi-
cantly associated with reduced blood pressure after surgery 
suggesting useful non-invasive biomarkers [39].

The potential effects of bariatric and metabolic surgery on 
DNA methylation are supported by multigenerational stud-
ies conducted on obese women before and after bariatric 

surgery and their offspring. Siblings born from obese moth-
ers before BPD surgery showed different methylation signa-
tures as compared to siblings born from post-obese mothers 
who underwent surgery. This supports the idea for which the 
surgical procedure of mothers may modify the epigenetic 
profiles in the offspring, and, in consequence, the risk of 
developing cardiovascular complications in adulthood. At 
molecular level, differentially methylated regions were anno-
tated to insulin receptor and leptin signaling axis in obesity 
[40]. Besides, the maternal surgical treatment induced dif-
ferences in the DNA methylation/transcriptional profiles of 
pro-inflammatory genes in children as compared to their sib-
lings who were conceived pre-surgery [41]. In particular, 
DNA methylation and transcriptional levels of IL-8-related 
genes correlated with plasma C-reactive protein levels sug-
gesting useful cardiometabolic risk biomarkers.

Concluding remarks

Despite that clinical epigenetics is a promising tool for man-
agement of cardiometabolic diseases [42–46], the ability 
to predict outcomes of patients after metabolic and bari-
atric surgery though DNA methylation changes is still in 
its infancy. Clinical studies conducted so far are few and 
small in sample size and performed on different sequenc-
ing techniques to map DNA methylome. These non-stand-
ardized research protocols did not allow to obtain robust 
results which would direct the attention toward a biomarker 
rather than another. Another challenge related to the study 
of DNA methylation and restoring of metabolic health is 
the demonstration of a causal–effect relationship between 
these two factors. One of the most advanced tools to evalu-
ate the presumed causal role of DNA methylation changes 
in obesity and CVDs is network medicine, which combine 
advanced omics platforms, potent bioinformatic algorithms, 
and clinical information [47–49]. Thus, more large longi-
tudinal studies should be conducted to define whether the 
epigenome profiled before and after metabolic and bariatric 
surgery may help clinicians in predicting outcomes of severe 
obese patients.
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